1
0
mirror of https://github.com/EDCD/EDMarketConnector.git synced 2025-04-12 15:27:14 +03:00
2020-06-21 16:31:40 +01:00

128 lines
4.7 KiB
Python
Executable File

#!/usr/bin/env python3
#
# build databases from files systems.csv and stations.json from http://eddb.io/api
#
import pickle
import csv
import json
import requests
def download(filename):
r = requests.get('https://eddb.io/archive/v6/' + filename, stream=True)
print('\n%s\t%dK' % (filename, len(r.content) / 1024))
return r
if __name__ == "__main__":
# Ellipsoid that encompasses most of the systems in the bubble (but not outliers like Sothis)
RX = RZ = 260
CY = -50
RY = 300
RX2 = RX * RX
RY2 = RY * RY
RZ2 = RZ * RZ
def inbubble(x, y, z):
return (x * x)/RX2 + ((y - CY) * (y - CY))/RY2 + (z * z)/RZ2 <= 1
# Sphere around Jaques
JX, JY, JZ = -9530.50000, -910.28125, 19808.12500
RJ2 = 80 * 80 # Furthest populated system is Pekoe at 50.16 Ly
def around_jaques(x, y, z):
return ((x - JX) * (x - JX) + (y - JY) * (y - JY) + (z - JZ) * (z - JZ)) <= RJ2
# Sphere around outliers
RO2 = 40 * 40
def around_outlier(cx, cy, cz, x, y, z):
return ((x - ox) * (x - ox) + (y - oy) * (y - oy) + (z - oz) * (z - oz)) <= RO2
# Load all EDDB-known systems into a dictionary
systems = { int(s['id']) : {
'name' : s['name'],
'x' : float(s['x']),
'y' : float(s['y']),
'z' : float(s['z']),
'is_populated' : int(s['is_populated']),
} for s in csv.DictReader(download('systems.csv').iter_lines(decode_unicode=True)) }
#} for s in csv.DictReader(open('systems.csv')) }
print('%d\tsystems' % len(systems))
# Build another dict containing all systems considered to be in the
# main populated bubble (see constants above and inbubble() for
# the criteria).
# (system_id, is_populated) by system_name (ignoring duplicate names)
system_ids = {
str(s['name']) : (k, s['is_populated'])
for k,s in systems.items() if inbubble(s['x'], s['y'], s['z'])
}
print('%d\tsystems in bubble' % len(system_ids))
# Build another dict for systems considered to be around Colonia
extra_ids = {
str(s['name']) : (k, s['is_populated'])
for k,s in systems.items() if around_jaques(s['x'], s['y'], s['z'])
}
system_ids.update(extra_ids)
print('%d\tsystems in Colonia' % len(extra_ids))
# Build another dict for systems that are marked as populated, but
# didn't make it into the bubble list.
cut = {
k : s for k, s in systems.items()
if s['is_populated'] and s['name'] not in system_ids
}
print('%d\toutlying populated systems:' % len(cut))
# Build another dict with all the systems, populated or not, around any
# of the outliers.
extra_ids = {}
for k1,o in sorted(cut.items()):
ox, oy, oz = o['x'], o['y'], o['z']
extra = {
str(s['name']) : (k, s['is_populated'])
for k,s in systems.items() if around_outlier(ox, oy, oz, s['x'], s['y'], s['z'])
}
print('%-30s%7d %11.5f %11.5f %11.5f %4d' % (o['name'], k1, ox, oy, oz, len(extra)))
extra_ids.update(extra)
print('\n%d\tsystems around outliers' % len(extra_ids))
system_ids.update(extra_ids)
# Re-build 'cut' dict to hold duplicate (name) systems
cut = {
k : s
for k,s in systems.items() if s['name'] in system_ids and system_ids[s['name']][0] != k
}
print('\n%d duplicate systems' % len(cut))
for k,s in sorted(cut.items()):
print('%-20s%8d %8d %11.5f %11.5f %11.5f' % (s['name'], system_ids[s['name']][0], k, s['x'], s['y'], s['z']))
# Hack - ensure duplicate system names are pointing at the more interesting system
system_ids['Amo'] = (866, True)
system_ids['C Puppis'] = (25068, False)
system_ids['q Velorum'] = (15843, True)
system_ids['M Carinae'] = (22627, False)
system_ids['HH 17'] = (61275, False)
system_ids['K Carinae'] = (375886, False)
system_ids['d Velorum'] = (406476, False)
system_ids['L Velorum'] = (2016580, False)
system_ids['N Velorum'] = (3012033, False)
system_ids['i Velorum'] = (3387990, False)
with open('systems.p', 'wb') as h:
pickle.dump(system_ids, h, protocol = pickle.HIGHEST_PROTOCOL)
print('\n%d saved systems' % len(system_ids))
# station_id by (system_id, station_name)
stations = json.loads(download('stations.json').content) # let json do the utf-8 decode
station_ids = {
(x['system_id'], x['name']) : x['id'] # Pilgrim's Ruin in HR 3005 id 70972 has U+2019 quote
for x in stations if x['max_landing_pad_size']
}
with open('stations.p', 'wb') as h:
pickle.dump(station_ids, h, protocol = pickle.HIGHEST_PROTOCOL)
print('\n%d saved stations' % len(station_ids))