import contextlib import os import io import wave import torch.package from .Speakers import Speakers from .multi_v2_package import TTSModelMulti_v2 class TTSSilero: def __init__(self, threads: int = 12): device = torch.device('cpu') torch.set_num_threads(threads) local_file = 'model_multi.pt' if not os.path.isfile(local_file): torch.hub.download_url_to_file( 'https://models.silero.ai/models/tts/multi/v2_multi.pt', local_file ) self.model: TTSModelMulti_v2 = torch.package.PackageImporter(local_file).load_pickle("tts_models", "model") self.model.to(device) self.sample_rate = 16000 def synthesize_text(self, text: str, speaker: Speakers = Speakers.kseniya) -> bytes: return self.to_wav(self._synthesize_text(text, speaker)) def _synthesize_text(self, text: str, speaker: Speakers) -> list[torch.Tensor]: """ Performs splitting text and synthesizing it :param text: :return: """ results_list: list[torch.Tensor] = self.model.apply_tts( texts=[text], speakers=speaker.value, sample_rate=self.sample_rate ) return results_list def to_wav(self, synthesized_text: list[torch.Tensor]) -> bytes: res_io_stream = io.BytesIO() with contextlib.closing(wave.open(res_io_stream, 'wb')) as wf: wf.setnchannels(1) wf.setsampwidth(2) wf.setframerate(self.sample_rate) for result in synthesized_text: wf.writeframes((result * 32767).numpy().astype('int16')) res_io_stream.seek(0) return res_io_stream.read()