/* * kmscon - VT Emulator * * Copyright (c) 2011 David Herrmann * Copyright (c) 2011 University of Tuebingen * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files * (the "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* * Virtual Terminal Emulator * This is the VT implementation. It is written from scratch. It uses the * console subsystem as output and is tightly bound to it. It supports * functionality from vt100 up to vt500 series. It doesn't implement an * explicitly selected terminal but tries to support the most important commands * to be compatible with existing implementations. However, full vt102 * compatibility is the least that is provided. * * The main parser in this file controls the parser-state and dispatches the * actions to the related handlers. The parser is based on the state-diagram * from Paul Williams: http://vt100.net/emu/ * It is written from scratch, though. * This parser is fully compatible up to the vt500 series. It requires UTF-8 and * does not support any other input encoding. The G0 and G1 sets are therefore * defined as subsets of UTF-8. You may still map G0-G3 into GL, though. * * However, the CSI/DCS/etc handlers are not designed after a specific VT * series. We try to support all vt102 commands but implement several other * often used sequences, too. Feel free to add further. * * See ./doc/vte.txt for more information on this VT-emulator. */ #include #include #include #include #include "console.h" #include "font.h" #include "log.h" #include "unicode.h" #include "vte.h" #define LOG_SUBSYSTEM "vte" /* Input parser states */ enum parser_state { STATE_NONE, /* placeholder */ STATE_GROUND, /* initial state and ground */ STATE_ESC, /* ESC sequence was started */ STATE_ESC_INT, /* intermediate escape characters */ STATE_CSI_ENTRY, /* starting CSI sequence */ STATE_CSI_PARAM, /* CSI parameters */ STATE_CSI_INT, /* intermediate CSI characters */ STATE_CSI_IGNORE, /* CSI error; ignore this CSI sequence */ STATE_DCS_ENTRY, /* starting DCS sequence */ STATE_DCS_PARAM, /* DCS parameters */ STATE_DCS_INT, /* intermediate DCS characters */ STATE_DCS_PASS, /* DCS data passthrough */ STATE_DCS_IGNORE, /* DCS error; ignore this DCS sequence */ STATE_OSC_STRING, /* parsing OCS sequence */ STATE_ST_IGNORE, /* unimplemented seq; ignore until ST */ STATE_NUM }; /* Input parser actions */ enum parser_action { ACTION_NONE, /* placeholder */ ACTION_IGNORE, /* ignore the character entirely */ ACTION_PRINT, /* print the character on the console */ ACTION_EXECUTE, /* execute single control character (C0/C1) */ ACTION_CLEAR, /* clear current parameter state */ ACTION_COLLECT, /* collect intermediate character */ ACTION_PARAM, /* collect parameter character */ ACTION_ESC_DISPATCH, /* dispatch escape sequence */ ACTION_CSI_DISPATCH, /* dispatch csi sequence */ ACTION_DCS_START, /* start of DCS data */ ACTION_DCS_COLLECT, /* collect DCS data */ ACTION_DCS_END, /* end of DCS data */ ACTION_OSC_START, /* start of OSC data */ ACTION_OSC_COLLECT, /* collect OSC data */ ACTION_OSC_END, /* end of OSC data */ ACTION_NUM }; /* CSI flags */ #define CSI_BANG 0x0001 /* CSI: ! */ #define CSI_CASH 0x0002 /* CSI: $ */ #define CSI_WHAT 0x0004 /* CSI: ? */ #define CSI_GT 0x0008 /* CSI: > */ #define CSI_SPACE 0x0010 /* CSI: */ #define CSI_SQUOTE 0x0020 /* CSI: ' */ #define CSI_DQUOTE 0x0040 /* CSI: " */ #define CSI_MULT 0x0080 /* CSI: * */ #define CSI_PLUS 0x0100 /* CSI: + */ #define CSI_POPEN 0x0200 /* CSI: ( */ #define CSI_PCLOSE 0x0400 /* CSI: ) */ /* max CSI arguments */ #define CSI_ARG_MAX 16 /* terminal flags */ #define FLAG_CURSOR_KEY_MODE 0x01 /* DEC cursor key mode */ #define FLAG_KEYPAD_APPLICATION_MODE 0x02 /* DEC keypad application mode; TODO: toggle on numlock? */ #define FLAG_LINE_FEED_NEW_LINE_MODE 0x04 /* DEC line-feed/new-line mode */ #define FLAG_8BIT_MODE 0x08 /* Disable UTF-8 mode and enable 8bit compatible mode */ #define FLAG_7BIT_MODE 0x10 /* Disable 8bit mode and use 7bit compatible mode */ struct kmscon_vte { unsigned long ref; struct kmscon_console *con; kmscon_vte_write_cb write_cb; void *data; struct kmscon_utf8_mach *mach; unsigned int state; unsigned int csi_argc; int csi_argv[CSI_ARG_MAX]; unsigned int csi_flags; struct font_char_attr cattr; unsigned int flags; kmscon_vte_charset *gl; kmscon_vte_charset *gr; kmscon_vte_charset *glt; kmscon_vte_charset *grt; kmscon_vte_charset *g0; kmscon_vte_charset *g1; kmscon_vte_charset *g2; kmscon_vte_charset *g3; }; int kmscon_vte_new(struct kmscon_vte **out, struct kmscon_console *con, kmscon_vte_write_cb write_cb, void *data) { struct kmscon_vte *vte; int ret; if (!out || !con || !write_cb) return -EINVAL; vte = malloc(sizeof(*vte)); if (!vte) return -ENOMEM; memset(vte, 0, sizeof(*vte)); vte->ref = 1; vte->con = con; vte->write_cb = write_cb; vte->data = data; ret = kmscon_utf8_mach_new(&vte->mach); if (ret) goto err_free; kmscon_vte_reset(vte); log_debug("new vte object"); kmscon_console_ref(vte->con); *out = vte; return 0; err_free: free(vte); return ret; } void kmscon_vte_ref(struct kmscon_vte *vte) { if (!vte) return; vte->ref++; } void kmscon_vte_unref(struct kmscon_vte *vte) { if (!vte || !vte->ref) return; if (--vte->ref) return; log_debug("destroying vte object"); kmscon_console_unref(vte->con); kmscon_utf8_mach_free(vte->mach); free(vte); } /* * Write raw byte-stream to pty. * When writing data to the client we must make sure that we send the correct * encoding. For backwards-compatibility reasons we should always send 7bit * characters exclusively. However, when FLAG_7BIT_MODE is not set, then we can * also send raw 8bit characters. For instance, in FLAG_8BIT_MODE we can use the * GR characters as keyboard input and send them directly or even use the C1 * escape characters. In unicode mode (default) we can send multi-byte utf-8 * characters which are also 8bit. When sending these characters, set the \raw * flag to true so this function does not perform debug checks on data we send. * If debugging is disabled, these checks are also disabled and won't affect * performance. * For better debugging, we also use the __LINE__ and __FILE__ macros. Use the * vte_write() and vte_write_raw() macros below for more convenient use. * * As a rule of thumb do never send 8bit characters in escape sequences and also * avoid all 8bit escape codes including the C1 codes. This will guarantee that * all kind of clients are always compatible to us. */ static void vte_write_debug(struct kmscon_vte *vte, const char *u8, size_t len, bool raw, const char *file, int line) { #ifdef KMSCON_ENABLE_DEBUG /* in debug mode we check that escape sequences are always <0x7f so they * are correctly parsed by non-unicode and non-8bit-mode clients. */ size_t i; if (!raw) { for (i = 0; i < len; ++i) { if (u8[i] & 0x80) log_warning("sending 8bit character inline to client in %s:%d", file, line); } } #endif vte->write_cb(vte, u8, len, vte->data); } #define vte_write(_vte, _u8, _len) \ vte_write_debug((_vte), (_u8), (_len), false, __FILE__, __LINE__) #define vte_write_raw(_vte, _u8, _len) \ vte_write_debug((_vte), (_u8), (_len), true, __FILE__, __LINE__) /* * Reset VTE state * This performs a soft reset of the VTE. That is, everything is reset to the * same state as when the VTE was created. This does not affect the console, * though. */ void kmscon_vte_reset(struct kmscon_vte *vte) { if (!vte) return; vte->flags = 0; kmscon_utf8_mach_reset(vte->mach); vte->state = STATE_GROUND; vte->gl = &kmscon_vte_unicode_lower; vte->gr = &kmscon_vte_unicode_upper; vte->glt = NULL; vte->grt = NULL; vte->g0 = &kmscon_vte_unicode_lower; vte->g1 = &kmscon_vte_unicode_upper; vte->g2 = &kmscon_vte_unicode_lower; vte->g3 = &kmscon_vte_unicode_upper; vte->cattr.fr = 255; vte->cattr.fg = 255; vte->cattr.fb = 255; vte->cattr.br = 0; vte->cattr.bg = 0; vte->cattr.bb = 0; vte->cattr.bold = 0; vte->cattr.underline = 0; vte->cattr.inverse = 0; } /* execute control character (C0 or C1) */ static void do_execute(struct kmscon_vte *vte, uint32_t ctrl) { switch (ctrl) { case 0x00: /* NUL */ /* Ignore on input */ break; case 0x05: /* ENQ */ /* Transmit answerback message */ /* TODO: is there a better answer than ACK? */ vte_write(vte, "\x06", 1); break; case 0x07: /* BEL */ /* Sound bell tone */ /* TODO: I always considered this annying, however, we * should at least provide some way to enable it if the * user *really* wants it. */ break; case 0x08: /* BS */ /* Move cursor one position left */ kmscon_console_move_left(vte->con, 1); break; case 0x09: /* HT */ /* Move to next tab stop or end of line */ /* TODO */ break; case 0x0a: /* LF */ case 0x0b: /* VT */ case 0x0c: /* FF */ /* Line feed or newline (CR/NL mode) */ if (vte->flags & FLAG_LINE_FEED_NEW_LINE_MODE) kmscon_console_newline(vte->con); else kmscon_console_move_down(vte->con, 1, true); break; case 0x0d: /* CR */ /* Move cursor to left margin */ kmscon_console_move_line_home(vte->con); break; case 0x0e: /* SO */ /* Map G1 character set into GL */ /* TODO */ break; case 0x0f: /* SI */ /* Map G0 character set into Gl */ /* TODO */ break; case 0x11: /* XON */ /* Resume transmission */ /* TODO */ break; case 0x13: /* XOFF */ /* Stop transmission */ /* TODO */ break; case 0x18: /* CAN */ /* Cancel escape sequence */ /* nothing to do here */ break; case 0x1a: /* SUB */ /* Discard current escape sequence and show err-sym */ kmscon_console_write(vte->con, 0xbf, &vte->cattr); break; case 0x1b: /* ESC */ /* Invokes an escape sequence */ /* nothing to do here */ break; case 0x1f: /* DEL */ /* Ignored */ break; case 0x84: /* IND */ /* Move down one row, perform scroll-up if needed */ kmscon_console_move_down(vte->con, 1, true); break; case 0x85: /* NEL */ /* CR/NL with scroll-up if needed */ kmscon_console_newline(vte->con); break; case 0x88: /* HTS */ /* Set tab stop at current position */ /* TODO */ break; case 0x8d: /* RI */ /* Move up one row, perform scroll-down if needed */ kmscon_console_move_up(vte->con, 1, true); break; case 0x8e: /* SS2 */ /* Temporarily map G2 into GL for next char only */ /* TODO */ break; case 0x8f: /* SS3 */ /* Temporarily map G3 into GL for next char only */ /* TODO */ break; case 0x9a: /* DECID */ /* Send device attributes response like ANSI DA */ /* TODO*/ break; case 0x9c: /* ST */ /* End control string */ /* nothing to do here */ break; default: log_warn("unhandled control char %u", ctrl); } } static void do_clear(struct kmscon_vte *vte) { int i; vte->csi_argc = 0; for (i = 0; i < CSI_ARG_MAX; ++i) vte->csi_argv[i] = -1; vte->csi_flags = 0; } static void do_collect(struct kmscon_vte *vte, uint32_t data) { switch (data) { case '!': vte->csi_flags |= CSI_BANG; break; case '$': vte->csi_flags |= CSI_CASH; break; case '?': vte->csi_flags |= CSI_WHAT; break; case '>': vte->csi_flags |= CSI_GT; break; case ' ': vte->csi_flags |= CSI_SPACE; break; case '\'': vte->csi_flags |= CSI_SQUOTE; break; case '"': vte->csi_flags |= CSI_DQUOTE; break; case '*': vte->csi_flags |= CSI_MULT; break; case '+': vte->csi_flags |= CSI_PLUS; break; case '(': vte->csi_flags |= CSI_POPEN; break; case ')': vte->csi_flags |= CSI_PCLOSE; break; } } static void do_param(struct kmscon_vte *vte, uint32_t data) { int new; if (data == ';') { if (vte->csi_argc < CSI_ARG_MAX) vte->csi_argc++; return; } if (vte->csi_argc >= CSI_ARG_MAX) return; /* avoid integer overflows; max allowed value is 16384 anyway */ if (vte->csi_argv[vte->csi_argc] > 0xffff) return; if (data >= '0' && data <= '9') { new = vte->csi_argv[vte->csi_argc]; if (new <= 0) new = data - '0'; else new = new * 10 + data - '0'; vte->csi_argv[vte->csi_argc] = new; } } static bool set_charset(struct kmscon_vte *vte, kmscon_vte_charset *set) { if (vte->csi_flags & CSI_POPEN) vte->g0 = set; else if (vte->csi_flags & CSI_PCLOSE) vte->g1 = set; else if (vte->csi_flags & CSI_MULT) vte->g2 = set; else if (vte->csi_flags & CSI_PLUS) vte->g3 = set; else return false; return true; } static void do_esc(struct kmscon_vte *vte, uint32_t data) { switch (data) { case 'B': /* map ASCII into G0-G3 */ if (set_charset(vte, &kmscon_vte_unicode_lower)) return; break; case '<': /* map DEC supplemental into G0-G3 */ if (set_charset(vte, &kmscon_vte_dec_supplemental_graphics)) return; break; case '0': /* map DEC special into G0-G3 */ if (set_charset(vte, &kmscon_vte_dec_special_graphics)) return; break; case 'A': /* map British into G0-G3 */ /* TODO: create British charset from DEC */ if (set_charset(vte, &kmscon_vte_unicode_upper)) return; break; case '4': /* map Dutch into G0-G3 */ /* TODO: create Dutch charset from DEC */ if (set_charset(vte, &kmscon_vte_unicode_upper)) return; break; case 'C': case '5': /* map Finnish into G0-G3 */ /* TODO: create Finnish charset from DEC */ if (set_charset(vte, &kmscon_vte_unicode_upper)) return; break; case 'R': /* map French into G0-G3 */ /* TODO: create French charset from DEC */ if (set_charset(vte, &kmscon_vte_unicode_upper)) return; break; case 'Q': /* map French-Canadian into G0-G3 */ /* TODO: create French-Canadian charset from DEC */ if (set_charset(vte, &kmscon_vte_unicode_upper)) return; break; case 'K': /* map German into G0-G3 */ /* TODO: create German charset from DEC */ if (set_charset(vte, &kmscon_vte_unicode_upper)) return; break; case 'Y': /* map Italian into G0-G3 */ /* TODO: create Italian charset from DEC */ if (set_charset(vte, &kmscon_vte_unicode_upper)) return; break; case 'E': case '6': /* map Norwegian/Danish into G0-G3 */ /* TODO: create Norwegian/Danish charset from DEC */ if (set_charset(vte, &kmscon_vte_unicode_upper)) return; break; case 'Z': /* map Spanish into G0-G3 */ /* TODO: create Spanish charset from DEC */ if (set_charset(vte, &kmscon_vte_unicode_upper)) return; break; case 'H': case '7': /* map Swedish into G0-G3 */ /* TODO: create Swedish charset from DEC */ if (set_charset(vte, &kmscon_vte_unicode_upper)) return; break; case '=': /* map Swiss into G0-G3 */ /* TODO: create Swiss charset from DEC */ if (set_charset(vte, &kmscon_vte_unicode_upper)) return; break; } /* everything below is only valid without CSI flags */ if (vte->csi_flags) { log_debug("unhandled escape seq %u", data); return; } switch (data) { case 'D': /* IND */ /* Move down one row, perform scroll-up if needed */ kmscon_console_move_down(vte->con, 1, true); break; case 'E': /* NEL */ /* CR/NL with scroll-up if needed */ kmscon_console_newline(vte->con); break; case 'H': /* HTS */ /* Set tab stop at current position */ /* TODO */ break; case 'M': /* RI */ /* Move up one row, perform scroll-down if needed */ kmscon_console_move_up(vte->con, 1, true); break; case 'N': /* SS2 */ /* Temporarily map G2 into GL for next char only */ /* TODO */ break; case 'O': /* SS3 */ /* Temporarily map G3 into GL for next char only */ /* TODO */ break; case 'Z': /* DECID */ /* Send device attributes response like ANSI DA */ /* TODO*/ break; case '\\': /* ST */ /* End control string */ /* nothing to do here */ break; default: log_debug("unhandled escape seq %u", data); } } static void csi_attribute(struct kmscon_vte *vte) { unsigned int i; for (i = 0; i < CSI_ARG_MAX; ++i) { switch (vte->csi_argv[i]) { case -1: break; case 0: vte->cattr.fr = 255; vte->cattr.fg = 255; vte->cattr.fb = 255; vte->cattr.br = 0; vte->cattr.bg = 0; vte->cattr.bb = 0; vte->cattr.bold = 0; vte->cattr.underline = 0; vte->cattr.inverse = 0; break; case 1: vte->cattr.bold = 1; break; case 4: vte->cattr.underline = 1; break; case 7: vte->cattr.inverse = 1; break; case 22: vte->cattr.bold = 0; break; case 24: vte->cattr.underline = 0; break; case 27: vte->cattr.inverse = 0; break; case 30: vte->cattr.fr = 0; vte->cattr.fg = 0; vte->cattr.fb = 0; break; case 31: vte->cattr.fr = 205; vte->cattr.fg = 0; vte->cattr.fb = 0; break; case 32: vte->cattr.fr = 0; vte->cattr.fg = 205; vte->cattr.fb = 0; break; case 33: vte->cattr.fr = 205; vte->cattr.fg = 205; vte->cattr.fb = 0; break; case 34: vte->cattr.fr = 0; vte->cattr.fg = 0; vte->cattr.fb = 238; break; case 35: vte->cattr.fr = 205; vte->cattr.fg = 0; vte->cattr.fb = 205; break; case 36: vte->cattr.fr = 0; vte->cattr.fg = 205; vte->cattr.fb = 205; break; case 37: vte->cattr.fr = 255; vte->cattr.fg = 255; vte->cattr.fb = 255; break; default: log_debug("unhandled SGR attr %i", vte->csi_argv[i]); } } } static void csi_soft_reset(struct kmscon_vte *vte) { kmscon_vte_reset(vte); } static void csi_compat_mode(struct kmscon_vte *vte) { /* always perform soft reset */ csi_soft_reset(vte); if (vte->csi_argv[0] == 61) { /* Switching to VT100 compatibility mode. We do * not support this mode, so ignore it. In fact, * we are almost compatible to it, anyway, so * there is no need to explicitely select it. * However, we enable 7bit mode to avoid * character-table problems */ vte->flags |= FLAG_7BIT_MODE; vte->gl = &kmscon_vte_unicode_lower; vte->gr = &kmscon_vte_dec_supplemental_graphics; } else if (vte->csi_argv[0] == 62 || vte->csi_argv[0] == 63 || vte->csi_argv[0] == 64) { /* Switching to VT2/3/4 compatibility mode. We * are always compatible with this so ignore it. * We always send 7bit controls so we also do * not care for the parameter value here that * select the control-mode. * VT220 defines argument 2 as 7bit mode but * VT3xx up to VT5xx use it as 8bit mode. We * choose to conform with the latter here. * We also enable 8bit mode when VT220 * compatibility is requested explicitely. */ if (vte->csi_argv[1] == 1 || vte->csi_argv[1] == 2) log_debug("client requests 8bit controls which we do not support as output"); vte->flags |= FLAG_8BIT_MODE; vte->gl = &kmscon_vte_unicode_lower; vte->gr = &kmscon_vte_dec_supplemental_graphics; } else { log_debug("unhandled DECSCL 'p' CSI %i, switching to utf-8 mode again", vte->csi_argv[0]); } } static void do_csi(struct kmscon_vte *vte, uint32_t data) { int num; if (vte->csi_argc < CSI_ARG_MAX) vte->csi_argc++; switch (data) { case 'A': num = vte->csi_argv[0]; if (num <= 0) num = 1; kmscon_console_move_up(vte->con, num, false); break; case 'B': num = vte->csi_argv[0]; if (num <= 0) num = 1; kmscon_console_move_down(vte->con, num, false); break; case 'C': num = vte->csi_argv[0]; if (num <= 0) num = 1; kmscon_console_move_right(vte->con, num); break; case 'D': num = vte->csi_argv[0]; if (num <= 0) num = 1; kmscon_console_move_left(vte->con, num); break; case 'J': if (vte->csi_argv[0] <= 0) kmscon_console_erase_cursor_to_screen(vte->con); else if (vte->csi_argv[0] == 1) kmscon_console_erase_screen_to_cursor(vte->con); else if (vte->csi_argv[0] == 2) kmscon_console_erase_screen(vte->con); else log_debug("unknown parameter to CSI-J: %d", vte->csi_argv[0]); break; case 'K': if (vte->csi_argv[0] <= 0) kmscon_console_erase_cursor_to_end(vte->con); else if (vte->csi_argv[0] == 1) kmscon_console_erase_home_to_cursor(vte->con); else if (vte->csi_argv[0] == 2) kmscon_console_erase_current_line(vte->con); else log_debug("unknown parameter to CSI-K: %d", vte->csi_argv[0]); break; case 'm': csi_attribute(vte); break; case 'p': if (vte->csi_flags & CSI_GT) { /* xterm: select X11 visual cursor mode */ csi_soft_reset(vte); } else if (vte->csi_flags & CSI_BANG) { /* DECSTR: Soft Reset */ csi_soft_reset(vte); } else if (vte->csi_flags & CSI_CASH) { /* DECRQM: Request DEC Private Mode */ /* If CSI_WHAT is set, then enable, * otherwise disable */ csi_soft_reset(vte); } else { /* DECSCL: Compatibility Level */ /* Sometimes CSI_DQUOTE is set here, too */ csi_compat_mode(vte); } break; default: log_debug("unhandled CSI sequence %c", data); } } /* map a character according to current GL and GR maps */ static uint32_t vte_map(struct kmscon_vte *vte, uint32_t val) { /* 32, 127, 160 and 255 map to identity like all values >255 */ switch (val) { case 33 ... 126: if (vte->glt) { val = (*vte->glt)[val - 32]; vte->glt = NULL; } else { val = (*vte->gl)[val - 32]; } break; case 161 ... 254: if (vte->grt) { val = (*vte->grt)[val - 160]; vte->grt = NULL; } else { val = (*vte->gr)[val - 160]; } break; } return val; } /* perform parser action */ static void do_action(struct kmscon_vte *vte, uint32_t data, int action) { kmscon_symbol_t sym; switch (action) { case ACTION_NONE: /* do nothing */ return; case ACTION_IGNORE: /* ignore character */ break; case ACTION_PRINT: sym = kmscon_symbol_make(vte_map(vte, data)); kmscon_console_write(vte->con, sym, &vte->cattr); break; case ACTION_EXECUTE: do_execute(vte, data); break; case ACTION_CLEAR: do_clear(vte); break; case ACTION_COLLECT: do_collect(vte, data); break; case ACTION_PARAM: do_param(vte, data); break; case ACTION_ESC_DISPATCH: do_esc(vte, data); break; case ACTION_CSI_DISPATCH: do_csi(vte, data); break; case ACTION_DCS_START: break; case ACTION_DCS_COLLECT: break; case ACTION_DCS_END: break; case ACTION_OSC_START: break; case ACTION_OSC_COLLECT: break; case ACTION_OSC_END: break; default: log_warn("invalid action %d", action); } } /* entry actions to be performed when entering the selected state */ static const int entry_action[] = { [STATE_CSI_ENTRY] = ACTION_CLEAR, [STATE_DCS_ENTRY] = ACTION_CLEAR, [STATE_DCS_PASS] = ACTION_DCS_START, [STATE_ESC] = ACTION_CLEAR, [STATE_OSC_STRING] = ACTION_OSC_START, [STATE_NUM] = ACTION_NONE, }; /* exit actions to be performed when leaving the selected state */ static const int exit_action[] = { [STATE_DCS_PASS] = ACTION_DCS_END, [STATE_OSC_STRING] = ACTION_OSC_END, [STATE_NUM] = ACTION_NONE, }; /* perform state transision and dispatch related actions */ static void do_trans(struct kmscon_vte *vte, uint32_t data, int state, int act) { if (state != STATE_NONE) { /* A state transition occurs. Perform exit-action, * transition-action and entry-action. Even when performing a * transition to the same state as the current state we do this. * Use STATE_NONE if this is not the desired behavior. */ do_action(vte, data, exit_action[vte->state]); do_action(vte, data, act); do_action(vte, data, entry_action[state]); vte->state = state; } else { do_action(vte, data, act); } } /* * Escape sequence parser * This parses the new input character \data. It performs state transition and * calls the right callbacks for each action. */ static void parse_data(struct kmscon_vte *vte, uint32_t raw) { /* events that may occur in any state */ switch (raw) { case 0x18: case 0x1a: case 0x80 ... 0x8f: case 0x91 ... 0x97: case 0x99: case 0x9a: case 0x9c: do_trans(vte, raw, STATE_GROUND, ACTION_EXECUTE); return; case 0x1b: do_trans(vte, raw, STATE_ESC, ACTION_NONE); return; case 0x98: case 0x9e: case 0x9f: do_trans(vte, raw, STATE_ST_IGNORE, ACTION_NONE); return; case 0x90: do_trans(vte, raw, STATE_DCS_ENTRY, ACTION_NONE); return; case 0x9d: do_trans(vte, raw, STATE_OSC_STRING, ACTION_NONE); return; case 0x9b: do_trans(vte, raw, STATE_CSI_ENTRY, ACTION_NONE); return; } /* events that depend on the current state */ switch (vte->state) { case STATE_GROUND: switch (raw) { case 0x00 ... 0x17: case 0x19: case 0x1c ... 0x1f: case 0x80 ... 0x8f: case 0x91 ... 0x9a: case 0x9c: do_trans(vte, raw, STATE_NONE, ACTION_EXECUTE); return; case 0x20 ... 0x7f: do_trans(vte, raw, STATE_NONE, ACTION_PRINT); return; } do_trans(vte, raw, STATE_NONE, ACTION_PRINT); return; case STATE_ESC: switch (raw) { case 0x00 ... 0x17: case 0x19: case 0x1c ... 0x1f: do_trans(vte, raw, STATE_NONE, ACTION_EXECUTE); return; case 0x7f: do_trans(vte, raw, STATE_NONE, ACTION_IGNORE); return; case 0x20 ... 0x2f: do_trans(vte, raw, STATE_ESC_INT, ACTION_COLLECT); return; case 0x30 ... 0x4f: case 0x51 ... 0x57: case 0x59: case 0x5a: case 0x5c: case 0x60 ... 0x7e: do_trans(vte, raw, STATE_GROUND, ACTION_ESC_DISPATCH); return; case 0x5b: do_trans(vte, raw, STATE_CSI_ENTRY, ACTION_NONE); return; case 0x5d: do_trans(vte, raw, STATE_OSC_STRING, ACTION_NONE); return; case 0x50: do_trans(vte, raw, STATE_DCS_ENTRY, ACTION_NONE); return; case 0x58: case 0x5e: case 0x5f: do_trans(vte, raw, STATE_ST_IGNORE, ACTION_NONE); return; } do_trans(vte, raw, STATE_ESC_INT, ACTION_COLLECT); return; case STATE_ESC_INT: switch (raw) { case 0x00 ... 0x17: case 0x19: case 0x1c ... 0x1f: do_trans(vte, raw, STATE_NONE, ACTION_EXECUTE); return; case 0x20 ... 0x2f: do_trans(vte, raw, STATE_NONE, ACTION_COLLECT); return; case 0x7f: do_trans(vte, raw, STATE_NONE, ACTION_IGNORE); return; case 0x30 ... 0x7e: do_trans(vte, raw, STATE_GROUND, ACTION_ESC_DISPATCH); return; } do_trans(vte, raw, STATE_NONE, ACTION_COLLECT); return; case STATE_CSI_ENTRY: switch (raw) { case 0x00 ... 0x17: case 0x19: case 0x1c ... 0x1f: do_trans(vte, raw, STATE_NONE, ACTION_EXECUTE); return; case 0x7f: do_trans(vte, raw, STATE_NONE, ACTION_IGNORE); return; case 0x20 ... 0x2f: do_trans(vte, raw, STATE_CSI_INT, ACTION_COLLECT); return; case 0x3a: do_trans(vte, raw, STATE_CSI_IGNORE, ACTION_NONE); return; case 0x30 ... 0x39: case 0x3b: do_trans(vte, raw, STATE_CSI_PARAM, ACTION_PARAM); return; case 0x3c ... 0x3f: do_trans(vte, raw, STATE_CSI_PARAM, ACTION_COLLECT); return; case 0x40 ... 0x7e: do_trans(vte, raw, STATE_GROUND, ACTION_CSI_DISPATCH); return; } do_trans(vte, raw, STATE_CSI_IGNORE, ACTION_NONE); return; case STATE_CSI_PARAM: switch (raw) { case 0x00 ... 0x17: case 0x19: case 0x1c ... 0x1f: do_trans(vte, raw, STATE_NONE, ACTION_EXECUTE); return; case 0x30 ... 0x39: case 0x3b: do_trans(vte, raw, STATE_NONE, ACTION_PARAM); return; case 0x7f: do_trans(vte, raw, STATE_NONE, ACTION_IGNORE); return; case 0x3a: case 0x3c ... 0x3f: do_trans(vte, raw, STATE_CSI_IGNORE, ACTION_NONE); return; case 0x20 ... 0x2f: do_trans(vte, raw, STATE_CSI_INT, ACTION_COLLECT); return; case 0x40 ... 0x7e: do_trans(vte, raw, STATE_GROUND, ACTION_CSI_DISPATCH); return; } do_trans(vte, raw, STATE_CSI_IGNORE, ACTION_NONE); return; case STATE_CSI_INT: switch (raw) { case 0x00 ... 0x17: case 0x19: case 0x1c ... 0x1f: do_trans(vte, raw, STATE_NONE, ACTION_EXECUTE); return; case 0x20 ... 0x2f: do_trans(vte, raw, STATE_NONE, ACTION_COLLECT); return; case 0x7f: do_trans(vte, raw, STATE_NONE, ACTION_IGNORE); return; case 0x30 ... 0x3f: do_trans(vte, raw, STATE_CSI_IGNORE, ACTION_NONE); return; case 0x40 ... 0x7e: do_trans(vte, raw, STATE_GROUND, ACTION_CSI_DISPATCH); return; } do_trans(vte, raw, STATE_CSI_IGNORE, ACTION_NONE); return; case STATE_CSI_IGNORE: switch (raw) { case 0x00 ... 0x17: case 0x19: case 0x1c ... 0x1f: do_trans(vte, raw, STATE_NONE, ACTION_EXECUTE); return; case 0x20 ... 0x3f: case 0x7f: do_trans(vte, raw, STATE_NONE, ACTION_IGNORE); return; case 0x40 ... 0x7e: do_trans(vte, raw, STATE_GROUND, ACTION_NONE); return; } do_trans(vte, raw, STATE_NONE, ACTION_IGNORE); return; case STATE_DCS_ENTRY: switch (raw) { case 0x00 ... 0x17: case 0x19: case 0x1c ... 0x1f: case 0x7f: do_trans(vte, raw, STATE_NONE, ACTION_IGNORE); return; case 0x3a: do_trans(vte, raw, STATE_DCS_IGNORE, ACTION_NONE); return; case 0x20 ... 0x2f: do_trans(vte, raw, STATE_DCS_INT, ACTION_COLLECT); return; case 0x30 ... 0x39: case 0x3b: do_trans(vte, raw, STATE_DCS_PARAM, ACTION_PARAM); return; case 0x3c ... 0x3f: do_trans(vte, raw, STATE_DCS_PARAM, ACTION_COLLECT); return; case 0x40 ... 0x7e: do_trans(vte, raw, STATE_DCS_PASS, ACTION_NONE); return; } do_trans(vte, raw, STATE_DCS_PASS, ACTION_NONE); return; case STATE_DCS_PARAM: switch (raw) { case 0x00 ... 0x17: case 0x19: case 0x1c ... 0x1f: case 0x7f: do_trans(vte, raw, STATE_NONE, ACTION_IGNORE); return; case 0x30 ... 0x39: case 0x3b: do_trans(vte, raw, STATE_NONE, ACTION_PARAM); return; case 0x3a: case 0x3c ... 0x3f: do_trans(vte, raw, STATE_DCS_IGNORE, ACTION_NONE); return; case 0x20 ... 0x2f: do_trans(vte, raw, STATE_DCS_INT, ACTION_COLLECT); return; case 0x40 ... 0x7e: do_trans(vte, raw, STATE_DCS_PASS, ACTION_NONE); return; } do_trans(vte, raw, STATE_DCS_PASS, ACTION_NONE); return; case STATE_DCS_INT: switch (raw) { case 0x00 ... 0x17: case 0x19: case 0x1c ... 0x1f: case 0x7f: do_trans(vte, raw, STATE_NONE, ACTION_IGNORE); return; case 0x20 ... 0x2f: do_trans(vte, raw, STATE_NONE, ACTION_COLLECT); return; case 0x30 ... 0x3f: do_trans(vte, raw, STATE_DCS_IGNORE, ACTION_NONE); return; case 0x40 ... 0x7e: do_trans(vte, raw, STATE_DCS_PASS, ACTION_NONE); return; } do_trans(vte, raw, STATE_DCS_PASS, ACTION_NONE); return; case STATE_DCS_PASS: switch (raw) { case 0x00 ... 0x17: case 0x19: case 0x1c ... 0x1f: case 0x20 ... 0x7e: do_trans(vte, raw, STATE_NONE, ACTION_DCS_COLLECT); return; case 0x7f: do_trans(vte, raw, STATE_NONE, ACTION_IGNORE); return; case 0x9c: do_trans(vte, raw, STATE_GROUND, ACTION_NONE); return; } do_trans(vte, raw, STATE_NONE, ACTION_DCS_COLLECT); return; case STATE_DCS_IGNORE: switch (raw) { case 0x00 ... 0x17: case 0x19: case 0x1c ... 0x1f: case 0x20 ... 0x7f: do_trans(vte, raw, STATE_NONE, ACTION_IGNORE); return; case 0x9c: do_trans(vte, raw, STATE_GROUND, ACTION_NONE); return; } do_trans(vte, raw, STATE_NONE, ACTION_IGNORE); return; case STATE_OSC_STRING: switch (raw) { case 0x00 ... 0x17: case 0x19: case 0x1c ... 0x1f: do_trans(vte, raw, STATE_NONE, ACTION_IGNORE); return; case 0x20 ... 0x7f: do_trans(vte, raw, STATE_NONE, ACTION_OSC_COLLECT); return; case 0x9c: do_trans(vte, raw, STATE_GROUND, ACTION_NONE); return; } do_trans(vte, raw, STATE_NONE, ACTION_OSC_COLLECT); return; case STATE_ST_IGNORE: switch (raw) { case 0x00 ... 0x17: case 0x19: case 0x1c ... 0x1f: case 0x20 ... 0x7f: do_trans(vte, raw, STATE_NONE, ACTION_IGNORE); return; case 0x9c: do_trans(vte, raw, STATE_GROUND, ACTION_NONE); return; } do_trans(vte, raw, STATE_NONE, ACTION_IGNORE); return; } log_warn("unhandled input %u in state %d", raw, vte->state); } void kmscon_vte_input(struct kmscon_vte *vte, const char *u8, size_t len) { int state; uint32_t ucs4; size_t i; if (!vte || !vte->con) return; for (i = 0; i < len; ++i) { if (vte->flags & FLAG_7BIT_MODE) { if (u8[i] & 0x80) log_debug("receiving 8bit character U+%d from pty while in 7bit mode", (int)u8[i]); parse_data(vte, u8[i] & 0x7f); } else if (vte->flags & FLAG_8BIT_MODE) { parse_data(vte, u8[i]); } else { state = kmscon_utf8_mach_feed(vte->mach, u8[i]); if (state == KMSCON_UTF8_ACCEPT || state == KMSCON_UTF8_REJECT) { ucs4 = kmscon_utf8_mach_get(vte->mach); parse_data(vte, ucs4); } } } } void kmscon_vte_handle_keyboard(struct kmscon_vte *vte, const struct uterm_input_event *ev) { kmscon_symbol_t sym; char val; size_t len; const char *u8; if (UTERM_INPUT_HAS_MODS(ev, UTERM_CONTROL_MASK)) { switch (ev->keysym) { case XK_2: case XK_space: vte_write(vte, "\x00", 1); return; case XK_a: case XK_A: vte_write(vte, "\x01", 1); return; case XK_b: case XK_B: vte_write(vte, "\x02", 1); return; case XK_c: case XK_C: vte_write(vte, "\x03", 1); return; case XK_d: case XK_D: vte_write(vte, "\x04", 1); return; case XK_e: case XK_E: vte_write(vte, "\x05", 1); return; case XK_f: case XK_F: vte_write(vte, "\x06", 1); return; case XK_g: case XK_G: vte_write(vte, "\x07", 1); return; case XK_h: case XK_H: vte_write(vte, "\x08", 1); return; case XK_i: case XK_I: vte_write(vte, "\x09", 1); return; case XK_j: case XK_J: vte_write(vte, "\x0a", 1); return; case XK_k: case XK_K: vte_write(vte, "\x0b", 1); return; case XK_l: case XK_L: vte_write(vte, "\x0c", 1); return; case XK_m: case XK_M: vte_write(vte, "\x0d", 1); return; case XK_n: case XK_N: vte_write(vte, "\x0e", 1); return; case XK_o: case XK_O: vte_write(vte, "\x0f", 1); return; case XK_p: case XK_P: vte_write(vte, "\x10", 1); return; case XK_q: case XK_Q: vte_write(vte, "\x11", 1); return; case XK_r: case XK_R: vte_write(vte, "\x12", 1); return; case XK_s: case XK_S: vte_write(vte, "\x13", 1); return; case XK_t: case XK_T: vte_write(vte, "\x14", 1); return; case XK_u: case XK_U: vte_write(vte, "\x15", 1); return; case XK_v: case XK_V: vte_write(vte, "\x16", 1); return; case XK_w: case XK_W: vte_write(vte, "\x17", 1); return; case XK_x: case XK_X: vte_write(vte, "\x18", 1); return; case XK_y: case XK_Y: vte_write(vte, "\x19", 1); return; case XK_z: case XK_Z: vte_write(vte, "\x1a", 1); return; case XK_3: case XK_bracketleft: case XK_braceleft: vte_write(vte, "\x1b", 1); return; case XK_4: case XK_backslash: case XK_bar: vte_write(vte, "\x1c", 1); return; case XK_5: case XK_bracketright: case XK_braceright: vte_write(vte, "\x1d", 1); return; case XK_6: case XK_grave: case XK_asciitilde: vte_write(vte, "\x1e", 1); return; case XK_7: case XK_slash: case XK_question: vte_write(vte, "\x1f", 1); return; case XK_8: vte_write(vte, "\x7f", 1); return; } } switch (ev->keysym) { case XK_BackSpace: vte_write(vte, "\x08", 1); return; case XK_Tab: case XK_KP_Tab: vte_write(vte, "\x09", 1); return; case XK_Linefeed: vte_write(vte, "\x0a", 1); return; case XK_Clear: vte_write(vte, "\x0b", 1); return; case XK_Pause: vte_write(vte, "\x13", 1); return; case XK_Scroll_Lock: /* TODO: do we need scroll lock impl.? */ vte_write(vte, "\x14", 1); return; case XK_Sys_Req: vte_write(vte, "\x15", 1); return; case XK_Escape: vte_write(vte, "\x1b", 1); return; case XK_KP_Enter: if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE) { vte_write(vte, "\eOM", 3); return; } /* fallthrough */ case XK_Return: if (vte->flags & FLAG_LINE_FEED_NEW_LINE_MODE) vte_write(vte, "\x0d\x0a", 2); else vte_write(vte, "\x0d", 1); return; case XK_Find: vte_write(vte, "\e[1~", 4); return; case XK_Insert: vte_write(vte, "\e[2~", 4); return; case XK_Delete: vte_write(vte, "\e[3~", 4); return; case XK_Select: vte_write(vte, "\e[4~", 4); return; case XK_Page_Up: vte_write(vte, "\e[5~", 4); return; case XK_Page_Down: vte_write(vte, "\e[6~", 4); return; case XK_Up: if (vte->flags & FLAG_CURSOR_KEY_MODE) vte_write(vte, "\e[A", 3); else vte_write(vte, "\e[A", 3); return; case XK_Down: if (vte->flags & FLAG_CURSOR_KEY_MODE) vte_write(vte, "\e[B", 3); else vte_write(vte, "\e[B", 3); return; case XK_Right: if (vte->flags & FLAG_CURSOR_KEY_MODE) vte_write(vte, "\e[C", 3); else vte_write(vte, "\e[C", 3); return; case XK_Left: if (vte->flags & FLAG_CURSOR_KEY_MODE) vte_write(vte, "\eOD", 3); else vte_write(vte, "\e[D", 3); return; case XK_KP_Insert: case XK_KP_0: if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE) vte_write(vte, "\eOp", 3); else vte_write(vte, "0", 1); return; case XK_KP_End: case XK_KP_1: if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE) vte_write(vte, "\eOq", 3); else vte_write(vte, "1", 1); return; case XK_KP_Down: case XK_KP_2: if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE) vte_write(vte, "\eOr", 3); else vte_write(vte, "2", 1); return; case XK_KP_Page_Down: case XK_KP_3: if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE) vte_write(vte, "\eOs", 3); else vte_write(vte, "3", 1); return; case XK_KP_Left: case XK_KP_4: if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE) vte_write(vte, "\eOt", 3); else vte_write(vte, "4", 1); return; case XK_KP_Begin: case XK_KP_5: if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE) vte_write(vte, "\eOu", 3); else vte_write(vte, "5", 1); return; case XK_KP_Right: case XK_KP_6: if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE) vte_write(vte, "\eOv", 3); else vte_write(vte, "6", 1); return; case XK_KP_Home: case XK_KP_7: if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE) vte_write(vte, "\eOw", 3); else vte_write(vte, "7", 1); return; case XK_KP_Up: case XK_KP_8: if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE) vte_write(vte, "\eOx", 3); else vte_write(vte, "8", 1); return; case XK_KP_Page_Up: case XK_KP_9: if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE) vte_write(vte, "\eOy", 3); else vte_write(vte, "9", 1); return; case XK_KP_Subtract: if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE) vte_write(vte, "\eOm", 3); else vte_write(vte, "-", 1); return; case XK_KP_Separator: if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE) vte_write(vte, "\eOl", 3); else vte_write(vte, ",", 1); return; case XK_KP_Delete: case XK_KP_Decimal: if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE) vte_write(vte, "\eOn", 3); else vte_write(vte, ".", 1); return; case XK_KP_Equal: case XK_KP_Divide: if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE) vte_write(vte, "\eOj", 3); else vte_write(vte, "/", 1); return; case XK_KP_Multiply: if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE) vte_write(vte, "\eOo", 3); else vte_write(vte, "*", 1); return; case XK_KP_Add: if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE) vte_write(vte, "\eOk", 3); else vte_write(vte, "+", 1); return; case XK_F1: case XK_KP_F1: vte_write(vte, "\eOP", 3); return; case XK_F2: case XK_KP_F2: vte_write(vte, "\eOQ", 3); return; case XK_F3: case XK_KP_F3: vte_write(vte, "\eOR", 3); return; case XK_F4: case XK_KP_F4: vte_write(vte, "\eOS", 3); return; case XK_KP_Space: vte_write(vte, " ", 1); return; case XK_Home: if (vte->flags & FLAG_CURSOR_KEY_MODE) vte_write(vte, "\eOH", 3); else vte_write(vte, "\e[H", 3); return; case XK_End: if (vte->flags & FLAG_CURSOR_KEY_MODE) vte_write(vte, "\eOF", 3); else vte_write(vte, "\e[F", 3); return; case XK_F5: vte_write(vte, "\e[15~", 5); return; case XK_F6: vte_write(vte, "\e[17~", 5); return; case XK_F7: vte_write(vte, "\e[18~", 5); return; case XK_F8: vte_write(vte, "\e[19~", 5); return; case XK_F9: vte_write(vte, "\e[20~", 5); return; case XK_F10: vte_write(vte, "\e[21~", 5); return; case XK_F11: vte_write(vte, "\e[23~", 5); return; case XK_F12: vte_write(vte, "\e[24~", 5); return; case XK_F13: vte_write(vte, "\e[25~", 5); return; case XK_F14: vte_write(vte, "\e[26~", 5); return; case XK_F15: vte_write(vte, "\e[28~", 5); return; case XK_F16: vte_write(vte, "\e[29~", 5); return; case XK_F17: vte_write(vte, "\e[31~", 5); return; case XK_F18: vte_write(vte, "\e[32~", 5); return; case XK_F19: vte_write(vte, "\e[33~", 5); return; case XK_F20: vte_write(vte, "\e[34~", 5); return; } if (ev->unicode != UTERM_INPUT_INVALID) { if (vte->flags & FLAG_7BIT_MODE) { val = ev->unicode; if (ev->unicode & 0x80) { log_debug("invalid keyboard input in 7bit mode U+%x; mapping to '?'", ev->unicode); val = '?'; } vte_write(vte, &val, 1); } else if (vte->flags & FLAG_8BIT_MODE) { val = ev->unicode; if (ev->unicode > 0xff) { log_debug("invalid keyboard input in 8bit mode U+%x; mapping to '?'", ev->unicode); val = '?'; } vte_write_raw(vte, &val, 1); } else { sym = kmscon_symbol_make(ev->unicode); u8 = kmscon_symbol_get_u8(sym, &len); vte_write_raw(vte, u8, len); kmscon_symbol_free_u8(u8); } return; } }