kmscon/src/uterm_vt.c
David Herrmann 4ceb557ecb kmscon: run only on VT-less seats in listen-mode
If we run in listen mode, we are supposed to take over a seat. If a seat
supports VTs (like kernel VTs or kmscon cdev fake VTs) we assume that
there is some manager for these VTs (the one who created them). Therefore,
there is no need to run kmscon in listen mode on these seats. Instead, you
should run kmscon in default mode on these seats.

We enforce this limitation because if the VT-master on those seats dies
and causes a HUP, they have no way to notify us when they startup again.
Therefore, this kind of setup is broken. Furthermore, no-one would every
want such setups.

Instead use the startup mechanism of the VT/seat-manager to start kmscon
in default mode on those seats.

Signed-off-by: David Herrmann <dh.herrmann@googlemail.com>
2012-12-06 14:18:57 +01:00

1059 lines
26 KiB
C

/*
* uterm - Linux User-Space Terminal
*
* Copyright (c) 2011-2012 David Herrmann <dh.herrmann@googlemail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files
* (the "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* Virtual Terminals
*/
#include <errno.h>
#include <fcntl.h>
#include <linux/kd.h>
#include <linux/vt.h>
#include <signal.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/signalfd.h>
#include <sys/stat.h>
#include <termios.h>
#include <time.h>
#include <unistd.h>
#include <xkbcommon/xkbcommon-keysyms.h>
#include "eloop.h"
#include "log.h"
#include "shl_dlist.h"
#include "shl_misc.h"
#include "uterm.h"
#define LOG_SUBSYSTEM "vt"
struct uterm_vt {
unsigned long ref;
struct shl_dlist list;
struct uterm_vt_master *vtm;
struct uterm_input *input;
unsigned int mode;
uterm_vt_cb cb;
void *data;
bool active;
bool hup;
/* this is for *real* linux kernel VTs */
int real_fd;
int real_num;
int real_saved_num;
int real_kbmode;
struct ev_fd *real_efd;
bool real_delayed;
int real_target;
time_t real_target_time;
};
struct uterm_vt_master {
unsigned long ref;
struct ev_eloop *eloop;
struct shl_dlist vts;
};
static int vt_call(struct uterm_vt *vt, unsigned int event, int target,
bool force)
{
int ret;
struct uterm_vt_event ev;
memset(&ev, 0, sizeof(ev));
ev.action = event;
ev.target = target;
if (force)
ev.flags |= UTERM_VT_FORCE;
switch (event) {
case UTERM_VT_ACTIVATE:
if (vt->active)
return 0;
if (!vt->cb)
break;
ret = vt->cb(vt, &ev, vt->data);
if (ret)
log_warning("vt event handler returned %d instead of 0 on activation",
ret);
break;
case UTERM_VT_DEACTIVATE:
if (!vt->active)
return 0;
if (!vt->cb)
break;
ret = vt->cb(vt, &ev, vt->data);
if (ret) {
if (force)
log_warning("vt event handler returned %d instead of 0 on forced deactivation",
ret);
else
return ret;
}
break;
default:
return -EINVAL;
}
vt->active = !vt->active;
return 0;
}
static void vt_call_activate(struct uterm_vt *vt)
{
vt_call(vt, UTERM_VT_ACTIVATE, vt->real_num, false);
}
static int vt_call_deactivate(struct uterm_vt *vt, bool force)
{
return vt_call(vt, UTERM_VT_DEACTIVATE, vt->real_target, force);
}
/*
* 'Real' VTs
* The linux kernel (used) to provide VTs via CONFIG_VT. These VTs are TTYs that
* the kernel runs a very limit VT102 compatible console on. They also provide a
* mechanism to switch between graphical user-applications.
* An application that opens a VT is notified via two signals whenever the user
* switches to or away from the VT. We catch these signals and forward a
* notification to the application via callbacks.
*
* Real VTs are only available on seat0 and should be avoided whenever possible
* as they have a horrible API, have synchronization issues and are unflexible.
*
* Also note that the VT API is asynchronous and requires acknowledgment of
* applications when switching VTs. That means, when a VT-switch is started, the
* currently-active VT is notified about this and needs to acknowledge this
* switch. If it allows it, the new VT is notified that it is now started up.
* This control-passing is very fragile. For instance if the currently-active VT
* is stuck or paused, the VT switch cannot take place as it is not acknowledged
* by the currently active VT.
* Furthermore, there are some race-conditions during a switch. If resources
* that are passed from one VT to another are acquired during this switch from a
* 3rd party application, then they can highjack the VT-switch and make the new
* VT fail acquiring the resources.
*
* There are a lot more issues. For instance VTs are not cleaned up when closed
* which can cause deadlocks if VT_SETMODE is not reset.
* All in all, real VTs are very fragile and should be avoided. They should only
* be used for backwards-compatibility.
*/
static void real_delayed(struct ev_eloop *eloop, void *unused, void *data)
{
struct uterm_vt *vt = data;
log_debug("enter VT %d %p during startup", vt->real_num, vt);
vt->real_delayed = false;
ev_eloop_unregister_idle_cb(eloop, real_delayed, vt);
vt_call_activate(vt);
}
static void real_sig_enter(struct uterm_vt *vt, struct signalfd_siginfo *info)
{
struct vt_stat vts;
int ret;
ret = ioctl(vt->real_fd, VT_GETSTATE, &vts);
if (ret) {
log_warning("cannot get current VT state (%d): %m", errno);
return;
}
if (vts.v_active != vt->real_num)
return;
if (vt->real_delayed) {
vt->real_delayed = false;
ev_eloop_unregister_idle_cb(vt->vtm->eloop, real_delayed, vt);
} else if (vt->active) {
log_warning("activating VT %d even though it's already active",
vt->real_num);
} else {
uterm_input_wake_up(vt->input);
}
log_debug("enter VT %d %p due to VT signal", vt->real_num, vt);
ioctl(vt->real_fd, VT_RELDISP, VT_ACKACQ);
vt->real_target = -1;
vt_call_activate(vt);
}
static void real_sig_leave(struct uterm_vt *vt, struct signalfd_siginfo *info)
{
struct vt_stat vts;
int ret;
bool active;
ret = ioctl(vt->real_fd, VT_GETSTATE, &vts);
if (ret) {
log_warning("cannot get current VT state (%d): %m", errno);
return;
}
if (vts.v_active != vt->real_num)
return;
log_debug("leaving VT %d %p due to VT signal", vt->real_num, vt);
active = vt->active;
ret = vt_call_deactivate(vt, false);
if (ret) {
ioctl(vt->real_fd, VT_RELDISP, 0);
log_debug("not leaving VT %d %p: %d", vt->real_num, vt, ret);
return;
}
if (vt->real_delayed) {
vt->real_delayed = false;
ev_eloop_unregister_idle_cb(vt->vtm->eloop, real_delayed, vt);
uterm_input_sleep(vt->input);
} else if (!active) {
log_warning("deactivating VT %d even though it's not active",
vt->real_num);
} else {
uterm_input_sleep(vt->input);
}
vt->real_target = -1;
ioctl(vt->real_fd, VT_RELDISP, 1);
}
static void real_vt_input(struct ev_fd *fd, int mask, void *data)
{
struct uterm_vt *vt = data;
struct uterm_vt_event ev;
/* we ignore input from the VT because we get it from evdev */
if (mask & EV_READABLE)
tcflush(vt->real_fd, TCIFLUSH);
if (mask & (EV_HUP | EV_ERR)) {
log_debug("HUP on VT %d", vt->real_num);
ev_fd_disable(fd);
vt->hup = true;
if (vt->cb) {
memset(&ev, 0, sizeof(ev));
ev.action = UTERM_VT_HUP;
vt->cb(vt, &ev, vt->data);
}
}
}
static int open_tty(const char *dev, int *tty_fd, int *tty_num)
{
int fd, ret, id;
struct stat st;
if (!dev || !tty_fd || !tty_num)
return -EINVAL;
log_notice("using tty %s", dev);
fd = open(dev, O_RDWR | O_NOCTTY | O_CLOEXEC);
if (fd < 0) {
log_err("cannot open tty %s (%d): %m", dev, errno);
return -errno;
}
ret = fstat(fd, &st);
if (ret) {
log_error("cannot introspect tty %s (%d): %m", dev, errno);
close(fd);
return -errno;
}
id = minor(st.st_rdev);
log_debug("new tty ID is %d", id);
*tty_fd = fd;
*tty_num = id;
return 0;
}
static int real_open(struct uterm_vt *vt, const char *vt_name)
{
struct vt_mode mode;
struct vt_stat vts;
int ret, err;
log_debug("open vt %p", vt);
ret = open_tty(vt_name, &vt->real_fd, &vt->real_num);
if (ret)
return ret;
ret = ev_eloop_new_fd(vt->vtm->eloop, &vt->real_efd, vt->real_fd,
EV_READABLE, real_vt_input, vt);
if (ret)
goto err_fd;
/* Get the number of the VT which is active now, so we have something
* to switch back to in uterm_vt_deactivate(). */
ret = ioctl(vt->real_fd, VT_GETSTATE, &vts);
if (ret) {
log_warn("cannot find the currently active VT (%d): %m", errno);
ret = -EFAULT;
goto err_eloop;
}
vt->real_saved_num = vts.v_active;
vt->real_target = -1;
if (ioctl(vt->real_fd, KDSETMODE, KD_GRAPHICS)) {
log_err("cannot put VT in graphics mode (%d): %m", errno);
ret = -errno;
goto err_eloop;
}
memset(&mode, 0, sizeof(mode));
mode.mode = VT_PROCESS;
mode.acqsig = SIGUSR1;
mode.relsig = SIGUSR2;
if (ioctl(vt->real_fd, VT_SETMODE, &mode)) {
log_err("cannot take control of vt handling (%d): %m", errno);
ret = -errno;
goto err_text;
}
ret = ioctl(vt->real_fd, KDGKBMODE, &vt->real_kbmode);
if (ret) {
log_error("cannot retrieve VT KBMODE (%d): %m", errno);
ret = -EFAULT;
goto err_setmode;
}
log_debug("previous VT KBMODE was %d", vt->real_kbmode);
if (vt->real_kbmode == K_OFF) {
log_warning("VT KBMODE was K_OFF, using K_UNICODE instead");
vt->real_kbmode = K_UNICODE;
}
ret = ioctl(vt->real_fd, KDSKBMODE, K_RAW);
if (ret) {
log_error("cannot set VT KBMODE to K_RAW (%d): %m", errno);
ret = -EFAULT;
goto err_setmode;
}
ret = ioctl(vt->real_fd, KDSKBMODE, K_OFF);
if (ret)
log_warning("cannot set VT KBMODE to K_OFF (%d): %m", errno);
if (vts.v_active == vt->real_num) {
ret = ev_eloop_register_idle_cb(vt->vtm->eloop, real_delayed,
vt);
if (ret) {
log_error("cannot register idle cb for VT switch");
goto err_kbdmode;
}
vt->real_delayed = true;
uterm_input_wake_up(vt->input);
}
return 0;
err_kbdmode:
err = ioctl(vt->real_fd, KDSKBMODE, vt->real_kbmode);
if (err)
log_error("cannot reset VT KBMODE to %d (%d): %m",
vt->real_kbmode, errno);
err_setmode:
memset(&mode, 0, sizeof(mode));
mode.mode = VT_AUTO;
err = ioctl(vt->real_fd, VT_SETMODE, &mode);
if (err)
log_warning("cannot reset VT %d to VT_AUTO mode (%d): %m",
vt->real_num, errno);
err_text:
err = ioctl(vt->real_fd, KDSETMODE, KD_TEXT);
if (err)
log_warning("cannot reset VT %d to text-mode (%d): %m",
vt->real_num, errno);
err_eloop:
ev_eloop_rm_fd(vt->real_efd);
vt->real_efd = NULL;
err_fd:
close(vt->real_fd);
return ret;
}
static void real_close(struct uterm_vt *vt)
{
struct vt_mode mode;
int ret;
log_debug("closing VT %d", vt->real_num);
if (vt->real_delayed) {
vt->real_delayed = false;
ev_eloop_unregister_idle_cb(vt->vtm->eloop, real_delayed, vt);
uterm_input_sleep(vt->input);
} else if (vt->active) {
uterm_input_sleep(vt->input);
}
vt_call_deactivate(vt, true);
ret = ioctl(vt->real_fd, KDSKBMODE, vt->real_kbmode);
if (ret && !vt->hup)
log_error("cannot reset VT KBMODE to %d (%d): %m",
vt->real_kbmode, errno);
memset(&mode, 0, sizeof(mode));
mode.mode = VT_AUTO;
ret = ioctl(vt->real_fd, VT_SETMODE, &mode);
if (ret && !vt->hup)
log_warning("cannot reset VT %d to VT_AUTO mode (%d): %m",
vt->real_num, errno);
ret = ioctl(vt->real_fd, KDSETMODE, KD_TEXT);
if (ret && !vt->hup)
log_warning("cannot reset VT %d to text-mode (%d): %m",
vt->real_num, errno);
ev_eloop_rm_fd(vt->real_efd);
vt->real_efd = NULL;
close(vt->real_fd);
vt->real_fd = -1;
vt->real_num = -1;
vt->real_saved_num = -1;
vt->real_target = -1;
}
/* Switch to this VT and make it the active VT. If we are already the active
* VT, then 0 is returned, if the VT_ACTIVATE ioctl is called to activate this
* VT, then -EINPROGRESS is returned and we will be activated when receiving the
* VT switch signal. The currently active VT may prevent this, though.
* On error a negative error code is returned other than -EINPROGRESS */
static int real_activate(struct uterm_vt *vt)
{
int ret;
struct vt_stat vts;
if (vt->hup)
return -EPIPE;
ret = ioctl(vt->real_fd, VT_GETSTATE, &vts);
if (ret)
log_warn("cannot find current VT (%d): %m", errno);
else if (vts.v_active == vt->real_num)
return 0;
if (vt->active)
log_warning("activating VT %d even though it's already active",
vt->real_num);
vt->real_target = -1;
ret = ioctl(vt->real_fd, VT_ACTIVATE, vt->real_num);
if (ret) {
log_warn("cannot enter VT %d (%d): %m", vt->real_num, errno);
return -EFAULT;
}
log_debug("entering VT %d on demand", vt->real_num);
return -EINPROGRESS;
}
/*
* Switch back to the VT from which we started.
* Note: The VT switch needs to be acknowledged by us so we need to react on
* SIGUSR. This function returns -EINPROGRESS if we started the VT switch but
* still needs to react on SIGUSR. Make sure you call the eloop dispatcher again
* if you get -EINPROGRESS here.
*
* Returns 0 if the previous VT is already active.
* Returns -EINPROGRESS if we started the VT switch. Returns <0 on failure.
*
* When run as a daemon, the VT where we were started on is often no longer a
* safe return-path when we shut-down. Therefore, you might want to avoid
* calling this when started as a long-running daemon.
*/
static int real_deactivate(struct uterm_vt *vt)
{
int ret;
struct vt_stat vts;
if (vt->hup)
return -EPIPE;
ret = ioctl(vt->real_fd, VT_GETSTATE, &vts);
if (ret) {
log_warn("cannot find current VT (%d): %m", errno);
return -EFAULT;
}
if (vts.v_active != vt->real_num || vts.v_active == vt->real_saved_num)
return 0;
if (!vt->active)
log_warning("deactivating VT %d even though it's not active",
vt->real_num);
vt->real_target = vt->real_saved_num;
vt->real_target_time = time(NULL);
ret = ioctl(vt->real_fd, VT_ACTIVATE, vt->real_saved_num);
if (ret) {
log_warn("cannot leave VT %d to VT %d (%d): %m", vt->real_num,
vt->real_saved_num, errno);
return -EFAULT;
}
log_debug("leaving VT %d on demand to VT %d", vt->real_num,
vt->real_saved_num);
return -EINPROGRESS;
}
static void real_input(struct uterm_vt *vt, struct uterm_input_event *ev)
{
int id;
struct vt_stat vts;
int ret;
if (ev->handled || !vt->active || vt->hup)
return;
ret = ioctl(vt->real_fd, VT_GETSTATE, &vts);
if (ret) {
log_warn("cannot find current VT (%d): %m", errno);
return;
}
if (vts.v_active != vt->real_num)
return;
id = 0;
if (SHL_HAS_BITS(ev->mods, SHL_CONTROL_MASK | SHL_ALT_MASK) &&
ev->keysyms[0] >= XKB_KEY_F1 && ev->keysyms[0] <= XKB_KEY_F12) {
ev->handled = true;
id = ev->keysyms[0] - XKB_KEY_F1 + 1;
if (id == vt->real_num)
return;
} else if (ev->keysyms[0] >= XKB_KEY_XF86Switch_VT_1 &&
ev->keysyms[0] <= XKB_KEY_XF86Switch_VT_12) {
ev->handled = true;
id = ev->keysyms[0] - XKB_KEY_XF86Switch_VT_1 + 1;
if (id == vt->real_num)
return;
}
if (!id || id == vt->real_num)
return;
log_debug("deactivating VT %d to %d due to user input", vt->real_num,
id);
vt->real_target = id;
vt->real_target_time = time(NULL);
ret = ioctl(vt->real_fd, VT_ACTIVATE, id);
if (ret) {
log_warn("cannot leave VT %d to %d (%d): %m", vt->real_num,
id, errno);
return;
}
}
static void real_retry(struct uterm_vt *vt)
{
struct vt_stat vts;
int ret;
if (vt->hup)
return;
ret = ioctl(vt->real_fd, VT_GETSTATE, &vts);
if (ret) {
log_warn("cannot find current VT (%d): %m", errno);
return;
}
if (vts.v_active != vt->real_num || vt->real_target < 0)
return;
/* hard limit of 2-3 seconds for asynchronous/pending VT-switches */
if (vt->real_target_time < time(NULL) - 3) {
vt->real_target = -1;
return;
}
if (!vt->active)
log_warning("leaving VT %d even though it's not active",
vt->real_num);
log_debug("deactivating VT %d to %d (retry)", vt->real_num,
vt->real_target);
ret = ioctl(vt->real_fd, VT_ACTIVATE, vt->real_target);
if (ret) {
log_warn("cannot leave VT %d to %d (%d): %m", vt->real_num,
vt->real_target, errno);
return;
}
}
/*
* Fake VT:
* For systems without CONFIG_VT or for all seats that have no real VTs (which
* is all seats except seat0), we support a fake-VT mechanism. This machanism is
* only used for debugging and should not be used in production.
*
* Fake-VTs react on a key-press and activate themselves if not active. If they
* are already active, they deactivate themself. To switch from one fake-VT to
* another, you first need to deactivate the current fake-VT and then activate
* the new fake-VT. This also means that you must use different hotkeys for each
* fake-VT.
* This is a very fragile infrastructure and should only be used for debugging.
*
* To avoid this bad situation, you simply activate a fake-VT during startup
* with uterm_vt_activate() and then do not use the hotkeys at all. This assumes
* that the fake-VT is the only application on this seat.
*
* If you use multiple fake-VTs on a seat without real-VTs, you should really
* use some other daemon that handles VT-switches. Otherwise, there is no sane
* way to communicate this between the fake-VTs. So please use fake-VTs only for
* debugging or if they are the only session on their seat.
*/
static int fake_activate(struct uterm_vt *vt)
{
log_debug("activating fake VT due to user request");
vt_call_activate(vt);
return 0;
}
static int fake_deactivate(struct uterm_vt *vt)
{
log_debug("deactivating fake VT due to user request");
return vt_call_deactivate(vt, false);
}
static void fake_input(struct uterm_vt *vt, struct uterm_input_event *ev)
{
if (ev->handled)
return;
if (SHL_HAS_BITS(ev->mods, SHL_CONTROL_MASK | SHL_LOGO_MASK) &&
ev->keysyms[0] == XKB_KEY_F12) {
ev->handled = true;
if (vt->active) {
log_debug("deactivating fake VT due to user input");
vt_call_deactivate(vt, false);
} else {
log_debug("activating fake VT due to user input");
vt_call_activate(vt);
}
}
}
static int fake_open(struct uterm_vt *vt)
{
uterm_input_wake_up(vt->input);
return 0;
}
static void fake_close(struct uterm_vt *vt)
{
vt_call_deactivate(vt, true);
uterm_input_sleep(vt->input);
}
/*
* Generic VT handling layer
* VTs are a historical concept. Technically, they actually are a VT102
* compatible terminal emulator, but with the invention of X11 and other
* graphics servers, VTs were mainly used to control which application is
* currently active.
* If an application is "active" it is allowed to read keyboard/mouse/etc input
* and access the output devices (like displays/monitors). If an application is
* not active (that is, inactive) it should not access these devices at all and
* leave them for other VTs so they can access them.
*
* The kernel VTs have a horrible API and thus should be avoided whenever
* possible. We provide a layer for this VT as "real_*" VTs here. If those are
* not available, we also provide a layer for "fake_*" VTs. See their
* description for more information.
*
* If you allocate a new VT with this API, it automatically chooses the right
* implementation for you. So you are notified whenever your VT becomes active
* and when it becomes inactive. You do not have to care for any other VT
* handling.
*/
static void vt_input(struct uterm_input *input,
struct uterm_input_event *ev,
void *data)
{
struct uterm_vt *vt = data;
if (vt->mode == UTERM_VT_REAL)
real_input(vt, ev);
else if (vt->mode == UTERM_VT_FAKE)
fake_input(vt, ev);
}
static void vt_sigusr1(struct ev_eloop *eloop, struct signalfd_siginfo *info,
void *data)
{
struct uterm_vt *vt = data;
if (vt->mode == UTERM_VT_REAL)
real_sig_enter(vt, info);
}
static void vt_sigusr2(struct ev_eloop *eloop, struct signalfd_siginfo *info,
void *data)
{
struct uterm_vt *vt = data;
if (vt->mode == UTERM_VT_REAL)
real_sig_leave(vt, info);
}
static int seat_find_vt(const char *seat, char **out)
{
static const char def_vt[] = "/dev/tty0";
char *vt;
int ret, fd, err1, id;
ret = asprintf(&vt, "/dev/ttyF%s", seat);
if (ret < 0)
return -ENOMEM;
if (!access(vt, F_OK)) {
log_debug("using fake-VT %s", vt);
*out = vt;
return 0;
}
free(vt);
if (!strcmp(seat, "seat0") && !access(def_vt, F_OK)) {
fd = open(def_vt, O_NONBLOCK | O_NOCTTY | O_CLOEXEC);
if (fd < 0) {
err1 = errno;
fd = open("/dev/tty1",
O_NONBLOCK | O_NOCTTY | O_CLOEXEC);
if (fd < 0) {
log_error("cannot find parent tty (%d, %d): %m",
err1, errno);
return -EFAULT;
}
}
errno = 0;
if (ioctl(fd, VT_OPENQRY, &id) || id <= 0) {
close(fd);
log_err("cannot get unused tty (%d): %m", errno);
return -EINVAL;
}
close(fd);
ret = asprintf(&vt, "/dev/tty%d", id);
if (ret < 0)
return -ENOMEM;
*out = vt;
return 0;
}
*out = NULL;
return 0;
}
int uterm_vt_allocate(struct uterm_vt_master *vtm,
struct uterm_vt **out,
unsigned int allowed_types,
const char *seat,
struct uterm_input *input,
const char *vt_name,
uterm_vt_cb cb,
void *data)
{
struct uterm_vt *vt;
int ret;
char *path;
if (!vtm || !out)
return -EINVAL;
if (!seat)
seat = "seat0";
vt = malloc(sizeof(*vt));
if (!vt)
return -ENOMEM;
memset(vt, 0, sizeof(*vt));
vt->ref = 1;
vt->vtm = vtm;
vt->cb = cb;
vt->data = data;
vt->input = input;
vt->real_fd = -1;
vt->real_num = -1;
vt->real_saved_num = -1;
ret = ev_eloop_register_signal_cb(vtm->eloop, SIGUSR1, vt_sigusr1, vt);
if (ret)
goto err_free;
ret = ev_eloop_register_signal_cb(vtm->eloop, SIGUSR2, vt_sigusr2, vt);
if (ret)
goto err_sig1;
ret = uterm_input_register_cb(vt->input, vt_input, vt);
if (ret)
goto err_sig2;
if (!vt_name) {
ret = seat_find_vt(seat, &path);
if (ret)
goto err_input;
} else {
path = NULL;
}
if (vt_name || path) {
if (!(allowed_types & UTERM_VT_REAL)) {
ret = -ERANGE;
free(path);
goto err_input;
}
vt->mode = UTERM_VT_REAL;
ret = real_open(vt, vt_name ? vt_name : path);
} else {
if (!(allowed_types & UTERM_VT_FAKE)) {
ret = -ERANGE;
free(path);
goto err_input;
}
vt->mode = UTERM_VT_FAKE;
ret = fake_open(vt);
}
free(path);
if (ret)
goto err_input;
uterm_input_ref(vt->input);
shl_dlist_link(&vtm->vts, &vt->list);
*out = vt;
return 0;
err_input:
uterm_input_unregister_cb(vt->input, vt_input, vt);
err_sig2:
ev_eloop_unregister_signal_cb(vtm->eloop, SIGUSR2, vt_sigusr2, vt);
err_sig1:
ev_eloop_unregister_signal_cb(vtm->eloop, SIGUSR1, vt_sigusr1, vt);
err_free:
free(vt);
return ret;
}
void uterm_vt_deallocate(struct uterm_vt *vt)
{
if (!vt || !vt->vtm)
return;
if (vt->mode == UTERM_VT_REAL)
real_close(vt);
else if (vt->mode == UTERM_VT_FAKE)
fake_close(vt);
ev_eloop_unregister_signal_cb(vt->vtm->eloop, SIGUSR2, vt_sigusr2, vt);
ev_eloop_unregister_signal_cb(vt->vtm->eloop, SIGUSR1, vt_sigusr1, vt);
shl_dlist_unlink(&vt->list);
uterm_input_unref(vt->input);
vt->vtm = NULL;
uterm_vt_unref(vt);
}
void uterm_vt_ref(struct uterm_vt *vt)
{
if (!vt || !vt->ref)
return;
++vt->ref;
}
void uterm_vt_unref(struct uterm_vt *vt)
{
if (!vt || !vt->ref || --vt->ref)
return;
uterm_vt_deallocate(vt);
free(vt);
}
int uterm_vt_activate(struct uterm_vt *vt)
{
if (!vt || !vt->vtm)
return -EINVAL;
if (vt->mode == UTERM_VT_REAL)
return real_activate(vt);
else
return fake_activate(vt);
}
int uterm_vt_deactivate(struct uterm_vt *vt)
{
if (!vt || !vt->vtm)
return -EINVAL;
if (vt->mode == UTERM_VT_REAL)
return real_deactivate(vt);
else
return fake_deactivate(vt);
}
void uterm_vt_retry(struct uterm_vt *vt)
{
if (!vt || !vt->vtm)
return;
if (vt->mode == UTERM_VT_REAL)
real_retry(vt);
}
unsigned int uterm_vt_get_type(struct uterm_vt *vt)
{
if (!vt)
return UTERM_VT_FAKE;
return vt->mode;
}
int uterm_vt_master_new(struct uterm_vt_master **out,
struct ev_eloop *eloop)
{
struct uterm_vt_master *vtm;
if (!out || !eloop)
return -EINVAL;
vtm = malloc(sizeof(*vtm));
if (!vtm)
return -ENOMEM;
memset(vtm, 0, sizeof(*vtm));
vtm->ref = 1;
vtm->eloop = eloop;
shl_dlist_init(&vtm->vts);
ev_eloop_ref(vtm->eloop);
*out = vtm;
return 0;
}
void uterm_vt_master_ref(struct uterm_vt_master *vtm)
{
if (!vtm || !vtm->ref)
return;
++vtm->ref;
}
/* Drops a reference to the VT-master. If the reference drops to 0, all
* allocated VTs are deallocated and the VT-master is destroyed. */
void uterm_vt_master_unref(struct uterm_vt_master *vtm)
{
struct uterm_vt *vt;
if (!vtm || !vtm->ref || --vtm->ref)
return;
while (vtm->vts.next != &vtm->vts) {
vt = shl_dlist_entry(vtm->vts.next,
struct uterm_vt,
list);
uterm_vt_deallocate(vt);
}
ev_eloop_unref(vtm->eloop);
free(vtm);
}
/* Calls uterm_vt_activate() on all allocated VTs on this master. Returns
* number of VTs that returned -EINPROGRESS or a negative error code on failure.
* See uterm_vt_activate() for information. */
int uterm_vt_master_activate_all(struct uterm_vt_master *vtm)
{
struct uterm_vt *vt;
struct shl_dlist *iter;
int ret, res = 0;
unsigned int in_progress = 0;
if (!vtm)
return -EINVAL;
shl_dlist_for_each(iter, &vtm->vts) {
vt = shl_dlist_entry(iter, struct uterm_vt, list);
ret = uterm_vt_activate(vt);
if (ret == -EINPROGRESS)
in_progress++;
else if (ret)
res = ret;
}
if (in_progress)
return in_progress;
return res;
}
/* Calls uterm_vt_deactivate() on all allocated VTs on this master. Returns
* number of VTs that returned -EINPROGRESS or a negative error code on failure.
* See uterm_vt_deactivate() for information. */
int uterm_vt_master_deactivate_all(struct uterm_vt_master *vtm)
{
struct uterm_vt *vt;
struct shl_dlist *iter;
int ret, res = 0;
unsigned int in_progress = 0;
if (!vtm)
return -EINVAL;
shl_dlist_for_each(iter, &vtm->vts) {
vt = shl_dlist_entry(iter, struct uterm_vt, list);
ret = uterm_vt_deactivate(vt);
if (ret == -EINPROGRESS)
in_progress++;
else if (ret)
res = ret;
}
if (in_progress)
return in_progress;
return res;
}