kmscon/src/vte.c
David Herrmann 69259c8d64 build: make xkbcommon built-time dependency
We really need xkbcommon-keysyms.h for building kmscon/uterm/TSM/etc.
However, the recent fix was ugly and didn't really help. Instead we copy
the keysyms file into external/xkbcommon/ so we can just include the real
xkbcommon files from any source but have a fallback in external/.

Hence, you can still build kmscon without xkbcommon with this fallback,
but this will be removed the first day when xkbcommon sees a public
release.

Signed-off-by: David Herrmann <dh.herrmann@googlemail.com>
2012-09-18 12:29:06 +02:00

2635 lines
68 KiB
C

/*
* kmscon - VT Emulator
*
* Copyright (c) 2011 David Herrmann <dh.herrmann@googlemail.com>
* Copyright (c) 2011 University of Tuebingen
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files
* (the "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* Virtual Terminal Emulator
* This is the VT implementation. It is written from scratch. It uses the
* console subsystem as output and is tightly bound to it. It supports
* functionality from vt100 up to vt500 series. It doesn't implement an
* explicitly selected terminal but tries to support the most important commands
* to be compatible with existing implementations. However, full vt102
* compatibility is the least that is provided.
*
* The main parser in this file controls the parser-state and dispatches the
* actions to the related handlers. The parser is based on the state-diagram
* from Paul Williams: http://vt100.net/emu/
* It is written from scratch, though.
* This parser is fully compatible up to the vt500 series. It requires UTF-8 and
* does not support any other input encoding. The G0 and G1 sets are therefore
* defined as subsets of UTF-8. You may still map G0-G3 into GL, though.
*
* However, the CSI/DCS/etc handlers are not designed after a specific VT
* series. We try to support all vt102 commands but implement several other
* often used sequences, too. Feel free to add further.
*
* See ./doc/vte.txt for more information on this VT-emulator.
*/
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <xkbcommon/xkbcommon-keysyms.h>
#include "console.h"
#include "log.h"
#include "main.h"
#include "tsm_unicode.h"
#include "vte.h"
#define LOG_SUBSYSTEM "vte"
/* Input parser states */
enum parser_state {
STATE_NONE, /* placeholder */
STATE_GROUND, /* initial state and ground */
STATE_ESC, /* ESC sequence was started */
STATE_ESC_INT, /* intermediate escape characters */
STATE_CSI_ENTRY, /* starting CSI sequence */
STATE_CSI_PARAM, /* CSI parameters */
STATE_CSI_INT, /* intermediate CSI characters */
STATE_CSI_IGNORE, /* CSI error; ignore this CSI sequence */
STATE_DCS_ENTRY, /* starting DCS sequence */
STATE_DCS_PARAM, /* DCS parameters */
STATE_DCS_INT, /* intermediate DCS characters */
STATE_DCS_PASS, /* DCS data passthrough */
STATE_DCS_IGNORE, /* DCS error; ignore this DCS sequence */
STATE_OSC_STRING, /* parsing OCS sequence */
STATE_ST_IGNORE, /* unimplemented seq; ignore until ST */
STATE_NUM
};
/* Input parser actions */
enum parser_action {
ACTION_NONE, /* placeholder */
ACTION_IGNORE, /* ignore the character entirely */
ACTION_PRINT, /* print the character on the console */
ACTION_EXECUTE, /* execute single control character (C0/C1) */
ACTION_CLEAR, /* clear current parameter state */
ACTION_COLLECT, /* collect intermediate character */
ACTION_PARAM, /* collect parameter character */
ACTION_ESC_DISPATCH, /* dispatch escape sequence */
ACTION_CSI_DISPATCH, /* dispatch csi sequence */
ACTION_DCS_START, /* start of DCS data */
ACTION_DCS_COLLECT, /* collect DCS data */
ACTION_DCS_END, /* end of DCS data */
ACTION_OSC_START, /* start of OSC data */
ACTION_OSC_COLLECT, /* collect OSC data */
ACTION_OSC_END, /* end of OSC data */
ACTION_NUM
};
/* CSI flags */
#define CSI_BANG 0x0001 /* CSI: ! */
#define CSI_CASH 0x0002 /* CSI: $ */
#define CSI_WHAT 0x0004 /* CSI: ? */
#define CSI_GT 0x0008 /* CSI: > */
#define CSI_SPACE 0x0010 /* CSI: */
#define CSI_SQUOTE 0x0020 /* CSI: ' */
#define CSI_DQUOTE 0x0040 /* CSI: " */
#define CSI_MULT 0x0080 /* CSI: * */
#define CSI_PLUS 0x0100 /* CSI: + */
#define CSI_POPEN 0x0200 /* CSI: ( */
#define CSI_PCLOSE 0x0400 /* CSI: ) */
/* max CSI arguments */
#define CSI_ARG_MAX 16
/* terminal flags */
#define FLAG_CURSOR_KEY_MODE 0x00000001 /* DEC cursor key mode */
#define FLAG_KEYPAD_APPLICATION_MODE 0x00000002 /* DEC keypad application mode; TODO: toggle on numlock? */
#define FLAG_LINE_FEED_NEW_LINE_MODE 0x00000004 /* DEC line-feed/new-line mode */
#define FLAG_8BIT_MODE 0x00000008 /* Disable UTF-8 mode and enable 8bit compatible mode */
#define FLAG_7BIT_MODE 0x00000010 /* Disable 8bit mode and use 7bit compatible mode */
#define FLAG_USE_C1 0x00000020 /* Explicitely use 8bit C1 codes; TODO: implement */
#define FLAG_KEYBOARD_ACTION_MODE 0x00000040 /* Disable keyboard; TODO: implement? */
#define FLAG_INSERT_REPLACE_MODE 0x00000080 /* Enable insert mode */
#define FLAG_SEND_RECEIVE_MODE 0x00000100 /* Disable local echo */
#define FLAG_TEXT_CURSOR_MODE 0x00000200 /* Show cursor */
#define FLAG_INVERSE_SCREEN_MODE 0x00000400 /* Inverse colors */
#define FLAG_ORIGIN_MODE 0x00000800 /* Relative origin for cursor */
#define FLAG_AUTO_WRAP_MODE 0x00001000 /* Auto line wrap mode */
#define FLAG_AUTO_REPEAT_MODE 0x00002000 /* Auto repeat key press; TODO: implement */
#define FLAG_NATIONAL_CHARSET_MODE 0x00004000 /* Send keys from nation charsets; TODO: implement */
#define FLAG_BACKGROUND_COLOR_ERASE_MODE 0x00008000 /* Set background color on erase (bce) */
#define FLAG_PREPEND_ESCAPE 0x00010000 /* Prepend escape character to next output */
struct vte_saved_state {
unsigned int cursor_x;
unsigned int cursor_y;
struct kmscon_console_attr cattr;
kmscon_vte_charset *gl;
kmscon_vte_charset *gr;
bool wrap_mode;
bool origin_mode;
};
struct kmscon_vte {
unsigned long ref;
struct kmscon_console *con;
kmscon_vte_write_cb write_cb;
void *data;
struct tsm_utf8_mach *mach;
unsigned long parse_cnt;
unsigned int state;
unsigned int csi_argc;
int csi_argv[CSI_ARG_MAX];
unsigned int csi_flags;
uint8_t (*palette)[3];
struct kmscon_console_attr def_attr;
struct kmscon_console_attr cattr;
unsigned int flags;
kmscon_vte_charset *gl;
kmscon_vte_charset *gr;
kmscon_vte_charset *glt;
kmscon_vte_charset *grt;
kmscon_vte_charset *g0;
kmscon_vte_charset *g1;
kmscon_vte_charset *g2;
kmscon_vte_charset *g3;
struct vte_saved_state saved_state;
};
enum vte_color {
COLOR_BLACK,
COLOR_RED,
COLOR_GREEN,
COLOR_YELLOW,
COLOR_BLUE,
COLOR_MAGENTA,
COLOR_CYAN,
COLOR_LIGHT_GREY,
COLOR_DARK_GREY,
COLOR_LIGHT_RED,
COLOR_LIGHT_GREEN,
COLOR_LIGHT_YELLOW,
COLOR_LIGHT_BLUE,
COLOR_LIGHT_MAGENTA,
COLOR_LIGHT_CYAN,
COLOR_WHITE,
COLOR_FOREGROUND,
COLOR_BACKGROUND,
COLOR_NUM
};
static uint8_t color_palette[COLOR_NUM][3] = {
[COLOR_BLACK] = { 0, 0, 0 }, /* black */
[COLOR_RED] = { 205, 0, 0 }, /* red */
[COLOR_GREEN] = { 0, 205, 0 }, /* green */
[COLOR_YELLOW] = { 205, 205, 0 }, /* yellow */
[COLOR_BLUE] = { 0, 0, 238 }, /* blue */
[COLOR_MAGENTA] = { 205, 0, 205 }, /* magenta */
[COLOR_CYAN] = { 0, 205, 205 }, /* cyan */
[COLOR_LIGHT_GREY] = { 229, 229, 229 }, /* light grey */
[COLOR_DARK_GREY] = { 127, 127, 127 }, /* dark grey */
[COLOR_LIGHT_RED] = { 255, 0, 0 }, /* light red */
[COLOR_LIGHT_GREEN] = { 0, 255, 0 }, /* light green */
[COLOR_LIGHT_YELLOW] = { 255, 255, 0 }, /* light yellow */
[COLOR_LIGHT_BLUE] = { 92, 92, 255 }, /* light blue */
[COLOR_LIGHT_MAGENTA] = { 255, 0, 255 }, /* light magenta */
[COLOR_LIGHT_CYAN] = { 0, 255, 255 }, /* light cyan */
[COLOR_WHITE] = { 255, 255, 255 }, /* white */
[COLOR_FOREGROUND] = { 229, 229, 229 }, /* light grey */
[COLOR_BACKGROUND] = { 0, 0, 0 }, /* black */
};
static uint8_t color_palette_solarized[COLOR_NUM][3] = {
[COLOR_BLACK] = { 7, 54, 66 }, /* black */
[COLOR_RED] = { 220, 50, 47 }, /* red */
[COLOR_GREEN] = { 133, 153, 0 }, /* green */
[COLOR_YELLOW] = { 181, 137, 0 }, /* yellow */
[COLOR_BLUE] = { 38, 139, 210 }, /* blue */
[COLOR_MAGENTA] = { 211, 54, 130 }, /* magenta */
[COLOR_CYAN] = { 42, 161, 152 }, /* cyan */
[COLOR_LIGHT_GREY] = { 238, 232, 213 }, /* light grey */
[COLOR_DARK_GREY] = { 0, 43, 54 }, /* dark grey */
[COLOR_LIGHT_RED] = { 203, 75, 22 }, /* light red */
[COLOR_LIGHT_GREEN] = { 88, 110, 117 }, /* light green */
[COLOR_LIGHT_YELLOW] = { 101, 123, 131 }, /* light yellow */
[COLOR_LIGHT_BLUE] = { 131, 148, 150 }, /* light blue */
[COLOR_LIGHT_MAGENTA] = { 108, 113, 196 }, /* light magenta */
[COLOR_LIGHT_CYAN] = { 147, 161, 161 }, /* light cyan */
[COLOR_WHITE] = { 253, 246, 227 }, /* white */
[COLOR_FOREGROUND] = { 238, 232, 213 }, /* light grey */
[COLOR_BACKGROUND] = { 7, 54, 66 }, /* black */
};
static uint8_t color_palette_solarized_black[COLOR_NUM][3] = {
[COLOR_BLACK] = { 0, 0, 0 }, /* black */
[COLOR_RED] = { 220, 50, 47 }, /* red */
[COLOR_GREEN] = { 133, 153, 0 }, /* green */
[COLOR_YELLOW] = { 181, 137, 0 }, /* yellow */
[COLOR_BLUE] = { 38, 139, 210 }, /* blue */
[COLOR_MAGENTA] = { 211, 54, 130 }, /* magenta */
[COLOR_CYAN] = { 42, 161, 152 }, /* cyan */
[COLOR_LIGHT_GREY] = { 238, 232, 213 }, /* light grey */
[COLOR_DARK_GREY] = { 0, 43, 54 }, /* dark grey */
[COLOR_LIGHT_RED] = { 203, 75, 22 }, /* light red */
[COLOR_LIGHT_GREEN] = { 88, 110, 117 }, /* light green */
[COLOR_LIGHT_YELLOW] = { 101, 123, 131 }, /* light yellow */
[COLOR_LIGHT_BLUE] = { 131, 148, 150 }, /* light blue */
[COLOR_LIGHT_MAGENTA] = { 108, 113, 196 }, /* light magenta */
[COLOR_LIGHT_CYAN] = { 147, 161, 161 }, /* light cyan */
[COLOR_WHITE] = { 253, 246, 227 }, /* white */
[COLOR_FOREGROUND] = { 238, 232, 213 }, /* light grey */
[COLOR_BACKGROUND] = { 0, 0, 0 }, /* black */
};
static uint8_t color_palette_solarized_white[COLOR_NUM][3] = {
[COLOR_BLACK] = { 7, 54, 66 }, /* black */
[COLOR_RED] = { 220, 50, 47 }, /* red */
[COLOR_GREEN] = { 133, 153, 0 }, /* green */
[COLOR_YELLOW] = { 181, 137, 0 }, /* yellow */
[COLOR_BLUE] = { 38, 139, 210 }, /* blue */
[COLOR_MAGENTA] = { 211, 54, 130 }, /* magenta */
[COLOR_CYAN] = { 42, 161, 152 }, /* cyan */
[COLOR_LIGHT_GREY] = { 238, 232, 213 }, /* light grey */
[COLOR_DARK_GREY] = { 0, 43, 54 }, /* dark grey */
[COLOR_LIGHT_RED] = { 203, 75, 22 }, /* light red */
[COLOR_LIGHT_GREEN] = { 88, 110, 117 }, /* light green */
[COLOR_LIGHT_YELLOW] = { 101, 123, 131 }, /* light yellow */
[COLOR_LIGHT_BLUE] = { 131, 148, 150 }, /* light blue */
[COLOR_LIGHT_MAGENTA] = { 108, 113, 196 }, /* light magenta */
[COLOR_LIGHT_CYAN] = { 147, 161, 161 }, /* light cyan */
[COLOR_WHITE] = { 253, 246, 227 }, /* white */
[COLOR_FOREGROUND] = { 7, 54, 66 }, /* black */
[COLOR_BACKGROUND] = { 238, 232, 213 }, /* light grey */
};
static uint8_t (*get_palette(void))[3]
{
if (!kmscon_conf.palette)
return color_palette;
if (!strcmp(kmscon_conf.palette, "solarized"))
return color_palette_solarized;
if (!strcmp(kmscon_conf.palette, "solarized-black"))
return color_palette_solarized_black;
if (!strcmp(kmscon_conf.palette, "solarized-white"))
return color_palette_solarized_white;
return color_palette;
}
/* Several effects may occur when non-RGB colors are used. For instance, if bold
* is enabled, then a dark color code is always converted to a light color to
* simulate bold (even though bold may actually be supported!). To support this,
* we need to differentiate between a set color-code and a set rgb-color.
* This function actually converts a set color-code into an RGB color. This must
* be called before passing the attribute to the console layer so the console
* layer can always work with RGB values and does not have to care for color
* codes. */
static void to_rgb(struct kmscon_vte *vte, struct kmscon_console_attr *attr)
{
int8_t code;
code = attr->fccode;
if (code >= 0) {
/* bold causes light colors */
if (attr->bold && code < 8)
code += 8;
if (code >= COLOR_NUM)
code = COLOR_FOREGROUND;
attr->fr = vte->palette[code][0];
attr->fg = vte->palette[code][1];
attr->fb = vte->palette[code][2];
}
code = attr->bccode;
if (code >= 0) {
if (code >= COLOR_NUM)
code = COLOR_BACKGROUND;
attr->br = vte->palette[code][0];
attr->bg = vte->palette[code][1];
attr->bb = vte->palette[code][2];
}
}
static void copy_fcolor(struct kmscon_console_attr *dest,
const struct kmscon_console_attr *src)
{
dest->fccode = src->fccode;
dest->fr = src->fr;
dest->fg = src->fg;
dest->fb = src->fb;
}
static void copy_bcolor(struct kmscon_console_attr *dest,
const struct kmscon_console_attr *src)
{
dest->bccode = src->bccode;
dest->br = src->br;
dest->bg = src->bg;
dest->bb = src->bb;
}
int kmscon_vte_new(struct kmscon_vte **out, struct kmscon_console *con,
kmscon_vte_write_cb write_cb, void *data)
{
struct kmscon_vte *vte;
int ret;
if (!out || !con || !write_cb)
return -EINVAL;
vte = malloc(sizeof(*vte));
if (!vte)
return -ENOMEM;
memset(vte, 0, sizeof(*vte));
vte->ref = 1;
vte->con = con;
vte->write_cb = write_cb;
vte->data = data;
vte->palette = get_palette();
vte->def_attr.fccode = COLOR_FOREGROUND;
vte->def_attr.bccode = COLOR_BACKGROUND;
to_rgb(vte, &vte->def_attr);
ret = tsm_utf8_mach_new(&vte->mach);
if (ret)
goto err_free;
kmscon_vte_reset(vte);
kmscon_console_erase_screen(vte->con, false);
log_debug("new vte object");
kmscon_console_ref(vte->con);
*out = vte;
return 0;
err_free:
free(vte);
return ret;
}
void kmscon_vte_ref(struct kmscon_vte *vte)
{
if (!vte)
return;
vte->ref++;
}
void kmscon_vte_unref(struct kmscon_vte *vte)
{
if (!vte || !vte->ref)
return;
if (--vte->ref)
return;
log_debug("destroying vte object");
kmscon_console_unref(vte->con);
tsm_utf8_mach_free(vte->mach);
free(vte);
}
/*
* Write raw byte-stream to pty.
* When writing data to the client we must make sure that we send the correct
* encoding. For backwards-compatibility reasons we should always send 7bit
* characters exclusively. However, when FLAG_7BIT_MODE is not set, then we can
* also send raw 8bit characters. For instance, in FLAG_8BIT_MODE we can use the
* GR characters as keyboard input and send them directly or even use the C1
* escape characters. In unicode mode (default) we can send multi-byte utf-8
* characters which are also 8bit. When sending these characters, set the \raw
* flag to true so this function does not perform debug checks on data we send.
* If debugging is disabled, these checks are also disabled and won't affect
* performance.
* For better debugging, we also use the __LINE__ and __FILE__ macros. Use the
* vte_write() and vte_write_raw() macros below for more convenient use.
*
* As a rule of thumb do never send 8bit characters in escape sequences and also
* avoid all 8bit escape codes including the C1 codes. This will guarantee that
* all kind of clients are always compatible to us.
*
* If SEND_RECEIVE_MODE is off (that is, local echo is on) we have to send all
* data directly to ourself again. However, we must avoid recursion when
* kmscon_vte_input() itself calls vte_write*(), therefore, we increase the
* PARSER counter when entering kmscon_vte_input() and reset it when leaving it
* so we never echo data that origins from kmscon_vte_input().
* But note that SEND_RECEIVE_MODE is inherently broken for escape sequences
* that request answers. That is, if we send a request to the client that awaits
* a response and parse that request via local echo ourself, then we will also
* send a response to the client even though he didn't request one. This
* recursion fix does not avoid this but only prevents us from endless loops
* here. Anyway, only few applications rely on local echo so we can safely
* ignore this.
*/
static void vte_write_debug(struct kmscon_vte *vte, const char *u8, size_t len,
bool raw, const char *file, int line)
{
#ifdef KMSCON_ENABLE_DEBUG
/* in debug mode we check that escape sequences are always <0x7f so they
* are correctly parsed by non-unicode and non-8bit-mode clients. */
size_t i;
if (!raw) {
for (i = 0; i < len; ++i) {
if (u8[i] & 0x80)
log_warning("sending 8bit character inline to client in %s:%d",
file, line);
}
}
#endif
/* in local echo mode, directly parse the data again */
if (!vte->parse_cnt && !(vte->flags & FLAG_SEND_RECEIVE_MODE)) {
if (vte->flags & FLAG_PREPEND_ESCAPE)
kmscon_vte_input(vte, "\e", 1);
kmscon_vte_input(vte, u8, len);
}
if (vte->flags & FLAG_PREPEND_ESCAPE)
vte->write_cb(vte, "\e", 1, vte->data);
vte->write_cb(vte, u8, len, vte->data);
vte->flags &= ~FLAG_PREPEND_ESCAPE;
}
#define vte_write(_vte, _u8, _len) \
vte_write_debug((_vte), (_u8), (_len), false, __FILE__, __LINE__)
#define vte_write_raw(_vte, _u8, _len) \
vte_write_debug((_vte), (_u8), (_len), true, __FILE__, __LINE__)
/* write to console */
static void write_console(struct kmscon_vte *vte, tsm_symbol_t sym)
{
to_rgb(vte, &vte->cattr);
kmscon_console_write(vte->con, sym, &vte->cattr);
}
static void reset_state(struct kmscon_vte *vte)
{
vte->saved_state.cursor_x = 0;
vte->saved_state.cursor_y = 0;
vte->saved_state.origin_mode = false;
vte->saved_state.wrap_mode = true;
vte->saved_state.gl = &kmscon_vte_unicode_lower;
vte->saved_state.gr = &kmscon_vte_unicode_upper;
copy_fcolor(&vte->saved_state.cattr, &vte->def_attr);
copy_bcolor(&vte->saved_state.cattr, &vte->def_attr);
vte->saved_state.cattr.bold = 0;
vte->saved_state.cattr.underline = 0;
vte->saved_state.cattr.inverse = 0;
vte->saved_state.cattr.protect = 0;
}
static void save_state(struct kmscon_vte *vte)
{
vte->saved_state.cursor_x = kmscon_console_get_cursor_x(vte->con);
vte->saved_state.cursor_y = kmscon_console_get_cursor_y(vte->con);
vte->saved_state.cattr = vte->cattr;
vte->saved_state.gl = vte->gl;
vte->saved_state.gr = vte->gr;
vte->saved_state.wrap_mode = vte->flags & FLAG_AUTO_WRAP_MODE;
vte->saved_state.origin_mode = vte->flags & FLAG_ORIGIN_MODE;
}
static void restore_state(struct kmscon_vte *vte)
{
kmscon_console_move_to(vte->con, vte->saved_state.cursor_x,
vte->saved_state.cursor_y);
vte->cattr = vte->saved_state.cattr;
to_rgb(vte, &vte->cattr);
if (vte->flags & FLAG_BACKGROUND_COLOR_ERASE_MODE)
kmscon_console_set_def_attr(vte->con, &vte->cattr);
vte->gl = vte->saved_state.gl;
vte->gr = vte->saved_state.gr;
if (vte->saved_state.wrap_mode) {
vte->flags |= FLAG_AUTO_WRAP_MODE;
kmscon_console_set_flags(vte->con,
KMSCON_CONSOLE_AUTO_WRAP);
} else {
vte->flags &= ~FLAG_AUTO_WRAP_MODE;
kmscon_console_reset_flags(vte->con,
KMSCON_CONSOLE_AUTO_WRAP);
}
if (vte->saved_state.origin_mode) {
vte->flags |= FLAG_ORIGIN_MODE;
kmscon_console_set_flags(vte->con,
KMSCON_CONSOLE_REL_ORIGIN);
} else {
vte->flags &= ~FLAG_ORIGIN_MODE;
kmscon_console_reset_flags(vte->con,
KMSCON_CONSOLE_REL_ORIGIN);
}
}
/*
* Reset VTE state
* This performs a soft reset of the VTE. That is, everything is reset to the
* same state as when the VTE was created. This does not affect the console,
* though.
*/
void kmscon_vte_reset(struct kmscon_vte *vte)
{
if (!vte)
return;
vte->flags = 0;
vte->flags |= FLAG_TEXT_CURSOR_MODE;
vte->flags |= FLAG_AUTO_REPEAT_MODE;
vte->flags |= FLAG_SEND_RECEIVE_MODE;
vte->flags |= FLAG_AUTO_WRAP_MODE;
vte->flags |= FLAG_BACKGROUND_COLOR_ERASE_MODE;
kmscon_console_reset(vte->con);
kmscon_console_set_flags(vte->con, KMSCON_CONSOLE_AUTO_WRAP);
tsm_utf8_mach_reset(vte->mach);
vte->state = STATE_GROUND;
vte->gl = &kmscon_vte_unicode_lower;
vte->gr = &kmscon_vte_unicode_upper;
vte->glt = NULL;
vte->grt = NULL;
vte->g0 = &kmscon_vte_unicode_lower;
vte->g1 = &kmscon_vte_unicode_upper;
vte->g2 = &kmscon_vte_unicode_lower;
vte->g3 = &kmscon_vte_unicode_upper;
memcpy(&vte->cattr, &vte->def_attr, sizeof(vte->cattr));
to_rgb(vte, &vte->cattr);
kmscon_console_set_def_attr(vte->con, &vte->def_attr);
reset_state(vte);
}
static void hard_reset(struct kmscon_vte *vte)
{
kmscon_vte_reset(vte);
kmscon_console_erase_screen(vte->con, false);
kmscon_console_clear_sb(vte->con);
kmscon_console_move_to(vte->con, 0, 0);
}
static void send_primary_da(struct kmscon_vte *vte)
{
vte_write(vte, "\e[?60;1;6;9;15c", 17);
}
/* execute control character (C0 or C1) */
static void do_execute(struct kmscon_vte *vte, uint32_t ctrl)
{
switch (ctrl) {
case 0x00: /* NUL */
/* Ignore on input */
break;
case 0x05: /* ENQ */
/* Transmit answerback message */
/* TODO: is there a better answer than ACK? */
vte_write(vte, "\x06", 1);
break;
case 0x07: /* BEL */
/* Sound bell tone */
/* TODO: I always considered this annying, however, we
* should at least provide some way to enable it if the
* user *really* wants it.
*/
break;
case 0x08: /* BS */
/* Move cursor one position left */
kmscon_console_move_left(vte->con, 1);
break;
case 0x09: /* HT */
/* Move to next tab stop or end of line */
kmscon_console_tab_right(vte->con, 1);
break;
case 0x0a: /* LF */
case 0x0b: /* VT */
case 0x0c: /* FF */
/* Line feed or newline (CR/NL mode) */
if (vte->flags & FLAG_LINE_FEED_NEW_LINE_MODE)
kmscon_console_newline(vte->con);
else
kmscon_console_move_down(vte->con, 1, true);
break;
case 0x0d: /* CR */
/* Move cursor to left margin */
kmscon_console_move_line_home(vte->con);
break;
case 0x0e: /* SO */
/* Map G1 character set into GL */
vte->gl = vte->g1;
break;
case 0x0f: /* SI */
/* Map G0 character set into GL */
vte->gl = vte->g0;
break;
case 0x11: /* XON */
/* Resume transmission */
/* TODO */
break;
case 0x13: /* XOFF */
/* Stop transmission */
/* TODO */
break;
case 0x18: /* CAN */
/* Cancel escape sequence */
/* nothing to do here */
break;
case 0x1a: /* SUB */
/* Discard current escape sequence and show err-sym */
write_console(vte, 0xbf);
break;
case 0x1b: /* ESC */
/* Invokes an escape sequence */
/* nothing to do here */
break;
case 0x1f: /* DEL */
/* Ignored */
break;
case 0x84: /* IND */
/* Move down one row, perform scroll-up if needed */
kmscon_console_move_down(vte->con, 1, true);
break;
case 0x85: /* NEL */
/* CR/NL with scroll-up if needed */
kmscon_console_newline(vte->con);
break;
case 0x88: /* HTS */
/* Set tab stop at current position */
kmscon_console_set_tabstop(vte->con);
break;
case 0x8d: /* RI */
/* Move up one row, perform scroll-down if needed */
kmscon_console_move_up(vte->con, 1, true);
break;
case 0x8e: /* SS2 */
/* Temporarily map G2 into GL for next char only */
vte->glt = vte->g2;
break;
case 0x8f: /* SS3 */
/* Temporarily map G3 into GL for next char only */
vte->glt = vte->g3;
break;
case 0x9a: /* DECID */
/* Send device attributes response like ANSI DA */
send_primary_da(vte);
break;
case 0x9c: /* ST */
/* End control string */
/* nothing to do here */
break;
default:
log_warn("unhandled control char %u", ctrl);
}
}
static void do_clear(struct kmscon_vte *vte)
{
int i;
vte->csi_argc = 0;
for (i = 0; i < CSI_ARG_MAX; ++i)
vte->csi_argv[i] = -1;
vte->csi_flags = 0;
}
static void do_collect(struct kmscon_vte *vte, uint32_t data)
{
switch (data) {
case '!':
vte->csi_flags |= CSI_BANG;
break;
case '$':
vte->csi_flags |= CSI_CASH;
break;
case '?':
vte->csi_flags |= CSI_WHAT;
break;
case '>':
vte->csi_flags |= CSI_GT;
break;
case ' ':
vte->csi_flags |= CSI_SPACE;
break;
case '\'':
vte->csi_flags |= CSI_SQUOTE;
break;
case '"':
vte->csi_flags |= CSI_DQUOTE;
break;
case '*':
vte->csi_flags |= CSI_MULT;
break;
case '+':
vte->csi_flags |= CSI_PLUS;
break;
case '(':
vte->csi_flags |= CSI_POPEN;
break;
case ')':
vte->csi_flags |= CSI_PCLOSE;
break;
}
}
static void do_param(struct kmscon_vte *vte, uint32_t data)
{
int new;
if (data == ';') {
if (vte->csi_argc < CSI_ARG_MAX)
vte->csi_argc++;
return;
}
if (vte->csi_argc >= CSI_ARG_MAX)
return;
/* avoid integer overflows; max allowed value is 16384 anyway */
if (vte->csi_argv[vte->csi_argc] > 0xffff)
return;
if (data >= '0' && data <= '9') {
new = vte->csi_argv[vte->csi_argc];
if (new <= 0)
new = data - '0';
else
new = new * 10 + data - '0';
vte->csi_argv[vte->csi_argc] = new;
}
}
static bool set_charset(struct kmscon_vte *vte, kmscon_vte_charset *set)
{
if (vte->csi_flags & CSI_POPEN)
vte->g0 = set;
else if (vte->csi_flags & CSI_PCLOSE)
vte->g1 = set;
else if (vte->csi_flags & CSI_MULT)
vte->g2 = set;
else if (vte->csi_flags & CSI_PLUS)
vte->g3 = set;
else
return false;
return true;
}
static void do_esc(struct kmscon_vte *vte, uint32_t data)
{
switch (data) {
case 'B': /* map ASCII into G0-G3 */
if (set_charset(vte, &kmscon_vte_unicode_lower))
return;
break;
case '<': /* map DEC supplemental into G0-G3 */
if (set_charset(vte, &kmscon_vte_dec_supplemental_graphics))
return;
break;
case '0': /* map DEC special into G0-G3 */
if (set_charset(vte, &kmscon_vte_dec_special_graphics))
return;
break;
case 'A': /* map British into G0-G3 */
/* TODO: create British charset from DEC */
if (set_charset(vte, &kmscon_vte_unicode_upper))
return;
break;
case '4': /* map Dutch into G0-G3 */
/* TODO: create Dutch charset from DEC */
if (set_charset(vte, &kmscon_vte_unicode_upper))
return;
break;
case 'C':
case '5': /* map Finnish into G0-G3 */
/* TODO: create Finnish charset from DEC */
if (set_charset(vte, &kmscon_vte_unicode_upper))
return;
break;
case 'R': /* map French into G0-G3 */
/* TODO: create French charset from DEC */
if (set_charset(vte, &kmscon_vte_unicode_upper))
return;
break;
case 'Q': /* map French-Canadian into G0-G3 */
/* TODO: create French-Canadian charset from DEC */
if (set_charset(vte, &kmscon_vte_unicode_upper))
return;
break;
case 'K': /* map German into G0-G3 */
/* TODO: create German charset from DEC */
if (set_charset(vte, &kmscon_vte_unicode_upper))
return;
break;
case 'Y': /* map Italian into G0-G3 */
/* TODO: create Italian charset from DEC */
if (set_charset(vte, &kmscon_vte_unicode_upper))
return;
break;
case 'E':
case '6': /* map Norwegian/Danish into G0-G3 */
/* TODO: create Norwegian/Danish charset from DEC */
if (set_charset(vte, &kmscon_vte_unicode_upper))
return;
break;
case 'Z': /* map Spanish into G0-G3 */
/* TODO: create Spanish charset from DEC */
if (set_charset(vte, &kmscon_vte_unicode_upper))
return;
break;
case 'H':
case '7': /* map Swedish into G0-G3 */
/* TODO: create Swedish charset from DEC */
if (set_charset(vte, &kmscon_vte_unicode_upper))
return;
break;
case '=': /* map Swiss into G0-G3 */
/* TODO: create Swiss charset from DEC */
if (set_charset(vte, &kmscon_vte_unicode_upper))
return;
break;
case 'F':
if (vte->csi_flags & CSI_SPACE) {
/* S7C1T */
/* Disable 8bit C1 mode */
vte->flags &= ~FLAG_USE_C1;
return;
}
break;
case 'G':
if (vte->csi_flags & CSI_SPACE) {
/* S8C1T */
/* Enable 8bit C1 mode */
vte->flags |= FLAG_USE_C1;
return;
}
break;
}
/* everything below is only valid without CSI flags */
if (vte->csi_flags) {
log_debug("unhandled escape seq %u", data);
return;
}
switch (data) {
case 'D': /* IND */
/* Move down one row, perform scroll-up if needed */
kmscon_console_move_down(vte->con, 1, true);
break;
case 'E': /* NEL */
/* CR/NL with scroll-up if needed */
kmscon_console_newline(vte->con);
break;
case 'H': /* HTS */
/* Set tab stop at current position */
kmscon_console_set_tabstop(vte->con);
break;
case 'M': /* RI */
/* Move up one row, perform scroll-down if needed */
kmscon_console_move_up(vte->con, 1, true);
break;
case 'N': /* SS2 */
/* Temporarily map G2 into GL for next char only */
vte->glt = vte->g2;
break;
case 'O': /* SS3 */
/* Temporarily map G3 into GL for next char only */
vte->glt = vte->g3;
break;
case 'Z': /* DECID */
/* Send device attributes response like ANSI DA */
send_primary_da(vte);
break;
case '\\': /* ST */
/* End control string */
/* nothing to do here */
break;
case '~': /* LS1R */
/* Invoke G1 into GR */
vte->gr = vte->g1;
break;
case 'n': /* LS2 */
/* Invoke G2 into GL */
vte->gl = vte->g2;
break;
case '}': /* LS2R */
/* Invoke G2 into GR */
vte->gr = vte->g2;
break;
case 'o': /* LS3 */
/* Invoke G3 into GL */
vte->gl = vte->g3;
break;
case '|': /* LS3R */
/* Invoke G3 into GR */
vte->gr = vte->g3;
break;
case '=': /* DECKPAM */
/* Set application keypad mode */
vte->flags |= FLAG_KEYPAD_APPLICATION_MODE;
break;
case '>': /* DECKPNM */
/* Set numeric keypad mode */
vte->flags &= ~FLAG_KEYPAD_APPLICATION_MODE;
break;
case 'c': /* RIS */
/* hard reset */
hard_reset(vte);
break;
case '7': /* DECSC */
/* save console state */
save_state(vte);
break;
case '8': /* DECRC */
/* restore console state */
restore_state(vte);
break;
default:
log_debug("unhandled escape seq %u", data);
}
}
static void csi_attribute(struct kmscon_vte *vte)
{
static const uint8_t bval[6] = { 0x00, 0x5f, 0x87, 0xaf, 0xd7, 0xff };
unsigned int i, code;
if (vte->csi_argc <= 1 && vte->csi_argv[0] == -1) {
vte->csi_argc = 1;
vte->csi_argv[0] = 0;
}
for (i = 0; i < vte->csi_argc; ++i) {
switch (vte->csi_argv[i]) {
case -1:
break;
case 0:
copy_fcolor(&vte->cattr, &vte->def_attr);
copy_bcolor(&vte->cattr, &vte->def_attr);
vte->cattr.bold = 0;
vte->cattr.underline = 0;
vte->cattr.inverse = 0;
break;
case 1:
vte->cattr.bold = 1;
break;
case 4:
vte->cattr.underline = 1;
break;
case 7:
vte->cattr.inverse = 1;
break;
case 22:
vte->cattr.bold = 0;
break;
case 24:
vte->cattr.underline = 0;
break;
case 27:
vte->cattr.inverse = 0;
break;
case 30:
vte->cattr.fccode = COLOR_BLACK;
break;
case 31:
vte->cattr.fccode = COLOR_RED;
break;
case 32:
vte->cattr.fccode = COLOR_GREEN;
break;
case 33:
vte->cattr.fccode = COLOR_YELLOW;
break;
case 34:
vte->cattr.fccode = COLOR_BLUE;
break;
case 35:
vte->cattr.fccode = COLOR_MAGENTA;
break;
case 36:
vte->cattr.fccode = COLOR_CYAN;
break;
case 37:
vte->cattr.fccode = COLOR_LIGHT_GREY;
break;
case 39:
copy_fcolor(&vte->cattr, &vte->def_attr);
break;
case 40:
vte->cattr.bccode = COLOR_BLACK;
break;
case 41:
vte->cattr.bccode = COLOR_RED;
break;
case 42:
vte->cattr.bccode = COLOR_GREEN;
break;
case 43:
vte->cattr.bccode = COLOR_YELLOW;
break;
case 44:
vte->cattr.bccode = COLOR_BLUE;
break;
case 45:
vte->cattr.bccode = COLOR_MAGENTA;
break;
case 46:
vte->cattr.bccode = COLOR_CYAN;
break;
case 47:
vte->cattr.bccode = COLOR_LIGHT_GREY;
break;
case 49:
copy_bcolor(&vte->cattr, &vte->def_attr);
break;
case 90:
vte->cattr.fccode = COLOR_DARK_GREY;
break;
case 91:
vte->cattr.fccode = COLOR_LIGHT_RED;
break;
case 92:
vte->cattr.fccode = COLOR_LIGHT_GREEN;
break;
case 93:
vte->cattr.fccode = COLOR_LIGHT_YELLOW;
break;
case 94:
vte->cattr.fccode = COLOR_LIGHT_BLUE;
break;
case 95:
vte->cattr.fccode = COLOR_LIGHT_MAGENTA;
break;
case 96:
vte->cattr.fccode = COLOR_LIGHT_CYAN;
break;
case 97:
vte->cattr.fccode = COLOR_WHITE;
break;
case 100:
vte->cattr.bccode = COLOR_DARK_GREY;
break;
case 101:
vte->cattr.bccode = COLOR_LIGHT_RED;
break;
case 102:
vte->cattr.bccode = COLOR_LIGHT_GREEN;
break;
case 103:
vte->cattr.bccode = COLOR_LIGHT_YELLOW;
break;
case 104:
vte->cattr.bccode = COLOR_LIGHT_BLUE;
break;
case 105:
vte->cattr.bccode = COLOR_LIGHT_MAGENTA;
break;
case 106:
vte->cattr.bccode = COLOR_LIGHT_CYAN;
break;
case 107:
vte->cattr.bccode = COLOR_WHITE;
break;
case 38:
/* fallthrough */
case 48:
if (i + 2 >= vte->csi_argc ||
vte->csi_argv[i + 1] != 5 ||
vte->csi_argv[i + 2] < 0) {
log_debug("invalid 256color SGR");
break;
}
code = vte->csi_argv[i + 2];
if (vte->csi_argv[i] == 38) {
if (code < 16) {
vte->cattr.fccode = code;
} else if (code < 232) {
vte->cattr.fccode = -1;
code -= 16;
vte->cattr.fb = bval[code % 6];
code /= 6;
vte->cattr.fg = bval[code % 6];
code /= 6;
vte->cattr.fr = bval[code % 6];
} else {
vte->cattr.fccode = -1;
code = (code - 232) * 10 + 8;
vte->cattr.fr = code;
vte->cattr.fg = code;
vte->cattr.fb = code;
}
} else {
if (code < 16) {
vte->cattr.bccode = code;
} else if (code < 232) {
vte->cattr.bccode = -1;
code -= 16;
vte->cattr.bb = bval[code % 6];
code /= 6;
vte->cattr.bg = bval[code % 6];
code /= 6;
vte->cattr.br = bval[code % 6];
} else {
vte->cattr.bccode = -1;
code = (code - 232) * 10 + 8;
vte->cattr.br = code;
vte->cattr.bg = code;
vte->cattr.bb = code;
}
}
i += 2;
break;
default:
log_debug("unhandled SGR attr %i",
vte->csi_argv[i]);
}
}
to_rgb(vte, &vte->cattr);
if (vte->flags & FLAG_BACKGROUND_COLOR_ERASE_MODE)
kmscon_console_set_def_attr(vte->con, &vte->cattr);
}
static void csi_soft_reset(struct kmscon_vte *vte)
{
kmscon_vte_reset(vte);
}
static void csi_compat_mode(struct kmscon_vte *vte)
{
/* always perform soft reset */
csi_soft_reset(vte);
if (vte->csi_argv[0] == 61) {
/* Switching to VT100 compatibility mode. We do
* not support this mode, so ignore it. In fact,
* we are almost compatible to it, anyway, so
* there is no need to explicitely select it.
* However, we enable 7bit mode to avoid
* character-table problems */
vte->flags |= FLAG_7BIT_MODE;
vte->gl = &kmscon_vte_unicode_lower;
vte->gr = &kmscon_vte_dec_supplemental_graphics;
} else if (vte->csi_argv[0] == 62 ||
vte->csi_argv[0] == 63 ||
vte->csi_argv[0] == 64) {
/* Switching to VT2/3/4 compatibility mode. We
* are always compatible with this so ignore it.
* We always send 7bit controls so we also do
* not care for the parameter value here that
* select the control-mode.
* VT220 defines argument 2 as 7bit mode but
* VT3xx up to VT5xx use it as 8bit mode. We
* choose to conform with the latter here.
* We also enable 8bit mode when VT220
* compatibility is requested explicitely. */
if (vte->csi_argv[1] == 1 ||
vte->csi_argv[1] == 2)
vte->flags |= FLAG_USE_C1;
vte->flags |= FLAG_8BIT_MODE;
vte->gl = &kmscon_vte_unicode_lower;
vte->gr = &kmscon_vte_dec_supplemental_graphics;
} else {
log_debug("unhandled DECSCL 'p' CSI %i, switching to utf-8 mode again",
vte->csi_argv[0]);
}
}
static inline void set_reset_flag(struct kmscon_vte *vte, bool set,
unsigned int flag)
{
if (set)
vte->flags |= flag;
else
vte->flags &= ~flag;
}
static void csi_mode(struct kmscon_vte *vte, bool set)
{
unsigned int i;
for (i = 0; i < vte->csi_argc; ++i) {
if (!(vte->csi_flags & CSI_WHAT)) {
switch (vte->csi_argv[i]) {
case -1:
continue;
case 2: /* KAM */
set_reset_flag(vte, set,
FLAG_KEYBOARD_ACTION_MODE);
continue;
case 4: /* IRM */
set_reset_flag(vte, set,
FLAG_INSERT_REPLACE_MODE);
if (set)
kmscon_console_set_flags(vte->con,
KMSCON_CONSOLE_INSERT_MODE);
else
kmscon_console_reset_flags(vte->con,
KMSCON_CONSOLE_INSERT_MODE);
continue;
case 12: /* SRM */
set_reset_flag(vte, set,
FLAG_SEND_RECEIVE_MODE);
continue;
case 20: /* LNM */
set_reset_flag(vte, set,
FLAG_LINE_FEED_NEW_LINE_MODE);
continue;
default:
log_debug("unknown non-DEC (Re)Set-Mode %d",
vte->csi_argv[i]);
continue;
}
}
switch (vte->csi_argv[i]) {
case -1:
continue;
case 1: /* DECCKM */
set_reset_flag(vte, set, FLAG_CURSOR_KEY_MODE);
continue;
case 2: /* DECANM */
/* Select VT52 mode */
/* We do not support VT52 mode. Is there any reason why
* we should support it? We ignore it here and do not
* mark it as to-do item unless someone has strong
* arguments to support it. */
continue;
case 3: /* DECCOLM */
/* If set, select 132 column mode, otherwise use 80
* column mode. If neither is selected explicitely, we
* use dynamic mode, that is, we send SIGWCH when the
* size changes and we allow arbitrary buffer
* dimensions. On soft-reset, we automatically fall back
* to the default, that is, dynamic mode.
* Dynamic-mode can be forced to a static mode in the
* config. That is, everytime dynamic-mode becomes
* active, the terminal will be set to the dimensions
* that were selected in the config. This allows setting
* a fixed size for the terminal regardless of the
* display size.
* TODO: Implement this */
continue;
case 4: /* DECSCLM */
/* Select smooth scrolling. We do not support the
* classic smooth scrolling because we have a scrollback
* buffer. There is no need to implement smooth
* scrolling so ignore this here. */
continue;
case 5: /* DECSCNM */
set_reset_flag(vte, set, FLAG_INVERSE_SCREEN_MODE);
if (set)
kmscon_console_set_flags(vte->con,
KMSCON_CONSOLE_INVERSE);
else
kmscon_console_reset_flags(vte->con,
KMSCON_CONSOLE_INVERSE);
continue;
case 6: /* DECOM */
set_reset_flag(vte, set, FLAG_ORIGIN_MODE);
if (set)
kmscon_console_set_flags(vte->con,
KMSCON_CONSOLE_REL_ORIGIN);
else
kmscon_console_reset_flags(vte->con,
KMSCON_CONSOLE_REL_ORIGIN);
continue;
case 7: /* DECAWN */
set_reset_flag(vte, set, FLAG_AUTO_WRAP_MODE);
if (set)
kmscon_console_set_flags(vte->con,
KMSCON_CONSOLE_AUTO_WRAP);
else
kmscon_console_reset_flags(vte->con,
KMSCON_CONSOLE_AUTO_WRAP);
continue;
case 8: /* DECARM */
set_reset_flag(vte, set, FLAG_AUTO_REPEAT_MODE);
continue;
case 18: /* DECPFF */
/* If set, a form feed (FF) is sent to the printer after
* every screen that is printed. We don't have printers
* these days directly attached to terminals so we
* ignore this here. */
continue;
case 19: /* DECPEX */
/* If set, the full screen is printed instead of
* scrolling region only. We have no printer so ignore
* this mode. */
continue;
case 25: /* DECTCEM */
set_reset_flag(vte, set, FLAG_TEXT_CURSOR_MODE);
if (set)
kmscon_console_reset_flags(vte->con,
KMSCON_CONSOLE_HIDE_CURSOR);
else
kmscon_console_set_flags(vte->con,
KMSCON_CONSOLE_HIDE_CURSOR);
continue;
case 42: /* DECNRCM */
set_reset_flag(vte, set, FLAG_NATIONAL_CHARSET_MODE);
continue;
default:
log_debug("unknown DEC %set-Mode %d",
set?"S":"Res", vte->csi_argv[i]);
continue;
}
}
}
static void csi_dev_attr(struct kmscon_vte *vte)
{
if (vte->csi_argc <= 1 && vte->csi_argv[0] <= 0) {
if (vte->csi_flags == 0) {
send_primary_da(vte);
return;
} else if (vte->csi_flags & CSI_GT) {
vte_write(vte, "\e[>1;1;0c", 9);
return;
}
}
log_debug("unhandled DA: %x %d %d %d...", vte->csi_flags,
vte->csi_argv[0], vte->csi_argv[1], vte->csi_argv[2]);
}
static void csi_dsr(struct kmscon_vte *vte)
{
char buf[64];
unsigned int x, y, len;
if (vte->csi_argv[0] == 5) {
vte_write(vte, "\e[0n", 4);
} else if (vte->csi_argv[0] == 6) {
x = kmscon_console_get_cursor_x(vte->con);
y = kmscon_console_get_cursor_y(vte->con);
len = snprintf(buf, sizeof(buf), "\e[%u;%uR", x, y);
if (len >= sizeof(buf))
vte_write(vte, "\e[0;0R", 6);
else
vte_write(vte, buf, len);
}
}
static void do_csi(struct kmscon_vte *vte, uint32_t data)
{
int num, x, y, upper, lower;
bool protect;
if (vte->csi_argc < CSI_ARG_MAX)
vte->csi_argc++;
switch (data) {
case 'A': /* CUU */
/* move cursor up */
num = vte->csi_argv[0];
if (num <= 0)
num = 1;
kmscon_console_move_up(vte->con, num, false);
break;
case 'B': /* CUD */
/* move cursor down */
num = vte->csi_argv[0];
if (num <= 0)
num = 1;
kmscon_console_move_down(vte->con, num, false);
break;
case 'C': /* CUF */
/* move cursor forward */
num = vte->csi_argv[0];
if (num <= 0)
num = 1;
kmscon_console_move_right(vte->con, num);
break;
case 'D': /* CUB */
/* move cursor backward */
num = vte->csi_argv[0];
if (num <= 0)
num = 1;
kmscon_console_move_left(vte->con, num);
break;
case 'd': /* VPA */
/* Vertical Line Position Absolute */
num = vte->csi_argv[0];
if (num <= 0)
num = 1;
x = kmscon_console_get_cursor_x(vte->con);
kmscon_console_move_to(vte->con, x, num - 1);
break;
case 'e': /* VPR */
/* Vertical Line Position Relative */
num = vte->csi_argv[0];
if (num <= 0)
num = 1;
x = kmscon_console_get_cursor_x(vte->con);
y = kmscon_console_get_cursor_y(vte->con);
kmscon_console_move_to(vte->con, x, y + num);
break;
case 'H': /* CUP */
case 'f': /* HVP */
/* position cursor */
x = vte->csi_argv[0];
if (x <= 0)
x = 1;
y = vte->csi_argv[1];
if (y <= 0)
y = 1;
kmscon_console_move_to(vte->con, y - 1, x - 1);
break;
case 'G': /* CHA */
/* Cursor Character Absolute */
num = vte->csi_argv[0];
if (num <= 0)
num = 1;
y = kmscon_console_get_cursor_y(vte->con);
kmscon_console_move_to(vte->con, num - 1, y);
break;
case 'J':
if (vte->csi_flags & CSI_WHAT)
protect = true;
else
protect = false;
if (vte->csi_argv[0] <= 0)
kmscon_console_erase_cursor_to_screen(vte->con,
protect);
else if (vte->csi_argv[0] == 1)
kmscon_console_erase_screen_to_cursor(vte->con,
protect);
else if (vte->csi_argv[0] == 2)
kmscon_console_erase_screen(vte->con, protect);
else
log_debug("unknown parameter to CSI-J: %d",
vte->csi_argv[0]);
break;
case 'K':
if (vte->csi_flags & CSI_WHAT)
protect = true;
else
protect = false;
if (vte->csi_argv[0] <= 0)
kmscon_console_erase_cursor_to_end(vte->con, protect);
else if (vte->csi_argv[0] == 1)
kmscon_console_erase_home_to_cursor(vte->con, protect);
else if (vte->csi_argv[0] == 2)
kmscon_console_erase_current_line(vte->con, protect);
else
log_debug("unknown parameter to CSI-K: %d",
vte->csi_argv[0]);
break;
case 'X': /* ECH */
/* erase characters */
num = vte->csi_argv[0];
if (num <= 0)
num = 1;
kmscon_console_erase_chars(vte->con, num);
break;
case 'm':
csi_attribute(vte);
break;
case 'p':
if (vte->csi_flags & CSI_GT) {
/* xterm: select X11 visual cursor mode */
csi_soft_reset(vte);
} else if (vte->csi_flags & CSI_BANG) {
/* DECSTR: Soft Reset */
csi_soft_reset(vte);
} else if (vte->csi_flags & CSI_CASH) {
/* DECRQM: Request DEC Private Mode */
/* If CSI_WHAT is set, then enable,
* otherwise disable */
csi_soft_reset(vte);
} else {
/* DECSCL: Compatibility Level */
/* Sometimes CSI_DQUOTE is set here, too */
csi_compat_mode(vte);
}
break;
case 'h': /* SM: Set Mode */
csi_mode(vte, true);
break;
case 'l': /* RM: Reset Mode */
csi_mode(vte, false);
break;
case 'r': /* DECSTBM */
/* set margin size */
upper = vte->csi_argv[0];
if (upper < 0)
upper = 0;
lower = vte->csi_argv[1];
if (lower < 0)
lower = 0;
kmscon_console_set_margins(vte->con, upper, lower);
break;
case 'c': /* DA */
/* device attributes */
csi_dev_attr(vte);
break;
case 'L': /* IL */
/* insert lines */
num = vte->csi_argv[0];
if (num <= 0)
num = 1;
kmscon_console_insert_lines(vte->con, num);
break;
case 'M': /* DL */
/* delete lines */
num = vte->csi_argv[0];
if (num <= 0)
num = 1;
kmscon_console_delete_lines(vte->con, num);
break;
case 'g': /* TBC */
/* tabulation clear */
num = vte->csi_argv[0];
if (num <= 0)
kmscon_console_reset_tabstop(vte->con);
else if (num == 3)
kmscon_console_reset_all_tabstops(vte->con);
else
log_debug("invalid parameter %d to TBC CSI", num);
break;
case '@': /* ICH */
/* insert characters */
num = vte->csi_argv[0];
if (num <= 0)
num = 1;
kmscon_console_insert_chars(vte->con, num);
break;
case 'P': /* DCH */
/* delete characters */
num = vte->csi_argv[0];
if (num <= 0)
num = 1;
kmscon_console_delete_chars(vte->con, num);
break;
case 'Z': /* CBT */
/* cursor horizontal backwards tab */
num = vte->csi_argv[0];
if (num <= 0)
num = 1;
kmscon_console_tab_left(vte->con, num);
break;
case 'I': /* CHT */
/* cursor horizontal forward tab */
num = vte->csi_argv[0];
if (num <= 0)
num = 1;
kmscon_console_tab_right(vte->con, num);
break;
case 'n': /* DSR */
/* device status reports */
csi_dsr(vte);
break;
case 'S': /* SU */
/* scroll up */
num = vte->csi_argv[0];
if (num <= 0)
num = 1;
kmscon_console_scroll_up(vte->con, num);
break;
case 'T': /* SD */
/* scroll down */
num = vte->csi_argv[0];
if (num <= 0)
num = 1;
kmscon_console_scroll_down(vte->con, num);
break;
default:
log_debug("unhandled CSI sequence %c", data);
}
}
/* map a character according to current GL and GR maps */
static uint32_t vte_map(struct kmscon_vte *vte, uint32_t val)
{
/* 32, 127, 160 and 255 map to identity like all values >255 */
switch (val) {
case 33 ... 126:
if (vte->glt) {
val = (*vte->glt)[val - 32];
vte->glt = NULL;
} else {
val = (*vte->gl)[val - 32];
}
break;
case 161 ... 254:
if (vte->grt) {
val = (*vte->grt)[val - 160];
vte->grt = NULL;
} else {
val = (*vte->gr)[val - 160];
}
break;
}
return val;
}
/* perform parser action */
static void do_action(struct kmscon_vte *vte, uint32_t data, int action)
{
tsm_symbol_t sym;
switch (action) {
case ACTION_NONE:
/* do nothing */
return;
case ACTION_IGNORE:
/* ignore character */
break;
case ACTION_PRINT:
sym = tsm_symbol_make(vte_map(vte, data));
write_console(vte, sym);
break;
case ACTION_EXECUTE:
do_execute(vte, data);
break;
case ACTION_CLEAR:
do_clear(vte);
break;
case ACTION_COLLECT:
do_collect(vte, data);
break;
case ACTION_PARAM:
do_param(vte, data);
break;
case ACTION_ESC_DISPATCH:
do_esc(vte, data);
break;
case ACTION_CSI_DISPATCH:
do_csi(vte, data);
break;
case ACTION_DCS_START:
break;
case ACTION_DCS_COLLECT:
break;
case ACTION_DCS_END:
break;
case ACTION_OSC_START:
break;
case ACTION_OSC_COLLECT:
break;
case ACTION_OSC_END:
break;
default:
log_warn("invalid action %d", action);
}
}
/* entry actions to be performed when entering the selected state */
static const int entry_action[] = {
[STATE_CSI_ENTRY] = ACTION_CLEAR,
[STATE_DCS_ENTRY] = ACTION_CLEAR,
[STATE_DCS_PASS] = ACTION_DCS_START,
[STATE_ESC] = ACTION_CLEAR,
[STATE_OSC_STRING] = ACTION_OSC_START,
[STATE_NUM] = ACTION_NONE,
};
/* exit actions to be performed when leaving the selected state */
static const int exit_action[] = {
[STATE_DCS_PASS] = ACTION_DCS_END,
[STATE_OSC_STRING] = ACTION_OSC_END,
[STATE_NUM] = ACTION_NONE,
};
/* perform state transision and dispatch related actions */
static void do_trans(struct kmscon_vte *vte, uint32_t data, int state, int act)
{
if (state != STATE_NONE) {
/* A state transition occurs. Perform exit-action,
* transition-action and entry-action. Even when performing a
* transition to the same state as the current state we do this.
* Use STATE_NONE if this is not the desired behavior.
*/
do_action(vte, data, exit_action[vte->state]);
do_action(vte, data, act);
do_action(vte, data, entry_action[state]);
vte->state = state;
} else {
do_action(vte, data, act);
}
}
/*
* Escape sequence parser
* This parses the new input character \data. It performs state transition and
* calls the right callbacks for each action.
*/
static void parse_data(struct kmscon_vte *vte, uint32_t raw)
{
/* events that may occur in any state */
switch (raw) {
case 0x18:
case 0x1a:
case 0x80 ... 0x8f:
case 0x91 ... 0x97:
case 0x99:
case 0x9a:
case 0x9c:
do_trans(vte, raw, STATE_GROUND, ACTION_EXECUTE);
return;
case 0x1b:
do_trans(vte, raw, STATE_ESC, ACTION_NONE);
return;
case 0x98:
case 0x9e:
case 0x9f:
do_trans(vte, raw, STATE_ST_IGNORE, ACTION_NONE);
return;
case 0x90:
do_trans(vte, raw, STATE_DCS_ENTRY, ACTION_NONE);
return;
case 0x9d:
do_trans(vte, raw, STATE_OSC_STRING, ACTION_NONE);
return;
case 0x9b:
do_trans(vte, raw, STATE_CSI_ENTRY, ACTION_NONE);
return;
}
/* events that depend on the current state */
switch (vte->state) {
case STATE_GROUND:
switch (raw) {
case 0x00 ... 0x17:
case 0x19:
case 0x1c ... 0x1f:
case 0x80 ... 0x8f:
case 0x91 ... 0x9a:
case 0x9c:
do_trans(vte, raw, STATE_NONE, ACTION_EXECUTE);
return;
case 0x20 ... 0x7f:
do_trans(vte, raw, STATE_NONE, ACTION_PRINT);
return;
}
do_trans(vte, raw, STATE_NONE, ACTION_PRINT);
return;
case STATE_ESC:
switch (raw) {
case 0x00 ... 0x17:
case 0x19:
case 0x1c ... 0x1f:
do_trans(vte, raw, STATE_NONE, ACTION_EXECUTE);
return;
case 0x7f:
do_trans(vte, raw, STATE_NONE, ACTION_IGNORE);
return;
case 0x20 ... 0x2f:
do_trans(vte, raw, STATE_ESC_INT, ACTION_COLLECT);
return;
case 0x30 ... 0x4f:
case 0x51 ... 0x57:
case 0x59:
case 0x5a:
case 0x5c:
case 0x60 ... 0x7e:
do_trans(vte, raw, STATE_GROUND, ACTION_ESC_DISPATCH);
return;
case 0x5b:
do_trans(vte, raw, STATE_CSI_ENTRY, ACTION_NONE);
return;
case 0x5d:
do_trans(vte, raw, STATE_OSC_STRING, ACTION_NONE);
return;
case 0x50:
do_trans(vte, raw, STATE_DCS_ENTRY, ACTION_NONE);
return;
case 0x58:
case 0x5e:
case 0x5f:
do_trans(vte, raw, STATE_ST_IGNORE, ACTION_NONE);
return;
}
do_trans(vte, raw, STATE_ESC_INT, ACTION_COLLECT);
return;
case STATE_ESC_INT:
switch (raw) {
case 0x00 ... 0x17:
case 0x19:
case 0x1c ... 0x1f:
do_trans(vte, raw, STATE_NONE, ACTION_EXECUTE);
return;
case 0x20 ... 0x2f:
do_trans(vte, raw, STATE_NONE, ACTION_COLLECT);
return;
case 0x7f:
do_trans(vte, raw, STATE_NONE, ACTION_IGNORE);
return;
case 0x30 ... 0x7e:
do_trans(vte, raw, STATE_GROUND, ACTION_ESC_DISPATCH);
return;
}
do_trans(vte, raw, STATE_NONE, ACTION_COLLECT);
return;
case STATE_CSI_ENTRY:
switch (raw) {
case 0x00 ... 0x17:
case 0x19:
case 0x1c ... 0x1f:
do_trans(vte, raw, STATE_NONE, ACTION_EXECUTE);
return;
case 0x7f:
do_trans(vte, raw, STATE_NONE, ACTION_IGNORE);
return;
case 0x20 ... 0x2f:
do_trans(vte, raw, STATE_CSI_INT, ACTION_COLLECT);
return;
case 0x3a:
do_trans(vte, raw, STATE_CSI_IGNORE, ACTION_NONE);
return;
case 0x30 ... 0x39:
case 0x3b:
do_trans(vte, raw, STATE_CSI_PARAM, ACTION_PARAM);
return;
case 0x3c ... 0x3f:
do_trans(vte, raw, STATE_CSI_PARAM, ACTION_COLLECT);
return;
case 0x40 ... 0x7e:
do_trans(vte, raw, STATE_GROUND, ACTION_CSI_DISPATCH);
return;
}
do_trans(vte, raw, STATE_CSI_IGNORE, ACTION_NONE);
return;
case STATE_CSI_PARAM:
switch (raw) {
case 0x00 ... 0x17:
case 0x19:
case 0x1c ... 0x1f:
do_trans(vte, raw, STATE_NONE, ACTION_EXECUTE);
return;
case 0x30 ... 0x39:
case 0x3b:
do_trans(vte, raw, STATE_NONE, ACTION_PARAM);
return;
case 0x7f:
do_trans(vte, raw, STATE_NONE, ACTION_IGNORE);
return;
case 0x3a:
case 0x3c ... 0x3f:
do_trans(vte, raw, STATE_CSI_IGNORE, ACTION_NONE);
return;
case 0x20 ... 0x2f:
do_trans(vte, raw, STATE_CSI_INT, ACTION_COLLECT);
return;
case 0x40 ... 0x7e:
do_trans(vte, raw, STATE_GROUND, ACTION_CSI_DISPATCH);
return;
}
do_trans(vte, raw, STATE_CSI_IGNORE, ACTION_NONE);
return;
case STATE_CSI_INT:
switch (raw) {
case 0x00 ... 0x17:
case 0x19:
case 0x1c ... 0x1f:
do_trans(vte, raw, STATE_NONE, ACTION_EXECUTE);
return;
case 0x20 ... 0x2f:
do_trans(vte, raw, STATE_NONE, ACTION_COLLECT);
return;
case 0x7f:
do_trans(vte, raw, STATE_NONE, ACTION_IGNORE);
return;
case 0x30 ... 0x3f:
do_trans(vte, raw, STATE_CSI_IGNORE, ACTION_NONE);
return;
case 0x40 ... 0x7e:
do_trans(vte, raw, STATE_GROUND, ACTION_CSI_DISPATCH);
return;
}
do_trans(vte, raw, STATE_CSI_IGNORE, ACTION_NONE);
return;
case STATE_CSI_IGNORE:
switch (raw) {
case 0x00 ... 0x17:
case 0x19:
case 0x1c ... 0x1f:
do_trans(vte, raw, STATE_NONE, ACTION_EXECUTE);
return;
case 0x20 ... 0x3f:
case 0x7f:
do_trans(vte, raw, STATE_NONE, ACTION_IGNORE);
return;
case 0x40 ... 0x7e:
do_trans(vte, raw, STATE_GROUND, ACTION_NONE);
return;
}
do_trans(vte, raw, STATE_NONE, ACTION_IGNORE);
return;
case STATE_DCS_ENTRY:
switch (raw) {
case 0x00 ... 0x17:
case 0x19:
case 0x1c ... 0x1f:
case 0x7f:
do_trans(vte, raw, STATE_NONE, ACTION_IGNORE);
return;
case 0x3a:
do_trans(vte, raw, STATE_DCS_IGNORE, ACTION_NONE);
return;
case 0x20 ... 0x2f:
do_trans(vte, raw, STATE_DCS_INT, ACTION_COLLECT);
return;
case 0x30 ... 0x39:
case 0x3b:
do_trans(vte, raw, STATE_DCS_PARAM, ACTION_PARAM);
return;
case 0x3c ... 0x3f:
do_trans(vte, raw, STATE_DCS_PARAM, ACTION_COLLECT);
return;
case 0x40 ... 0x7e:
do_trans(vte, raw, STATE_DCS_PASS, ACTION_NONE);
return;
}
do_trans(vte, raw, STATE_DCS_PASS, ACTION_NONE);
return;
case STATE_DCS_PARAM:
switch (raw) {
case 0x00 ... 0x17:
case 0x19:
case 0x1c ... 0x1f:
case 0x7f:
do_trans(vte, raw, STATE_NONE, ACTION_IGNORE);
return;
case 0x30 ... 0x39:
case 0x3b:
do_trans(vte, raw, STATE_NONE, ACTION_PARAM);
return;
case 0x3a:
case 0x3c ... 0x3f:
do_trans(vte, raw, STATE_DCS_IGNORE, ACTION_NONE);
return;
case 0x20 ... 0x2f:
do_trans(vte, raw, STATE_DCS_INT, ACTION_COLLECT);
return;
case 0x40 ... 0x7e:
do_trans(vte, raw, STATE_DCS_PASS, ACTION_NONE);
return;
}
do_trans(vte, raw, STATE_DCS_PASS, ACTION_NONE);
return;
case STATE_DCS_INT:
switch (raw) {
case 0x00 ... 0x17:
case 0x19:
case 0x1c ... 0x1f:
case 0x7f:
do_trans(vte, raw, STATE_NONE, ACTION_IGNORE);
return;
case 0x20 ... 0x2f:
do_trans(vte, raw, STATE_NONE, ACTION_COLLECT);
return;
case 0x30 ... 0x3f:
do_trans(vte, raw, STATE_DCS_IGNORE, ACTION_NONE);
return;
case 0x40 ... 0x7e:
do_trans(vte, raw, STATE_DCS_PASS, ACTION_NONE);
return;
}
do_trans(vte, raw, STATE_DCS_PASS, ACTION_NONE);
return;
case STATE_DCS_PASS:
switch (raw) {
case 0x00 ... 0x17:
case 0x19:
case 0x1c ... 0x1f:
case 0x20 ... 0x7e:
do_trans(vte, raw, STATE_NONE, ACTION_DCS_COLLECT);
return;
case 0x7f:
do_trans(vte, raw, STATE_NONE, ACTION_IGNORE);
return;
case 0x9c:
do_trans(vte, raw, STATE_GROUND, ACTION_NONE);
return;
}
do_trans(vte, raw, STATE_NONE, ACTION_DCS_COLLECT);
return;
case STATE_DCS_IGNORE:
switch (raw) {
case 0x00 ... 0x17:
case 0x19:
case 0x1c ... 0x1f:
case 0x20 ... 0x7f:
do_trans(vte, raw, STATE_NONE, ACTION_IGNORE);
return;
case 0x9c:
do_trans(vte, raw, STATE_GROUND, ACTION_NONE);
return;
}
do_trans(vte, raw, STATE_NONE, ACTION_IGNORE);
return;
case STATE_OSC_STRING:
switch (raw) {
case 0x00 ... 0x06:
case 0x08 ... 0x17:
case 0x19:
case 0x1c ... 0x1f:
do_trans(vte, raw, STATE_NONE, ACTION_IGNORE);
return;
case 0x20 ... 0x7f:
do_trans(vte, raw, STATE_NONE, ACTION_OSC_COLLECT);
return;
case 0x07:
case 0x9c:
do_trans(vte, raw, STATE_GROUND, ACTION_NONE);
return;
}
do_trans(vte, raw, STATE_NONE, ACTION_OSC_COLLECT);
return;
case STATE_ST_IGNORE:
switch (raw) {
case 0x00 ... 0x17:
case 0x19:
case 0x1c ... 0x1f:
case 0x20 ... 0x7f:
do_trans(vte, raw, STATE_NONE, ACTION_IGNORE);
return;
case 0x9c:
do_trans(vte, raw, STATE_GROUND, ACTION_NONE);
return;
}
do_trans(vte, raw, STATE_NONE, ACTION_IGNORE);
return;
}
log_warn("unhandled input %u in state %d", raw, vte->state);
}
void kmscon_vte_input(struct kmscon_vte *vte, const char *u8, size_t len)
{
int state;
uint32_t ucs4;
size_t i;
if (!vte || !vte->con)
return;
++vte->parse_cnt;
for (i = 0; i < len; ++i) {
if (vte->flags & FLAG_7BIT_MODE) {
if (u8[i] & 0x80)
log_debug("receiving 8bit character U+%d from pty while in 7bit mode",
(int)u8[i]);
parse_data(vte, u8[i] & 0x7f);
} else if (vte->flags & FLAG_8BIT_MODE) {
parse_data(vte, u8[i]);
} else {
state = tsm_utf8_mach_feed(vte->mach, u8[i]);
if (state == TSM_UTF8_ACCEPT ||
state == TSM_UTF8_REJECT) {
ucs4 = tsm_utf8_mach_get(vte->mach);
parse_data(vte, ucs4);
}
}
}
--vte->parse_cnt;
}
bool kmscon_vte_handle_keyboard(struct kmscon_vte *vte, uint32_t keysym,
unsigned int mods, uint32_t unicode)
{
tsm_symbol_t sym;
char val;
size_t len;
const char *u8;
/* MOD1 (mostly labeled 'Alt') prepends an escape character to every
* input that is sent by a key.
* TODO: Transform this huge handler into a lookup table to save a lot
* of code and make such modifiers easier to implement.
* Also check whether altSendsEscape should be the default (xterm
* disables this by default, why?) and whether we should implement the
* fallback shifting that xterm does. */
if (mods & UTERM_MOD1_MASK)
vte->flags |= FLAG_PREPEND_ESCAPE;
if (mods & UTERM_CONTROL_MASK) {
switch (keysym) {
case XKB_KEY_2:
case XKB_KEY_space:
vte_write(vte, "\x00", 1);
return true;
case XKB_KEY_a:
case XKB_KEY_A:
vte_write(vte, "\x01", 1);
return true;
case XKB_KEY_b:
case XKB_KEY_B:
vte_write(vte, "\x02", 1);
return true;
case XKB_KEY_c:
case XKB_KEY_C:
vte_write(vte, "\x03", 1);
return true;
case XKB_KEY_d:
case XKB_KEY_D:
vte_write(vte, "\x04", 1);
return true;
case XKB_KEY_e:
case XKB_KEY_E:
vte_write(vte, "\x05", 1);
return true;
case XKB_KEY_f:
case XKB_KEY_F:
vte_write(vte, "\x06", 1);
return true;
case XKB_KEY_g:
case XKB_KEY_G:
vte_write(vte, "\x07", 1);
return true;
case XKB_KEY_h:
case XKB_KEY_H:
vte_write(vte, "\x08", 1);
return true;
case XKB_KEY_i:
case XKB_KEY_I:
vte_write(vte, "\x09", 1);
return true;
case XKB_KEY_j:
case XKB_KEY_J:
vte_write(vte, "\x0a", 1);
return true;
case XKB_KEY_k:
case XKB_KEY_K:
vte_write(vte, "\x0b", 1);
return true;
case XKB_KEY_l:
case XKB_KEY_L:
vte_write(vte, "\x0c", 1);
return true;
case XKB_KEY_m:
case XKB_KEY_M:
vte_write(vte, "\x0d", 1);
return true;
case XKB_KEY_n:
case XKB_KEY_N:
vte_write(vte, "\x0e", 1);
return true;
case XKB_KEY_o:
case XKB_KEY_O:
vte_write(vte, "\x0f", 1);
return true;
case XKB_KEY_p:
case XKB_KEY_P:
vte_write(vte, "\x10", 1);
return true;
case XKB_KEY_q:
case XKB_KEY_Q:
vte_write(vte, "\x11", 1);
return true;
case XKB_KEY_r:
case XKB_KEY_R:
vte_write(vte, "\x12", 1);
return true;
case XKB_KEY_s:
case XKB_KEY_S:
vte_write(vte, "\x13", 1);
return true;
case XKB_KEY_t:
case XKB_KEY_T:
vte_write(vte, "\x14", 1);
return true;
case XKB_KEY_u:
case XKB_KEY_U:
vte_write(vte, "\x15", 1);
return true;
case XKB_KEY_v:
case XKB_KEY_V:
vte_write(vte, "\x16", 1);
return true;
case XKB_KEY_w:
case XKB_KEY_W:
vte_write(vte, "\x17", 1);
return true;
case XKB_KEY_x:
case XKB_KEY_X:
vte_write(vte, "\x18", 1);
return true;
case XKB_KEY_y:
case XKB_KEY_Y:
vte_write(vte, "\x19", 1);
return true;
case XKB_KEY_z:
case XKB_KEY_Z:
vte_write(vte, "\x1a", 1);
return true;
case XKB_KEY_3:
case XKB_KEY_bracketleft:
case XKB_KEY_braceleft:
vte_write(vte, "\x1b", 1);
return true;
case XKB_KEY_4:
case XKB_KEY_backslash:
case XKB_KEY_bar:
vte_write(vte, "\x1c", 1);
return true;
case XKB_KEY_5:
case XKB_KEY_bracketright:
case XKB_KEY_braceright:
vte_write(vte, "\x1d", 1);
return true;
case XKB_KEY_6:
case XKB_KEY_grave:
case XKB_KEY_asciitilde:
vte_write(vte, "\x1e", 1);
return true;
case XKB_KEY_7:
case XKB_KEY_slash:
case XKB_KEY_question:
vte_write(vte, "\x1f", 1);
return true;
case XKB_KEY_8:
vte_write(vte, "\x7f", 1);
return true;
}
}
switch (keysym) {
case XKB_KEY_BackSpace:
vte_write(vte, "\x08", 1);
return true;
case XKB_KEY_Tab:
case XKB_KEY_KP_Tab:
vte_write(vte, "\x09", 1);
return true;
case XKB_KEY_Linefeed:
vte_write(vte, "\x0a", 1);
return true;
case XKB_KEY_Clear:
vte_write(vte, "\x0b", 1);
return true;
case XKB_KEY_Pause:
vte_write(vte, "\x13", 1);
return true;
case XKB_KEY_Scroll_Lock:
/* TODO: do we need scroll lock impl.? */
vte_write(vte, "\x14", 1);
return true;
case XKB_KEY_Sys_Req:
vte_write(vte, "\x15", 1);
return true;
case XKB_KEY_Escape:
vte_write(vte, "\x1b", 1);
return true;
case XKB_KEY_KP_Enter:
if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE) {
vte_write(vte, "\eOM", 3);
return true;
}
/* fallthrough */
case XKB_KEY_Return:
if (vte->flags & FLAG_LINE_FEED_NEW_LINE_MODE)
vte_write(vte, "\x0d\x0a", 2);
else
vte_write(vte, "\x0d", 1);
return true;
case XKB_KEY_Find:
vte_write(vte, "\e[1~", 4);
return true;
case XKB_KEY_Insert:
vte_write(vte, "\e[2~", 4);
return true;
case XKB_KEY_Delete:
vte_write(vte, "\e[3~", 4);
return true;
case XKB_KEY_Select:
vte_write(vte, "\e[4~", 4);
return true;
case XKB_KEY_Page_Up:
vte_write(vte, "\e[5~", 4);
return true;
case XKB_KEY_Page_Down:
vte_write(vte, "\e[6~", 4);
return true;
case XKB_KEY_Up:
if (vte->flags & FLAG_CURSOR_KEY_MODE)
vte_write(vte, "\eOA", 3);
else
vte_write(vte, "\e[A", 3);
return true;
case XKB_KEY_Down:
if (vte->flags & FLAG_CURSOR_KEY_MODE)
vte_write(vte, "\eOB", 3);
else
vte_write(vte, "\e[B", 3);
return true;
case XKB_KEY_Right:
if (vte->flags & FLAG_CURSOR_KEY_MODE)
vte_write(vte, "\eOC", 3);
else
vte_write(vte, "\e[C", 3);
return true;
case XKB_KEY_Left:
if (vte->flags & FLAG_CURSOR_KEY_MODE)
vte_write(vte, "\eOD", 3);
else
vte_write(vte, "\e[D", 3);
return true;
case XKB_KEY_KP_Insert:
case XKB_KEY_KP_0:
if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE)
vte_write(vte, "\eOp", 3);
else
vte_write(vte, "0", 1);
return true;
case XKB_KEY_KP_End:
case XKB_KEY_KP_1:
if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE)
vte_write(vte, "\eOq", 3);
else
vte_write(vte, "1", 1);
return true;
case XKB_KEY_KP_Down:
case XKB_KEY_KP_2:
if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE)
vte_write(vte, "\eOr", 3);
else
vte_write(vte, "2", 1);
return true;
case XKB_KEY_KP_Page_Down:
case XKB_KEY_KP_3:
if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE)
vte_write(vte, "\eOs", 3);
else
vte_write(vte, "3", 1);
return true;
case XKB_KEY_KP_Left:
case XKB_KEY_KP_4:
if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE)
vte_write(vte, "\eOt", 3);
else
vte_write(vte, "4", 1);
return true;
case XKB_KEY_KP_Begin:
case XKB_KEY_KP_5:
if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE)
vte_write(vte, "\eOu", 3);
else
vte_write(vte, "5", 1);
return true;
case XKB_KEY_KP_Right:
case XKB_KEY_KP_6:
if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE)
vte_write(vte, "\eOv", 3);
else
vte_write(vte, "6", 1);
return true;
case XKB_KEY_KP_Home:
case XKB_KEY_KP_7:
if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE)
vte_write(vte, "\eOw", 3);
else
vte_write(vte, "7", 1);
return true;
case XKB_KEY_KP_Up:
case XKB_KEY_KP_8:
if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE)
vte_write(vte, "\eOx", 3);
else
vte_write(vte, "8", 1);
return true;
case XKB_KEY_KP_Page_Up:
case XKB_KEY_KP_9:
if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE)
vte_write(vte, "\eOy", 3);
else
vte_write(vte, "9", 1);
return true;
case XKB_KEY_KP_Subtract:
if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE)
vte_write(vte, "\eOm", 3);
else
vte_write(vte, "-", 1);
return true;
case XKB_KEY_KP_Separator:
if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE)
vte_write(vte, "\eOl", 3);
else
vte_write(vte, ",", 1);
return true;
case XKB_KEY_KP_Delete:
case XKB_KEY_KP_Decimal:
if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE)
vte_write(vte, "\eOn", 3);
else
vte_write(vte, ".", 1);
return true;
case XKB_KEY_KP_Equal:
case XKB_KEY_KP_Divide:
if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE)
vte_write(vte, "\eOj", 3);
else
vte_write(vte, "/", 1);
return true;
case XKB_KEY_KP_Multiply:
if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE)
vte_write(vte, "\eOo", 3);
else
vte_write(vte, "*", 1);
return true;
case XKB_KEY_KP_Add:
if (vte->flags & FLAG_KEYPAD_APPLICATION_MODE)
vte_write(vte, "\eOk", 3);
else
vte_write(vte, "+", 1);
return true;
case XKB_KEY_Home:
if (vte->flags & FLAG_CURSOR_KEY_MODE)
vte_write(vte, "\eOH", 3);
else
vte_write(vte, "\e[H", 3);
return true;
case XKB_KEY_End:
if (vte->flags & FLAG_CURSOR_KEY_MODE)
vte_write(vte, "\eOF", 3);
else
vte_write(vte, "\e[F", 3);
return true;
case XKB_KEY_KP_Space:
vte_write(vte, " ", 1);
return true;
case XKB_KEY_F1:
case XKB_KEY_KP_F1:
vte_write(vte, "\eOP", 3);
return true;
case XKB_KEY_F2:
case XKB_KEY_KP_F2:
vte_write(vte, "\eOQ", 3);
return true;
case XKB_KEY_F3:
case XKB_KEY_KP_F3:
vte_write(vte, "\eOR", 3);
return true;
case XKB_KEY_F4:
case XKB_KEY_KP_F4:
if (mods & UTERM_SHIFT_MASK)
vte_write(vte, "\e[1;2S", 6);
else
vte_write(vte, "\eOS", 3);
return true;
case XKB_KEY_F5:
if (mods & UTERM_SHIFT_MASK)
vte_write(vte, "\e[15;2~", 7);
else
vte_write(vte, "\e[15~", 5);
return true;
case XKB_KEY_F6:
if (mods & UTERM_SHIFT_MASK)
vte_write(vte, "\e[17;2~", 7);
else
vte_write(vte, "\e[17~", 5);
return true;
case XKB_KEY_F7:
if (mods & UTERM_SHIFT_MASK)
vte_write(vte, "\e[18;2~", 7);
else
vte_write(vte, "\e[18~", 5);
return true;
case XKB_KEY_F8:
if (mods & UTERM_SHIFT_MASK)
vte_write(vte, "\e[19;2~", 7);
else
vte_write(vte, "\e[19~", 5);
return true;
case XKB_KEY_F9:
if (mods & UTERM_SHIFT_MASK)
vte_write(vte, "\e[20;2~", 7);
else
vte_write(vte, "\e[20~", 5);
return true;
case XKB_KEY_F10:
if (mods & UTERM_SHIFT_MASK)
vte_write(vte, "\e[21;2~", 7);
else
vte_write(vte, "\e[21~", 5);
return true;
case XKB_KEY_F11:
if (mods & UTERM_SHIFT_MASK)
vte_write(vte, "\e[23;2~", 7);
else
vte_write(vte, "\e[23~", 5);
return true;
case XKB_KEY_F12:
if (mods & UTERM_SHIFT_MASK)
vte_write(vte, "\e[24;2~", 7);
else
vte_write(vte, "\e[24~", 5);
return true;
case XKB_KEY_F13:
if (mods & UTERM_SHIFT_MASK)
vte_write(vte, "\e[25;2~", 7);
else
vte_write(vte, "\e[25~", 5);
return true;
case XKB_KEY_F14:
if (mods & UTERM_SHIFT_MASK)
vte_write(vte, "\e[26;2~", 7);
else
vte_write(vte, "\e[26~", 5);
return true;
case XKB_KEY_F15:
if (mods & UTERM_SHIFT_MASK)
vte_write(vte, "\e[28;2~", 7);
else
vte_write(vte, "\e[28~", 5);
return true;
case XKB_KEY_F16:
if (mods & UTERM_SHIFT_MASK)
vte_write(vte, "\e[29;2~", 7);
else
vte_write(vte, "\e[29~", 5);
return true;
case XKB_KEY_F17:
if (mods & UTERM_SHIFT_MASK)
vte_write(vte, "\e[31;2~", 7);
else
vte_write(vte, "\e[31~", 5);
return true;
case XKB_KEY_F18:
if (mods & UTERM_SHIFT_MASK)
vte_write(vte, "\e[32;2~", 7);
else
vte_write(vte, "\e[32~", 5);
return true;
case XKB_KEY_F19:
if (mods & UTERM_SHIFT_MASK)
vte_write(vte, "\e[33;2~", 7);
else
vte_write(vte, "\e[33~", 5);
return true;
case XKB_KEY_F20:
if (mods & UTERM_SHIFT_MASK)
vte_write(vte, "\e[34;2~", 7);
else
vte_write(vte, "\e[34~", 5);
return true;
}
if (unicode != KMSCON_VTE_INVALID) {
if (vte->flags & FLAG_7BIT_MODE) {
val = unicode;
if (unicode & 0x80) {
log_debug("invalid keyboard input in 7bit mode U+%x; mapping to '?'",
unicode);
val = '?';
}
vte_write(vte, &val, 1);
} else if (vte->flags & FLAG_8BIT_MODE) {
val = unicode;
if (unicode > 0xff) {
log_debug("invalid keyboard input in 8bit mode U+%x; mapping to '?'",
unicode);
val = '?';
}
vte_write_raw(vte, &val, 1);
} else {
sym = tsm_symbol_make(unicode);
u8 = tsm_symbol_get_u8(NULL, sym, &len);
vte_write_raw(vte, u8, len);
tsm_symbol_free_u8(u8);
}
return true;
}
vte->flags &= ~FLAG_PREPEND_ESCAPE;
return false;
}