kmscon/src/eloop.c
David Herrmann 6a0742465b eloop: allow enabling/disabling timer sources
Similar to the fd_enable/disable functions we now also allow the same
operations on timer sources.

Signed-off-by: David Herrmann <dh.herrmann@googlemail.com>
2012-05-19 12:24:28 +02:00

1199 lines
22 KiB
C

/*
* Event Loop
*
* Copyright (c) 2011-2012 David Herrmann <dh.herrmann@googlemail.com>
* Copyright (c) 2011 University of Tuebingen
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files
* (the "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* Event Loop
* This provides a basic event loop similar to those provided by glib etc.
* It uses linux specific features like signalfd so it may not be easy to port
* it to other platforms.
*/
#include <errno.h>
#include <pthread.h>
#include <signal.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <sys/epoll.h>
#include <sys/eventfd.h>
#include <sys/signalfd.h>
#include <sys/time.h>
#include <sys/timerfd.h>
#include <sys/wait.h>
#include <time.h>
#include <unistd.h>
#include "eloop.h"
#include "log.h"
#include "misc.h"
#define LOG_SUBSYSTEM "eloop"
struct ev_eloop {
int efd;
unsigned long ref;
struct ev_fd *fd;
struct kmscon_dlist sig_list;
struct kmscon_hook *idlers;
struct epoll_event *cur_fds;
size_t cur_fds_cnt;
bool exit;
};
struct ev_fd {
unsigned long ref;
int fd;
int mask;
ev_fd_cb cb;
void *data;
bool enabled;
struct ev_eloop *loop;
};
struct ev_timer {
unsigned long ref;
ev_timer_cb cb;
void *data;
int fd;
struct ev_fd *efd;
};
struct ev_counter {
unsigned long ref;
ev_counter_cb cb;
void *data;
int fd;
struct ev_fd *efd;
};
struct ev_signal_shared {
struct kmscon_dlist list;
struct ev_fd *fd;
int signum;
struct kmscon_hook *hook;
};
/*
* Shared signals
*/
static void sig_child()
{
pid_t pid;
int status;
while (1) {
pid = waitpid(-1, &status, WNOHANG);
if (pid == -1) {
if (errno != ECHILD)
log_warn("cannot wait on child: %m");
break;
} else if (pid == 0) {
break;
} else if (WIFEXITED(status)) {
if (WEXITSTATUS(status) != 0)
log_debug("child %d exited with status %d",
pid, WEXITSTATUS(status));
else
log_debug("child %d exited successfully", pid);
} else if (WIFSIGNALED(status)) {
log_debug("child %d exited by signal %d", pid,
WTERMSIG(status));
}
}
}
static void shared_signal_cb(struct ev_fd *fd, int mask, void *data)
{
struct ev_signal_shared *sig = data;
struct signalfd_siginfo info;
int len;
if (mask & EV_READABLE) {
len = read(fd->fd, &info, sizeof(info));
if (len != sizeof(info))
log_warn("cannot read signalfd");
else
kmscon_hook_call(sig->hook, sig->fd->loop, &info);
if (info.ssi_signo == SIGCHLD)
sig_child();
} else if (mask & (EV_HUP | EV_ERR)) {
log_warn("HUP/ERR on signal source");
}
}
static int signal_new(struct ev_signal_shared **out, struct ev_eloop *loop,
int signum)
{
sigset_t mask;
int ret, fd;
struct ev_signal_shared *sig;
if (!out || !loop || signum < 0)
return -EINVAL;
sig = malloc(sizeof(*sig));
if (!sig)
return -ENOMEM;
memset(sig, 0, sizeof(*sig));
sig->signum = signum;
ret = kmscon_hook_new(&sig->hook);
if (ret)
goto err_free;
sigemptyset(&mask);
sigaddset(&mask, signum);
fd = signalfd(-1, &mask, SFD_CLOEXEC);
if (fd < 0) {
ret = -errno;
goto err_hook;
}
ret = ev_eloop_new_fd(loop, &sig->fd, fd, EV_READABLE,
shared_signal_cb, sig);
if (ret)
goto err_sig;
pthread_sigmask(SIG_BLOCK, &mask, NULL);
kmscon_dlist_link(&loop->sig_list, &sig->list);
*out = sig;
return 0;
err_sig:
close(fd);
err_hook:
kmscon_hook_free(sig->hook);
err_free:
free(sig);
return ret;
}
static void signal_free(struct ev_signal_shared *sig)
{
int fd;
if (!sig)
return;
kmscon_dlist_unlink(&sig->list);
fd = sig->fd->fd;
ev_eloop_rm_fd(sig->fd);
close(fd);
kmscon_hook_free(sig->hook);
free(sig);
/* We do not unblock the signal here as there may be other subsystems
* which blocked this signal so we do not want to interfere. If you need
* a clean sigmask then do it yourself.
*/
}
/*
* Eloop mainloop
*/
static void eloop_event(struct ev_fd *fd, int mask, void *data)
{
struct ev_eloop *eloop = data;
if (mask & EV_READABLE)
ev_eloop_dispatch(eloop, 0);
if (mask & (EV_HUP | EV_ERR))
log_warn("HUP/ERR on eloop source");
}
int ev_eloop_new(struct ev_eloop **out)
{
struct ev_eloop *loop;
int ret;
if (!out)
return -EINVAL;
loop = malloc(sizeof(*loop));
if (!loop)
return -ENOMEM;
memset(loop, 0, sizeof(*loop));
loop->ref = 1;
kmscon_dlist_init(&loop->sig_list);
ret = kmscon_hook_new(&loop->idlers);
if (ret)
goto err_free;
loop->efd = epoll_create1(EPOLL_CLOEXEC);
if (loop->efd < 0) {
ret = -errno;
goto err_idlers;
}
ret = ev_fd_new(&loop->fd, loop->efd, EV_READABLE, eloop_event, loop);
if (ret)
goto err_close;
log_debug("new eloop object %p", loop);
*out = loop;
return 0;
err_close:
close(loop->efd);
err_idlers:
kmscon_hook_free(loop->idlers);
err_free:
free(loop);
return ret;
}
void ev_eloop_ref(struct ev_eloop *loop)
{
if (!loop)
return;
++loop->ref;
}
void ev_eloop_unref(struct ev_eloop *loop)
{
struct ev_signal_shared *sig;
if (!loop || !loop->ref || --loop->ref)
return;
log_debug("free eloop object %p", loop);
while (loop->sig_list.next != &loop->sig_list) {
sig = kmscon_dlist_entry(loop->sig_list.next,
struct ev_signal_shared,
list);
signal_free(sig);
}
ev_fd_unref(loop->fd);
close(loop->efd);
kmscon_hook_free(loop->idlers);
free(loop);
}
void ev_eloop_flush_fd(struct ev_eloop *loop, struct ev_fd *fd)
{
int i;
if (!loop || !fd)
return;
for (i = 0; i < loop->cur_fds_cnt; ++i) {
if (loop->cur_fds[i].data.ptr == fd)
loop->cur_fds[i].data.ptr = NULL;
}
}
int ev_eloop_dispatch(struct ev_eloop *loop, int timeout)
{
struct epoll_event ep[32];
struct ev_fd *fd;
int i, count, mask;
if (!loop || loop->exit)
return -EINVAL;
/* dispatch idle events */
kmscon_hook_call(loop->idlers, loop, NULL);
/* dispatch fd events */
count = epoll_wait(loop->efd, ep, 32, timeout);
if (count < 0) {
if (errno == EINTR) {
count = 0;
} else {
log_warn("epoll_wait dispatching failed: %m");
return -errno;
}
}
loop->cur_fds = ep;
loop->cur_fds_cnt = count;
for (i = 0; i < count; ++i) {
fd = ep[i].data.ptr;
if (!fd || !fd->cb || !fd->enabled)
continue;
mask = 0;
if (ep[i].events & EPOLLIN)
mask |= EV_READABLE;
if (ep[i].events & EPOLLOUT)
mask |= EV_WRITEABLE;
if (ep[i].events & EPOLLERR)
mask |= EV_ERR;
if (ep[i].events & EPOLLHUP) {
mask |= EV_HUP;
ev_fd_disable(fd);
}
fd->cb(fd, mask, fd->data);
}
loop->cur_fds = NULL;
loop->cur_fds_cnt = 0;
return 0;
}
/* ev_eloop_dispatch() performs one idle-roundtrip. This function performs as
* many idle-roundtrips as needed to run \timeout milliseconds.
* If \timeout is 0, this is equal to ev_eloop_dispath(), if \timeout is <0,
* this runs until \loop->exit becomes true.
*/
int ev_eloop_run(struct ev_eloop *loop, int timeout)
{
int ret;
struct timeval tv, start;
int64_t off, msec;
if (!loop)
return -EINVAL;
loop->exit = false;
log_debug("run for %d msecs", timeout);
gettimeofday(&start, NULL);
while (!loop->exit) {
ret = ev_eloop_dispatch(loop, timeout);
if (ret)
return ret;
if (!timeout) {
break;
} else if (timeout > 0) {
gettimeofday(&tv, NULL);
off = tv.tv_sec - start.tv_sec;
msec = (int64_t)tv.tv_usec - (int64_t)start.tv_usec;
if (msec < 0) {
off -= 1;
msec = 1000000 + msec;
}
off *= 1000;
off += msec / 1000;
if (off >= timeout)
break;
}
}
return 0;
}
void ev_eloop_exit(struct ev_eloop *loop)
{
if (!loop)
return;
log_debug("exiting %p", loop);
loop->exit = true;
if (loop->fd->loop)
ev_eloop_exit(loop->fd->loop);
}
int ev_eloop_new_eloop(struct ev_eloop *loop, struct ev_eloop **out)
{
struct ev_eloop *el;
int ret;
if (!out || !loop)
return -EINVAL;
ret = ev_eloop_new(&el);
if (ret)
return ret;
ret = ev_eloop_add_eloop(loop, el);
if (ret) {
ev_eloop_unref(el);
return ret;
}
ev_eloop_unref(el);
*out = el;
return 0;
}
int ev_eloop_add_eloop(struct ev_eloop *loop, struct ev_eloop *add)
{
int ret;
if (!loop || !add)
return -EINVAL;
if (add->fd->loop)
return -EALREADY;
/* This adds the epoll-fd into the parent epoll-set. This works
* perfectly well with registered FDs, timers, etc. However, we use
* shared signals in this event-loop so if the parent and child have
* overlapping shared-signals, then the signal will be randomly
* delivered to either the parent-hook or child-hook but never both.
* TODO:
* We may fix this by linking the childs-sig_list into the parent's
* siglist but we didn't need this, yet, so ignore it here.
*/
ret = ev_eloop_add_fd(loop, add->fd);
if (ret)
return ret;
ev_eloop_ref(add);
return 0;
}
void ev_eloop_rm_eloop(struct ev_eloop *rm)
{
if (!rm || !rm->fd->loop)
return;
ev_eloop_rm_fd(rm->fd);
ev_eloop_unref(rm);
}
/*
* FD sources
*/
int ev_fd_new(struct ev_fd **out, int rfd, int mask, ev_fd_cb cb, void *data)
{
struct ev_fd *fd;
if (!out || rfd < 0)
return -EINVAL;
fd = malloc(sizeof(*fd));
if (!fd)
return -ENOMEM;
memset(fd, 0, sizeof(*fd));
fd->ref = 1;
fd->fd = rfd;
fd->mask = mask;
fd->cb = cb;
fd->data = data;
fd->enabled = true;
*out = fd;
return 0;
}
void ev_fd_ref(struct ev_fd *fd)
{
if (!fd)
return;
++fd->ref;
}
void ev_fd_unref(struct ev_fd *fd)
{
if (!fd || !fd->ref || --fd->ref)
return;
free(fd);
}
static int fd_epoll_add(struct ev_fd *fd)
{
struct epoll_event ep;
int ret;
if (!fd->loop)
return 0;
memset(&ep, 0, sizeof(ep));
if (fd->mask & EV_READABLE)
ep.events |= EPOLLIN;
if (fd->mask & EV_WRITEABLE)
ep.events |= EPOLLOUT;
ep.data.ptr = fd;
ret = epoll_ctl(fd->loop->efd, EPOLL_CTL_ADD, fd->fd, &ep);
if (ret) {
log_warning("cannot add fd %d to epoll set (%d): %m",
fd->fd, errno);
return -EFAULT;
}
return 0;
}
static void fd_epoll_remove(struct ev_fd *fd)
{
int ret;
if (!fd->loop)
return;
ret = epoll_ctl(fd->loop->efd, EPOLL_CTL_DEL, fd->fd, NULL);
if (ret)
log_warning("cannto remote fd %d from epoll set (%d): %m",
fd->fd, errno);
}
static int fd_epoll_update(struct ev_fd *fd)
{
struct epoll_event ep;
int ret;
if (!fd->loop)
return 0;
memset(&ep, 0, sizeof(ep));
if (fd->mask & EV_READABLE)
ep.events |= EPOLLIN;
if (fd->mask & EV_WRITEABLE)
ep.events |= EPOLLOUT;
ep.data.ptr = fd;
ret = epoll_ctl(fd->loop->efd, EPOLL_CTL_MOD, fd->fd, &ep);
if (ret) {
log_warning("cannot update epoll fd %d (%d): %m",
fd->fd, errno);
return -EFAULT;
}
return 0;
}
int ev_fd_enable(struct ev_fd *fd)
{
int ret;
if (!fd)
return -EINVAL;
if (fd->enabled)
return 0;
ret = fd_epoll_add(fd);
if (ret)
return ret;
fd->enabled = true;
return 0;
}
void ev_fd_disable(struct ev_fd *fd)
{
if (!fd || !fd->enabled)
return;
fd->enabled = false;
fd_epoll_remove(fd);
}
bool ev_fd_is_enabled(struct ev_fd *fd)
{
return fd && fd->enabled;
}
bool ev_fd_is_bound(struct ev_fd *fd)
{
return fd && fd->loop;
}
void ev_fd_set_cb_data(struct ev_fd *fd, ev_fd_cb cb, void *data)
{
if (!fd)
return;
fd->cb = cb;
fd->data = data;
}
int ev_fd_update(struct ev_fd *fd, int mask)
{
int ret;
int omask;
if (!fd)
return -EINVAL;
omask = fd->mask;
fd->mask = mask;
if (!fd->enabled)
return 0;
ret = fd_epoll_update(fd);
if (ret) {
fd->mask = omask;
return ret;
}
return 0;
}
int ev_eloop_new_fd(struct ev_eloop *loop, struct ev_fd **out, int rfd,
int mask, ev_fd_cb cb, void *data)
{
struct ev_fd *fd;
int ret;
if (!out || !loop || rfd < 0)
return -EINVAL;
ret = ev_fd_new(&fd, rfd, mask, cb, data);
if (ret)
return ret;
ret = ev_eloop_add_fd(loop, fd);
if (ret) {
ev_fd_unref(fd);
return ret;
}
ev_fd_unref(fd);
*out = fd;
return 0;
}
int ev_eloop_add_fd(struct ev_eloop *loop, struct ev_fd *fd)
{
int ret;
if (!loop || !fd || fd->loop)
return -EINVAL;
fd->loop = loop;
if (fd->enabled) {
ret = fd_epoll_add(fd);
if (ret) {
fd->loop = NULL;
return ret;
}
}
ev_fd_ref(fd);
ev_eloop_ref(loop);
return 0;
}
void ev_eloop_rm_fd(struct ev_fd *fd)
{
struct ev_eloop *loop;
size_t i;
if (!fd || !fd->loop)
return;
loop = fd->loop;
if (fd->enabled)
fd_epoll_remove(fd);
/*
* If we are currently dispatching events, we need to remove ourself
* from the temporary event list.
*/
for (i = 0; i < loop->cur_fds_cnt; ++i) {
if (fd == loop->cur_fds[i].data.ptr)
loop->cur_fds[i].data.ptr = NULL;
}
fd->loop = NULL;
ev_fd_unref(fd);
ev_eloop_unref(loop);
}
/*
* Timer sources
* Timer sources allow delaying a specific event by an relative timeout. The
* timeout can be set to trigger after a specific time. Optionally, you can
* also make the timeout trigger every next time the timeout elapses so you
* basically get a pulse that reliably calls the callback.
* The callback gets as parameter the number of timeouts that elapsed since it
* was last called (in case the application couldn't call the callback fast
* enough). The timeout can be specified with nano-seconds precision. However,
* real precision depends on the operating-system and hardware.
*/
static void timer_cb(struct ev_fd *fd, int mask, void *data)
{
struct ev_timer *timer = data;
uint64_t expirations;
int len;
if (mask & (EV_HUP | EV_ERR)) {
log_warn("HUP/ERR on timer source");
return;
}
if (mask & EV_READABLE) {
len = read(timer->fd, &expirations, sizeof(expirations));
if (len < 0) {
if (errno != EAGAIN)
log_warning("cannot read timerfd (%d): %m",
errno);
} else if (len == 0) {
log_warning("EOF on timer source");
} else if (len != sizeof(expirations)) {
log_warn("invalid size %d read on timerfd", len);
} else if (timer->cb) {
timer->cb(timer, expirations, timer->data);
}
}
}
int ev_timer_new(struct ev_timer **out, const struct itimerspec *spec,
ev_timer_cb cb, void *data)
{
struct ev_timer *timer;
int ret;
if (!out)
return -EINVAL;
timer = malloc(sizeof(*timer));
if (!timer)
return -ENOMEM;
memset(timer, 0, sizeof(*timer));
timer->ref = 1;
timer->cb = cb;
timer->data = data;
timer->fd = timerfd_create(CLOCK_MONOTONIC, TFD_CLOEXEC);
if (timer->fd < 0) {
log_error("cannot create timerfd (%d): %m", errno);
ret = -EFAULT;
goto err_free;
}
ret = timerfd_settime(timer->fd, 0, spec, NULL);
if (ret) {
log_warn("cannot set timerfd (%d): %m", errno);
ret = -EFAULT;
goto err_close;
}
ret = ev_fd_new(&timer->efd, timer->fd, EV_READABLE, timer_cb, timer);
if (ret)
goto err_close;
*out = timer;
return 0;
err_close:
close(timer->fd);
err_free:
free(timer);
return ret;
}
void ev_timer_ref(struct ev_timer *timer)
{
if (!timer || !timer->ref)
return;
++timer->ref;
}
void ev_timer_unref(struct ev_timer *timer)
{
if (!timer || !timer->ref || --timer->ref)
return;
ev_fd_unref(timer->efd);
close(timer->fd);
free(timer);
}
int ev_timer_enable(struct ev_timer *timer)
{
if (!timer)
return -EINVAL;
return ev_fd_enable(timer->efd);
}
void ev_timer_disable(struct ev_timer *timer)
{
if (!timer)
return;
ev_fd_disable(timer->efd);
}
bool ev_timer_is_enabled(struct ev_timer *timer)
{
return timer && ev_fd_is_enabled(timer->efd);
}
bool ev_timer_is_bound(struct ev_timer *timer)
{
return timer && ev_fd_is_bound(timer->efd);
}
void ev_timer_set_cb_data(struct ev_timer *timer, ev_timer_cb cb, void *data)
{
if (!timer)
return;
timer->cb = cb;
timer->data = data;
}
int ev_timer_update(struct ev_timer *timer, const struct itimerspec *spec)
{
int ret;
if (!timer || !spec)
return -EINVAL;
ret = timerfd_settime(timer->fd, 0, spec, NULL);
if (ret) {
log_warn("cannot set timerfd (%d): %m", errno);
return -EFAULT;
}
return 0;
}
int ev_eloop_new_timer(struct ev_eloop *loop, struct ev_timer **out,
const struct itimerspec *spec, ev_timer_cb cb,
void *data)
{
struct ev_timer *timer;
int ret;
if (!out || !loop)
return -EINVAL;
ret = ev_timer_new(&timer, spec, cb, data);
if (ret)
return ret;
ret = ev_eloop_add_timer(loop, timer);
if (ret) {
ev_timer_unref(timer);
return ret;
}
ev_timer_unref(timer);
*out = timer;
return 0;
}
int ev_eloop_add_timer(struct ev_eloop *loop, struct ev_timer *timer)
{
int ret;
if (!loop || !timer)
return -EINVAL;
if (ev_fd_is_bound(timer->efd))
return -EALREADY;
ret = ev_eloop_add_fd(loop, timer->efd);
if (ret)
return ret;
ev_timer_ref(timer);
return 0;
}
void ev_eloop_rm_timer(struct ev_timer *timer)
{
if (!timer || !ev_fd_is_bound(timer->efd))
return;
ev_eloop_rm_fd(timer->efd);
ev_timer_unref(timer);
}
/*
* Counter Sources
* Counter sources are a very basic event notification mechanism. It is based
* around the eventfd() system call on linux machines. Internally, there is a
* 64bit unsigned integer that can be increased by the caller. By default it is
* set to 0. If it is non-zero, the event-fd will be notified and the
* user-defined callback is called. The callback gets as argument the current
* state of the counter and the counter is reset to 0.
*
* If the internal counter would overflow, an increase() fails silently so an
* overflow will never occur, however, you may loose events this way. This can
* be ignored when increasing with small values, only.
*/
static void counter_event(struct ev_fd *fd, int mask, void *data)
{
struct ev_counter *cnt = data;
int ret;
uint64_t val;
if (mask & (EV_HUP | EV_ERR)) {
log_warning("HUP/ERR on eventfd");
return;
}
if (!(mask & EV_READABLE))
return;
ret = read(cnt->fd, &val, sizeof(val));
if (ret < 0) {
if (errno != EAGAIN)
log_warning("reading eventfd failed (%d): %m", errno);
} else if (ret == 0) {
log_warning("EOF on eventfd");
} else if (ret != sizeof(val)) {
log_warning("read %d bytes instead of 8 on eventfd", ret);
} else if (cnt->cb) {
cnt->cb(cnt, val, cnt->data);
}
}
int ev_counter_new(struct ev_counter **out, ev_counter_cb cb, void *data)
{
struct ev_counter *cnt;
int ret;
if (!out)
return -EINVAL;
cnt = malloc(sizeof(*cnt));
if (!cnt)
return -ENOMEM;
memset(cnt, 0, sizeof(*cnt));
cnt->ref = 1;
cnt->cb = cb;
cnt->data = data;
cnt->fd = eventfd(0, EFD_CLOEXEC | EFD_NONBLOCK);
if (cnt->fd < 0) {
log_error("cannot create eventfd (%d): %m", errno);
ret = -EFAULT;
goto err_free;
}
ret = ev_fd_new(&cnt->efd, cnt->fd, EV_READABLE, counter_event, cnt);
if (ret)
goto err_close;
*out = cnt;
return 0;
err_close:
close(cnt->fd);
err_free:
free(cnt);
return ret;
}
void ev_counter_ref(struct ev_counter *cnt)
{
if (!cnt || !cnt->ref)
return;
++cnt->ref;
}
void ev_counter_unref(struct ev_counter *cnt)
{
if (!cnt || !cnt->ref || --cnt->ref)
return;
ev_fd_unref(cnt->efd);
close(cnt->fd);
free(cnt);
}
bool ev_counter_is_bound(struct ev_counter *cnt)
{
return cnt && ev_fd_is_bound(cnt->efd);
}
void ev_counter_set_cb_data(struct ev_counter *cnt, ev_counter_cb cb,
void *data)
{
if (!cnt)
return;
cnt->cb = cb;
cnt->data = data;
}
int ev_counter_inc(struct ev_counter *cnt, uint64_t val)
{
int ret;
if (!cnt || !val)
return -EINVAL;
if (val == 0xffffffffffffffffULL) {
log_warning("increasing counter with invalid value %llu", val);
return -EINVAL;;
}
ret = write(cnt->fd, &val, sizeof(val));
if (ret < 0) {
if (errno == EAGAIN)
log_warning("eventfd overflow while writing %llu", val);
else
log_warning("eventfd write error (%d): %m", errno);
return -EFAULT;
} else if (ret != sizeof(val)) {
log_warning("wrote %d bytes instead of 8 to eventdfd", ret);
return -EFAULT;
}
return 0;
}
int ev_eloop_new_counter(struct ev_eloop *eloop, struct ev_counter **out,
ev_counter_cb cb, void *data)
{
int ret;
struct ev_counter *cnt;
if (!eloop || !out)
return -EINVAL;
ret = ev_counter_new(&cnt, cb, data);
if (ret)
return ret;
ret = ev_eloop_add_counter(eloop, cnt);
if (ret) {
ev_counter_unref(cnt);
return ret;
}
ev_counter_unref(cnt);
return 0;
}
int ev_eloop_add_counter(struct ev_eloop *eloop, struct ev_counter *cnt)
{
int ret;
if (!eloop || !cnt)
return -EINVAL;
if (ev_fd_is_bound(cnt->efd))
return -EALREADY;
ret = ev_eloop_add_fd(eloop, cnt->efd);
if (ret)
return ret;
ev_counter_ref(cnt);
return 0;
}
void ev_eloop_rm_counter(struct ev_counter *cnt)
{
if (!cnt || !ev_fd_is_bound(cnt->efd))
return;
ev_eloop_rm_fd(cnt->efd);
ev_counter_unref(cnt);
}
/*
* Shared signals
*/
int ev_eloop_register_signal_cb(struct ev_eloop *loop, int signum,
ev_signal_shared_cb cb, void *data)
{
struct ev_signal_shared *sig;
int ret;
struct kmscon_dlist *iter;
if (!loop || signum < 0 || !cb)
return -EINVAL;
kmscon_dlist_for_each(iter, &loop->sig_list) {
sig = kmscon_dlist_entry(iter, struct ev_signal_shared, list);
if (sig->signum == signum)
break;
}
if (iter == &loop->sig_list) {
ret = signal_new(&sig, loop, signum);
if (ret)
return ret;
}
return kmscon_hook_add_cast(sig->hook, cb, data);
}
void ev_eloop_unregister_signal_cb(struct ev_eloop *loop, int signum,
ev_signal_shared_cb cb, void *data)
{
struct ev_signal_shared *sig;
struct kmscon_dlist *iter;
if (!loop)
return;
kmscon_dlist_for_each(iter, &loop->sig_list) {
sig = kmscon_dlist_entry(iter, struct ev_signal_shared, list);
if (sig->signum == signum) {
kmscon_hook_rm_cast(sig->hook, cb, data);
if (!kmscon_hook_num(sig->hook))
signal_free(sig);
return;
}
}
}
/*
* Idle sources
*/
int ev_eloop_register_idle_cb(struct ev_eloop *eloop, ev_idle_cb cb,
void *data)
{
if (!eloop)
return -EINVAL;
return kmscon_hook_add_cast(eloop->idlers, cb, data);
}
void ev_eloop_unregister_idle_cb(struct ev_eloop *eloop, ev_idle_cb cb,
void *data)
{
if (!eloop)
return;
kmscon_hook_rm_cast(eloop->idlers, cb, data);
}