diff --git a/.gitignore b/.gitignore index 0d826ab6..308ffe53 100644 --- a/.gitignore +++ b/.gitignore @@ -5,7 +5,6 @@ .swp dist ollama -ggml-metal.metal .cache *.exe .idea diff --git a/llama/ggml-alloc.c b/llama/ggml-alloc.c index 93486cff..1fbd376e 100644 --- a/llama/ggml-alloc.c +++ b/llama/ggml-alloc.c @@ -1,985 +1,985 @@ -#include "ggml-alloc.h" -#include "ggml-backend-impl.h" -#include "ggml.h" -#include "ggml-impl.h" -#include -#include -#include -#include -#include -#include - -#define MAX(a, b) ((a) > (b) ? (a) : (b)) -#define MAX_FREE_BLOCKS 256 - -//#define GGML_ALLOCATOR_DEBUG - -//#define AT_PRINTF(...) fprintf(stderr, __VA_ARGS__) -#define AT_PRINTF(...) - - -static bool ggml_is_view(const struct ggml_tensor * t) { - return t->view_src != NULL; -} - -static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { - if (a->type != b->type) { - return false; - } - for (int i = 0; i < GGML_MAX_DIMS; i++) { - if (a->ne[i] != b->ne[i]) { - return false; - } - if (a->nb[i] != b->nb[i]) { - return false; - } - } - return true; -} - -static bool ggml_op_can_inplace(enum ggml_op op) { - switch (op) { - case GGML_OP_SCALE: - case GGML_OP_DIAG_MASK_ZERO: - case GGML_OP_DIAG_MASK_INF: - case GGML_OP_ADD: - case GGML_OP_ADD1: - case GGML_OP_SUB: - case GGML_OP_MUL: - case GGML_OP_DIV: - case GGML_OP_SQR: - case GGML_OP_SQRT: - case GGML_OP_LOG: - case GGML_OP_UNARY: - case GGML_OP_ROPE: - case GGML_OP_RMS_NORM: - case GGML_OP_SOFT_MAX: - return true; - - default: - return false; - } -} - -static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) { - assert(alignment && !(alignment & (alignment - 1))); // power of 2 - size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment; - return offset + align; -} - -// tallocr - -struct ggml_tallocr ggml_tallocr_new(ggml_backend_buffer_t buffer) { - void * base = ggml_backend_buffer_get_base(buffer); - size_t align = ggml_backend_buffer_get_alignment(buffer); - - assert(align && !(align & (align - 1))); // power of 2 - - struct ggml_tallocr talloc = (struct ggml_tallocr) { - /*.buffer = */ buffer, - /*.base = */ base, - /*.alignment = */ align, - /*.offset = */ aligned_offset(base, 0, align), - }; - return talloc; -} - -void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor) { - size_t size = ggml_backend_buffer_get_alloc_size(talloc->buffer, tensor); - size = GGML_PAD(size, talloc->alignment); - - if (talloc->offset + size > ggml_backend_buffer_get_size(talloc->buffer)) { - fprintf(stderr, "%s: not enough space in the buffer to allocate %s (needed %zu, available %zu)\n", - __func__, tensor->name, size, ggml_backend_buffer_get_size(talloc->buffer) - talloc->offset); - GGML_ASSERT(!"not enough space in the buffer"); - return; - } - - void * addr = (char *)ggml_backend_buffer_get_base(talloc->buffer) + talloc->offset; - talloc->offset += size; - - assert(((uintptr_t)addr % talloc->alignment) == 0); - - ggml_backend_tensor_alloc(talloc->buffer, tensor, addr); -} - -// dynamic tensor allocator - -struct free_block { - size_t offset; - size_t size; -}; - -struct ggml_dyn_tallocr { - size_t alignment; - int n_free_blocks; - struct free_block free_blocks[MAX_FREE_BLOCKS]; - size_t max_size; - -#ifdef GGML_ALLOCATOR_DEBUG - struct { - const struct ggml_tensor * tensor; - size_t offset; - } allocated_tensors[1024]; -#endif -}; - -#ifdef GGML_ALLOCATOR_DEBUG -static void add_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) { - for (int i = 0; i < 1024; i++) { - if (alloc->allocated_tensors[i].tensor == NULL) { - alloc->allocated_tensors[i].tensor = tensor; - alloc->allocated_tensors[i].offset = offset; - return; - } - } - GGML_ASSERT(!"out of allocated_tensors"); -} -static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) { - for (int i = 0; i < 1024; i++) { - if (alloc->allocated_tensors[i].offset == offset) { - alloc->allocated_tensors[i].tensor = NULL; - return; - } - } - fprintf(stderr, "tried to free tensor %s not found\n", tensor->name); - GGML_ASSERT(!"tensor not found"); -} -#endif - -static size_t ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * alloc, size_t size, const struct ggml_tensor * tensor) { - size = aligned_offset(NULL, size, alloc->alignment); - - AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size); - - size_t max_avail = 0; - - // find the best fitting free block besides the last block - int best_fit_block = -1; - size_t best_fit_size = SIZE_MAX; - for (int i = 0; i < alloc->n_free_blocks - 1; i++) { - struct free_block * block = &alloc->free_blocks[i]; - max_avail = MAX(max_avail, block->size); - if (block->size >= size && block->size <= best_fit_size) { - best_fit_block = i; - best_fit_size = block->size; - } - } - - if (best_fit_block == -1) { - // the last block is our last resort - struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1]; - max_avail = MAX(max_avail, block->size); - if (block->size >= size) { - best_fit_block = alloc->n_free_blocks - 1; - } else { - // this should never happen - fprintf(stderr, "%s: not enough space in the buffer to allocate %zu bytes, largest block available %zu bytes\n", - __func__, size, max_avail); - GGML_ASSERT(!"not enough space in the buffer"); - GGML_UNREACHABLE(); - } - } - - struct free_block * block = &alloc->free_blocks[best_fit_block]; - size_t offset = block->offset; - block->offset = offset + size; - block->size -= size; - if (block->size == 0) { - // remove block if empty - alloc->n_free_blocks--; - for (int j = best_fit_block; j < alloc->n_free_blocks; j++) { - alloc->free_blocks[j] = alloc->free_blocks[j+1]; - } - } - - AT_PRINTF("block %d, offset %zu\n", best_fit_block, offset); - -#ifdef GGML_ALLOCATOR_DEBUG - add_allocated_tensor(alloc, offset, tensor); - size_t cur_max = offset + size; - if (cur_max > alloc->max_size) { - // sort allocated_tensors by offset - for (int i = 0; i < 1024; i++) { - for (int j = i + 1; j < 1024; j++) { - if (alloc->allocated_tensors[i].offset > alloc->allocated_tensors[j].offset) { - const struct ggml_tensor * tmp_tensor = alloc->allocated_tensors[i].tensor; - size_t tmp_offset = alloc->allocated_tensors[i].offset; - alloc->allocated_tensors[i].tensor = alloc->allocated_tensors[j].tensor; - alloc->allocated_tensors[i].offset = alloc->allocated_tensors[j].offset; - alloc->allocated_tensors[j].tensor = tmp_tensor; - alloc->allocated_tensors[j].offset = tmp_offset; - } - } - } - fprintf(stderr, "max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0); - for (int i = 0; i < 1024; i++) { - if (alloc->allocated_tensors[i].tensor) { - fprintf(stderr, "%s [%zx-%zx] (%.2f MB) ", alloc->allocated_tensors[i].tensor->name, - alloc->allocated_tensors[i].offset, - alloc->allocated_tensors[i].offset + ggml_nbytes(alloc->allocated_tensors[i].tensor), - ggml_nbytes(alloc->allocated_tensors[i].tensor) / 1024.0 / 1024.0); - } - } - fprintf(stderr, "\n"); - } -#endif - - alloc->max_size = MAX(alloc->max_size, offset + size); - - return offset; - - GGML_UNUSED(tensor); -} - -// this is a very naive implementation, but for our case the number of free blocks should be very small -static void ggml_dyn_tallocr_free_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, size_t size, const struct ggml_tensor * tensor) { - size = aligned_offset(NULL, size, alloc->alignment); - - AT_PRINTF("%s: freeing %s at %zu (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, offset, size, alloc->n_free_blocks); - -#ifdef GGML_ALLOCATOR_DEBUG - remove_allocated_tensor(alloc, offset, tensor); -#endif - - // see if we can merge with an existing block - for (int i = 0; i < alloc->n_free_blocks; i++) { - struct free_block * block = &alloc->free_blocks[i]; - // check if ptr is at the end of the block - if (block->offset + block->size == offset) { - block->size += size; - // check if we can merge with the next block - if (i < alloc->n_free_blocks - 1 && block->offset + block->size == alloc->free_blocks[i+1].offset) { - block->size += alloc->free_blocks[i+1].size; - alloc->n_free_blocks--; - for (int j = i+1; j < alloc->n_free_blocks; j++) { - alloc->free_blocks[j] = alloc->free_blocks[j+1]; - } - } - return; - } - // check if ptr is at the beginning of the block - if (offset + size == block->offset) { - block->offset = offset; - block->size += size; - // check if we can merge with the previous block - if (i > 0 && alloc->free_blocks[i-1].offset + alloc->free_blocks[i-1].size == block->offset) { - alloc->free_blocks[i-1].size += block->size; - alloc->n_free_blocks--; - for (int j = i; j < alloc->n_free_blocks; j++) { - alloc->free_blocks[j] = alloc->free_blocks[j+1]; - } - } - return; - } - } - // otherwise, add a new block - GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks"); - // insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster) - int insert_pos = 0; - while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].offset < offset) { - insert_pos++; - } - // shift all blocks from insert_pos onward to make room for the new block - for (int i = alloc->n_free_blocks; i > insert_pos; i--) { - alloc->free_blocks[i] = alloc->free_blocks[i-1]; - } - // insert the new block - alloc->free_blocks[insert_pos].offset = offset; - alloc->free_blocks[insert_pos].size = size; - alloc->n_free_blocks++; - - GGML_UNUSED(tensor); -} - -static void ggml_dyn_tallocr_reset(struct ggml_dyn_tallocr * alloc) { - alloc->n_free_blocks = 1; - alloc->free_blocks[0].offset = 0; - alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows - alloc->max_size = 0; -} - -static struct ggml_dyn_tallocr * ggml_dyn_tallocr_new(size_t alignment) { - struct ggml_dyn_tallocr * alloc = (struct ggml_dyn_tallocr *)malloc(sizeof(struct ggml_dyn_tallocr)); - - *alloc = (struct ggml_dyn_tallocr) { - /*.alignment = */ alignment, - /*.n_free_blocks = */ 0, - /*.free_blocks = */ {{0}}, - /*.max_size = */ 0, -#ifdef GGML_ALLOCATOR_DEBUG - /*.allocated_tensors = */ {{0}}, -#endif - }; - - ggml_dyn_tallocr_reset(alloc); - - return alloc; -} - -static void ggml_dyn_tallocr_free(struct ggml_dyn_tallocr * alloc) { - free(alloc); -} - -static size_t ggml_dyn_tallocr_max_size(struct ggml_dyn_tallocr * alloc) { - return alloc->max_size; -} - - -///////////////////////////////////// - -// graph allocator - -struct hash_node { - int n_children; - int n_views; - int buffer_id; - size_t offset; // offset within the buffer - bool allocated; -}; - -struct tensor_alloc { - size_t offset; - size_t size_max; // 0 = pre-allocated, unused, or view -}; - -struct leaf_alloc { - int buffer_id; - struct tensor_alloc leaf; -}; - -struct node_alloc { - int buffer_id; - struct tensor_alloc dst; - struct tensor_alloc src[GGML_MAX_SRC]; -}; - -struct ggml_gallocr { - ggml_backend_buffer_type_t * bufts; // [n_buffers] - ggml_backend_buffer_t * buffers; // [n_buffers] - struct ggml_dyn_tallocr ** buf_tallocs; // [n_buffers] - int n_buffers; - - struct ggml_hash_set hash_set; - struct hash_node * hash_values; // [hash_set.size] - - struct node_alloc * node_allocs; // [n_nodes] - int n_nodes; - - struct leaf_alloc * leaf_allocs; // [n_leafs] - int n_leafs; -}; - -ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs) { - ggml_gallocr_t galloc = (ggml_gallocr_t)calloc(1, sizeof(struct ggml_gallocr)); - GGML_ASSERT(galloc != NULL); - - galloc->bufts = calloc(n_bufs, sizeof(ggml_backend_buffer_type_t)); - GGML_ASSERT(galloc->bufts != NULL); - - galloc->buffers = calloc(n_bufs, sizeof(ggml_backend_buffer_t) * n_bufs); - GGML_ASSERT(galloc->buffers != NULL); - - galloc->buf_tallocs = calloc(n_bufs, sizeof(struct ggml_dyn_tallocr *)); - GGML_ASSERT(galloc->buf_tallocs != NULL); - - for (int i = 0; i < n_bufs; i++) { - galloc->bufts[i] = bufts[i]; - galloc->buffers[i] = NULL; - size_t alignment = ggml_backend_buft_get_alignment(bufts[i]); - galloc->buf_tallocs[i] = ggml_dyn_tallocr_new(alignment); - } - galloc->n_buffers = n_bufs; - - return galloc; -} - -ggml_gallocr_t ggml_gallocr_new(ggml_backend_buffer_type_t buft) { - return ggml_gallocr_new_n(&buft, 1); -} - -void ggml_gallocr_free(ggml_gallocr_t galloc) { - if (galloc == NULL) { - return; - } - - for (int i = 0; i < galloc->n_buffers; i++) { - if (galloc->buffers != NULL) { - ggml_backend_buffer_free(galloc->buffers[i]); - } - if (galloc->buf_tallocs != NULL) { - ggml_dyn_tallocr_free(galloc->buf_tallocs[i]); - } - } - - free(galloc->hash_set.keys); - free(galloc->hash_values); - free(galloc->bufts); - free(galloc->buffers); - free(galloc->buf_tallocs); - free(galloc->node_allocs); - free(galloc->leaf_allocs); - free(galloc); -} - -typedef struct ggml_gallocr * ggml_gallocr_t; - -static struct hash_node * ggml_gallocr_hash_get(ggml_gallocr_t galloc, struct ggml_tensor * t) { - size_t i = ggml_hash_find_or_insert(galloc->hash_set, t); - return &galloc->hash_values[i]; -} - -static bool ggml_gallocr_is_own(ggml_gallocr_t galloc, struct ggml_tensor * t) { - return ggml_gallocr_hash_get(galloc, t)->allocated; -} - -static void ggml_gallocr_set_node_offset(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id, size_t offset) { - struct hash_node * hn = ggml_gallocr_hash_get(galloc, node); - hn->buffer_id = buffer_id; - hn->offset = offset; - hn->allocated = true; -} - -static bool ggml_gallocr_is_allocated(ggml_gallocr_t galloc, struct ggml_tensor * t) { - return t->data != NULL || ggml_gallocr_hash_get(galloc, t)->allocated; -} - -static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) { - struct hash_node * hn = ggml_gallocr_hash_get(galloc, node); - - if (!ggml_gallocr_is_allocated(galloc, node) && !ggml_is_view(node)) { - hn->allocated = true; - assert(hn->offset == 0); - - // try to reuse a parent's buffer (inplace) - if (ggml_op_can_inplace(node->op)) { - for (int i = 0; i < GGML_MAX_SRC; i++) { - struct ggml_tensor * parent = node->src[i]; - if (parent == NULL) { - continue; - } - - // if the node's data is external, then we cannot re-use it - if (!ggml_gallocr_is_own(galloc, parent)) { - AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data); - continue; - } - - // outputs cannot be reused - if (parent->flags & GGML_TENSOR_FLAG_OUTPUT || (parent->view_src != NULL && parent->view_src->flags & GGML_TENSOR_FLAG_OUTPUT)) { - AT_PRINTF("not reusing parent %s for %s as it is an output\n", parent->name, node->name); - continue; - } - - if (!ggml_are_same_layout(node, parent)) { - AT_PRINTF("not reusing parent %s for %s as layouts are different\n", parent->name, node->name); - continue; - } - - struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent); - if (p_hn->n_children == 1 && p_hn->n_views == 0) { - if (ggml_is_view(parent)) { - struct ggml_tensor * view_src = parent->view_src; - struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src); - if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) { - AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name); - assert(view_src_hn->offset == p_hn->offset); - hn->buffer_id = p_hn->buffer_id; - hn->offset = p_hn->offset; - p_hn->allocated = false; // avoid freeing the parent - view_src_hn->allocated = false; - return; - } - } else { - AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name); - hn->buffer_id = p_hn->buffer_id; - hn->offset = p_hn->offset; - p_hn->allocated = false; // avoid freeing the parent - return; - } - } - } - } - // allocate tensor from the buffer - struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id]; - ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id]; - size_t size = ggml_backend_buft_get_alloc_size(buft, node); - size_t offset = ggml_dyn_tallocr_alloc(alloc, size, node); - hn->buffer_id = buffer_id; - hn->offset = offset; - return; - } -} - -static void ggml_gallocr_free_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) { - // graph outputs are never freed - if (node->flags & GGML_TENSOR_FLAG_OUTPUT) { - AT_PRINTF("not freeing output %s\n", node->name); - return; - } - - struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id]; - ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id]; - struct hash_node * hn = ggml_gallocr_hash_get(galloc, node); - size_t offset = hn->offset; - size_t size = ggml_backend_buft_get_alloc_size(buft, node); - ggml_dyn_tallocr_free_tensor(alloc, offset, size, node); - hn->allocated = false; -} - -static int get_node_buffer_id(const int * node_buffer_ids, int i) { - return node_buffer_ids ? node_buffer_ids[i] : 0; -} - -static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) { - // clear hash tables - memset(galloc->hash_set.keys, 0, galloc->hash_set.size * sizeof(struct ggml_tensor *)); - memset(galloc->hash_values, 0, galloc->hash_set.size * sizeof(struct hash_node)); - - // allocate leafs - // these may be tensors that the application is not using in the graph, but may still want to allocate for other purposes - for (int i = 0; i < graph->n_leafs; i++) { - struct ggml_tensor * leaf = graph->leafs[i]; - ggml_gallocr_allocate_node(galloc, leaf, get_node_buffer_id(leaf_buffer_ids, i)); - } - - // count number of children and views - // allocate other graph inputs and leafs first to avoid overwriting them - for (int i = 0; i < graph->n_nodes; i++) { - struct ggml_tensor * node = graph->nodes[i]; - - // TODO: better way to add external dependencies - // GGML_OP_NONE does not appear normally in the graph nodes, but is used by ggml-backend to add dependencies to - // control when some tensors are allocated and freed. in this case, the dependencies are in `src`, but the node - // itself is never used and should not be considered a dependency - if (ggml_is_view(node) && node->op != GGML_OP_NONE) { - struct ggml_tensor * view_src = node->view_src; - ggml_gallocr_hash_get(galloc, view_src)->n_views += 1; - } - - if (node->flags & GGML_TENSOR_FLAG_INPUT) { - ggml_gallocr_allocate_node(galloc, graph->nodes[i], get_node_buffer_id(node_buffer_ids, i)); - } - - for (int j = 0; j < GGML_MAX_SRC; j++) { - struct ggml_tensor * src = node->src[j]; - if (src == NULL) { - continue; - } - - ggml_gallocr_hash_get(galloc, src)->n_children += 1; - - // allocate explicit inputs - if (src->flags & GGML_TENSOR_FLAG_INPUT) { - ggml_gallocr_allocate_node(galloc, src, get_node_buffer_id(node_buffer_ids, i)); - } - } - } - - // allocate tensors - for (int i = 0; i < graph->n_nodes; i++) { - struct ggml_tensor * node = graph->nodes[i]; - int buffer_id = get_node_buffer_id(node_buffer_ids, i); - - // allocate parents (only leafs need to be allocated at this point) - for (int j = 0; j < GGML_MAX_SRC; j++) { - struct ggml_tensor * parent = node->src[j]; - if (parent == NULL) { - continue; - } - ggml_gallocr_allocate_node(galloc, parent, buffer_id); - } - - // allocate node - ggml_gallocr_allocate_node(galloc, node, buffer_id); - - AT_PRINTF("exec: %s (%s) <= ", ggml_op_desc(node), node->name); - for (int j = 0; j < GGML_MAX_SRC; j++) { - struct ggml_tensor * parent = node->src[j]; - if (parent == NULL) { - continue; - } - AT_PRINTF("%s", parent->name); - if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) { - AT_PRINTF(", "); - } - } - AT_PRINTF("\n"); - - // update parents - for (int j = 0; j < GGML_MAX_SRC; j++) { - struct ggml_tensor * parent = node->src[j]; - if (parent == NULL) { - continue; - } - struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent); - p_hn->n_children -= 1; - - AT_PRINTF("parent %s: %d children, %d views, allocated: %d\n", - parent->name, p_hn->n_children, p_hn->n_views, p_hn->allocated); - - if (p_hn->n_children == 0 && p_hn->n_views == 0) { - if (ggml_is_view(parent)) { - struct ggml_tensor * view_src = parent->view_src; - struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src); - view_src_hn->n_views -= 1; - AT_PRINTF("view_src %s: %d children, %d views\n", - view_src->name, view_src_hn->n_children, view_src_hn->n_views); - if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src_hn->allocated) { - ggml_gallocr_free_node(galloc, view_src, buffer_id); - } - } - else if (p_hn->allocated) { - ggml_gallocr_free_node(galloc, parent, buffer_id); - } - } - AT_PRINTF("\n"); - } - } -} - -bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) { - size_t hash_size = graph->visited_hash_table.size; - - // initialize hash table - if (galloc->hash_set.size < hash_size) { - free(galloc->hash_set.keys); - free(galloc->hash_values); - galloc->hash_set.size = hash_size; - galloc->hash_set.keys = calloc(hash_size, sizeof(struct ggml_tensor *)); - galloc->hash_values = calloc(hash_size, sizeof(struct hash_node)); - GGML_ASSERT(galloc->hash_set.keys != NULL); - GGML_ASSERT(galloc->hash_values != NULL); - } else { - // reset hash table - memset(galloc->hash_set.keys, 0, sizeof(struct ggml_tensor *) * galloc->hash_set.size); - memset(galloc->hash_values, 0, sizeof(struct hash_node) * galloc->hash_set.size); - } - - // reset allocators - for (int i = 0; i < galloc->n_buffers; i++) { - ggml_dyn_tallocr_reset(galloc->buf_tallocs[i]); - } - - // allocate in hash table - ggml_gallocr_alloc_graph_impl(galloc, graph, node_buffer_ids, leaf_buffer_ids); - - // set the node_allocs from the hash table - if (galloc->n_nodes < graph->n_nodes) { - free(galloc->node_allocs); - galloc->node_allocs = calloc(graph->n_nodes, sizeof(struct node_alloc)); - GGML_ASSERT(galloc->node_allocs != NULL); - } - galloc->n_nodes = graph->n_nodes; - for (int i = 0; i < graph->n_nodes; i++) { - struct ggml_tensor * node = graph->nodes[i]; - struct node_alloc * node_alloc = &galloc->node_allocs[i]; - node_alloc->buffer_id = get_node_buffer_id(node_buffer_ids, i); - if (node->view_src || node->data) { - node_alloc->dst.offset = SIZE_MAX; - node_alloc->dst.size_max = 0; - } else { - struct hash_node * hn = ggml_gallocr_hash_get(galloc, node); - node_alloc->dst.offset = hn->offset; - node_alloc->dst.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], node); - } - for (int j = 0; j < GGML_MAX_SRC; j++) { - struct ggml_tensor * src = node->src[j]; - if (!src || src->view_src || src->data) { - node_alloc->src[j].offset = SIZE_MAX; - node_alloc->src[j].size_max = 0; - } else { - struct hash_node * hn = ggml_gallocr_hash_get(galloc, src); - node_alloc->src[j].offset = hn->offset; - node_alloc->src[j].size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], src); - } - } - } - if (galloc->n_leafs < graph->n_leafs) { - free(galloc->leaf_allocs); - galloc->leaf_allocs = calloc(graph->n_leafs, sizeof(galloc->leaf_allocs[0])); - GGML_ASSERT(galloc->leaf_allocs != NULL); - } - galloc->n_leafs = graph->n_leafs; - for (int i = 0; i < graph->n_leafs; i++) { - struct ggml_tensor * leaf = graph->leafs[i]; - struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf); - galloc->leaf_allocs[i].buffer_id = hn->buffer_id; - if (leaf->view_src || leaf->data) { - galloc->leaf_allocs[i].leaf.offset = SIZE_MAX; - galloc->leaf_allocs[i].leaf.size_max = 0; - } else { - galloc->leaf_allocs[i].leaf.offset = hn->offset; - galloc->leaf_allocs[i].leaf.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf); - } - } - - // reallocate buffers if needed - for (int i = 0; i < galloc->n_buffers; i++) { - size_t cur_size = galloc->buffers[i] ? ggml_backend_buffer_get_size(galloc->buffers[i]) : 0; - size_t new_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i]); - - // even if there are no tensors allocated in this buffer, we still need to allocate it to initialize views - if (new_size > cur_size || galloc->buffers[i] == NULL) { -#ifndef NDEBUG - fprintf(stderr, "%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0); -#endif - ggml_backend_buffer_free(galloc->buffers[i]); - galloc->buffers[i] = ggml_backend_buft_alloc_buffer(galloc->bufts[i], new_size); - if (galloc->buffers[i] == NULL) { - fprintf(stderr, "%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), new_size); - return false; - } - } - } - - return true; -} - -bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) { - return ggml_gallocr_reserve_n(galloc, graph, NULL, NULL); -} - -static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * tensor, int buffer_id, struct tensor_alloc * tensor_alloc) { - assert(tensor->data || tensor->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max); - - if (tensor->view_src != NULL) { - if (tensor->buffer == NULL) { - assert(tensor_alloc->offset == SIZE_MAX); - if (tensor->view_src->buffer == NULL) { - // this tensor was allocated without ggml-backend - return; - } - ggml_backend_view_init(galloc->buffers[buffer_id], tensor); - } - } else { - if (tensor->data == NULL) { - assert(tensor_alloc->offset != SIZE_MAX); - assert(ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max); - void * base = ggml_backend_buffer_get_base(galloc->buffers[buffer_id]); - void * addr = (char *)base + tensor_alloc->offset; - ggml_backend_tensor_alloc(galloc->buffers[buffer_id], tensor, addr); - } else { - if (tensor->buffer == NULL) { - // this tensor was allocated without ggml-backend - return; - } - } - } -} - -static bool ggml_gallocr_node_needs_realloc(ggml_gallocr_t galloc, struct ggml_tensor * node, struct node_alloc * nalloc, struct tensor_alloc * talloc) { - ggml_backend_buffer_type_t buft = galloc->bufts[nalloc->buffer_id]; - size_t node_size = (node->data || node->view_src) ? 0 : ggml_backend_buft_get_alloc_size(buft, node); - return talloc->size_max >= node_size; -} - -static bool ggml_gallocr_needs_realloc(ggml_gallocr_t galloc, struct ggml_cgraph * graph) { - if (galloc->n_nodes != graph->n_nodes) { -#ifndef NDEBUG - fprintf(stderr, "%s: graph has different number of nodes\n", __func__); -#endif - return true; - } - - if (galloc->n_leafs != graph->n_leafs) { -#ifndef NDEBUG - fprintf(stderr, "%s: graph has different number of leafs\n", __func__); -#endif - return true; - } - - for (int i = 0; i < graph->n_nodes; i++) { - struct ggml_tensor * node = graph->nodes[i]; - struct node_alloc * node_alloc = &galloc->node_allocs[i]; - - if (!ggml_gallocr_node_needs_realloc(galloc, node, node_alloc, &node_alloc->dst)) { -#ifndef NDEBUG - fprintf(stderr, "%s: node %s is not valid\n", __func__, node->name); -#endif - return true; - } - - for (int j = 0; j < GGML_MAX_SRC; j++) { - struct ggml_tensor * src = node->src[j]; - if (src == NULL) { - continue; - } - if (!ggml_gallocr_node_needs_realloc(galloc, src, node_alloc, &node_alloc->src[j])) { -#ifndef NDEBUG - fprintf(stderr, "%s: src %d (%s) of node %s is not valid\n", __func__, j, src->name, node->name); -#endif - return true; - } - } - } - - return false; -} - -bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph) { - if (ggml_gallocr_needs_realloc(galloc, graph)) { - if (galloc->n_buffers == 1) { -#ifndef NDEBUG - fprintf(stderr, "%s: reallocating buffers automatically\n", __func__); -#endif - if (!ggml_gallocr_reserve(galloc, graph)) { - return false; - } - } else { -#ifndef NDEBUG - fprintf(stderr, "%s: cannot reallocate multi buffer graph automatically, call reserve\n", __func__); -#endif - return false; - } - } - - // reset buffers - for (int i = 0; i < galloc->n_buffers; i++) { - if (galloc->buffers[i] != NULL) { - ggml_backend_buffer_reset(galloc->buffers[i]); - } - } - - // allocate the graph tensors from the previous assignments - // leafs - for (int i = 0; i < graph->n_leafs; i++) { - struct ggml_tensor * leaf = graph->leafs[i]; - struct leaf_alloc * leaf_alloc = &galloc->leaf_allocs[i]; - ggml_gallocr_init_tensor(galloc, leaf, leaf_alloc->buffer_id, &leaf_alloc->leaf); - } - // nodes - for (int i = 0; i < graph->n_nodes; i++) { - struct ggml_tensor * node = graph->nodes[i]; - struct node_alloc * node_alloc = &galloc->node_allocs[i]; - for (int j = 0; j < GGML_MAX_SRC; j++) { - struct ggml_tensor * src = node->src[j]; - if (src == NULL) { - continue; - } - ggml_gallocr_init_tensor(galloc, src, node_alloc->buffer_id, &node_alloc->src[j]); - } - ggml_gallocr_init_tensor(galloc, node, node_alloc->buffer_id, &node_alloc->dst); - } - - return true; -} - -size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) { - GGML_ASSERT(buffer_id >= 0 && buffer_id < galloc->n_buffers); - - if (galloc->buffers[buffer_id] == NULL) { - return 0; - } - return ggml_backend_buffer_get_size(galloc->buffers[buffer_id]); -} - -// utils - -static bool alloc_tensor_range(struct ggml_context * ctx, - struct ggml_tensor * first, struct ggml_tensor * last, - ggml_backend_buffer_type_t buft, size_t size, - ggml_backend_buffer_t ** buffers, size_t * n_buffers) { - ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size); - if (buffer == NULL) { -#ifndef NDEBUG - fprintf(stderr, "%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(buft), size); -#endif - for (size_t i = 0; i < *n_buffers; i++) { - ggml_backend_buffer_free(*buffers[i]); - } - free(*buffers); - return false; - } - - struct ggml_tallocr tallocr = ggml_tallocr_new(buffer); - - for (struct ggml_tensor * t = first; t != last; t = ggml_get_next_tensor(ctx, t)) { - if (t->data == NULL) { - if (t->view_src == NULL) { - ggml_tallocr_alloc(&tallocr, t); - } else if (t->buffer == NULL) { - ggml_backend_view_init(buffer, t); - } - } else { - if (t->view_src != NULL && t->buffer == NULL) { - // view of a pre-allocated tensor - ggml_backend_view_init(buffer, t); - } - } - } - - *buffers = realloc(*buffers, sizeof(ggml_backend_buffer_t) * (*n_buffers + 1)); - (*buffers)[(*n_buffers)++] = buffer; - - return true; -} - -ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft) { - GGML_ASSERT(ggml_get_no_alloc(ctx) == true); - - size_t alignment = ggml_backend_buft_get_alignment(buft); - size_t max_size = ggml_backend_buft_get_max_size(buft); - - ggml_backend_buffer_t * buffers = NULL; - size_t n_buffers = 0; - - size_t cur_buf_size = 0; - struct ggml_tensor * first = ggml_get_first_tensor(ctx); - for (struct ggml_tensor * t = first; t != NULL; t = ggml_get_next_tensor(ctx, t)) { - size_t this_size = 0; - if (t->data == NULL && t->view_src == NULL) { - this_size = GGML_PAD(ggml_backend_buft_get_alloc_size(buft, t), alignment); - } - - if (this_size > max_size) { - fprintf(stderr, "%s: tensor %s is too large to fit in a %s buffer (tensor size: %zu, max buffer size: %zu)\n", - __func__, t->name, - ggml_backend_buft_name(buft), - this_size, max_size); - for (size_t i = 0; i < n_buffers; i++) { - ggml_backend_buffer_free(buffers[i]); - } - free(buffers); - return NULL; - } - - if ((cur_buf_size + this_size) > max_size) { - // allocate tensors in the current buffer - if (!alloc_tensor_range(ctx, first, t, buft, cur_buf_size, &buffers, &n_buffers)) { - return NULL; - } - first = t; - cur_buf_size = this_size; - } else { - cur_buf_size += this_size; - } - } - - // allocate remaining tensors - if (cur_buf_size > 0) { - if (!alloc_tensor_range(ctx, first, NULL, buft, cur_buf_size, &buffers, &n_buffers)) { - return NULL; - } - } - - if (n_buffers == 0) { -#ifndef NDEBUG - fprintf(stderr, "%s: all tensors in the context are already allocated\n", __func__); -#endif - return NULL; - } - - ggml_backend_buffer_t buffer; - if (n_buffers == 1) { - buffer = buffers[0]; - } else { - buffer = ggml_backend_multi_buffer_alloc_buffer(buffers, n_buffers); - } - free(buffers); - return buffer; -} - -ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, ggml_backend_t backend) { - return ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_get_default_buffer_type(backend)); -} +#include "ggml-alloc.h" +#include "ggml-backend-impl.h" +#include "ggml.h" +#include "ggml-impl.h" +#include +#include +#include +#include +#include +#include + +#define MAX(a, b) ((a) > (b) ? (a) : (b)) +#define MAX_FREE_BLOCKS 256 + +//#define GGML_ALLOCATOR_DEBUG + +//#define AT_PRINTF(...) fprintf(stderr, __VA_ARGS__) +#define AT_PRINTF(...) + + +static bool ggml_is_view(const struct ggml_tensor * t) { + return t->view_src != NULL; +} + +static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { + if (a->type != b->type) { + return false; + } + for (int i = 0; i < GGML_MAX_DIMS; i++) { + if (a->ne[i] != b->ne[i]) { + return false; + } + if (a->nb[i] != b->nb[i]) { + return false; + } + } + return true; +} + +static bool ggml_op_can_inplace(enum ggml_op op) { + switch (op) { + case GGML_OP_SCALE: + case GGML_OP_DIAG_MASK_ZERO: + case GGML_OP_DIAG_MASK_INF: + case GGML_OP_ADD: + case GGML_OP_ADD1: + case GGML_OP_SUB: + case GGML_OP_MUL: + case GGML_OP_DIV: + case GGML_OP_SQR: + case GGML_OP_SQRT: + case GGML_OP_LOG: + case GGML_OP_UNARY: + case GGML_OP_ROPE: + case GGML_OP_RMS_NORM: + case GGML_OP_SOFT_MAX: + return true; + + default: + return false; + } +} + +static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) { + assert(alignment && !(alignment & (alignment - 1))); // power of 2 + size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment; + return offset + align; +} + +// tallocr + +struct ggml_tallocr ggml_tallocr_new(ggml_backend_buffer_t buffer) { + void * base = ggml_backend_buffer_get_base(buffer); + size_t align = ggml_backend_buffer_get_alignment(buffer); + + assert(align && !(align & (align - 1))); // power of 2 + + struct ggml_tallocr talloc = (struct ggml_tallocr) { + /*.buffer = */ buffer, + /*.base = */ base, + /*.alignment = */ align, + /*.offset = */ aligned_offset(base, 0, align), + }; + return talloc; +} + +void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor) { + size_t size = ggml_backend_buffer_get_alloc_size(talloc->buffer, tensor); + size = GGML_PAD(size, talloc->alignment); + + if (talloc->offset + size > ggml_backend_buffer_get_size(talloc->buffer)) { + fprintf(stderr, "%s: not enough space in the buffer to allocate %s (needed %zu, available %zu)\n", + __func__, tensor->name, size, ggml_backend_buffer_get_size(talloc->buffer) - talloc->offset); + GGML_ASSERT(!"not enough space in the buffer"); + return; + } + + void * addr = (char *)ggml_backend_buffer_get_base(talloc->buffer) + talloc->offset; + talloc->offset += size; + + assert(((uintptr_t)addr % talloc->alignment) == 0); + + ggml_backend_tensor_alloc(talloc->buffer, tensor, addr); +} + +// dynamic tensor allocator + +struct free_block { + size_t offset; + size_t size; +}; + +struct ggml_dyn_tallocr { + size_t alignment; + int n_free_blocks; + struct free_block free_blocks[MAX_FREE_BLOCKS]; + size_t max_size; + +#ifdef GGML_ALLOCATOR_DEBUG + struct { + const struct ggml_tensor * tensor; + size_t offset; + } allocated_tensors[1024]; +#endif +}; + +#ifdef GGML_ALLOCATOR_DEBUG +static void add_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) { + for (int i = 0; i < 1024; i++) { + if (alloc->allocated_tensors[i].tensor == NULL) { + alloc->allocated_tensors[i].tensor = tensor; + alloc->allocated_tensors[i].offset = offset; + return; + } + } + GGML_ASSERT(!"out of allocated_tensors"); +} +static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) { + for (int i = 0; i < 1024; i++) { + if (alloc->allocated_tensors[i].offset == offset) { + alloc->allocated_tensors[i].tensor = NULL; + return; + } + } + fprintf(stderr, "tried to free tensor %s not found\n", tensor->name); + GGML_ASSERT(!"tensor not found"); +} +#endif + +static size_t ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * alloc, size_t size, const struct ggml_tensor * tensor) { + size = aligned_offset(NULL, size, alloc->alignment); + + AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size); + + size_t max_avail = 0; + + // find the best fitting free block besides the last block + int best_fit_block = -1; + size_t best_fit_size = SIZE_MAX; + for (int i = 0; i < alloc->n_free_blocks - 1; i++) { + struct free_block * block = &alloc->free_blocks[i]; + max_avail = MAX(max_avail, block->size); + if (block->size >= size && block->size <= best_fit_size) { + best_fit_block = i; + best_fit_size = block->size; + } + } + + if (best_fit_block == -1) { + // the last block is our last resort + struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1]; + max_avail = MAX(max_avail, block->size); + if (block->size >= size) { + best_fit_block = alloc->n_free_blocks - 1; + } else { + // this should never happen + fprintf(stderr, "%s: not enough space in the buffer to allocate %zu bytes, largest block available %zu bytes\n", + __func__, size, max_avail); + GGML_ASSERT(!"not enough space in the buffer"); + GGML_UNREACHABLE(); + } + } + + struct free_block * block = &alloc->free_blocks[best_fit_block]; + size_t offset = block->offset; + block->offset = offset + size; + block->size -= size; + if (block->size == 0) { + // remove block if empty + alloc->n_free_blocks--; + for (int j = best_fit_block; j < alloc->n_free_blocks; j++) { + alloc->free_blocks[j] = alloc->free_blocks[j+1]; + } + } + + AT_PRINTF("block %d, offset %zu\n", best_fit_block, offset); + +#ifdef GGML_ALLOCATOR_DEBUG + add_allocated_tensor(alloc, offset, tensor); + size_t cur_max = offset + size; + if (cur_max > alloc->max_size) { + // sort allocated_tensors by offset + for (int i = 0; i < 1024; i++) { + for (int j = i + 1; j < 1024; j++) { + if (alloc->allocated_tensors[i].offset > alloc->allocated_tensors[j].offset) { + const struct ggml_tensor * tmp_tensor = alloc->allocated_tensors[i].tensor; + size_t tmp_offset = alloc->allocated_tensors[i].offset; + alloc->allocated_tensors[i].tensor = alloc->allocated_tensors[j].tensor; + alloc->allocated_tensors[i].offset = alloc->allocated_tensors[j].offset; + alloc->allocated_tensors[j].tensor = tmp_tensor; + alloc->allocated_tensors[j].offset = tmp_offset; + } + } + } + fprintf(stderr, "max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0); + for (int i = 0; i < 1024; i++) { + if (alloc->allocated_tensors[i].tensor) { + fprintf(stderr, "%s [%zx-%zx] (%.2f MB) ", alloc->allocated_tensors[i].tensor->name, + alloc->allocated_tensors[i].offset, + alloc->allocated_tensors[i].offset + ggml_nbytes(alloc->allocated_tensors[i].tensor), + ggml_nbytes(alloc->allocated_tensors[i].tensor) / 1024.0 / 1024.0); + } + } + fprintf(stderr, "\n"); + } +#endif + + alloc->max_size = MAX(alloc->max_size, offset + size); + + return offset; + + GGML_UNUSED(tensor); +} + +// this is a very naive implementation, but for our case the number of free blocks should be very small +static void ggml_dyn_tallocr_free_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, size_t size, const struct ggml_tensor * tensor) { + size = aligned_offset(NULL, size, alloc->alignment); + + AT_PRINTF("%s: freeing %s at %zu (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, offset, size, alloc->n_free_blocks); + +#ifdef GGML_ALLOCATOR_DEBUG + remove_allocated_tensor(alloc, offset, tensor); +#endif + + // see if we can merge with an existing block + for (int i = 0; i < alloc->n_free_blocks; i++) { + struct free_block * block = &alloc->free_blocks[i]; + // check if ptr is at the end of the block + if (block->offset + block->size == offset) { + block->size += size; + // check if we can merge with the next block + if (i < alloc->n_free_blocks - 1 && block->offset + block->size == alloc->free_blocks[i+1].offset) { + block->size += alloc->free_blocks[i+1].size; + alloc->n_free_blocks--; + for (int j = i+1; j < alloc->n_free_blocks; j++) { + alloc->free_blocks[j] = alloc->free_blocks[j+1]; + } + } + return; + } + // check if ptr is at the beginning of the block + if (offset + size == block->offset) { + block->offset = offset; + block->size += size; + // check if we can merge with the previous block + if (i > 0 && alloc->free_blocks[i-1].offset + alloc->free_blocks[i-1].size == block->offset) { + alloc->free_blocks[i-1].size += block->size; + alloc->n_free_blocks--; + for (int j = i; j < alloc->n_free_blocks; j++) { + alloc->free_blocks[j] = alloc->free_blocks[j+1]; + } + } + return; + } + } + // otherwise, add a new block + GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks"); + // insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster) + int insert_pos = 0; + while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].offset < offset) { + insert_pos++; + } + // shift all blocks from insert_pos onward to make room for the new block + for (int i = alloc->n_free_blocks; i > insert_pos; i--) { + alloc->free_blocks[i] = alloc->free_blocks[i-1]; + } + // insert the new block + alloc->free_blocks[insert_pos].offset = offset; + alloc->free_blocks[insert_pos].size = size; + alloc->n_free_blocks++; + + GGML_UNUSED(tensor); +} + +static void ggml_dyn_tallocr_reset(struct ggml_dyn_tallocr * alloc) { + alloc->n_free_blocks = 1; + alloc->free_blocks[0].offset = 0; + alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows + alloc->max_size = 0; +} + +static struct ggml_dyn_tallocr * ggml_dyn_tallocr_new(size_t alignment) { + struct ggml_dyn_tallocr * alloc = (struct ggml_dyn_tallocr *)malloc(sizeof(struct ggml_dyn_tallocr)); + + *alloc = (struct ggml_dyn_tallocr) { + /*.alignment = */ alignment, + /*.n_free_blocks = */ 0, + /*.free_blocks = */ {{0}}, + /*.max_size = */ 0, +#ifdef GGML_ALLOCATOR_DEBUG + /*.allocated_tensors = */ {{0}}, +#endif + }; + + ggml_dyn_tallocr_reset(alloc); + + return alloc; +} + +static void ggml_dyn_tallocr_free(struct ggml_dyn_tallocr * alloc) { + free(alloc); +} + +static size_t ggml_dyn_tallocr_max_size(struct ggml_dyn_tallocr * alloc) { + return alloc->max_size; +} + + +///////////////////////////////////// + +// graph allocator + +struct hash_node { + int n_children; + int n_views; + int buffer_id; + size_t offset; // offset within the buffer + bool allocated; +}; + +struct tensor_alloc { + size_t offset; + size_t size_max; // 0 = pre-allocated, unused, or view +}; + +struct leaf_alloc { + int buffer_id; + struct tensor_alloc leaf; +}; + +struct node_alloc { + int buffer_id; + struct tensor_alloc dst; + struct tensor_alloc src[GGML_MAX_SRC]; +}; + +struct ggml_gallocr { + ggml_backend_buffer_type_t * bufts; // [n_buffers] + ggml_backend_buffer_t * buffers; // [n_buffers] + struct ggml_dyn_tallocr ** buf_tallocs; // [n_buffers] + int n_buffers; + + struct ggml_hash_set hash_set; + struct hash_node * hash_values; // [hash_set.size] + + struct node_alloc * node_allocs; // [n_nodes] + int n_nodes; + + struct leaf_alloc * leaf_allocs; // [n_leafs] + int n_leafs; +}; + +ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs) { + ggml_gallocr_t galloc = (ggml_gallocr_t)calloc(1, sizeof(struct ggml_gallocr)); + GGML_ASSERT(galloc != NULL); + + galloc->bufts = calloc(n_bufs, sizeof(ggml_backend_buffer_type_t)); + GGML_ASSERT(galloc->bufts != NULL); + + galloc->buffers = calloc(n_bufs, sizeof(ggml_backend_buffer_t) * n_bufs); + GGML_ASSERT(galloc->buffers != NULL); + + galloc->buf_tallocs = calloc(n_bufs, sizeof(struct ggml_dyn_tallocr *)); + GGML_ASSERT(galloc->buf_tallocs != NULL); + + for (int i = 0; i < n_bufs; i++) { + galloc->bufts[i] = bufts[i]; + galloc->buffers[i] = NULL; + size_t alignment = ggml_backend_buft_get_alignment(bufts[i]); + galloc->buf_tallocs[i] = ggml_dyn_tallocr_new(alignment); + } + galloc->n_buffers = n_bufs; + + return galloc; +} + +ggml_gallocr_t ggml_gallocr_new(ggml_backend_buffer_type_t buft) { + return ggml_gallocr_new_n(&buft, 1); +} + +void ggml_gallocr_free(ggml_gallocr_t galloc) { + if (galloc == NULL) { + return; + } + + for (int i = 0; i < galloc->n_buffers; i++) { + if (galloc->buffers != NULL) { + ggml_backend_buffer_free(galloc->buffers[i]); + } + if (galloc->buf_tallocs != NULL) { + ggml_dyn_tallocr_free(galloc->buf_tallocs[i]); + } + } + + free(galloc->hash_set.keys); + free(galloc->hash_values); + free(galloc->bufts); + free(galloc->buffers); + free(galloc->buf_tallocs); + free(galloc->node_allocs); + free(galloc->leaf_allocs); + free(galloc); +} + +typedef struct ggml_gallocr * ggml_gallocr_t; + +static struct hash_node * ggml_gallocr_hash_get(ggml_gallocr_t galloc, struct ggml_tensor * t) { + size_t i = ggml_hash_find_or_insert(galloc->hash_set, t); + return &galloc->hash_values[i]; +} + +static bool ggml_gallocr_is_own(ggml_gallocr_t galloc, struct ggml_tensor * t) { + return ggml_gallocr_hash_get(galloc, t)->allocated; +} + +static void ggml_gallocr_set_node_offset(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id, size_t offset) { + struct hash_node * hn = ggml_gallocr_hash_get(galloc, node); + hn->buffer_id = buffer_id; + hn->offset = offset; + hn->allocated = true; +} + +static bool ggml_gallocr_is_allocated(ggml_gallocr_t galloc, struct ggml_tensor * t) { + return t->data != NULL || ggml_gallocr_hash_get(galloc, t)->allocated; +} + +static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) { + struct hash_node * hn = ggml_gallocr_hash_get(galloc, node); + + if (!ggml_gallocr_is_allocated(galloc, node) && !ggml_is_view(node)) { + hn->allocated = true; + assert(hn->offset == 0); + + // try to reuse a parent's buffer (inplace) + if (ggml_op_can_inplace(node->op)) { + for (int i = 0; i < GGML_MAX_SRC; i++) { + struct ggml_tensor * parent = node->src[i]; + if (parent == NULL) { + continue; + } + + // if the node's data is external, then we cannot re-use it + if (!ggml_gallocr_is_own(galloc, parent)) { + AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data); + continue; + } + + // outputs cannot be reused + if (parent->flags & GGML_TENSOR_FLAG_OUTPUT || (parent->view_src != NULL && parent->view_src->flags & GGML_TENSOR_FLAG_OUTPUT)) { + AT_PRINTF("not reusing parent %s for %s as it is an output\n", parent->name, node->name); + continue; + } + + if (!ggml_are_same_layout(node, parent)) { + AT_PRINTF("not reusing parent %s for %s as layouts are different\n", parent->name, node->name); + continue; + } + + struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent); + if (p_hn->n_children == 1 && p_hn->n_views == 0) { + if (ggml_is_view(parent)) { + struct ggml_tensor * view_src = parent->view_src; + struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src); + if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) { + AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name); + assert(view_src_hn->offset == p_hn->offset); + hn->buffer_id = p_hn->buffer_id; + hn->offset = p_hn->offset; + p_hn->allocated = false; // avoid freeing the parent + view_src_hn->allocated = false; + return; + } + } else { + AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name); + hn->buffer_id = p_hn->buffer_id; + hn->offset = p_hn->offset; + p_hn->allocated = false; // avoid freeing the parent + return; + } + } + } + } + // allocate tensor from the buffer + struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id]; + ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id]; + size_t size = ggml_backend_buft_get_alloc_size(buft, node); + size_t offset = ggml_dyn_tallocr_alloc(alloc, size, node); + hn->buffer_id = buffer_id; + hn->offset = offset; + return; + } +} + +static void ggml_gallocr_free_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) { + // graph outputs are never freed + if (node->flags & GGML_TENSOR_FLAG_OUTPUT) { + AT_PRINTF("not freeing output %s\n", node->name); + return; + } + + struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id]; + ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id]; + struct hash_node * hn = ggml_gallocr_hash_get(galloc, node); + size_t offset = hn->offset; + size_t size = ggml_backend_buft_get_alloc_size(buft, node); + ggml_dyn_tallocr_free_tensor(alloc, offset, size, node); + hn->allocated = false; +} + +static int get_node_buffer_id(const int * node_buffer_ids, int i) { + return node_buffer_ids ? node_buffer_ids[i] : 0; +} + +static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) { + // clear hash tables + memset(galloc->hash_set.keys, 0, galloc->hash_set.size * sizeof(struct ggml_tensor *)); + memset(galloc->hash_values, 0, galloc->hash_set.size * sizeof(struct hash_node)); + + // allocate leafs + // these may be tensors that the application is not using in the graph, but may still want to allocate for other purposes + for (int i = 0; i < graph->n_leafs; i++) { + struct ggml_tensor * leaf = graph->leafs[i]; + ggml_gallocr_allocate_node(galloc, leaf, get_node_buffer_id(leaf_buffer_ids, i)); + } + + // count number of children and views + // allocate other graph inputs and leafs first to avoid overwriting them + for (int i = 0; i < graph->n_nodes; i++) { + struct ggml_tensor * node = graph->nodes[i]; + + // TODO: better way to add external dependencies + // GGML_OP_NONE does not appear normally in the graph nodes, but is used by ggml-backend to add dependencies to + // control when some tensors are allocated and freed. in this case, the dependencies are in `src`, but the node + // itself is never used and should not be considered a dependency + if (ggml_is_view(node) && node->op != GGML_OP_NONE) { + struct ggml_tensor * view_src = node->view_src; + ggml_gallocr_hash_get(galloc, view_src)->n_views += 1; + } + + if (node->flags & GGML_TENSOR_FLAG_INPUT) { + ggml_gallocr_allocate_node(galloc, graph->nodes[i], get_node_buffer_id(node_buffer_ids, i)); + } + + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * src = node->src[j]; + if (src == NULL) { + continue; + } + + ggml_gallocr_hash_get(galloc, src)->n_children += 1; + + // allocate explicit inputs + if (src->flags & GGML_TENSOR_FLAG_INPUT) { + ggml_gallocr_allocate_node(galloc, src, get_node_buffer_id(node_buffer_ids, i)); + } + } + } + + // allocate tensors + for (int i = 0; i < graph->n_nodes; i++) { + struct ggml_tensor * node = graph->nodes[i]; + int buffer_id = get_node_buffer_id(node_buffer_ids, i); + + // allocate parents (only leafs need to be allocated at this point) + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * parent = node->src[j]; + if (parent == NULL) { + continue; + } + ggml_gallocr_allocate_node(galloc, parent, buffer_id); + } + + // allocate node + ggml_gallocr_allocate_node(galloc, node, buffer_id); + + AT_PRINTF("exec: %s (%s) <= ", ggml_op_desc(node), node->name); + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * parent = node->src[j]; + if (parent == NULL) { + continue; + } + AT_PRINTF("%s", parent->name); + if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) { + AT_PRINTF(", "); + } + } + AT_PRINTF("\n"); + + // update parents + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * parent = node->src[j]; + if (parent == NULL) { + continue; + } + struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent); + p_hn->n_children -= 1; + + AT_PRINTF("parent %s: %d children, %d views, allocated: %d\n", + parent->name, p_hn->n_children, p_hn->n_views, p_hn->allocated); + + if (p_hn->n_children == 0 && p_hn->n_views == 0) { + if (ggml_is_view(parent)) { + struct ggml_tensor * view_src = parent->view_src; + struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src); + view_src_hn->n_views -= 1; + AT_PRINTF("view_src %s: %d children, %d views\n", + view_src->name, view_src_hn->n_children, view_src_hn->n_views); + if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src_hn->allocated) { + ggml_gallocr_free_node(galloc, view_src, buffer_id); + } + } + else if (p_hn->allocated) { + ggml_gallocr_free_node(galloc, parent, buffer_id); + } + } + AT_PRINTF("\n"); + } + } +} + +bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) { + size_t hash_size = graph->visited_hash_table.size; + + // initialize hash table + if (galloc->hash_set.size < hash_size) { + free(galloc->hash_set.keys); + free(galloc->hash_values); + galloc->hash_set.size = hash_size; + galloc->hash_set.keys = calloc(hash_size, sizeof(struct ggml_tensor *)); + galloc->hash_values = calloc(hash_size, sizeof(struct hash_node)); + GGML_ASSERT(galloc->hash_set.keys != NULL); + GGML_ASSERT(galloc->hash_values != NULL); + } else { + // reset hash table + memset(galloc->hash_set.keys, 0, sizeof(struct ggml_tensor *) * galloc->hash_set.size); + memset(galloc->hash_values, 0, sizeof(struct hash_node) * galloc->hash_set.size); + } + + // reset allocators + for (int i = 0; i < galloc->n_buffers; i++) { + ggml_dyn_tallocr_reset(galloc->buf_tallocs[i]); + } + + // allocate in hash table + ggml_gallocr_alloc_graph_impl(galloc, graph, node_buffer_ids, leaf_buffer_ids); + + // set the node_allocs from the hash table + if (galloc->n_nodes < graph->n_nodes) { + free(galloc->node_allocs); + galloc->node_allocs = calloc(graph->n_nodes, sizeof(struct node_alloc)); + GGML_ASSERT(galloc->node_allocs != NULL); + } + galloc->n_nodes = graph->n_nodes; + for (int i = 0; i < graph->n_nodes; i++) { + struct ggml_tensor * node = graph->nodes[i]; + struct node_alloc * node_alloc = &galloc->node_allocs[i]; + node_alloc->buffer_id = get_node_buffer_id(node_buffer_ids, i); + if (node->view_src || node->data) { + node_alloc->dst.offset = SIZE_MAX; + node_alloc->dst.size_max = 0; + } else { + struct hash_node * hn = ggml_gallocr_hash_get(galloc, node); + node_alloc->dst.offset = hn->offset; + node_alloc->dst.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], node); + } + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * src = node->src[j]; + if (!src || src->view_src || src->data) { + node_alloc->src[j].offset = SIZE_MAX; + node_alloc->src[j].size_max = 0; + } else { + struct hash_node * hn = ggml_gallocr_hash_get(galloc, src); + node_alloc->src[j].offset = hn->offset; + node_alloc->src[j].size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], src); + } + } + } + if (galloc->n_leafs < graph->n_leafs) { + free(galloc->leaf_allocs); + galloc->leaf_allocs = calloc(graph->n_leafs, sizeof(galloc->leaf_allocs[0])); + GGML_ASSERT(galloc->leaf_allocs != NULL); + } + galloc->n_leafs = graph->n_leafs; + for (int i = 0; i < graph->n_leafs; i++) { + struct ggml_tensor * leaf = graph->leafs[i]; + struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf); + galloc->leaf_allocs[i].buffer_id = hn->buffer_id; + if (leaf->view_src || leaf->data) { + galloc->leaf_allocs[i].leaf.offset = SIZE_MAX; + galloc->leaf_allocs[i].leaf.size_max = 0; + } else { + galloc->leaf_allocs[i].leaf.offset = hn->offset; + galloc->leaf_allocs[i].leaf.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf); + } + } + + // reallocate buffers if needed + for (int i = 0; i < galloc->n_buffers; i++) { + size_t cur_size = galloc->buffers[i] ? ggml_backend_buffer_get_size(galloc->buffers[i]) : 0; + size_t new_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i]); + + // even if there are no tensors allocated in this buffer, we still need to allocate it to initialize views + if (new_size > cur_size || galloc->buffers[i] == NULL) { +#ifndef NDEBUG + fprintf(stderr, "%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0); +#endif + ggml_backend_buffer_free(galloc->buffers[i]); + galloc->buffers[i] = ggml_backend_buft_alloc_buffer(galloc->bufts[i], new_size); + if (galloc->buffers[i] == NULL) { + fprintf(stderr, "%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), new_size); + return false; + } + } + } + + return true; +} + +bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) { + return ggml_gallocr_reserve_n(galloc, graph, NULL, NULL); +} + +static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * tensor, int buffer_id, struct tensor_alloc * tensor_alloc) { + assert(tensor->data || tensor->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max); + + if (tensor->view_src != NULL) { + if (tensor->buffer == NULL) { + assert(tensor_alloc->offset == SIZE_MAX); + if (tensor->view_src->buffer == NULL) { + // this tensor was allocated without ggml-backend + return; + } + ggml_backend_view_init(galloc->buffers[buffer_id], tensor); + } + } else { + if (tensor->data == NULL) { + assert(tensor_alloc->offset != SIZE_MAX); + assert(ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max); + void * base = ggml_backend_buffer_get_base(galloc->buffers[buffer_id]); + void * addr = (char *)base + tensor_alloc->offset; + ggml_backend_tensor_alloc(galloc->buffers[buffer_id], tensor, addr); + } else { + if (tensor->buffer == NULL) { + // this tensor was allocated without ggml-backend + return; + } + } + } +} + +static bool ggml_gallocr_node_needs_realloc(ggml_gallocr_t galloc, struct ggml_tensor * node, struct node_alloc * nalloc, struct tensor_alloc * talloc) { + ggml_backend_buffer_type_t buft = galloc->bufts[nalloc->buffer_id]; + size_t node_size = (node->data || node->view_src) ? 0 : ggml_backend_buft_get_alloc_size(buft, node); + return talloc->size_max >= node_size; +} + +static bool ggml_gallocr_needs_realloc(ggml_gallocr_t galloc, struct ggml_cgraph * graph) { + if (galloc->n_nodes != graph->n_nodes) { +#ifndef NDEBUG + fprintf(stderr, "%s: graph has different number of nodes\n", __func__); +#endif + return true; + } + + if (galloc->n_leafs != graph->n_leafs) { +#ifndef NDEBUG + fprintf(stderr, "%s: graph has different number of leafs\n", __func__); +#endif + return true; + } + + for (int i = 0; i < graph->n_nodes; i++) { + struct ggml_tensor * node = graph->nodes[i]; + struct node_alloc * node_alloc = &galloc->node_allocs[i]; + + if (!ggml_gallocr_node_needs_realloc(galloc, node, node_alloc, &node_alloc->dst)) { +#ifndef NDEBUG + fprintf(stderr, "%s: node %s is not valid\n", __func__, node->name); +#endif + return true; + } + + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * src = node->src[j]; + if (src == NULL) { + continue; + } + if (!ggml_gallocr_node_needs_realloc(galloc, src, node_alloc, &node_alloc->src[j])) { +#ifndef NDEBUG + fprintf(stderr, "%s: src %d (%s) of node %s is not valid\n", __func__, j, src->name, node->name); +#endif + return true; + } + } + } + + return false; +} + +bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph) { + if (ggml_gallocr_needs_realloc(galloc, graph)) { + if (galloc->n_buffers == 1) { +#ifndef NDEBUG + fprintf(stderr, "%s: reallocating buffers automatically\n", __func__); +#endif + if (!ggml_gallocr_reserve(galloc, graph)) { + return false; + } + } else { +#ifndef NDEBUG + fprintf(stderr, "%s: cannot reallocate multi buffer graph automatically, call reserve\n", __func__); +#endif + return false; + } + } + + // reset buffers + for (int i = 0; i < galloc->n_buffers; i++) { + if (galloc->buffers[i] != NULL) { + ggml_backend_buffer_reset(galloc->buffers[i]); + } + } + + // allocate the graph tensors from the previous assignments + // leafs + for (int i = 0; i < graph->n_leafs; i++) { + struct ggml_tensor * leaf = graph->leafs[i]; + struct leaf_alloc * leaf_alloc = &galloc->leaf_allocs[i]; + ggml_gallocr_init_tensor(galloc, leaf, leaf_alloc->buffer_id, &leaf_alloc->leaf); + } + // nodes + for (int i = 0; i < graph->n_nodes; i++) { + struct ggml_tensor * node = graph->nodes[i]; + struct node_alloc * node_alloc = &galloc->node_allocs[i]; + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * src = node->src[j]; + if (src == NULL) { + continue; + } + ggml_gallocr_init_tensor(galloc, src, node_alloc->buffer_id, &node_alloc->src[j]); + } + ggml_gallocr_init_tensor(galloc, node, node_alloc->buffer_id, &node_alloc->dst); + } + + return true; +} + +size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) { + GGML_ASSERT(buffer_id >= 0 && buffer_id < galloc->n_buffers); + + if (galloc->buffers[buffer_id] == NULL) { + return 0; + } + return ggml_backend_buffer_get_size(galloc->buffers[buffer_id]); +} + +// utils + +static bool alloc_tensor_range(struct ggml_context * ctx, + struct ggml_tensor * first, struct ggml_tensor * last, + ggml_backend_buffer_type_t buft, size_t size, + ggml_backend_buffer_t ** buffers, size_t * n_buffers) { + ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size); + if (buffer == NULL) { +#ifndef NDEBUG + fprintf(stderr, "%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(buft), size); +#endif + for (size_t i = 0; i < *n_buffers; i++) { + ggml_backend_buffer_free(*buffers[i]); + } + free(*buffers); + return false; + } + + struct ggml_tallocr tallocr = ggml_tallocr_new(buffer); + + for (struct ggml_tensor * t = first; t != last; t = ggml_get_next_tensor(ctx, t)) { + if (t->data == NULL) { + if (t->view_src == NULL) { + ggml_tallocr_alloc(&tallocr, t); + } else if (t->buffer == NULL) { + ggml_backend_view_init(buffer, t); + } + } else { + if (t->view_src != NULL && t->buffer == NULL) { + // view of a pre-allocated tensor + ggml_backend_view_init(buffer, t); + } + } + } + + *buffers = realloc(*buffers, sizeof(ggml_backend_buffer_t) * (*n_buffers + 1)); + (*buffers)[(*n_buffers)++] = buffer; + + return true; +} + +ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft) { + GGML_ASSERT(ggml_get_no_alloc(ctx) == true); + + size_t alignment = ggml_backend_buft_get_alignment(buft); + size_t max_size = ggml_backend_buft_get_max_size(buft); + + ggml_backend_buffer_t * buffers = NULL; + size_t n_buffers = 0; + + size_t cur_buf_size = 0; + struct ggml_tensor * first = ggml_get_first_tensor(ctx); + for (struct ggml_tensor * t = first; t != NULL; t = ggml_get_next_tensor(ctx, t)) { + size_t this_size = 0; + if (t->data == NULL && t->view_src == NULL) { + this_size = GGML_PAD(ggml_backend_buft_get_alloc_size(buft, t), alignment); + } + + if (this_size > max_size) { + fprintf(stderr, "%s: tensor %s is too large to fit in a %s buffer (tensor size: %zu, max buffer size: %zu)\n", + __func__, t->name, + ggml_backend_buft_name(buft), + this_size, max_size); + for (size_t i = 0; i < n_buffers; i++) { + ggml_backend_buffer_free(buffers[i]); + } + free(buffers); + return NULL; + } + + if ((cur_buf_size + this_size) > max_size) { + // allocate tensors in the current buffer + if (!alloc_tensor_range(ctx, first, t, buft, cur_buf_size, &buffers, &n_buffers)) { + return NULL; + } + first = t; + cur_buf_size = this_size; + } else { + cur_buf_size += this_size; + } + } + + // allocate remaining tensors + if (cur_buf_size > 0) { + if (!alloc_tensor_range(ctx, first, NULL, buft, cur_buf_size, &buffers, &n_buffers)) { + return NULL; + } + } + + if (n_buffers == 0) { +#ifndef NDEBUG + fprintf(stderr, "%s: all tensors in the context are already allocated\n", __func__); +#endif + return NULL; + } + + ggml_backend_buffer_t buffer; + if (n_buffers == 1) { + buffer = buffers[0]; + } else { + buffer = ggml_backend_multi_buffer_alloc_buffer(buffers, n_buffers); + } + free(buffers); + return buffer; +} + +ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, ggml_backend_t backend) { + return ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_get_default_buffer_type(backend)); +} diff --git a/llama/ggml-alloc.h b/llama/ggml-alloc.h index 6bc0b325..434c13b3 100644 --- a/llama/ggml-alloc.h +++ b/llama/ggml-alloc.h @@ -1,76 +1,76 @@ -#pragma once - -#include "ggml.h" - -#ifdef __cplusplus -extern "C" { -#endif - -typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t; -typedef struct ggml_backend_buffer * ggml_backend_buffer_t; -typedef struct ggml_backend * ggml_backend_t; - -// Tensor allocator -struct ggml_tallocr { - ggml_backend_buffer_t buffer; - void * base; - size_t alignment; - size_t offset; -}; - -GGML_API struct ggml_tallocr ggml_tallocr_new(ggml_backend_buffer_t buffer); -GGML_API void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor); - -// Graph allocator -/* - Example usage: - ggml_gallocr_t galloc = ggml_gallocr_new(ggml_bacckend_cpu_buffer_type()); - - // optional: create a worst-case graph and reserve the buffers to avoid reallocations - ggml_gallocr_reserve(galloc, build_graph(max_batch)); - - // allocate the graph - struct ggml_cgraph * graph = build_graph(batch); - ggml_gallocr_alloc_graph(galloc, graph); - - printf("compute buffer size: %zu bytes\n", ggml_gallocr_get_buffer_size(galloc, 0)); - - // evaluate the graph - ggml_backend_graph_compute(backend, graph); -*/ - -// special tensor flags for use with the graph allocator: -// ggml_set_input(): all input tensors are allocated at the beginning of the graph in non-overlapping addresses -// ggml_set_output(): output tensors are never freed and never overwritten - -typedef struct ggml_gallocr * ggml_gallocr_t; - -GGML_API ggml_gallocr_t ggml_gallocr_new(ggml_backend_buffer_type_t buft); -GGML_API ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs); -GGML_API void ggml_gallocr_free(ggml_gallocr_t galloc); - -// pre-allocate buffers from a measure graph - does not allocate or modify the graph -// call with a worst-case graph to avoid buffer reallocations -// not strictly required for single buffer usage: ggml_gallocr_alloc_graph will reallocate the buffers automatically if needed -// returns false if the buffer allocation failed -GGML_API bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph * graph); -GGML_API bool ggml_gallocr_reserve_n( - ggml_gallocr_t galloc, - struct ggml_cgraph * graph, - const int * node_buffer_ids, - const int * leaf_buffer_ids); - -// automatic reallocation if the topology changes when using a single buffer -// returns false if using multiple buffers and a re-allocation is needed (call ggml_gallocr_reserve_n first to set the node buffers) -GGML_API bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph); - -GGML_API size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id); - -// Utils -// Create a buffer and allocate all the tensors in a ggml_context -GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft); -GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, ggml_backend_t backend); - -#ifdef __cplusplus -} -#endif +#pragma once + +#include "ggml.h" + +#ifdef __cplusplus +extern "C" { +#endif + +typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t; +typedef struct ggml_backend_buffer * ggml_backend_buffer_t; +typedef struct ggml_backend * ggml_backend_t; + +// Tensor allocator +struct ggml_tallocr { + ggml_backend_buffer_t buffer; + void * base; + size_t alignment; + size_t offset; +}; + +GGML_API struct ggml_tallocr ggml_tallocr_new(ggml_backend_buffer_t buffer); +GGML_API void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor); + +// Graph allocator +/* + Example usage: + ggml_gallocr_t galloc = ggml_gallocr_new(ggml_bacckend_cpu_buffer_type()); + + // optional: create a worst-case graph and reserve the buffers to avoid reallocations + ggml_gallocr_reserve(galloc, build_graph(max_batch)); + + // allocate the graph + struct ggml_cgraph * graph = build_graph(batch); + ggml_gallocr_alloc_graph(galloc, graph); + + printf("compute buffer size: %zu bytes\n", ggml_gallocr_get_buffer_size(galloc, 0)); + + // evaluate the graph + ggml_backend_graph_compute(backend, graph); +*/ + +// special tensor flags for use with the graph allocator: +// ggml_set_input(): all input tensors are allocated at the beginning of the graph in non-overlapping addresses +// ggml_set_output(): output tensors are never freed and never overwritten + +typedef struct ggml_gallocr * ggml_gallocr_t; + +GGML_API ggml_gallocr_t ggml_gallocr_new(ggml_backend_buffer_type_t buft); +GGML_API ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs); +GGML_API void ggml_gallocr_free(ggml_gallocr_t galloc); + +// pre-allocate buffers from a measure graph - does not allocate or modify the graph +// call with a worst-case graph to avoid buffer reallocations +// not strictly required for single buffer usage: ggml_gallocr_alloc_graph will reallocate the buffers automatically if needed +// returns false if the buffer allocation failed +GGML_API bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph * graph); +GGML_API bool ggml_gallocr_reserve_n( + ggml_gallocr_t galloc, + struct ggml_cgraph * graph, + const int * node_buffer_ids, + const int * leaf_buffer_ids); + +// automatic reallocation if the topology changes when using a single buffer +// returns false if using multiple buffers and a re-allocation is needed (call ggml_gallocr_reserve_n first to set the node buffers) +GGML_API bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph); + +GGML_API size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id); + +// Utils +// Create a buffer and allocate all the tensors in a ggml_context +GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft); +GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, ggml_backend_t backend); + +#ifdef __cplusplus +} +#endif diff --git a/llama/ggml-backend-impl.h b/llama/ggml-backend-impl.h index 1abae0dc..f121e1de 100644 --- a/llama/ggml-backend-impl.h +++ b/llama/ggml-backend-impl.h @@ -1,141 +1,141 @@ -#pragma once - -// ggml-backend internal header - -#include "ggml-backend.h" - -#ifdef __cplusplus -extern "C" { -#endif - - // - // Backend buffer - // - - // buffer type - typedef void * ggml_backend_buffer_type_context_t; - - struct ggml_backend_buffer_type_i { - const char * (*GGML_CALL get_name) (ggml_backend_buffer_type_t buft); - ggml_backend_buffer_t (*GGML_CALL alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size); - size_t (*GGML_CALL get_alignment) (ggml_backend_buffer_type_t buft); // tensor alignment - size_t (*GGML_CALL get_max_size) (ggml_backend_buffer_type_t buft); // allocation max size - size_t (*GGML_CALL get_alloc_size) (ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding - bool (*GGML_CALL supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend - // check if tensor data is in host memory - // should be equivalent to supports_backend(buft, ggml_backend_cpu_init()) - bool (*GGML_CALL is_host) (ggml_backend_buffer_type_t buft); - }; - - struct ggml_backend_buffer_type { - struct ggml_backend_buffer_type_i iface; - ggml_backend_buffer_type_context_t context; - }; - - // buffer - typedef void * ggml_backend_buffer_context_t; - - struct ggml_backend_buffer_i { - const char * (*GGML_CALL get_name) (ggml_backend_buffer_t buffer); - void (*GGML_CALL free_buffer)(ggml_backend_buffer_t buffer); - void * (*GGML_CALL get_base) (ggml_backend_buffer_t buffer); - void (*GGML_CALL init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); - void (*GGML_CALL set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); - void (*GGML_CALL get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); - bool (*GGML_CALL cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst); // dst is in the buffer, src may be in any buffer - void (*GGML_CALL clear) (ggml_backend_buffer_t buffer, uint8_t value); - void (*GGML_CALL reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras - }; - - struct ggml_backend_buffer { - struct ggml_backend_buffer_i iface; - ggml_backend_buffer_type_t buft; - ggml_backend_buffer_context_t context; - size_t size; - enum ggml_backend_buffer_usage usage; - }; - - GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init( - ggml_backend_buffer_type_t buft, - struct ggml_backend_buffer_i iface, - ggml_backend_buffer_context_t context, - size_t size); - - // do not use directly, use ggml_backend_tensor_copy instead - bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst); - - // buffer that contains a collection of buffers - GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers); - GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer); - GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage); - - // - // Backend - // - - typedef void * ggml_backend_context_t; - - struct ggml_backend_i { - const char * (*GGML_CALL get_name)(ggml_backend_t backend); - - void (*GGML_CALL free)(ggml_backend_t backend); - - // buffer allocation - ggml_backend_buffer_type_t (*GGML_CALL get_default_buffer_type)(ggml_backend_t backend); - - // (optional) asynchronous tensor data access - void (*GGML_CALL set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); - void (*GGML_CALL get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); - bool (*GGML_CALL cpy_tensor_async)(ggml_backend_t backend_src, ggml_backend_t backend_dst, const struct ggml_tensor * src, struct ggml_tensor * dst); - - // (optional) complete all pending operations - void (*GGML_CALL synchronize)(ggml_backend_t backend); - - // compute graph with a plan (not used currently) - ggml_backend_graph_plan_t (*GGML_CALL graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph); - void (*GGML_CALL graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan); - - // compute graph with a plan - enum ggml_status (*GGML_CALL graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan); - // compute graph without a plan (async) - enum ggml_status (*GGML_CALL graph_compute) (ggml_backend_t backend, struct ggml_cgraph * cgraph); - - // check if the backend supports an operation - bool (*GGML_CALL supports_op)(ggml_backend_t backend, const struct ggml_tensor * op); - - // check if the backend wants to run an operation, even if the weights are allocated in a CPU buffer - // these should be expensive operations with large batch sizes that may benefit from running on this backend - // even if the weight has to be copied from the CPU temporarily - bool (*GGML_CALL offload_op)(ggml_backend_t backend, const struct ggml_tensor * op); - - // (optional) event synchronization - ggml_backend_event_t (*GGML_CALL event_new) (ggml_backend_t backend); - void (*GGML_CALL event_free) (ggml_backend_event_t event); - void (*GGML_CALL event_record) (ggml_backend_event_t event); - void (*GGML_CALL event_wait) (ggml_backend_t backend, ggml_backend_event_t event); - void (*GGML_CALL event_synchronize) (ggml_backend_event_t event); - }; - - struct ggml_backend { - ggml_guid_t guid; - - struct ggml_backend_i iface; - ggml_backend_context_t context; - }; - - struct ggml_backend_event { - ggml_backend_t backend; - void * context; - }; - - // - // Backend registry - // - - typedef ggml_backend_t (*GGML_CALL ggml_backend_init_fn)(const char * params, void * user_data); - - GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data); - -#ifdef __cplusplus -} -#endif +#pragma once + +// ggml-backend internal header + +#include "ggml-backend.h" + +#ifdef __cplusplus +extern "C" { +#endif + + // + // Backend buffer + // + + // buffer type + typedef void * ggml_backend_buffer_type_context_t; + + struct ggml_backend_buffer_type_i { + const char * (*GGML_CALL get_name) (ggml_backend_buffer_type_t buft); + ggml_backend_buffer_t (*GGML_CALL alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size); + size_t (*GGML_CALL get_alignment) (ggml_backend_buffer_type_t buft); // tensor alignment + size_t (*GGML_CALL get_max_size) (ggml_backend_buffer_type_t buft); // allocation max size + size_t (*GGML_CALL get_alloc_size) (ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding + bool (*GGML_CALL supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend + // check if tensor data is in host memory + // should be equivalent to supports_backend(buft, ggml_backend_cpu_init()) + bool (*GGML_CALL is_host) (ggml_backend_buffer_type_t buft); + }; + + struct ggml_backend_buffer_type { + struct ggml_backend_buffer_type_i iface; + ggml_backend_buffer_type_context_t context; + }; + + // buffer + typedef void * ggml_backend_buffer_context_t; + + struct ggml_backend_buffer_i { + const char * (*GGML_CALL get_name) (ggml_backend_buffer_t buffer); + void (*GGML_CALL free_buffer)(ggml_backend_buffer_t buffer); + void * (*GGML_CALL get_base) (ggml_backend_buffer_t buffer); + void (*GGML_CALL init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); + void (*GGML_CALL set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); + void (*GGML_CALL get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); + bool (*GGML_CALL cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst); // dst is in the buffer, src may be in any buffer + void (*GGML_CALL clear) (ggml_backend_buffer_t buffer, uint8_t value); + void (*GGML_CALL reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras + }; + + struct ggml_backend_buffer { + struct ggml_backend_buffer_i iface; + ggml_backend_buffer_type_t buft; + ggml_backend_buffer_context_t context; + size_t size; + enum ggml_backend_buffer_usage usage; + }; + + GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init( + ggml_backend_buffer_type_t buft, + struct ggml_backend_buffer_i iface, + ggml_backend_buffer_context_t context, + size_t size); + + // do not use directly, use ggml_backend_tensor_copy instead + bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst); + + // buffer that contains a collection of buffers + GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers); + GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer); + GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage); + + // + // Backend + // + + typedef void * ggml_backend_context_t; + + struct ggml_backend_i { + const char * (*GGML_CALL get_name)(ggml_backend_t backend); + + void (*GGML_CALL free)(ggml_backend_t backend); + + // buffer allocation + ggml_backend_buffer_type_t (*GGML_CALL get_default_buffer_type)(ggml_backend_t backend); + + // (optional) asynchronous tensor data access + void (*GGML_CALL set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); + void (*GGML_CALL get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); + bool (*GGML_CALL cpy_tensor_async)(ggml_backend_t backend_src, ggml_backend_t backend_dst, const struct ggml_tensor * src, struct ggml_tensor * dst); + + // (optional) complete all pending operations + void (*GGML_CALL synchronize)(ggml_backend_t backend); + + // compute graph with a plan (not used currently) + ggml_backend_graph_plan_t (*GGML_CALL graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph); + void (*GGML_CALL graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan); + + // compute graph with a plan + enum ggml_status (*GGML_CALL graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan); + // compute graph without a plan (async) + enum ggml_status (*GGML_CALL graph_compute) (ggml_backend_t backend, struct ggml_cgraph * cgraph); + + // check if the backend supports an operation + bool (*GGML_CALL supports_op)(ggml_backend_t backend, const struct ggml_tensor * op); + + // check if the backend wants to run an operation, even if the weights are allocated in a CPU buffer + // these should be expensive operations with large batch sizes that may benefit from running on this backend + // even if the weight has to be copied from the CPU temporarily + bool (*GGML_CALL offload_op)(ggml_backend_t backend, const struct ggml_tensor * op); + + // (optional) event synchronization + ggml_backend_event_t (*GGML_CALL event_new) (ggml_backend_t backend); + void (*GGML_CALL event_free) (ggml_backend_event_t event); + void (*GGML_CALL event_record) (ggml_backend_event_t event); + void (*GGML_CALL event_wait) (ggml_backend_t backend, ggml_backend_event_t event); + void (*GGML_CALL event_synchronize) (ggml_backend_event_t event); + }; + + struct ggml_backend { + ggml_guid_t guid; + + struct ggml_backend_i iface; + ggml_backend_context_t context; + }; + + struct ggml_backend_event { + ggml_backend_t backend; + void * context; + }; + + // + // Backend registry + // + + typedef ggml_backend_t (*GGML_CALL ggml_backend_init_fn)(const char * params, void * user_data); + + GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data); + +#ifdef __cplusplus +} +#endif diff --git a/llama/ggml-backend.c b/llama/ggml-backend.c index 37f0dae9..179be840 100644 --- a/llama/ggml-backend.c +++ b/llama/ggml-backend.c @@ -56,6 +56,7 @@ bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) { } // backend buffer + GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init( ggml_backend_buffer_type_t buft, struct ggml_backend_buffer_i iface, @@ -78,10 +79,6 @@ const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) { return buffer->iface.get_name(buffer); } -#define ggml_assert_aligned(ptr) \ - GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0) - - void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) { if (buffer == NULL) { return; @@ -90,9 +87,9 @@ void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) { if (buffer->iface.free_buffer != NULL) { buffer->iface.free_buffer(buffer); } - - // TODO: this needs to be freed in cuda and hipblas backends because - // the cuda backend implementation compiled with msvc + +// TODO: this needs to be freed in cuda and hipblas backends because +// the cuda backend implementation compiled with msvc #if !defined(GGML_USE_CUDA) && !defined(GGML_USE_HIPBLAS) free(buffer); #endif diff --git a/llama/ggml-backend.h b/llama/ggml-backend.h index 2c86699c..744b6a77 100644 --- a/llama/ggml-backend.h +++ b/llama/ggml-backend.h @@ -1,233 +1,233 @@ -#pragma once - -#include "ggml.h" -#include "ggml-alloc.h" - -#ifdef __cplusplus -extern "C" { -#endif - - typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t; - typedef struct ggml_backend_buffer * ggml_backend_buffer_t; - typedef struct ggml_backend_event * ggml_backend_event_t; - typedef struct ggml_backend * ggml_backend_t; - typedef void * ggml_backend_graph_plan_t; - - // - // Backend buffer - // - - // buffer type - GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft); - GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size); - GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft); - GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft); - GGML_API GGML_CALL size_t ggml_backend_buft_get_alloc_size (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor); - GGML_API bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend); - GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft); - - // buffer - enum ggml_backend_buffer_usage { - GGML_BACKEND_BUFFER_USAGE_ANY = 0, - GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1, - }; - - GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer); - GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer); - GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer); - GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer); - GGML_API GGML_CALL void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); - GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer); - GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer); - GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); - GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value); - GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer); - GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage); - GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer); - GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer); - - // - // Backend - // - - GGML_API ggml_guid_t ggml_backend_guid(ggml_backend_t backend); - GGML_API const char * ggml_backend_name(ggml_backend_t backend); - GGML_API void ggml_backend_free(ggml_backend_t backend); - - GGML_API ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend); - GGML_API ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size); - GGML_API size_t ggml_backend_get_alignment(ggml_backend_t backend); - GGML_API size_t ggml_backend_get_max_size(ggml_backend_t backend); - - GGML_API void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); - GGML_API void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); - - GGML_API GGML_CALL void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); - GGML_API GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); - - GGML_API void ggml_backend_synchronize(ggml_backend_t backend); - - GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph); - GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan); - - GGML_API enum ggml_status ggml_backend_graph_plan_compute (ggml_backend_t backend, ggml_backend_graph_plan_t plan); - GGML_API enum ggml_status ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph); - GGML_API enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph); - GGML_API bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op); - GGML_API bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op); - - // tensor copy between different backends - GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst); - - // asynchronous copy - // the copy is performed after all the currently queued operations in backend_src - // backend_dst will wait for the copy to complete before performing other operations - // automatic fallback to sync copy if async is not supported - GGML_API void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst); - - // events - GGML_API ggml_backend_event_t ggml_backend_event_new (ggml_backend_t backend); - GGML_API void ggml_backend_event_free (ggml_backend_event_t event); - GGML_API void ggml_backend_event_record (ggml_backend_event_t event); - GGML_API void ggml_backend_event_synchronize(ggml_backend_event_t event); - GGML_API void ggml_backend_event_wait (ggml_backend_t backend, ggml_backend_event_t event); // wait async on event - - // - // CPU backend - // - - GGML_API ggml_backend_t ggml_backend_cpu_init(void); - - GGML_API GGML_CALL bool ggml_backend_is_cpu (ggml_backend_t backend); - GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads); - GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data); - - // Create a backend buffer from an existing pointer - GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size); - - GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void); - -#ifdef GGML_USE_CPU_HBM - GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void); -#endif - - // - // Backend registry - // - - // The backend registry is a registry of all the available backends, and allows initializing backends in a generic way - - GGML_API size_t ggml_backend_reg_get_count(void); - GGML_API size_t ggml_backend_reg_find_by_name(const char * name); - GGML_API ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str); // str is name[:params] - GGML_API const char * ggml_backend_reg_get_name(size_t i); - GGML_API ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params); // params is backend-specific - GGML_API ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i); - GGML_API ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size); - - // - // Backend scheduler - // - - // The backend scheduler allows for multiple backends to be used together - // Handles compute buffer allocation, assignment of tensors to backends, and copying of tensors between backends - // The backends are selected based on: - // - the backend that supports the operation - // - the location of the pre-allocated tensors (e.g. the weights) - /* - Example usage: - - // operations that use tensors allocated in a buffer with USAGE_WEIGHTS will be assigned - // preferrably to run on the same backend as the buffer - ggml_backend_buffer_set_usage(buf_weights, GGML_BACKEND_BUFFER_USAGE_WEIGHTS); - - sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, NULL, num_backends, GGML_DEFAULT_GRAPH_SIZE, false); - - // initialize buffers from a max size graph (optional) - reserve_graph = build_graph(sched, max_batch_size); - - // manually assign nodes to a backend (optional, should not be needed in most cases) - struct ggml_tensor * node = ggml_mul_mat(ctx, ...); - ggml_backend_sched_set_tensor_backend(sched, node, backend_gpu); - - ggml_backend_sched_reserve(sched, reserve_graph); - - // compute - graph = build_graph(sched); - ggml_backend_sched_graph_compute(sched, graph); - - // if there are graph inputs: - ggml_backend_sched_reset(sched); - ggml_backend_sched_alloc_graph(sched, graph); - ggml_backend_tensor_set(input_tensor, ...); - ggml_backend_sched_graph_compute(sched, graph); - } - */ - - struct ggml_backend_sched; - typedef struct ggml_backend_sched * ggml_backend_sched_t; - - // when ask == true, the scheduler wants to know if the user wants to observe this node - // this allows the scheduler to batch nodes together in order to evaluate them in a single call - // - // when ask == false, the scheduler is passing the node tensor to the user for observation - // if the user returns false, the scheduler will cancel the graph compute - // - typedef bool (*ggml_backend_sched_eval_callback)(struct ggml_tensor * t, bool ask, void * user_data); - - // Initialize a backend scheduler - GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel); - GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched); - - // Initialize backend buffers from a measure graph - GGML_API bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph); - - // Get the number of splits of the last graph - GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched); - GGML_API int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched); - - GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend); - - GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend); - GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node); - - // Allocate and compute graph on the backend scheduler - GGML_API bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph); - GGML_API enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph); - GGML_API enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph); - GGML_API void ggml_backend_sched_synchronize(ggml_backend_sched_t sched); - - // Reset all assignments and allocators - must be called before changing the node backends - GGML_API void ggml_backend_sched_reset(ggml_backend_sched_t sched); - - // Set a callback to be called for each resulting node during graph compute - GGML_API void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data); - - // - // Utils - // - - struct ggml_backend_graph_copy { - ggml_backend_buffer_t buffer; - struct ggml_context * ctx_allocated; - struct ggml_context * ctx_unallocated; - struct ggml_cgraph * graph; - }; - - // Copy a graph to a different backend - GGML_API struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph); - GGML_API void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy); - - typedef bool (*GGML_CALL ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data); - - // Compare the output of two backends - GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data); - - // Tensor initialization - GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr); - GGML_API void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); - - -#ifdef __cplusplus -} -#endif +#pragma once + +#include "ggml.h" +#include "ggml-alloc.h" + +#ifdef __cplusplus +extern "C" { +#endif + + typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t; + typedef struct ggml_backend_buffer * ggml_backend_buffer_t; + typedef struct ggml_backend_event * ggml_backend_event_t; + typedef struct ggml_backend * ggml_backend_t; + typedef void * ggml_backend_graph_plan_t; + + // + // Backend buffer + // + + // buffer type + GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft); + GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size); + GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft); + GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft); + GGML_API GGML_CALL size_t ggml_backend_buft_get_alloc_size (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor); + GGML_API bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend); + GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft); + + // buffer + enum ggml_backend_buffer_usage { + GGML_BACKEND_BUFFER_USAGE_ANY = 0, + GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1, + }; + + GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer); + GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer); + GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer); + GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer); + GGML_API GGML_CALL void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); + GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer); + GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer); + GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); + GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value); + GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer); + GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage); + GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer); + GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer); + + // + // Backend + // + + GGML_API ggml_guid_t ggml_backend_guid(ggml_backend_t backend); + GGML_API const char * ggml_backend_name(ggml_backend_t backend); + GGML_API void ggml_backend_free(ggml_backend_t backend); + + GGML_API ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend); + GGML_API ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size); + GGML_API size_t ggml_backend_get_alignment(ggml_backend_t backend); + GGML_API size_t ggml_backend_get_max_size(ggml_backend_t backend); + + GGML_API void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); + GGML_API void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); + + GGML_API GGML_CALL void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); + GGML_API GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); + + GGML_API void ggml_backend_synchronize(ggml_backend_t backend); + + GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph); + GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan); + + GGML_API enum ggml_status ggml_backend_graph_plan_compute (ggml_backend_t backend, ggml_backend_graph_plan_t plan); + GGML_API enum ggml_status ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph); + GGML_API enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph); + GGML_API bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op); + GGML_API bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op); + + // tensor copy between different backends + GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst); + + // asynchronous copy + // the copy is performed after all the currently queued operations in backend_src + // backend_dst will wait for the copy to complete before performing other operations + // automatic fallback to sync copy if async is not supported + GGML_API void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst); + + // events + GGML_API ggml_backend_event_t ggml_backend_event_new (ggml_backend_t backend); + GGML_API void ggml_backend_event_free (ggml_backend_event_t event); + GGML_API void ggml_backend_event_record (ggml_backend_event_t event); + GGML_API void ggml_backend_event_synchronize(ggml_backend_event_t event); + GGML_API void ggml_backend_event_wait (ggml_backend_t backend, ggml_backend_event_t event); // wait async on event + + // + // CPU backend + // + + GGML_API ggml_backend_t ggml_backend_cpu_init(void); + + GGML_API GGML_CALL bool ggml_backend_is_cpu (ggml_backend_t backend); + GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads); + GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data); + + // Create a backend buffer from an existing pointer + GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size); + + GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void); + +#ifdef GGML_USE_CPU_HBM + GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void); +#endif + + // + // Backend registry + // + + // The backend registry is a registry of all the available backends, and allows initializing backends in a generic way + + GGML_API size_t ggml_backend_reg_get_count(void); + GGML_API size_t ggml_backend_reg_find_by_name(const char * name); + GGML_API ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str); // str is name[:params] + GGML_API const char * ggml_backend_reg_get_name(size_t i); + GGML_API ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params); // params is backend-specific + GGML_API ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i); + GGML_API ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size); + + // + // Backend scheduler + // + + // The backend scheduler allows for multiple backends to be used together + // Handles compute buffer allocation, assignment of tensors to backends, and copying of tensors between backends + // The backends are selected based on: + // - the backend that supports the operation + // - the location of the pre-allocated tensors (e.g. the weights) + /* + Example usage: + + // operations that use tensors allocated in a buffer with USAGE_WEIGHTS will be assigned + // preferrably to run on the same backend as the buffer + ggml_backend_buffer_set_usage(buf_weights, GGML_BACKEND_BUFFER_USAGE_WEIGHTS); + + sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, NULL, num_backends, GGML_DEFAULT_GRAPH_SIZE, false); + + // initialize buffers from a max size graph (optional) + reserve_graph = build_graph(sched, max_batch_size); + + // manually assign nodes to a backend (optional, should not be needed in most cases) + struct ggml_tensor * node = ggml_mul_mat(ctx, ...); + ggml_backend_sched_set_tensor_backend(sched, node, backend_gpu); + + ggml_backend_sched_reserve(sched, reserve_graph); + + // compute + graph = build_graph(sched); + ggml_backend_sched_graph_compute(sched, graph); + + // if there are graph inputs: + ggml_backend_sched_reset(sched); + ggml_backend_sched_alloc_graph(sched, graph); + ggml_backend_tensor_set(input_tensor, ...); + ggml_backend_sched_graph_compute(sched, graph); + } + */ + + struct ggml_backend_sched; + typedef struct ggml_backend_sched * ggml_backend_sched_t; + + // when ask == true, the scheduler wants to know if the user wants to observe this node + // this allows the scheduler to batch nodes together in order to evaluate them in a single call + // + // when ask == false, the scheduler is passing the node tensor to the user for observation + // if the user returns false, the scheduler will cancel the graph compute + // + typedef bool (*ggml_backend_sched_eval_callback)(struct ggml_tensor * t, bool ask, void * user_data); + + // Initialize a backend scheduler + GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel); + GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched); + + // Initialize backend buffers from a measure graph + GGML_API bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph); + + // Get the number of splits of the last graph + GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched); + GGML_API int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched); + + GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend); + + GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend); + GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node); + + // Allocate and compute graph on the backend scheduler + GGML_API bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph); + GGML_API enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph); + GGML_API enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph); + GGML_API void ggml_backend_sched_synchronize(ggml_backend_sched_t sched); + + // Reset all assignments and allocators - must be called before changing the node backends + GGML_API void ggml_backend_sched_reset(ggml_backend_sched_t sched); + + // Set a callback to be called for each resulting node during graph compute + GGML_API void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data); + + // + // Utils + // + + struct ggml_backend_graph_copy { + ggml_backend_buffer_t buffer; + struct ggml_context * ctx_allocated; + struct ggml_context * ctx_unallocated; + struct ggml_cgraph * graph; + }; + + // Copy a graph to a different backend + GGML_API struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph); + GGML_API void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy); + + typedef bool (*GGML_CALL ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data); + + // Compare the output of two backends + GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data); + + // Tensor initialization + GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr); + GGML_API void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); + + +#ifdef __cplusplus +} +#endif diff --git a/llama/ggml-common.h b/llama/ggml-common.h index e016f1ad..43c7978a 100644 --- a/llama/ggml-common.h +++ b/llama/ggml-common.h @@ -1,1853 +1,1853 @@ -#ifndef GGML_COMMON_DECL - -#if defined(GGML_COMMON_DECL_C) -#include - -typedef uint16_t ggml_half; -typedef uint32_t ggml_half2; - -#define GGML_COMMON_AGGR - -#define GGML_COMMON_DECL -#elif defined(GGML_COMMON_DECL_METAL) -#include - -typedef half ggml_half; -typedef half2 ggml_half2; - -#define GGML_COMMON_AGGR - -#define GGML_COMMON_DECL -#elif defined(GGML_COMMON_DECL_CUDA) -#include -#include - -typedef half ggml_half; -typedef half2 ggml_half2; - -#define GGML_COMMON_AGGR data - -#define GGML_COMMON_DECL -#elif defined(GGML_COMMON_DECL_HIP) -#include -#include - -typedef half ggml_half; -typedef half2 ggml_half2; - -#define GGML_COMMON_AGGR data - -#define GGML_COMMON_DECL -#elif defined(GGML_COMMON_DECL_SYCL) -#include -#include - -typedef sycl::half ggml_half; -typedef sycl::half2 ggml_half2; - -#define GGML_COMMON_AGGR data - -#define GGML_COMMON_DECL -#endif - -#if defined(GGML_COMMON_DECL) - -#ifndef __cplusplus -#ifndef static_assert -#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L) -#define static_assert(cond, msg) _Static_assert(cond, msg) -#else -#define static_assert(cond, msg) struct global_scope_noop_trick -#endif -#endif -#endif // __cplusplus - -// QK = number of values after dequantization -// QK_K = super-block size - -#ifdef GGML_QKK_64 -#define QK_K 64 -#define K_SCALE_SIZE 4 -#else -#define QK_K 256 -#define K_SCALE_SIZE 12 -#endif // GGML_QKK_64 - -#if defined(GGML_COMMON_DECL_CUDA) || defined(GGML_COMMON_DECL_HIP) || defined(GGML_COMMON_DECL_SYCL) -// QR = QK / number of values before dequantization -// QI = number of 32 bit integers before dequantization - -#define QI4_0 (QK4_0 / (4 * QR4_0)) -#define QR4_0 2 - -#define QI4_1 (QK4_1 / (4 * QR4_1)) -#define QR4_1 2 - -#define QI5_0 (QK5_0 / (4 * QR5_0)) -#define QR5_0 2 - -#define QI5_1 (QK5_1 / (4 * QR5_1)) -#define QR5_1 2 - -#define QI8_0 (QK8_0 / (4 * QR8_0)) -#define QR8_0 1 - -#define QI8_1 (QK8_1 / (4 * QR8_1)) -#define QR8_1 1 - -#define QI2_K (QK_K / (4*QR2_K)) -#define QR2_K 4 - -#define QI3_K (QK_K / (4*QR3_K)) -#define QR3_K 4 - -#define QI4_K (QK_K / (4*QR4_K)) -#define QR4_K 2 - -#define QI5_K (QK_K / (4*QR5_K)) -#define QR5_K 2 - -#define QI6_K (QK_K / (4*QR6_K)) -#define QR6_K 2 - -#define QI2_XXS (QK_K / (4*QR2_XXS)) -#define QR2_XXS 8 - -#define QI2_XS (QK_K / (4*QR2_XS)) -#define QR2_XS 8 - -#define QI2_S (QK_K / (4*QR2_S)) -#define QR2_S 8 - -#define QI3_XXS (QK_K / (4*QR3_XXS)) -#define QR3_XXS 8 - -#define QI3_XS (QK_K / (4*QR3_XS)) -#define QR3_XS 8 - -#define QI1_S (QK_K / (4*QR1_S)) -#define QR1_S 8 - -#define QI4_NL (QK4_NL / (4*QR4_NL)) -#define QR4_NL 2 - -#if QK_K == 64 -#define QI4_XS QI4_NL -#define QR4_XS QR4_NL -#else -#define QI4_XS (QK_K / (4*QR4_XS)) -#define QR4_XS 8 -#endif - -#endif // GGML_COMMON_DECL_CUDA || GGML_COMMON_DECL_HIP - -#define QK4_0 32 -typedef struct { - ggml_half d; // delta - uint8_t qs[QK4_0 / 2]; // nibbles / quants -} block_q4_0; -static_assert(sizeof(block_q4_0) == sizeof(ggml_half) + QK4_0 / 2, "wrong q4_0 block size/padding"); - -#define QK4_1 32 -typedef struct { - union { - struct { - ggml_half d; // delta - ggml_half m; // min - } GGML_COMMON_AGGR; - ggml_half2 dm; - }; - uint8_t qs[QK4_1 / 2]; // nibbles / quants -} block_q4_1; -static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_half) + QK4_1 / 2, "wrong q4_1 block size/padding"); - -#define QK5_0 32 -typedef struct { - ggml_half d; // delta - uint8_t qh[4]; // 5-th bit of quants - uint8_t qs[QK5_0 / 2]; // nibbles / quants -} block_q5_0; -static_assert(sizeof(block_q5_0) == sizeof(ggml_half) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding"); - -#define QK5_1 32 -typedef struct { - union { - struct { - ggml_half d; // delta - ggml_half m; // min - } GGML_COMMON_AGGR; - ggml_half2 dm; - }; - uint8_t qh[4]; // 5-th bit of quants - uint8_t qs[QK5_1 / 2]; // nibbles / quants -} block_q5_1; -static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_half) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding"); - -#define QK8_0 32 -typedef struct { - ggml_half d; // delta - int8_t qs[QK8_0]; // quants -} block_q8_0; -static_assert(sizeof(block_q8_0) == sizeof(ggml_half) + QK8_0, "wrong q8_0 block size/padding"); - -#define QK8_1 32 -typedef struct { - union { - struct { - ggml_half d; // delta - ggml_half s; // d * sum(qs[i]) - } GGML_COMMON_AGGR; - ggml_half2 ds; - }; - int8_t qs[QK8_1]; // quants -} block_q8_1; -static_assert(sizeof(block_q8_1) == 2*sizeof(ggml_half) + QK8_1, "wrong q8_1 block size/padding"); - -// -// Super-block quantization structures -// - -// 2-bit quantization -// weight is represented as x = a * q + b -// 16 blocks of 16 elements each -// Effectively 2.625 bits per weight -typedef struct { - uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits - uint8_t qs[QK_K/4]; // quants - union { - struct { - ggml_half d; // super-block scale for quantized scales - ggml_half dmin; // super-block scale for quantized mins - } GGML_COMMON_AGGR; - ggml_half2 dm; - }; -} block_q2_K; -static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_half) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding"); - -// 3-bit quantization -// weight is represented as x = a * q -// 16 blocks of 16 elements each -// Effectively 3.4375 bits per weight -#ifdef GGML_QKK_64 -typedef struct { - uint8_t hmask[QK_K/8]; // quants - high bit - uint8_t qs[QK_K/4]; // quants - low 2 bits - uint8_t scales[2]; - ggml_half d; // super-block scale -} block_q3_K; -static_assert(sizeof(block_q3_K) == sizeof(ggml_half) + QK_K / 4 + QK_K / 8 + 2, "wrong q3_K block size/padding"); -#else -typedef struct { - uint8_t hmask[QK_K/8]; // quants - high bit - uint8_t qs[QK_K/4]; // quants - low 2 bits - uint8_t scales[12]; // scales, quantized with 6 bits - ggml_half d; // super-block scale -} block_q3_K; -static_assert(sizeof(block_q3_K) == sizeof(ggml_half) + QK_K / 4 + QK_K / 8 + 12, "wrong q3_K block size/padding"); -#endif - -// 4-bit quantization -// 8 blocks of 32 elements each -// weight is represented as x = a * q + b -// Effectively 4.5 bits per weight -#ifdef GGML_QKK_64 -typedef struct { - ggml_half d[2]; // super-block scales/mins - uint8_t scales[2]; // 4-bit block scales/mins - uint8_t qs[QK_K/2]; // 4--bit quants -} block_q4_K; -static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_half) + QK_K/2 + 2, "wrong q4_K block size/padding"); -#else -typedef struct { - union { - struct { - ggml_half d; // super-block scale for quantized scales - ggml_half dmin; // super-block scale for quantized mins - } GGML_COMMON_AGGR; - ggml_half2 dm; - }; - uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits - uint8_t qs[QK_K/2]; // 4--bit quants -} block_q4_K; -static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_half) + K_SCALE_SIZE + QK_K/2, "wrong q4_K block size/padding"); -#endif - -// 5-bit quantization -// 8 blocks of 32 elements each -// weight is represented as x = a * q + b -// Effectively 5.5 bits per weight -#ifdef GGML_QKK_64 -typedef struct { - ggml_half d; // super-block scale - int8_t scales[QK_K/16]; // 8-bit block scales - uint8_t qh[QK_K/8]; // quants, high bit - uint8_t qs[QK_K/2]; // quants, low 4 bits -} block_q5_K; -static_assert(sizeof(block_q5_K) == sizeof(ggml_half) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding"); -#else -typedef struct { - union { - struct { - ggml_half d; // super-block scale for quantized scales - ggml_half dmin; // super-block scale for quantized mins - } GGML_COMMON_AGGR; - ggml_half2 dm; - }; - uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits - uint8_t qh[QK_K/8]; // quants, high bit - uint8_t qs[QK_K/2]; // quants, low 4 bits -} block_q5_K; -static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_half) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding"); -#endif - -// 6-bit quantization -// weight is represented as x = a * q -// 16 blocks of 16 elements each -// Effectively 6.5625 bits per weight -typedef struct { - uint8_t ql[QK_K/2]; // quants, lower 4 bits - uint8_t qh[QK_K/4]; // quants, upper 2 bits - int8_t scales[QK_K/16]; // scales, quantized with 8 bits - ggml_half d; // super-block scale -} block_q6_K; -static_assert(sizeof(block_q6_K) == sizeof(ggml_half) + QK_K / 16 + 3*QK_K/4, "wrong q6_K block size/padding"); - -// This is only used for intermediate quantization and dot products -typedef struct { - float d; // delta - int8_t qs[QK_K]; // quants - int16_t bsums[QK_K/16]; // sum of quants in groups of 16 -} block_q8_K; -static_assert(sizeof(block_q8_K) == sizeof(float) + QK_K + QK_K/16*sizeof(int16_t), "wrong q8_K block size/padding"); - -// (Almost) "true" 2-bit quantization. -// Due to the need to use blocks as per ggml design, it ends up using -// 2.0625 bpw because of the 16-bit scale for each block of 256. -typedef struct { - ggml_half d; - uint16_t qs[QK_K/8]; -} block_iq2_xxs; -static_assert(sizeof(block_iq2_xxs) == sizeof(ggml_half) + QK_K/8*sizeof(uint16_t), "wrong iq2_xxs block size/padding"); - -// 2.3125 bpw quants -typedef struct { - ggml_half d; - uint16_t qs[QK_K/8]; - uint8_t scales[QK_K/32]; -} block_iq2_xs; -static_assert(sizeof(block_iq2_xs) == sizeof(ggml_half) + QK_K/8*sizeof(uint16_t) + QK_K/32, "wrong iq2_xs block size/padding"); - -// 2.5625 bpw quants -typedef struct { - ggml_half d; - uint8_t qs[QK_K/4]; - uint8_t qh[QK_K/32]; - uint8_t scales[QK_K/32]; -} block_iq2_s; -static_assert(sizeof(block_iq2_s) == sizeof(ggml_half) + QK_K/4 + QK_K/16, "wrong iq2_s block size/padding"); - -// (Almost) "true" 3-bit quantization. -// Due to the need to use blocks as per ggml design, it ends up using -// 3.0625 bpw because of the 16-bit scale for each block of 256. -typedef struct { - ggml_half d; - uint8_t qs[3*QK_K/8]; -} block_iq3_xxs; -static_assert(sizeof(block_iq3_xxs) == sizeof(ggml_half) + 3*(QK_K/8), "wrong iq3_xxs block size/padding"); - -// 3.4375 bpw -#if QK_K == 64 -#define IQ3S_N_SCALE 2 -#else -#define IQ3S_N_SCALE QK_K/64 -#endif -typedef struct { - ggml_half d; - uint8_t qs[QK_K/4]; - uint8_t qh[QK_K/32]; - uint8_t signs[QK_K/8]; - uint8_t scales[IQ3S_N_SCALE]; -} block_iq3_s; -static_assert(sizeof(block_iq3_s) == sizeof(ggml_half) + 13*(QK_K/32) + IQ3S_N_SCALE, "wrong iq3_s block size/padding"); - -typedef struct { - ggml_half d; - uint8_t qs[QK_K/8]; - uint16_t qh[QK_K/32]; -} block_iq1_s; -static_assert(sizeof(block_iq1_s) == sizeof(ggml_half) + QK_K/8 + QK_K/16, "wrong iq1_s block size/padding"); - -// 1.75 bpw -typedef struct { - uint8_t qs[QK_K/8]; // grid index, low 8 bits - uint8_t qh[QK_K/16]; // grid index, high 3 bits + grid shift bit (for two groups of 8) -#if QK_K == 64 - ggml_half d; -#endif - uint8_t scales[QK_K/32]; // 3-bit block scales (4-bit if QK_K == 64) -} block_iq1_m; -#if QK_K == 64 -static_assert(sizeof(block_iq1_m) == QK_K/8 + QK_K/16 + QK_K/32 + sizeof(ggml_half), "wrong iq1_m block size/padding"); -#else -static_assert(sizeof(block_iq1_m) == QK_K/8 + QK_K/16 + QK_K/32, "wrong iq1_m block size/padding"); -#endif - -// Used by IQ1_M quants -typedef union { - ggml_half f16; - uint16_t u16; -} iq1m_scale_t; - -// Non-linear quants -#define QK4_NL 32 -typedef struct { - ggml_half d; - uint8_t qs[QK4_NL/2]; -} block_iq4_nl; -static_assert(sizeof(block_iq4_nl) == sizeof(ggml_half) + QK4_NL/2, "wrong iq4_nl block size/padding"); - -#if QK_K == 64 -#define block_iq4_xs block_iq4_nl -#else -typedef struct { - ggml_half d; - uint16_t scales_h; - uint8_t scales_l[QK_K/64]; - uint8_t qs[QK_K/2]; -} block_iq4_xs; -static_assert(sizeof(block_iq4_xs) == sizeof(ggml_half) + sizeof(uint16_t) + QK_K/64 + QK_K/2, "wrong iq4_xs block size/padding"); -#endif - -#endif // GGML_COMMON_DECL -#endif // GGML_COMMON_DECL - -//////////////////////////////////////////////////////////////////////////////// - -#ifndef GGML_COMMON_IMPL - -#if defined(GGML_COMMON_IMPL_C) -#include - -#define GGML_TABLE_BEGIN(type, name, size) static const type name[size] = { -#define GGML_TABLE_END() }; - -#define GGML_COMMON_IMPL -#elif defined(GGML_COMMON_IMPL_METAL) -#include - -#define GGML_TABLE_BEGIN(type, name, size) static const constant type name[size] = { -#define GGML_TABLE_END() }; - -#define GGML_COMMON_IMPL -#elif defined(GGML_COMMON_IMPL_CUDA) || defined(GGML_COMMON_IMPL_HIP) -#include - -#define GGML_TABLE_BEGIN(type, name, size) static const __device__ type name[size] = { -#define GGML_TABLE_END() }; - -#define GGML_COMMON_IMPL -#elif defined(GGML_COMMON_IMPL_SYCL) - -#include - -#define GGML_TABLE_BEGIN(type, name, size) static const type name[size] = { -#define GGML_TABLE_END() }; - -#define GGML_COMMON_IMPL -#endif - -#if defined(GGML_COMMON_IMPL) - -GGML_TABLE_BEGIN(uint8_t, kmask_iq2xs, 8) - 1, 2, 4, 8, 16, 32, 64, 128 -GGML_TABLE_END() - -GGML_TABLE_BEGIN(uint8_t, ksigns_iq2xs, 128) - 0, 129, 130, 3, 132, 5, 6, 135, 136, 9, 10, 139, 12, 141, 142, 15, - 144, 17, 18, 147, 20, 149, 150, 23, 24, 153, 154, 27, 156, 29, 30, 159, - 160, 33, 34, 163, 36, 165, 166, 39, 40, 169, 170, 43, 172, 45, 46, 175, - 48, 177, 178, 51, 180, 53, 54, 183, 184, 57, 58, 187, 60, 189, 190, 63, - 192, 65, 66, 195, 68, 197, 198, 71, 72, 201, 202, 75, 204, 77, 78, 207, - 80, 209, 210, 83, 212, 85, 86, 215, 216, 89, 90, 219, 92, 221, 222, 95, - 96, 225, 226, 99, 228, 101, 102, 231, 232, 105, 106, 235, 108, 237, 238, 111, - 240, 113, 114, 243, 116, 245, 246, 119, 120, 249, 250, 123, 252, 125, 126, 255, -GGML_TABLE_END() - -//#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics -GGML_TABLE_BEGIN(uint64_t, ksigns64, 128) - 0x0000000000000000, 0xff000000000000ff, 0xff0000000000ff00, 0x000000000000ffff, - 0xff00000000ff0000, 0x0000000000ff00ff, 0x0000000000ffff00, 0xff00000000ffffff, - 0xff000000ff000000, 0x00000000ff0000ff, 0x00000000ff00ff00, 0xff000000ff00ffff, - 0x00000000ffff0000, 0xff000000ffff00ff, 0xff000000ffffff00, 0x00000000ffffffff, - 0xff0000ff00000000, 0x000000ff000000ff, 0x000000ff0000ff00, 0xff0000ff0000ffff, - 0x000000ff00ff0000, 0xff0000ff00ff00ff, 0xff0000ff00ffff00, 0x000000ff00ffffff, - 0x000000ffff000000, 0xff0000ffff0000ff, 0xff0000ffff00ff00, 0x000000ffff00ffff, - 0xff0000ffffff0000, 0x000000ffffff00ff, 0x000000ffffffff00, 0xff0000ffffffffff, - 0xff00ff0000000000, 0x0000ff00000000ff, 0x0000ff000000ff00, 0xff00ff000000ffff, - 0x0000ff0000ff0000, 0xff00ff0000ff00ff, 0xff00ff0000ffff00, 0x0000ff0000ffffff, - 0x0000ff00ff000000, 0xff00ff00ff0000ff, 0xff00ff00ff00ff00, 0x0000ff00ff00ffff, - 0xff00ff00ffff0000, 0x0000ff00ffff00ff, 0x0000ff00ffffff00, 0xff00ff00ffffffff, - 0x0000ffff00000000, 0xff00ffff000000ff, 0xff00ffff0000ff00, 0x0000ffff0000ffff, - 0xff00ffff00ff0000, 0x0000ffff00ff00ff, 0x0000ffff00ffff00, 0xff00ffff00ffffff, - 0xff00ffffff000000, 0x0000ffffff0000ff, 0x0000ffffff00ff00, 0xff00ffffff00ffff, - 0x0000ffffffff0000, 0xff00ffffffff00ff, 0xff00ffffffffff00, 0x0000ffffffffffff, - 0xffff000000000000, 0x00ff0000000000ff, 0x00ff00000000ff00, 0xffff00000000ffff, - 0x00ff000000ff0000, 0xffff000000ff00ff, 0xffff000000ffff00, 0x00ff000000ffffff, - 0x00ff0000ff000000, 0xffff0000ff0000ff, 0xffff0000ff00ff00, 0x00ff0000ff00ffff, - 0xffff0000ffff0000, 0x00ff0000ffff00ff, 0x00ff0000ffffff00, 0xffff0000ffffffff, - 0x00ff00ff00000000, 0xffff00ff000000ff, 0xffff00ff0000ff00, 0x00ff00ff0000ffff, - 0xffff00ff00ff0000, 0x00ff00ff00ff00ff, 0x00ff00ff00ffff00, 0xffff00ff00ffffff, - 0xffff00ffff000000, 0x00ff00ffff0000ff, 0x00ff00ffff00ff00, 0xffff00ffff00ffff, - 0x00ff00ffffff0000, 0xffff00ffffff00ff, 0xffff00ffffffff00, 0x00ff00ffffffffff, - 0x00ffff0000000000, 0xffffff00000000ff, 0xffffff000000ff00, 0x00ffff000000ffff, - 0xffffff0000ff0000, 0x00ffff0000ff00ff, 0x00ffff0000ffff00, 0xffffff0000ffffff, - 0xffffff00ff000000, 0x00ffff00ff0000ff, 0x00ffff00ff00ff00, 0xffffff00ff00ffff, - 0x00ffff00ffff0000, 0xffffff00ffff00ff, 0xffffff00ffffff00, 0x00ffff00ffffffff, - 0xffffffff00000000, 0x00ffffff000000ff, 0x00ffffff0000ff00, 0xffffffff0000ffff, - 0x00ffffff00ff0000, 0xffffffff00ff00ff, 0xffffffff00ffff00, 0x00ffffff00ffffff, - 0x00ffffffff000000, 0xffffffffff0000ff, 0xffffffffff00ff00, 0x00ffffffff00ffff, - 0xffffffffffff0000, 0x00ffffffffff00ff, 0x00ffffffffffff00, 0xffffffffffffffff, -GGML_TABLE_END() -//#endif - - -GGML_TABLE_BEGIN(uint64_t, iq2xxs_grid, 256) - 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08, - 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x08080808082b0808, - 0x08080808082b082b, 0x08080808082b2b08, 0x08080808082b2b2b, 0x0808080819080819, - 0x0808080819081908, 0x0808080819190808, 0x0808080819192b08, 0x08080808192b0819, - 0x08080808192b1908, 0x080808082b080808, 0x080808082b08082b, 0x080808082b082b2b, - 0x080808082b2b082b, 0x0808081908080819, 0x0808081908081908, 0x0808081908190808, - 0x0808081908191919, 0x0808081919080808, 0x080808192b081908, 0x080808192b192b08, - 0x0808082b08080808, 0x0808082b0808082b, 0x0808082b082b082b, 0x0808082b2b08082b, - 0x0808190808080819, 0x0808190808081908, 0x0808190808190808, 0x08081908082b0819, - 0x08081908082b1908, 0x0808190819080808, 0x080819081908082b, 0x0808190819082b08, - 0x08081908192b0808, 0x080819082b080819, 0x080819082b081908, 0x080819082b190808, - 0x080819082b2b1908, 0x0808191908080808, 0x080819190808082b, 0x0808191908082b08, - 0x08081919082b0808, 0x080819191908192b, 0x08081919192b2b19, 0x080819192b080808, - 0x080819192b190819, 0x0808192b08082b19, 0x0808192b08190808, 0x0808192b19080808, - 0x0808192b2b081908, 0x0808192b2b2b1908, 0x08082b0808080808, 0x08082b0808081919, - 0x08082b0808082b08, 0x08082b0808191908, 0x08082b08082b2b08, 0x08082b0819080819, - 0x08082b0819081908, 0x08082b0819190808, 0x08082b081919082b, 0x08082b082b082b08, - 0x08082b1908081908, 0x08082b1919080808, 0x08082b2b0808082b, 0x08082b2b08191908, - 0x0819080808080819, 0x0819080808081908, 0x0819080808190808, 0x08190808082b0819, - 0x0819080819080808, 0x08190808192b0808, 0x081908082b081908, 0x081908082b190808, - 0x081908082b191919, 0x0819081908080808, 0x0819081908082b08, 0x08190819082b0808, - 0x0819081919190808, 0x0819081919192b2b, 0x081908192b080808, 0x0819082b082b1908, - 0x0819082b19081919, 0x0819190808080808, 0x0819190808082b08, 0x08191908082b0808, - 0x08191908082b1919, 0x0819190819082b19, 0x081919082b080808, 0x0819191908192b08, - 0x08191919192b082b, 0x0819192b08080808, 0x0819192b0819192b, 0x08192b0808080819, - 0x08192b0808081908, 0x08192b0808190808, 0x08192b0819080808, 0x08192b082b080819, - 0x08192b1908080808, 0x08192b1908081919, 0x08192b192b2b0808, 0x08192b2b19190819, - 0x082b080808080808, 0x082b08080808082b, 0x082b080808082b2b, 0x082b080819081908, - 0x082b0808192b0819, 0x082b08082b080808, 0x082b08082b08082b, 0x082b0819082b2b19, - 0x082b081919082b08, 0x082b082b08080808, 0x082b082b0808082b, 0x082b190808080819, - 0x082b190808081908, 0x082b190808190808, 0x082b190819080808, 0x082b19081919192b, - 0x082b191908080808, 0x082b191919080819, 0x082b1919192b1908, 0x082b192b2b190808, - 0x082b2b0808082b08, 0x082b2b08082b0808, 0x082b2b082b191908, 0x082b2b2b19081908, - 0x1908080808080819, 0x1908080808081908, 0x1908080808190808, 0x1908080808192b08, - 0x19080808082b0819, 0x19080808082b1908, 0x1908080819080808, 0x1908080819082b08, - 0x190808081919192b, 0x19080808192b0808, 0x190808082b080819, 0x190808082b081908, - 0x190808082b190808, 0x1908081908080808, 0x19080819082b0808, 0x19080819192b0819, - 0x190808192b080808, 0x190808192b081919, 0x1908082b08080819, 0x1908082b08190808, - 0x1908082b19082b08, 0x1908082b1919192b, 0x1908082b192b2b08, 0x1908190808080808, - 0x1908190808082b08, 0x19081908082b0808, 0x190819082b080808, 0x190819082b192b19, - 0x190819190819082b, 0x19081919082b1908, 0x1908192b08080808, 0x19082b0808080819, - 0x19082b0808081908, 0x19082b0808190808, 0x19082b0819080808, 0x19082b0819081919, - 0x19082b1908080808, 0x19082b1919192b08, 0x19082b19192b0819, 0x19082b192b08082b, - 0x19082b2b19081919, 0x19082b2b2b190808, 0x1919080808080808, 0x1919080808082b08, - 0x1919080808190819, 0x1919080808192b19, 0x19190808082b0808, 0x191908082b080808, - 0x191908082b082b08, 0x1919081908081908, 0x191908191908082b, 0x191908192b2b1908, - 0x1919082b2b190819, 0x191919082b190808, 0x191919082b19082b, 0x1919191908082b2b, - 0x1919192b08080819, 0x1919192b19191908, 0x19192b0808080808, 0x19192b0808190819, - 0x19192b0808192b19, 0x19192b08192b1908, 0x19192b1919080808, 0x19192b2b08082b08, - 0x192b080808081908, 0x192b080808190808, 0x192b080819080808, 0x192b0808192b2b08, - 0x192b081908080808, 0x192b081919191919, 0x192b082b08192b08, 0x192b082b192b0808, - 0x192b190808080808, 0x192b190808081919, 0x192b191908190808, 0x192b19190819082b, - 0x192b19192b081908, 0x192b2b081908082b, 0x2b08080808080808, 0x2b0808080808082b, - 0x2b08080808082b2b, 0x2b08080819080819, 0x2b0808082b08082b, 0x2b08081908081908, - 0x2b08081908192b08, 0x2b08081919080808, 0x2b08082b08190819, 0x2b08190808080819, - 0x2b08190808081908, 0x2b08190808190808, 0x2b08190808191919, 0x2b08190819080808, - 0x2b081908192b0808, 0x2b08191908080808, 0x2b0819191908192b, 0x2b0819192b191908, - 0x2b08192b08082b19, 0x2b08192b19080808, 0x2b08192b192b0808, 0x2b082b080808082b, - 0x2b082b1908081908, 0x2b082b2b08190819, 0x2b19080808081908, 0x2b19080808190808, - 0x2b190808082b1908, 0x2b19080819080808, 0x2b1908082b2b0819, 0x2b1908190819192b, - 0x2b1908192b080808, 0x2b19082b19081919, 0x2b19190808080808, 0x2b191908082b082b, - 0x2b19190819081908, 0x2b19191919190819, 0x2b192b082b080819, 0x2b192b19082b0808, - 0x2b2b08080808082b, 0x2b2b080819190808, 0x2b2b08082b081919, 0x2b2b081908082b19, - 0x2b2b082b08080808, 0x2b2b190808192b08, 0x2b2b2b0819190808, 0x2b2b2b1908081908, -GGML_TABLE_END() - -GGML_TABLE_BEGIN(uint64_t, iq2xs_grid, 512) - 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08, - 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x080808080819192b, - 0x0808080808192b19, 0x08080808082b0808, 0x08080808082b082b, 0x08080808082b1919, - 0x08080808082b2b08, 0x0808080819080819, 0x0808080819081908, 0x080808081908192b, - 0x0808080819082b19, 0x0808080819190808, 0x080808081919082b, 0x0808080819191919, - 0x0808080819192b08, 0x08080808192b0819, 0x08080808192b1908, 0x080808082b080808, - 0x080808082b08082b, 0x080808082b081919, 0x080808082b082b08, 0x080808082b190819, - 0x080808082b191908, 0x080808082b192b19, 0x080808082b2b0808, 0x0808081908080819, - 0x0808081908081908, 0x080808190808192b, 0x0808081908082b19, 0x0808081908190808, - 0x080808190819082b, 0x0808081908191919, 0x0808081908192b08, 0x0808081908192b2b, - 0x08080819082b0819, 0x08080819082b1908, 0x0808081919080808, 0x080808191908082b, - 0x0808081919081919, 0x0808081919082b08, 0x0808081919190819, 0x0808081919191908, - 0x08080819192b0808, 0x08080819192b2b08, 0x080808192b080819, 0x080808192b081908, - 0x080808192b190808, 0x0808082b08080808, 0x0808082b0808082b, 0x0808082b08081919, - 0x0808082b08082b08, 0x0808082b08190819, 0x0808082b08191908, 0x0808082b082b0808, - 0x0808082b19080819, 0x0808082b19081908, 0x0808082b19190808, 0x0808082b19191919, - 0x0808082b2b080808, 0x0808082b2b082b2b, 0x0808190808080819, 0x0808190808081908, - 0x080819080808192b, 0x0808190808082b19, 0x0808190808190808, 0x080819080819082b, - 0x0808190808191919, 0x0808190808192b08, 0x08081908082b0819, 0x08081908082b1908, - 0x0808190819080808, 0x080819081908082b, 0x0808190819081919, 0x0808190819082b08, - 0x0808190819190819, 0x0808190819191908, 0x080819081919192b, 0x08081908192b0808, - 0x080819082b080819, 0x080819082b081908, 0x080819082b190808, 0x0808191908080808, - 0x080819190808082b, 0x0808191908081919, 0x0808191908082b08, 0x0808191908190819, - 0x0808191908191908, 0x08081919082b0808, 0x0808191919080819, 0x0808191919081908, - 0x0808191919190808, 0x08081919192b0819, 0x080819192b080808, 0x0808192b08080819, - 0x0808192b08081908, 0x0808192b08190808, 0x0808192b082b192b, 0x0808192b19080808, - 0x0808192b1908082b, 0x0808192b2b081908, 0x08082b0808080808, 0x08082b080808082b, - 0x08082b0808081919, 0x08082b0808082b08, 0x08082b0808082b2b, 0x08082b0808190819, - 0x08082b0808191908, 0x08082b08082b0808, 0x08082b08082b1919, 0x08082b0819080819, - 0x08082b0819081908, 0x08082b0819190808, 0x08082b0819192b08, 0x08082b082b080808, - 0x08082b082b2b0808, 0x08082b082b2b2b2b, 0x08082b1908080819, 0x08082b1908081908, - 0x08082b1908190808, 0x08082b1919080808, 0x08082b192b080819, 0x08082b192b082b19, - 0x08082b2b08080808, 0x08082b2b082b0808, 0x08082b2b082b2b08, 0x08082b2b2b19192b, - 0x08082b2b2b2b0808, 0x0819080808080819, 0x0819080808081908, 0x081908080808192b, - 0x0819080808082b19, 0x0819080808190808, 0x081908080819082b, 0x0819080808191919, - 0x0819080808192b08, 0x08190808082b0819, 0x08190808082b1908, 0x0819080819080808, - 0x081908081908082b, 0x0819080819081919, 0x0819080819082b08, 0x0819080819190819, - 0x0819080819191908, 0x08190808192b0808, 0x08190808192b2b2b, 0x081908082b080819, - 0x081908082b081908, 0x081908082b190808, 0x0819081908080808, 0x081908190808082b, - 0x0819081908081919, 0x0819081908082b08, 0x0819081908190819, 0x0819081908191908, - 0x08190819082b0808, 0x0819081919080819, 0x0819081919081908, 0x0819081919190808, - 0x081908192b080808, 0x081908192b191908, 0x081908192b19192b, 0x0819082b08080819, - 0x0819082b08081908, 0x0819082b0808192b, 0x0819082b08190808, 0x0819082b19080808, - 0x0819082b192b0808, 0x0819190808080808, 0x081919080808082b, 0x0819190808081919, - 0x0819190808082b08, 0x0819190808190819, 0x0819190808191908, 0x08191908082b0808, - 0x0819190819080819, 0x0819190819081908, 0x0819190819082b19, 0x0819190819190808, - 0x08191908192b1908, 0x081919082b080808, 0x0819191908080819, 0x0819191908081908, - 0x0819191908190808, 0x0819191919080808, 0x0819192b08080808, 0x0819192b08191908, - 0x0819192b19082b19, 0x08192b0808080819, 0x08192b0808081908, 0x08192b0808190808, - 0x08192b080819082b, 0x08192b0819080808, 0x08192b0819191908, 0x08192b082b08192b, - 0x08192b1908080808, 0x08192b1908081919, 0x08192b19192b192b, 0x08192b2b19190819, - 0x08192b2b2b2b2b19, 0x082b080808080808, 0x082b08080808082b, 0x082b080808081919, - 0x082b080808082b08, 0x082b080808082b2b, 0x082b080808190819, 0x082b080808191908, - 0x082b0808082b0808, 0x082b080819080819, 0x082b080819081908, 0x082b080819190808, - 0x082b08082b080808, 0x082b08082b2b0808, 0x082b081908080819, 0x082b081908081908, - 0x082b081908190808, 0x082b081919080808, 0x082b081919082b08, 0x082b0819192b1919, - 0x082b082b08080808, 0x082b082b082b082b, 0x082b082b2b080808, 0x082b082b2b2b2b08, - 0x082b190808080819, 0x082b190808081908, 0x082b190808190808, 0x082b1908082b2b19, - 0x082b190819080808, 0x082b191908080808, 0x082b191919080819, 0x082b19191919082b, - 0x082b19192b192b19, 0x082b192b08080819, 0x082b192b08192b2b, 0x082b192b2b2b192b, - 0x082b2b0808080808, 0x082b2b0808082b08, 0x082b2b0808082b2b, 0x082b2b08082b0808, - 0x082b2b0819191919, 0x082b2b082b082b08, 0x082b2b082b2b082b, 0x082b2b19192b2b08, - 0x082b2b192b190808, 0x082b2b2b08082b08, 0x082b2b2b082b0808, 0x082b2b2b2b08082b, - 0x082b2b2b2b082b08, 0x082b2b2b2b082b2b, 0x1908080808080819, 0x1908080808081908, - 0x190808080808192b, 0x1908080808082b19, 0x1908080808190808, 0x190808080819082b, - 0x1908080808191919, 0x1908080808192b08, 0x19080808082b0819, 0x19080808082b1908, - 0x1908080819080808, 0x190808081908082b, 0x1908080819081919, 0x1908080819082b08, - 0x1908080819082b2b, 0x1908080819190819, 0x1908080819191908, 0x19080808192b0808, - 0x19080808192b1919, 0x190808082b080819, 0x190808082b081908, 0x190808082b190808, - 0x1908081908080808, 0x190808190808082b, 0x1908081908081919, 0x1908081908082b08, - 0x1908081908190819, 0x1908081908191908, 0x19080819082b0808, 0x1908081919080819, - 0x1908081919081908, 0x1908081919190808, 0x190808192b080808, 0x190808192b081919, - 0x190808192b2b082b, 0x1908082b08080819, 0x1908082b08081908, 0x1908082b08190808, - 0x1908082b0819082b, 0x1908082b082b2b19, 0x1908082b19080808, 0x1908190808080808, - 0x190819080808082b, 0x1908190808081919, 0x1908190808082b08, 0x1908190808190819, - 0x1908190808191908, 0x1908190808192b19, 0x19081908082b0808, 0x1908190819080819, - 0x1908190819081908, 0x1908190819190808, 0x190819082b080808, 0x190819082b191908, - 0x1908191908080819, 0x1908191908081908, 0x1908191908190808, 0x19081919082b1908, - 0x1908191919080808, 0x190819192b192b2b, 0x1908192b08080808, 0x1908192b08082b2b, - 0x1908192b19081908, 0x1908192b19190808, 0x19082b0808080819, 0x19082b0808081908, - 0x19082b0808190808, 0x19082b0819080808, 0x19082b0819081919, 0x19082b0819191908, - 0x19082b08192b082b, 0x19082b1908080808, 0x19082b1908190819, 0x19082b1919081908, - 0x19082b1919190808, 0x19082b19192b2b19, 0x19082b2b08081908, 0x1919080808080808, - 0x191908080808082b, 0x1919080808081919, 0x1919080808082b08, 0x1919080808190819, - 0x1919080808191908, 0x19190808082b0808, 0x19190808082b2b08, 0x1919080819080819, - 0x1919080819081908, 0x1919080819190808, 0x191908082b080808, 0x1919081908080819, - 0x1919081908081908, 0x1919081908190808, 0x1919081908191919, 0x1919081919080808, - 0x191908191908082b, 0x1919082b08080808, 0x1919082b19081908, 0x1919082b2b2b2b2b, - 0x1919190808080819, 0x1919190808081908, 0x1919190808190808, 0x19191908082b0819, - 0x1919190819080808, 0x19191908192b0808, 0x191919082b080819, 0x191919082b2b0819, - 0x1919191908080808, 0x1919191908082b08, 0x191919192b080808, 0x191919192b082b08, - 0x1919192b082b0819, 0x1919192b192b2b08, 0x1919192b2b2b0819, 0x19192b0808080808, - 0x19192b0808191908, 0x19192b0819080819, 0x19192b0819190808, 0x19192b082b192b19, - 0x19192b1908192b2b, 0x19192b1919080808, 0x19192b191908082b, 0x19192b2b2b081919, - 0x192b080808080819, 0x192b080808081908, 0x192b080808190808, 0x192b080819080808, - 0x192b080819191908, 0x192b0808192b082b, 0x192b08082b08192b, 0x192b08082b2b2b19, - 0x192b081908080808, 0x192b082b082b1908, 0x192b082b19082b2b, 0x192b082b2b19082b, - 0x192b190808080808, 0x192b19080819192b, 0x192b191908190808, 0x192b191919080808, - 0x192b191919081919, 0x192b19192b2b1908, 0x192b2b0808080819, 0x192b2b08192b2b2b, - 0x192b2b19082b1919, 0x192b2b2b0808192b, 0x192b2b2b19191908, 0x192b2b2b192b082b, - 0x2b08080808080808, 0x2b0808080808082b, 0x2b08080808081919, 0x2b08080808082b08, - 0x2b08080808190819, 0x2b08080808191908, 0x2b080808082b0808, 0x2b080808082b2b2b, - 0x2b08080819080819, 0x2b08080819081908, 0x2b08080819190808, 0x2b0808082b080808, - 0x2b0808082b08082b, 0x2b0808082b2b2b08, 0x2b0808082b2b2b2b, 0x2b08081908080819, - 0x2b08081908081908, 0x2b0808190808192b, 0x2b08081908190808, 0x2b08081919080808, - 0x2b08081919190819, 0x2b08081919192b19, 0x2b08082b08080808, 0x2b08082b082b0808, - 0x2b08082b2b080808, 0x2b08082b2b08082b, 0x2b08082b2b2b0808, 0x2b08082b2b2b2b08, - 0x2b08190808080819, 0x2b08190808081908, 0x2b08190808190808, 0x2b0819080819082b, - 0x2b08190808191919, 0x2b08190819080808, 0x2b081908192b0808, 0x2b0819082b082b19, - 0x2b08191908080808, 0x2b08191919081908, 0x2b0819192b2b1919, 0x2b08192b08192b08, - 0x2b08192b192b2b2b, 0x2b082b0808080808, 0x2b082b0808082b08, 0x2b082b08082b1919, - 0x2b082b0819192b2b, 0x2b082b082b080808, 0x2b082b082b08082b, 0x2b082b082b2b2b08, - 0x2b082b190808192b, 0x2b082b2b082b082b, 0x2b082b2b2b080808, 0x2b082b2b2b082b08, - 0x2b082b2b2b19192b, 0x2b082b2b2b2b2b08, 0x2b19080808080819, 0x2b19080808081908, - 0x2b19080808190808, 0x2b19080819080808, 0x2b1908081919192b, 0x2b1908082b081908, - 0x2b19081908080808, 0x2b190819082b082b, 0x2b190819192b1908, 0x2b19082b1919192b, - 0x2b19082b2b082b19, 0x2b19190808080808, 0x2b19190808081919, 0x2b19190819081908, - 0x2b19190819190808, 0x2b19190819192b08, 0x2b191919082b2b19, 0x2b1919192b190808, - 0x2b1919192b19082b, 0x2b19192b19080819, 0x2b192b0819190819, 0x2b192b082b2b192b, - 0x2b192b1919082b19, 0x2b192b2b08191919, 0x2b192b2b192b0808, 0x2b2b080808080808, - 0x2b2b08080808082b, 0x2b2b080808082b08, 0x2b2b080808082b2b, 0x2b2b0808082b0808, - 0x2b2b0808082b2b2b, 0x2b2b08082b2b0808, 0x2b2b081919190819, 0x2b2b081919192b19, - 0x2b2b08192b2b192b, 0x2b2b082b08080808, 0x2b2b082b0808082b, 0x2b2b082b08082b08, - 0x2b2b082b082b2b2b, 0x2b2b082b2b080808, 0x2b2b082b2b2b0808, 0x2b2b190819080808, - 0x2b2b19082b191919, 0x2b2b192b192b1919, 0x2b2b192b2b192b08, 0x2b2b2b0808082b2b, - 0x2b2b2b08082b0808, 0x2b2b2b08082b082b, 0x2b2b2b08082b2b08, 0x2b2b2b082b2b0808, - 0x2b2b2b082b2b2b08, 0x2b2b2b1908081908, 0x2b2b2b192b081908, 0x2b2b2b192b08192b, - 0x2b2b2b2b082b2b08, 0x2b2b2b2b082b2b2b, 0x2b2b2b2b2b190819, 0x2b2b2b2b2b2b2b2b, -GGML_TABLE_END() - -GGML_TABLE_BEGIN(uint64_t, iq2s_grid, 1024) - 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08, - 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x080808080819192b, - 0x0808080808192b19, 0x08080808082b0808, 0x08080808082b082b, 0x08080808082b1919, - 0x08080808082b2b08, 0x0808080819080819, 0x0808080819081908, 0x080808081908192b, - 0x0808080819082b19, 0x0808080819190808, 0x080808081919082b, 0x0808080819191919, - 0x0808080819192b08, 0x08080808192b0819, 0x08080808192b1908, 0x08080808192b192b, - 0x08080808192b2b19, 0x080808082b080808, 0x080808082b08082b, 0x080808082b081919, - 0x080808082b082b08, 0x080808082b190819, 0x080808082b191908, 0x080808082b2b0808, - 0x080808082b2b1919, 0x080808082b2b2b2b, 0x0808081908080819, 0x0808081908081908, - 0x080808190808192b, 0x0808081908082b19, 0x0808081908190808, 0x080808190819082b, - 0x0808081908191919, 0x0808081908192b08, 0x08080819082b0819, 0x08080819082b1908, - 0x0808081919080808, 0x080808191908082b, 0x0808081919081919, 0x0808081919082b08, - 0x0808081919190819, 0x0808081919191908, 0x080808191919192b, 0x0808081919192b19, - 0x08080819192b0808, 0x08080819192b1919, 0x08080819192b2b08, 0x080808192b080819, - 0x080808192b081908, 0x080808192b190808, 0x080808192b19082b, 0x080808192b191919, - 0x080808192b2b0819, 0x080808192b2b1908, 0x0808082b08080808, 0x0808082b0808082b, - 0x0808082b08081919, 0x0808082b08082b08, 0x0808082b08190819, 0x0808082b08191908, - 0x0808082b082b0808, 0x0808082b082b2b2b, 0x0808082b19080819, 0x0808082b19081908, - 0x0808082b1908192b, 0x0808082b19082b19, 0x0808082b19190808, 0x0808082b19191919, - 0x0808082b2b080808, 0x0808082b2b081919, 0x0808082b2b082b2b, 0x0808082b2b191908, - 0x0808082b2b2b082b, 0x0808190808080819, 0x0808190808081908, 0x080819080808192b, - 0x0808190808082b19, 0x0808190808190808, 0x080819080819082b, 0x0808190808191919, - 0x0808190808192b08, 0x08081908082b0819, 0x08081908082b1908, 0x08081908082b192b, - 0x08081908082b2b19, 0x0808190819080808, 0x080819081908082b, 0x0808190819081919, - 0x0808190819082b08, 0x0808190819082b2b, 0x0808190819190819, 0x0808190819191908, - 0x080819081919192b, 0x0808190819192b19, 0x08081908192b0808, 0x08081908192b082b, - 0x08081908192b1919, 0x080819082b080819, 0x080819082b081908, 0x080819082b08192b, - 0x080819082b082b19, 0x080819082b190808, 0x080819082b191919, 0x080819082b192b08, - 0x080819082b2b0819, 0x080819082b2b1908, 0x0808191908080808, 0x080819190808082b, - 0x0808191908081919, 0x0808191908082b08, 0x0808191908082b2b, 0x0808191908190819, - 0x0808191908191908, 0x080819190819192b, 0x0808191908192b19, 0x08081919082b0808, - 0x08081919082b1919, 0x08081919082b2b08, 0x0808191919080819, 0x0808191919081908, - 0x080819191908192b, 0x0808191919082b19, 0x0808191919190808, 0x080819191919082b, - 0x0808191919191919, 0x0808191919192b08, 0x08081919192b0819, 0x08081919192b1908, - 0x080819192b080808, 0x080819192b08082b, 0x080819192b081919, 0x080819192b082b08, - 0x080819192b190819, 0x080819192b191908, 0x080819192b2b0808, 0x0808192b08080819, - 0x0808192b08081908, 0x0808192b0808192b, 0x0808192b08082b19, 0x0808192b08190808, - 0x0808192b08191919, 0x0808192b19080808, 0x0808192b19081919, 0x0808192b19082b08, - 0x0808192b19190819, 0x0808192b19191908, 0x0808192b192b0808, 0x0808192b2b080819, - 0x0808192b2b081908, 0x0808192b2b190808, 0x08082b0808080808, 0x08082b080808082b, - 0x08082b0808081919, 0x08082b0808082b08, 0x08082b0808190819, 0x08082b0808191908, - 0x08082b080819192b, 0x08082b0808192b19, 0x08082b08082b0808, 0x08082b08082b1919, - 0x08082b08082b2b2b, 0x08082b0819080819, 0x08082b0819081908, 0x08082b081908192b, - 0x08082b0819082b19, 0x08082b0819190808, 0x08082b081919082b, 0x08082b0819191919, - 0x08082b0819192b08, 0x08082b08192b0819, 0x08082b08192b1908, 0x08082b082b080808, - 0x08082b082b081919, 0x08082b082b191908, 0x08082b082b2b2b2b, 0x08082b1908080819, - 0x08082b1908081908, 0x08082b1908190808, 0x08082b190819082b, 0x08082b1908191919, - 0x08082b1908192b08, 0x08082b19082b0819, 0x08082b1919080808, 0x08082b1919081919, - 0x08082b1919082b08, 0x08082b1919190819, 0x08082b1919191908, 0x08082b19192b0808, - 0x08082b192b080819, 0x08082b192b190808, 0x08082b2b08080808, 0x08082b2b08190819, - 0x08082b2b08191908, 0x08082b2b082b082b, 0x08082b2b082b2b08, 0x08082b2b082b2b2b, - 0x08082b2b19190808, 0x08082b2b2b192b19, 0x0819080808080819, 0x0819080808081908, - 0x081908080808192b, 0x0819080808082b19, 0x0819080808190808, 0x081908080819082b, - 0x0819080808191919, 0x0819080808192b08, 0x08190808082b0819, 0x08190808082b1908, - 0x08190808082b192b, 0x0819080819080808, 0x081908081908082b, 0x0819080819081919, - 0x0819080819082b08, 0x0819080819190819, 0x0819080819191908, 0x081908081919192b, - 0x0819080819192b19, 0x08190808192b0808, 0x08190808192b082b, 0x08190808192b1919, - 0x08190808192b2b08, 0x081908082b080819, 0x081908082b081908, 0x081908082b08192b, - 0x081908082b190808, 0x081908082b191919, 0x081908082b192b08, 0x081908082b2b0819, - 0x081908082b2b1908, 0x0819081908080808, 0x081908190808082b, 0x0819081908081919, - 0x0819081908082b08, 0x0819081908082b2b, 0x0819081908190819, 0x0819081908191908, - 0x081908190819192b, 0x0819081908192b19, 0x08190819082b0808, 0x08190819082b082b, - 0x08190819082b1919, 0x08190819082b2b08, 0x0819081919080819, 0x0819081919081908, - 0x081908191908192b, 0x0819081919082b19, 0x0819081919190808, 0x081908191919082b, - 0x0819081919191919, 0x0819081919192b08, 0x08190819192b0819, 0x08190819192b1908, - 0x081908192b080808, 0x081908192b08082b, 0x081908192b081919, 0x081908192b082b08, - 0x081908192b190819, 0x081908192b191908, 0x0819082b08080819, 0x0819082b08081908, - 0x0819082b08082b19, 0x0819082b08190808, 0x0819082b08191919, 0x0819082b082b0819, - 0x0819082b082b1908, 0x0819082b19080808, 0x0819082b19081919, 0x0819082b19190819, - 0x0819082b19191908, 0x0819082b2b080819, 0x0819082b2b081908, 0x0819082b2b190808, - 0x0819190808080808, 0x081919080808082b, 0x0819190808081919, 0x0819190808082b08, - 0x0819190808190819, 0x0819190808191908, 0x081919080819192b, 0x0819190808192b19, - 0x08191908082b0808, 0x08191908082b1919, 0x08191908082b2b08, 0x0819190819080819, - 0x0819190819081908, 0x081919081908192b, 0x0819190819082b19, 0x0819190819190808, - 0x081919081919082b, 0x0819190819191919, 0x0819190819192b08, 0x08191908192b0819, - 0x08191908192b1908, 0x081919082b080808, 0x081919082b08082b, 0x081919082b081919, - 0x081919082b082b08, 0x081919082b190819, 0x081919082b191908, 0x081919082b2b0808, - 0x0819191908080819, 0x0819191908081908, 0x081919190808192b, 0x0819191908082b19, - 0x0819191908190808, 0x081919190819082b, 0x0819191908191919, 0x0819191908192b08, - 0x08191919082b0819, 0x08191919082b1908, 0x0819191919080808, 0x081919191908082b, - 0x0819191919081919, 0x0819191919082b08, 0x0819191919190819, 0x0819191919191908, - 0x08191919192b0808, 0x081919192b080819, 0x081919192b081908, 0x081919192b190808, - 0x0819192b08080808, 0x0819192b08081919, 0x0819192b08082b08, 0x0819192b08190819, - 0x0819192b08191908, 0x0819192b082b0808, 0x0819192b19080819, 0x0819192b19081908, - 0x0819192b19190808, 0x0819192b2b080808, 0x0819192b2b2b2b2b, 0x08192b0808080819, - 0x08192b0808081908, 0x08192b080808192b, 0x08192b0808082b19, 0x08192b0808190808, - 0x08192b0808191919, 0x08192b0808192b08, 0x08192b08082b0819, 0x08192b0819080808, - 0x08192b081908082b, 0x08192b0819081919, 0x08192b0819082b08, 0x08192b0819190819, - 0x08192b0819191908, 0x08192b08192b0808, 0x08192b082b080819, 0x08192b082b081908, - 0x08192b1908080808, 0x08192b190808082b, 0x08192b1908081919, 0x08192b1908082b08, - 0x08192b1908190819, 0x08192b1908191908, 0x08192b19082b0808, 0x08192b1919080819, - 0x08192b1919081908, 0x08192b1919190808, 0x08192b19192b2b19, 0x08192b192b2b082b, - 0x08192b2b08081908, 0x08192b2b08190808, 0x08192b2b19080808, 0x08192b2b1919192b, - 0x082b080808080808, 0x082b08080808082b, 0x082b080808081919, 0x082b080808082b08, - 0x082b080808190819, 0x082b080808191908, 0x082b08080819192b, 0x082b080808192b19, - 0x082b0808082b0808, 0x082b0808082b1919, 0x082b0808082b2b2b, 0x082b080819080819, - 0x082b080819081908, 0x082b080819190808, 0x082b08081919082b, 0x082b080819191919, - 0x082b0808192b1908, 0x082b08082b080808, 0x082b08082b082b2b, 0x082b08082b191908, - 0x082b08082b2b2b2b, 0x082b081908080819, 0x082b081908081908, 0x082b081908190808, - 0x082b08190819082b, 0x082b081908191919, 0x082b0819082b0819, 0x082b081919080808, - 0x082b08191908082b, 0x082b081919081919, 0x082b081919190819, 0x082b081919191908, - 0x082b0819192b0808, 0x082b08192b080819, 0x082b08192b081908, 0x082b08192b190808, - 0x082b082b08080808, 0x082b082b08082b2b, 0x082b082b082b082b, 0x082b082b082b2b08, - 0x082b082b082b2b2b, 0x082b082b19081908, 0x082b082b19190808, 0x082b082b2b082b08, - 0x082b082b2b082b2b, 0x082b082b2b2b2b08, 0x082b190808080819, 0x082b190808081908, - 0x082b19080808192b, 0x082b190808082b19, 0x082b190808190808, 0x082b190808191919, - 0x082b190808192b08, 0x082b1908082b0819, 0x082b1908082b1908, 0x082b190819080808, - 0x082b19081908082b, 0x082b190819081919, 0x082b190819082b08, 0x082b190819190819, - 0x082b190819191908, 0x082b1908192b0808, 0x082b19082b080819, 0x082b19082b081908, - 0x082b19082b190808, 0x082b191908080808, 0x082b191908081919, 0x082b191908082b08, - 0x082b191908190819, 0x082b191908191908, 0x082b1919082b0808, 0x082b191919080819, - 0x082b191919081908, 0x082b191919190808, 0x082b1919192b192b, 0x082b19192b080808, - 0x082b192b08080819, 0x082b192b08081908, 0x082b192b08190808, 0x082b192b19080808, - 0x082b192b19192b19, 0x082b2b0808080808, 0x082b2b0808081919, 0x082b2b0808190819, - 0x082b2b0808191908, 0x082b2b0819080819, 0x082b2b0819081908, 0x082b2b0819190808, - 0x082b2b082b082b2b, 0x082b2b082b2b2b2b, 0x082b2b1908080819, 0x082b2b1908081908, - 0x082b2b1908190808, 0x082b2b192b191919, 0x082b2b2b08082b2b, 0x082b2b2b082b082b, - 0x082b2b2b192b1908, 0x082b2b2b2b082b08, 0x082b2b2b2b082b2b, 0x1908080808080819, - 0x1908080808081908, 0x190808080808192b, 0x1908080808082b19, 0x1908080808190808, - 0x190808080819082b, 0x1908080808191919, 0x1908080808192b08, 0x1908080808192b2b, - 0x19080808082b0819, 0x19080808082b1908, 0x19080808082b192b, 0x1908080819080808, - 0x190808081908082b, 0x1908080819081919, 0x1908080819082b08, 0x1908080819082b2b, - 0x1908080819190819, 0x1908080819191908, 0x190808081919192b, 0x1908080819192b19, - 0x19080808192b0808, 0x19080808192b082b, 0x19080808192b1919, 0x190808082b080819, - 0x190808082b081908, 0x190808082b190808, 0x190808082b191919, 0x190808082b192b08, - 0x190808082b2b0819, 0x190808082b2b1908, 0x1908081908080808, 0x190808190808082b, - 0x1908081908081919, 0x1908081908082b08, 0x1908081908190819, 0x1908081908191908, - 0x190808190819192b, 0x1908081908192b19, 0x19080819082b0808, 0x19080819082b082b, - 0x19080819082b1919, 0x1908081919080819, 0x1908081919081908, 0x190808191908192b, - 0x1908081919082b19, 0x1908081919190808, 0x190808191919082b, 0x1908081919191919, - 0x1908081919192b08, 0x19080819192b0819, 0x19080819192b1908, 0x190808192b080808, - 0x190808192b08082b, 0x190808192b081919, 0x190808192b082b08, 0x190808192b190819, - 0x190808192b191908, 0x190808192b2b0808, 0x1908082b08080819, 0x1908082b08081908, - 0x1908082b08190808, 0x1908082b0819082b, 0x1908082b08191919, 0x1908082b08192b08, - 0x1908082b082b1908, 0x1908082b19080808, 0x1908082b19081919, 0x1908082b19082b08, - 0x1908082b19190819, 0x1908082b19191908, 0x1908082b192b0808, 0x1908082b2b080819, - 0x1908082b2b081908, 0x1908190808080808, 0x190819080808082b, 0x1908190808081919, - 0x1908190808082b08, 0x1908190808082b2b, 0x1908190808190819, 0x1908190808191908, - 0x190819080819192b, 0x1908190808192b19, 0x19081908082b0808, 0x19081908082b082b, - 0x19081908082b1919, 0x19081908082b2b08, 0x1908190819080819, 0x1908190819081908, - 0x190819081908192b, 0x1908190819082b19, 0x1908190819190808, 0x190819081919082b, - 0x1908190819191919, 0x1908190819192b08, 0x19081908192b0819, 0x19081908192b1908, - 0x190819082b080808, 0x190819082b08082b, 0x190819082b081919, 0x190819082b082b08, - 0x190819082b190819, 0x190819082b191908, 0x190819082b2b0808, 0x1908191908080819, - 0x1908191908081908, 0x190819190808192b, 0x1908191908082b19, 0x1908191908190808, - 0x190819190819082b, 0x1908191908191919, 0x1908191908192b08, 0x19081919082b0819, - 0x19081919082b1908, 0x1908191919080808, 0x190819191908082b, 0x1908191919081919, - 0x1908191919082b08, 0x1908191919190819, 0x1908191919191908, 0x19081919192b0808, - 0x19081919192b2b2b, 0x190819192b080819, 0x190819192b081908, 0x190819192b190808, - 0x1908192b08080808, 0x1908192b0808082b, 0x1908192b08081919, 0x1908192b08082b08, - 0x1908192b08190819, 0x1908192b08191908, 0x1908192b082b0808, 0x1908192b19080819, - 0x1908192b19081908, 0x1908192b19190808, 0x1908192b2b080808, 0x1908192b2b2b1919, - 0x19082b0808080819, 0x19082b0808081908, 0x19082b0808082b19, 0x19082b0808190808, - 0x19082b080819082b, 0x19082b0808191919, 0x19082b0808192b08, 0x19082b08082b0819, - 0x19082b08082b1908, 0x19082b0819080808, 0x19082b081908082b, 0x19082b0819081919, - 0x19082b0819082b08, 0x19082b0819190819, 0x19082b0819191908, 0x19082b08192b0808, - 0x19082b082b081908, 0x19082b082b190808, 0x19082b1908080808, 0x19082b190808082b, - 0x19082b1908081919, 0x19082b1908082b08, 0x19082b1908190819, 0x19082b1908191908, - 0x19082b19082b0808, 0x19082b1919080819, 0x19082b1919081908, 0x19082b1919190808, - 0x19082b192b080808, 0x19082b192b19192b, 0x19082b2b08080819, 0x19082b2b08081908, - 0x19082b2b08190808, 0x19082b2b19080808, 0x1919080808080808, 0x191908080808082b, - 0x1919080808081919, 0x1919080808082b08, 0x1919080808190819, 0x1919080808191908, - 0x191908080819192b, 0x1919080808192b19, 0x19190808082b0808, 0x19190808082b082b, - 0x19190808082b1919, 0x19190808082b2b08, 0x1919080819080819, 0x1919080819081908, - 0x191908081908192b, 0x1919080819082b19, 0x1919080819190808, 0x191908081919082b, - 0x1919080819191919, 0x1919080819192b08, 0x19190808192b0819, 0x19190808192b1908, - 0x191908082b080808, 0x191908082b08082b, 0x191908082b081919, 0x191908082b082b08, - 0x191908082b190819, 0x191908082b191908, 0x1919081908080819, 0x1919081908081908, - 0x191908190808192b, 0x1919081908082b19, 0x1919081908190808, 0x191908190819082b, - 0x1919081908191919, 0x1919081908192b08, 0x19190819082b0819, 0x19190819082b1908, - 0x1919081919080808, 0x191908191908082b, 0x1919081919081919, 0x1919081919082b08, - 0x1919081919190819, 0x1919081919191908, 0x19190819192b0808, 0x191908192b080819, - 0x191908192b081908, 0x191908192b190808, 0x1919082b08080808, 0x1919082b08081919, - 0x1919082b08082b08, 0x1919082b08190819, 0x1919082b08191908, 0x1919082b082b0808, - 0x1919082b19080819, 0x1919082b19081908, 0x1919082b19190808, 0x1919082b192b2b19, - 0x1919082b2b080808, 0x1919190808080819, 0x1919190808081908, 0x191919080808192b, - 0x1919190808082b19, 0x1919190808190808, 0x191919080819082b, 0x1919190808191919, - 0x1919190808192b08, 0x19191908082b0819, 0x19191908082b1908, 0x1919190819080808, - 0x191919081908082b, 0x1919190819081919, 0x1919190819082b08, 0x1919190819190819, - 0x1919190819191908, 0x19191908192b0808, 0x191919082b080819, 0x191919082b081908, - 0x191919082b190808, 0x1919191908080808, 0x191919190808082b, 0x1919191908081919, - 0x1919191908082b08, 0x1919191908190819, 0x1919191908191908, 0x19191919082b0808, - 0x1919191919080819, 0x1919191919081908, 0x1919191919190808, 0x191919192b080808, - 0x1919192b08080819, 0x1919192b08081908, 0x1919192b08190808, 0x1919192b082b192b, - 0x1919192b19080808, 0x19192b0808080808, 0x19192b080808082b, 0x19192b0808081919, - 0x19192b0808082b08, 0x19192b0808190819, 0x19192b0808191908, 0x19192b08082b0808, - 0x19192b0819080819, 0x19192b0819081908, 0x19192b0819190808, 0x19192b0819192b2b, - 0x19192b082b080808, 0x19192b1908080819, 0x19192b1908081908, 0x19192b1908190808, - 0x19192b1919080808, 0x19192b2b08080808, 0x19192b2b08192b19, 0x19192b2b2b081919, - 0x19192b2b2b2b2b08, 0x192b080808080819, 0x192b080808081908, 0x192b08080808192b, - 0x192b080808190808, 0x192b08080819082b, 0x192b080808191919, 0x192b080808192b08, - 0x192b0808082b0819, 0x192b0808082b1908, 0x192b080819080808, 0x192b080819081919, - 0x192b080819082b08, 0x192b080819190819, 0x192b080819191908, 0x192b0808192b0808, - 0x192b08082b081908, 0x192b08082b190808, 0x192b081908080808, 0x192b08190808082b, - 0x192b081908081919, 0x192b081908082b08, 0x192b081908190819, 0x192b081908191908, - 0x192b0819082b0808, 0x192b081919080819, 0x192b081919081908, 0x192b081919190808, - 0x192b08192b080808, 0x192b08192b192b19, 0x192b082b08081908, 0x192b082b08190808, - 0x192b082b19080808, 0x192b082b1919192b, 0x192b082b2b2b0819, 0x192b190808080808, - 0x192b190808081919, 0x192b190808082b08, 0x192b190808190819, 0x192b190808191908, - 0x192b1908082b0808, 0x192b190819080819, 0x192b190819081908, 0x192b190819190808, - 0x192b19082b080808, 0x192b191908080819, 0x192b191908081908, 0x192b191908190808, - 0x192b191919080808, 0x192b191919082b2b, 0x192b1919192b2b08, 0x192b19192b19082b, - 0x192b192b08080808, 0x192b192b2b191908, 0x192b2b0808080819, 0x192b2b0808081908, - 0x192b2b0808190808, 0x192b2b08192b1919, 0x192b2b082b192b08, 0x192b2b1908080808, - 0x192b2b19082b2b2b, 0x192b2b2b1908082b, 0x192b2b2b2b2b0819, 0x2b08080808080808, - 0x2b0808080808082b, 0x2b08080808081919, 0x2b08080808082b08, 0x2b08080808190819, - 0x2b08080808191908, 0x2b08080808192b19, 0x2b080808082b0808, 0x2b080808082b1919, - 0x2b08080819080819, 0x2b08080819081908, 0x2b08080819190808, 0x2b0808081919082b, - 0x2b08080819191919, 0x2b08080819192b08, 0x2b080808192b0819, 0x2b0808082b080808, - 0x2b0808082b081919, 0x2b0808082b190819, 0x2b0808082b191908, 0x2b08081908080819, - 0x2b08081908081908, 0x2b08081908082b19, 0x2b08081908190808, 0x2b0808190819082b, - 0x2b08081908191919, 0x2b08081908192b08, 0x2b080819082b0819, 0x2b080819082b1908, - 0x2b08081919080808, 0x2b0808191908082b, 0x2b08081919081919, 0x2b08081919082b08, - 0x2b08081919190819, 0x2b08081919191908, 0x2b0808192b080819, 0x2b0808192b081908, - 0x2b0808192b190808, 0x2b0808192b2b2b19, 0x2b08082b08080808, 0x2b08082b08081919, - 0x2b08082b08082b2b, 0x2b08082b08190819, 0x2b08082b08191908, 0x2b08082b19080819, - 0x2b08082b19081908, 0x2b08082b19190808, 0x2b08190808080819, 0x2b08190808081908, - 0x2b0819080808192b, 0x2b08190808082b19, 0x2b08190808190808, 0x2b0819080819082b, - 0x2b08190808191919, 0x2b08190808192b08, 0x2b081908082b0819, 0x2b08190819080808, - 0x2b0819081908082b, 0x2b08190819081919, 0x2b08190819082b08, 0x2b08190819190819, - 0x2b08190819191908, 0x2b081908192b0808, 0x2b0819082b080819, 0x2b0819082b081908, - 0x2b0819082b190808, 0x2b08191908080808, 0x2b0819190808082b, 0x2b08191908081919, - 0x2b08191908082b08, 0x2b08191908190819, 0x2b08191908191908, 0x2b081919082b0808, - 0x2b08191919080819, 0x2b08191919081908, 0x2b08191919190808, 0x2b0819192b080808, - 0x2b0819192b082b2b, 0x2b08192b08080819, 0x2b08192b08081908, 0x2b08192b08190808, - 0x2b08192b082b2b19, 0x2b08192b19080808, 0x2b082b0808080808, 0x2b082b0808081919, - 0x2b082b0808190819, 0x2b082b0808191908, 0x2b082b0819080819, 0x2b082b0819081908, - 0x2b082b0819190808, 0x2b082b082b2b082b, 0x2b082b1908080819, 0x2b082b1908081908, - 0x2b082b1919080808, 0x2b082b19192b1919, 0x2b082b2b082b082b, 0x2b082b2b19192b08, - 0x2b082b2b19192b2b, 0x2b082b2b2b08082b, 0x2b082b2b2b2b082b, 0x2b19080808080819, - 0x2b19080808081908, 0x2b19080808082b19, 0x2b19080808190808, 0x2b1908080819082b, - 0x2b19080808191919, 0x2b19080808192b08, 0x2b190808082b1908, 0x2b19080819080808, - 0x2b1908081908082b, 0x2b19080819081919, 0x2b19080819082b08, 0x2b19080819190819, - 0x2b19080819191908, 0x2b190808192b0808, 0x2b1908082b080819, 0x2b1908082b081908, - 0x2b1908082b190808, 0x2b19081908080808, 0x2b19081908081919, 0x2b19081908190819, - 0x2b19081908191908, 0x2b19081919080819, 0x2b19081919081908, 0x2b19081919190808, - 0x2b19081919192b2b, 0x2b19082b08080819, 0x2b19082b08081908, 0x2b19082b08190808, - 0x2b19082b19080808, 0x2b19082b2b2b192b, 0x2b19190808080808, 0x2b1919080808082b, - 0x2b19190808081919, 0x2b19190808082b08, 0x2b19190808190819, 0x2b19190808191908, - 0x2b191908082b0808, 0x2b19190819080819, 0x2b19190819081908, 0x2b19190819190808, - 0x2b1919082b080808, 0x2b1919082b19192b, 0x2b19191908080819, 0x2b19191908081908, - 0x2b19191908190808, 0x2b19191919080808, 0x2b1919192b192b08, 0x2b1919192b2b0819, - 0x2b19192b08080808, 0x2b19192b1908192b, 0x2b19192b192b1908, 0x2b192b0808080819, - 0x2b192b0808081908, 0x2b192b0808190808, 0x2b192b08082b192b, 0x2b192b0819080808, - 0x2b192b082b2b2b19, 0x2b192b1908080808, 0x2b192b1919082b19, 0x2b192b191919082b, - 0x2b192b2b2b190808, 0x2b2b080808080808, 0x2b2b080808081919, 0x2b2b080808082b2b, - 0x2b2b080808191908, 0x2b2b0808082b082b, 0x2b2b0808082b2b2b, 0x2b2b080819080819, - 0x2b2b080819081908, 0x2b2b080819190808, 0x2b2b08082b2b082b, 0x2b2b08082b2b2b2b, - 0x2b2b081919080808, 0x2b2b0819192b1919, 0x2b2b082b0808082b, 0x2b2b082b08082b2b, - 0x2b2b082b082b082b, 0x2b2b082b082b2b08, 0x2b2b082b082b2b2b, 0x2b2b082b2b08082b, - 0x2b2b082b2b082b08, 0x2b2b082b2b082b2b, 0x2b2b082b2b2b2b08, 0x2b2b190808080819, - 0x2b2b190808081908, 0x2b2b190808190808, 0x2b2b190819080808, 0x2b2b19082b082b19, - 0x2b2b19082b2b1908, 0x2b2b191908080808, 0x2b2b191908192b19, 0x2b2b192b19190819, - 0x2b2b2b0808082b2b, 0x2b2b2b08082b2b08, 0x2b2b2b082b2b082b, 0x2b2b2b1919191908, - 0x2b2b2b192b08192b, 0x2b2b2b2b08082b08, 0x2b2b2b2b08082b2b, 0x2b2b2b2b082b0808, - 0x2b2b2b2b082b082b, 0x2b2b2b2b082b2b08, 0x2b2b2b2b2b082b08, 0x2b2b2b2b2b2b2b2b, -GGML_TABLE_END() - -GGML_TABLE_BEGIN(uint32_t, iq3xxs_grid, 256) - 0x04040404, 0x04040414, 0x04040424, 0x04040c0c, 0x04040c1c, 0x04040c3e, 0x04041404, 0x04041414, - 0x04041c0c, 0x04042414, 0x04043e1c, 0x04043e2c, 0x040c040c, 0x040c041c, 0x040c0c04, 0x040c0c14, - 0x040c140c, 0x040c142c, 0x040c1c04, 0x040c1c14, 0x040c240c, 0x040c2c24, 0x040c3e04, 0x04140404, - 0x04140414, 0x04140424, 0x04140c0c, 0x04141404, 0x04141414, 0x04141c0c, 0x04141c1c, 0x04141c3e, - 0x04142c0c, 0x04142c3e, 0x04143e2c, 0x041c040c, 0x041c043e, 0x041c0c04, 0x041c0c14, 0x041c142c, - 0x041c3e04, 0x04240c1c, 0x04241c3e, 0x04242424, 0x04242c3e, 0x04243e1c, 0x04243e2c, 0x042c040c, - 0x042c043e, 0x042c1c14, 0x042c2c14, 0x04341c2c, 0x04343424, 0x043e0c04, 0x043e0c24, 0x043e0c34, - 0x043e241c, 0x043e340c, 0x0c04040c, 0x0c04041c, 0x0c040c04, 0x0c040c14, 0x0c04140c, 0x0c04141c, - 0x0c041c04, 0x0c041c14, 0x0c041c24, 0x0c04243e, 0x0c042c04, 0x0c0c0404, 0x0c0c0414, 0x0c0c0c0c, - 0x0c0c1404, 0x0c0c1414, 0x0c14040c, 0x0c14041c, 0x0c140c04, 0x0c140c14, 0x0c14140c, 0x0c141c04, - 0x0c143e14, 0x0c1c0404, 0x0c1c0414, 0x0c1c1404, 0x0c1c1c0c, 0x0c1c2434, 0x0c1c3434, 0x0c24040c, - 0x0c24042c, 0x0c242c04, 0x0c2c1404, 0x0c2c1424, 0x0c2c2434, 0x0c2c3e0c, 0x0c34042c, 0x0c3e1414, - 0x0c3e2404, 0x14040404, 0x14040414, 0x14040c0c, 0x14040c1c, 0x14041404, 0x14041414, 0x14041434, - 0x14041c0c, 0x14042414, 0x140c040c, 0x140c041c, 0x140c042c, 0x140c0c04, 0x140c0c14, 0x140c140c, - 0x140c1c04, 0x140c341c, 0x140c343e, 0x140c3e04, 0x14140404, 0x14140414, 0x14140c0c, 0x14140c3e, - 0x14141404, 0x14141414, 0x14141c3e, 0x14142404, 0x14142c2c, 0x141c040c, 0x141c0c04, 0x141c0c24, - 0x141c3e04, 0x141c3e24, 0x14241c2c, 0x14242c1c, 0x142c041c, 0x142c143e, 0x142c240c, 0x142c3e24, - 0x143e040c, 0x143e041c, 0x143e0c34, 0x143e242c, 0x1c04040c, 0x1c040c04, 0x1c040c14, 0x1c04140c, - 0x1c04141c, 0x1c042c04, 0x1c04342c, 0x1c043e14, 0x1c0c0404, 0x1c0c0414, 0x1c0c1404, 0x1c0c1c0c, - 0x1c0c2424, 0x1c0c2434, 0x1c14040c, 0x1c14041c, 0x1c140c04, 0x1c14142c, 0x1c142c14, 0x1c143e14, - 0x1c1c0c0c, 0x1c1c1c1c, 0x1c241c04, 0x1c24243e, 0x1c243e14, 0x1c2c0404, 0x1c2c0434, 0x1c2c1414, - 0x1c2c2c2c, 0x1c340c24, 0x1c341c34, 0x1c34341c, 0x1c3e1c1c, 0x1c3e3404, 0x24040424, 0x24040c3e, - 0x24041c2c, 0x24041c3e, 0x24042c1c, 0x24042c3e, 0x240c3e24, 0x24141404, 0x24141c3e, 0x24142404, - 0x24143404, 0x24143434, 0x241c043e, 0x241c242c, 0x24240424, 0x24242c0c, 0x24243424, 0x242c142c, - 0x242c241c, 0x242c3e04, 0x243e042c, 0x243e0c04, 0x243e0c14, 0x243e1c04, 0x2c040c14, 0x2c04240c, - 0x2c043e04, 0x2c0c0404, 0x2c0c0434, 0x2c0c1434, 0x2c0c2c2c, 0x2c140c24, 0x2c141c14, 0x2c143e14, - 0x2c1c0414, 0x2c1c2c1c, 0x2c240c04, 0x2c24141c, 0x2c24143e, 0x2c243e14, 0x2c2c0414, 0x2c2c1c0c, - 0x2c342c04, 0x2c3e1424, 0x2c3e2414, 0x34041424, 0x34042424, 0x34042434, 0x34043424, 0x340c140c, - 0x340c340c, 0x34140c3e, 0x34143424, 0x341c1c04, 0x341c1c34, 0x34242424, 0x342c042c, 0x342c2c14, - 0x34341c1c, 0x343e041c, 0x343e140c, 0x3e04041c, 0x3e04042c, 0x3e04043e, 0x3e040c04, 0x3e041c14, - 0x3e042c14, 0x3e0c1434, 0x3e0c2404, 0x3e140c14, 0x3e14242c, 0x3e142c14, 0x3e1c0404, 0x3e1c0c2c, - 0x3e1c1c1c, 0x3e1c3404, 0x3e24140c, 0x3e24240c, 0x3e2c0404, 0x3e2c0414, 0x3e2c1424, 0x3e341c04, -GGML_TABLE_END() - -GGML_TABLE_BEGIN(uint32_t, iq3s_grid, 512) - 0x01010101, 0x01010103, 0x01010105, 0x0101010b, 0x0101010f, 0x01010301, 0x01010303, 0x01010305, - 0x01010309, 0x0101030d, 0x01010501, 0x01010503, 0x0101050b, 0x01010707, 0x01010901, 0x01010905, - 0x0101090b, 0x0101090f, 0x01010b03, 0x01010b07, 0x01010d01, 0x01010d05, 0x01010f03, 0x01010f09, - 0x01010f0f, 0x01030101, 0x01030103, 0x01030105, 0x01030109, 0x01030301, 0x01030303, 0x0103030b, - 0x01030501, 0x01030507, 0x0103050f, 0x01030703, 0x0103070b, 0x01030909, 0x01030d03, 0x01030d0b, - 0x01030f05, 0x01050101, 0x01050103, 0x0105010b, 0x0105010f, 0x01050301, 0x01050307, 0x0105030d, - 0x01050503, 0x0105050b, 0x01050701, 0x01050709, 0x01050905, 0x0105090b, 0x0105090f, 0x01050b03, - 0x01050b07, 0x01050f01, 0x01050f07, 0x01070107, 0x01070303, 0x0107030b, 0x01070501, 0x01070505, - 0x01070703, 0x01070707, 0x0107070d, 0x01070909, 0x01070b01, 0x01070b05, 0x01070d0f, 0x01070f03, - 0x01070f0b, 0x01090101, 0x01090307, 0x0109030f, 0x01090503, 0x01090509, 0x01090705, 0x01090901, - 0x01090907, 0x01090b03, 0x01090f01, 0x010b0105, 0x010b0109, 0x010b0501, 0x010b0505, 0x010b050d, - 0x010b0707, 0x010b0903, 0x010b090b, 0x010b090f, 0x010b0d0d, 0x010b0f07, 0x010d010d, 0x010d0303, - 0x010d0307, 0x010d0703, 0x010d0b05, 0x010d0f03, 0x010f0101, 0x010f0105, 0x010f0109, 0x010f0501, - 0x010f0505, 0x010f050d, 0x010f0707, 0x010f0b01, 0x010f0b09, 0x03010101, 0x03010103, 0x03010105, - 0x03010109, 0x03010301, 0x03010303, 0x03010307, 0x0301030b, 0x0301030f, 0x03010501, 0x03010505, - 0x03010703, 0x03010709, 0x0301070d, 0x03010b09, 0x03010b0d, 0x03010d03, 0x03010f05, 0x03030101, - 0x03030103, 0x03030107, 0x0303010d, 0x03030301, 0x03030309, 0x03030503, 0x03030701, 0x03030707, - 0x03030903, 0x03030b01, 0x03030b05, 0x03030f01, 0x03030f0d, 0x03050101, 0x03050305, 0x0305030b, - 0x0305030f, 0x03050501, 0x03050509, 0x03050705, 0x03050901, 0x03050907, 0x03050b0b, 0x03050d01, - 0x03050f05, 0x03070103, 0x03070109, 0x0307010f, 0x03070301, 0x03070307, 0x03070503, 0x0307050f, - 0x03070701, 0x03070709, 0x03070903, 0x03070d05, 0x03070f01, 0x03090107, 0x0309010b, 0x03090305, - 0x03090309, 0x03090703, 0x03090707, 0x03090905, 0x0309090d, 0x03090b01, 0x03090b09, 0x030b0103, - 0x030b0301, 0x030b0307, 0x030b0503, 0x030b0701, 0x030b0705, 0x030b0b03, 0x030d0501, 0x030d0509, - 0x030d050f, 0x030d0909, 0x030d090d, 0x030f0103, 0x030f0107, 0x030f0301, 0x030f0305, 0x030f0503, - 0x030f070b, 0x030f0903, 0x030f0d05, 0x030f0f01, 0x05010101, 0x05010103, 0x05010107, 0x0501010b, - 0x0501010f, 0x05010301, 0x05010305, 0x05010309, 0x0501030d, 0x05010503, 0x05010507, 0x0501050f, - 0x05010701, 0x05010705, 0x05010903, 0x05010907, 0x0501090b, 0x05010b01, 0x05010b05, 0x05010d0f, - 0x05010f01, 0x05010f07, 0x05010f0b, 0x05030101, 0x05030105, 0x05030301, 0x05030307, 0x0503030f, - 0x05030505, 0x0503050b, 0x05030703, 0x05030709, 0x05030905, 0x05030b03, 0x05050103, 0x05050109, - 0x0505010f, 0x05050503, 0x05050507, 0x05050701, 0x0505070f, 0x05050903, 0x05050b07, 0x05050b0f, - 0x05050f03, 0x05050f09, 0x05070101, 0x05070105, 0x0507010b, 0x05070303, 0x05070505, 0x05070509, - 0x05070703, 0x05070707, 0x05070905, 0x05070b01, 0x05070d0d, 0x05090103, 0x0509010f, 0x05090501, - 0x05090507, 0x05090705, 0x0509070b, 0x05090903, 0x05090f05, 0x05090f0b, 0x050b0109, 0x050b0303, - 0x050b0505, 0x050b070f, 0x050b0901, 0x050b0b07, 0x050b0f01, 0x050d0101, 0x050d0105, 0x050d010f, - 0x050d0503, 0x050d0b0b, 0x050d0d03, 0x050f010b, 0x050f0303, 0x050f050d, 0x050f0701, 0x050f0907, - 0x050f0b01, 0x07010105, 0x07010303, 0x07010307, 0x0701030b, 0x0701030f, 0x07010505, 0x07010703, - 0x07010707, 0x0701070b, 0x07010905, 0x07010909, 0x0701090f, 0x07010b03, 0x07010d07, 0x07010f03, - 0x07030103, 0x07030107, 0x0703010b, 0x07030309, 0x07030503, 0x07030507, 0x07030901, 0x07030d01, - 0x07030f05, 0x07030f0d, 0x07050101, 0x07050305, 0x07050501, 0x07050705, 0x07050709, 0x07050b01, - 0x07070103, 0x07070301, 0x07070309, 0x07070503, 0x07070507, 0x0707050f, 0x07070701, 0x07070903, - 0x07070907, 0x0707090f, 0x07070b0b, 0x07070f07, 0x07090107, 0x07090303, 0x0709030d, 0x07090505, - 0x07090703, 0x07090b05, 0x07090d01, 0x07090d09, 0x070b0103, 0x070b0301, 0x070b0305, 0x070b050b, - 0x070b0705, 0x070b0909, 0x070b0b0d, 0x070b0f07, 0x070d030d, 0x070d0903, 0x070f0103, 0x070f0107, - 0x070f0501, 0x070f0505, 0x070f070b, 0x09010101, 0x09010109, 0x09010305, 0x09010501, 0x09010509, - 0x0901050f, 0x09010705, 0x09010903, 0x09010b01, 0x09010f01, 0x09030105, 0x0903010f, 0x09030303, - 0x09030307, 0x09030505, 0x09030701, 0x0903070b, 0x09030907, 0x09030b03, 0x09030b0b, 0x09050103, - 0x09050107, 0x09050301, 0x0905030b, 0x09050503, 0x09050707, 0x09050901, 0x09050b0f, 0x09050d05, - 0x09050f01, 0x09070109, 0x09070303, 0x09070307, 0x09070501, 0x09070505, 0x09070703, 0x0907070b, - 0x09090101, 0x09090105, 0x09090509, 0x0909070f, 0x09090901, 0x09090f03, 0x090b010b, 0x090b010f, - 0x090b0503, 0x090b0d05, 0x090d0307, 0x090d0709, 0x090d0d01, 0x090f0301, 0x090f030b, 0x090f0701, - 0x090f0907, 0x090f0b03, 0x0b010105, 0x0b010301, 0x0b010309, 0x0b010505, 0x0b010901, 0x0b010909, - 0x0b01090f, 0x0b010b05, 0x0b010d0d, 0x0b010f09, 0x0b030103, 0x0b030107, 0x0b03010b, 0x0b030305, - 0x0b030503, 0x0b030705, 0x0b030f05, 0x0b050101, 0x0b050303, 0x0b050507, 0x0b050701, 0x0b05070d, - 0x0b050b07, 0x0b070105, 0x0b07010f, 0x0b070301, 0x0b07050f, 0x0b070909, 0x0b070b03, 0x0b070d0b, - 0x0b070f07, 0x0b090103, 0x0b090109, 0x0b090501, 0x0b090705, 0x0b09090d, 0x0b0b0305, 0x0b0b050d, - 0x0b0b0b03, 0x0b0b0b07, 0x0b0d0905, 0x0b0f0105, 0x0b0f0109, 0x0b0f0505, 0x0d010303, 0x0d010307, - 0x0d01030b, 0x0d010703, 0x0d010707, 0x0d010d01, 0x0d030101, 0x0d030501, 0x0d03050f, 0x0d030d09, - 0x0d050305, 0x0d050709, 0x0d050905, 0x0d050b0b, 0x0d050d05, 0x0d050f01, 0x0d070101, 0x0d070309, - 0x0d070503, 0x0d070901, 0x0d09050b, 0x0d090907, 0x0d090d05, 0x0d0b0101, 0x0d0b0107, 0x0d0b0709, - 0x0d0b0d01, 0x0d0d010b, 0x0d0d0901, 0x0d0f0303, 0x0d0f0307, 0x0f010101, 0x0f010109, 0x0f01010f, - 0x0f010501, 0x0f010505, 0x0f01070d, 0x0f010901, 0x0f010b09, 0x0f010d05, 0x0f030105, 0x0f030303, - 0x0f030509, 0x0f030907, 0x0f03090b, 0x0f050103, 0x0f050109, 0x0f050301, 0x0f05030d, 0x0f050503, - 0x0f050701, 0x0f050b03, 0x0f070105, 0x0f070705, 0x0f07070b, 0x0f070b07, 0x0f090103, 0x0f09010b, - 0x0f090307, 0x0f090501, 0x0f090b01, 0x0f0b0505, 0x0f0b0905, 0x0f0d0105, 0x0f0d0703, 0x0f0f0101, -GGML_TABLE_END() - -#define NGRID_IQ1S 2048 -#define IQ1S_DELTA 0.125f -#define IQ1M_DELTA 0.125f -#if defined(GGML_COMMON_IMPL_C) -GGML_TABLE_BEGIN(uint64_t, iq1s_grid, NGRID_IQ1S) - 0xffffffffffffffff, 0xffffffffffffff01, 0xffffffffffff0000, 0xffffffffffff01ff, - 0xffffffffffff0101, 0xffffffffff00ff00, 0xffffffffff000000, 0xffffffffff01ffff, - 0xffffffffff01ff01, 0xffffffffff0101ff, 0xffffffffff010101, 0xffffffff00ff0000, - 0xffffffff0000ff00, 0xffffffff000000ff, 0xffffffff00000001, 0xffffffff00010000, - 0xffffffff01ffffff, 0xffffffff01ffff01, 0xffffffff01ff01ff, 0xffffffff01ff0101, - 0xffffffff01000000, 0xffffffff0101ffff, 0xffffffff0101ff01, 0xffffffff010101ff, - 0xffffffff01010101, 0xffffff00ffff00ff, 0xffffff00ffff0000, 0xffffff00ff00ff00, - 0xffffff00ff0000ff, 0xffffff00ff000001, 0xffffff00ff000100, 0xffffff00ff000101, - 0xffffff00ff010000, 0xffffff0000ffff00, 0xffffff0000ff0001, 0xffffff0000ff0100, - 0xffffff000000ff01, 0xffffff0000000000, 0xffffff0000000101, 0xffffff000001ff00, - 0xffffff00000100ff, 0xffffff0000010001, 0xffffff00000101ff, 0xffffff0001ff0000, - 0xffffff000100ff00, 0xffffff00010000ff, 0xffffff0001000001, 0xffffff0001010000, - 0xffffff01ffffffff, 0xffffff01ffffff01, 0xffffff01ffff01ff, 0xffffff01ffff0101, - 0xffffff01ff000000, 0xffffff01ff01ffff, 0xffffff01ff01ff01, 0xffffff01ff0101ff, - 0xffffff01ff010101, 0xffffff0100ff0000, 0xffffff010000ff00, 0xffffff0100000100, - 0xffffff01000100ff, 0xffffff0100010100, 0xffffff0101ffffff, 0xffffff0101ffff01, - 0xffffff0101ff01ff, 0xffffff0101ff0101, 0xffffff010100ff00, 0xffffff0101000000, - 0xffffff0101000100, 0xffffff010101ffff, 0xffffff010101ff01, 0xffffff01010101ff, - 0xffffff0101010101, 0xffff00ffff00ff00, 0xffff00ffff0000ff, 0xffff00ffff000001, - 0xffff00ffff010000, 0xffff00ff00ffff00, 0xffff00ff00ff0100, 0xffff00ff00000000, - 0xffff00ff00000101, 0xffff00ff000100ff, 0xffff00ff00010000, 0xffff00ff0100ff00, - 0xffff00ff01000100, 0xffff00ff01010000, 0xffff0000ffffff00, 0xffff0000ffff00ff, - 0xffff0000ffff0000, 0xffff0000ffff0001, 0xffff0000ff000000, 0xffff0000ff0001ff, - 0xffff0000ff000101, 0xffff0000ff010100, 0xffff000000ffffff, 0xffff000000ff0000, - 0xffff000000ff0101, 0xffff00000000ffff, 0xffff00000000ff00, 0xffff0000000000ff, - 0xffff000000000000, 0xffff000000000001, 0xffff000000000100, 0xffff00000001ffff, - 0xffff00000001ff01, 0xffff000000010000, 0xffff0000000101ff, 0xffff000000010101, - 0xffff000001ffff00, 0xffff00000100ff00, 0xffff000001000000, 0xffff0000010001ff, - 0xffff000001000101, 0xffff00000101ff00, 0xffff0000010100ff, 0xffff000001010000, - 0xffff000001010001, 0xffff000001010100, 0xffff0001ff0000ff, 0xffff0001ff000100, - 0xffff000100ffff00, 0xffff000100ff00ff, 0xffff00010000ffff, 0xffff00010000ff01, - 0xffff000100000000, 0xffff0001000001ff, 0xffff00010001ffff, 0xffff00010001ff00, - 0xffff000100010001, 0xffff000100010100, 0xffff000101ff0000, 0xffff00010100ff00, - 0xffff0001010000ff, 0xffff000101000100, 0xffff01ffffffffff, 0xffff01ffffffff01, - 0xffff01ffffff01ff, 0xffff01ffffff0101, 0xffff01ffff000000, 0xffff01ffff01ffff, - 0xffff01ffff01ff01, 0xffff01ffff0101ff, 0xffff01ffff010101, 0xffff01ff00ff0000, - 0xffff01ff0000ff00, 0xffff01ff00000001, 0xffff01ff00010000, 0xffff01ff01ffffff, - 0xffff01ff01ffff01, 0xffff01ff01ff01ff, 0xffff01ff01ff0101, 0xffff01ff01000000, - 0xffff01ff0101ffff, 0xffff01ff0101ff01, 0xffff01ff010101ff, 0xffff01ff01010101, - 0xffff0100ffff0000, 0xffff0100ff00ff00, 0xffff0100ff0000ff, 0xffff0100ff000100, - 0xffff0100ff0100ff, 0xffff0100ff010000, 0xffff010000ffff00, 0xffff01000000ffff, - 0xffff01000000ff00, 0xffff010000000000, 0xffff01000001ff00, 0xffff0100000100ff, - 0xffff010000010100, 0xffff01000100ff00, 0xffff0100010000ff, 0xffff010001000001, - 0xffff010001000100, 0xffff010001010000, 0xffff0101ffffffff, 0xffff0101ffffff01, - 0xffff0101ffff01ff, 0xffff0101ffff0101, 0xffff0101ff000000, 0xffff0101ff01ffff, - 0xffff0101ff01ff01, 0xffff0101ff0101ff, 0xffff0101ff010101, 0xffff010100ff0000, - 0xffff01010000ff00, 0xffff010100000100, 0xffff01010001ff00, 0xffff010100010000, - 0xffff010101ffffff, 0xffff010101ffff01, 0xffff010101ff0000, 0xffff010101ff01ff, - 0xffff010101ff0101, 0xffff010101000000, 0xffff01010101ffff, 0xffff01010101ff01, - 0xffff0101010101ff, 0xffff010101010101, 0xff00ffffff00ffff, 0xff00ffffff00ff00, - 0xff00ffffff0000ff, 0xff00ffffff000100, 0xff00ffffff0100ff, 0xff00ffffff010000, - 0xff00ffff00ffff00, 0xff00ffff00ff00ff, 0xff00ffff0000ffff, 0xff00ffff00000000, - 0xff00ffff000001ff, 0xff00ffff0001ff00, 0xff00ffff000100ff, 0xff00ffff00010000, - 0xff00ffff00010100, 0xff00ffff0100ff00, 0xff00ffff010000ff, 0xff00ffff01000001, - 0xff00ffff0101ff00, 0xff00ffff01010000, 0xff00ff00ffffff00, 0xff00ff00ffff00ff, - 0xff00ff00ffff0001, 0xff00ff00ffff0100, 0xff00ff00ff00ffff, 0xff00ff00ff00ff01, - 0xff00ff00ff000000, 0xff00ff00ff0001ff, 0xff00ff00ff01ff00, 0xff00ff00ff0100ff, - 0xff00ff00ff010100, 0xff00ff0000ff0000, 0xff00ff0000ff0101, 0xff00ff000000ffff, - 0xff00ff000000ff00, 0xff00ff000000ff01, 0xff00ff00000000ff, 0xff00ff0000000000, - 0xff00ff0000000001, 0xff00ff0000000100, 0xff00ff000001ffff, 0xff00ff0000010000, - 0xff00ff0001ff00ff, 0xff00ff000100ff01, 0xff00ff0001000000, 0xff00ff000101ff00, - 0xff00ff00010100ff, 0xff00ff01ff00ff00, 0xff00ff01ff0000ff, 0xff00ff01ff000001, - 0xff00ff01ff010000, 0xff00ff0100ffffff, 0xff00ff0100ff0001, 0xff00ff0100ff0100, - 0xff00ff010000ff01, 0xff00ff0100000000, 0xff00ff01000001ff, 0xff00ff0100000101, - 0xff00ff01000100ff, 0xff00ff0100010001, 0xff00ff0101ff0000, 0xff00ff010100ff00, - 0xff00ff01010000ff, 0xff00ff0101000001, 0xff00ff0101010000, 0xff0000ffffffff00, - 0xff0000ffffff0001, 0xff0000ffffff0100, 0xff0000ffff0000ff, 0xff0000ffff000000, - 0xff0000ffff0001ff, 0xff0000ffff000100, 0xff0000ffff01ff00, 0xff0000ffff010001, - 0xff0000ff00ffff00, 0xff0000ff00ff0000, 0xff0000ff00ff0001, 0xff0000ff00ff01ff, - 0xff0000ff00ff0101, 0xff0000ff0000ff00, 0xff0000ff000000ff, 0xff0000ff00000000, - 0xff0000ff00000001, 0xff0000ff00000100, 0xff0000ff0001ff01, 0xff0000ff00010000, - 0xff0000ff000101ff, 0xff0000ff01ff00ff, 0xff0000ff01ff0100, 0xff0000ff0100ffff, - 0xff0000ff010000ff, 0xff0000ff01000000, 0xff0000ff010001ff, 0xff0000ff01000100, - 0xff0000ff01000101, 0xff0000ff0101ff00, 0xff0000ff010100ff, 0xff0000ff01010000, - 0xff0000ff01010100, 0xff000000ffffff01, 0xff000000ffff0000, 0xff000000ffff0101, - 0xff000000ff00ff00, 0xff000000ff0000ff, 0xff000000ff000000, 0xff000000ff000001, - 0xff000000ff000100, 0xff000000ff01ffff, 0xff000000ff01ff01, 0xff000000ff010000, - 0xff000000ff0101ff, 0xff000000ff010101, 0xff00000000ffff00, 0xff00000000ff00ff, - 0xff00000000ff0000, 0xff00000000ff0001, 0xff0000000000ff00, 0xff0000000000ff01, - 0xff000000000000ff, 0xff00000000000000, 0xff00000000000001, 0xff00000000000100, - 0xff00000000000101, 0xff0000000001ff00, 0xff000000000100ff, 0xff00000000010000, - 0xff00000000010001, 0xff00000000010100, 0xff00000001ffffff, 0xff00000001ffff01, - 0xff00000001ff00ff, 0xff00000001ff0000, 0xff00000001ff01ff, 0xff00000001ff0101, - 0xff0000000100ffff, 0xff0000000100ff00, 0xff000000010000ff, 0xff00000001000000, - 0xff00000001000001, 0xff00000001000100, 0xff00000001000101, 0xff0000000101ffff, - 0xff0000000101ff01, 0xff00000001010000, 0xff000001ffffff00, 0xff000001ffff00ff, - 0xff000001ffff0000, 0xff000001ffff0001, 0xff000001ff000000, 0xff000001ff000001, - 0xff000001ff0001ff, 0xff000001ff000101, 0xff000001ff01ff00, 0xff000001ff010001, - 0xff00000100ffffff, 0xff00000100ffff01, 0xff00000100ff00ff, 0xff00000100ff0000, - 0xff00000100ff01ff, 0xff00000100ff0101, 0xff0000010000ff00, 0xff00000100000000, - 0xff00000100000001, 0xff000001000001ff, 0xff00000100000100, 0xff0000010001ff00, - 0xff000001000100ff, 0xff00000100010000, 0xff000001000101ff, 0xff00000100010100, - 0xff00000100010101, 0xff00000101ff0001, 0xff00000101ff0101, 0xff0000010100ff01, - 0xff00000101000000, 0xff000001010100ff, 0xff00000101010100, 0xff0001ffff00ff00, - 0xff0001ffff000001, 0xff0001ffff010000, 0xff0001ff00ffff00, 0xff0001ff00ff00ff, - 0xff0001ff00ff0001, 0xff0001ff00ff0100, 0xff0001ff0000ffff, 0xff0001ff00000000, - 0xff0001ff000001ff, 0xff0001ff00000101, 0xff0001ff0001ffff, 0xff0001ff0001ff00, - 0xff0001ff000100ff, 0xff0001ff00010001, 0xff0001ff00010100, 0xff0001ff01ff0000, - 0xff0001ff0100ff00, 0xff0001ff010000ff, 0xff0001ff01010000, 0xff000100ff00ffff, - 0xff000100ff00ff01, 0xff000100ff000000, 0xff000100ff000101, 0xff000100ff01ff00, - 0xff000100ff010000, 0xff00010000ffff01, 0xff00010000ff00ff, 0xff00010000ff0000, - 0xff00010000ff01ff, 0xff0001000000ff00, 0xff000100000000ff, 0xff00010000000000, - 0xff00010000000001, 0xff00010000000100, 0xff00010000000101, 0xff0001000001ffff, - 0xff00010000010000, 0xff00010000010101, 0xff00010001ff0100, 0xff0001000100ff00, - 0xff0001000100ff01, 0xff00010001000000, 0xff000100010001ff, 0xff0001000101ff00, - 0xff00010001010001, 0xff00010001010100, 0xff000101ffff0100, 0xff000101ff000001, - 0xff000101ff0100ff, 0xff000101ff010001, 0xff00010100ff00ff, 0xff00010100ff0001, - 0xff00010100ff0100, 0xff0001010000ffff, 0xff0001010000ff01, 0xff00010100000000, - 0xff000101000001ff, 0xff0001010001ff00, 0xff00010100010001, 0xff00010100010100, - 0xff00010101ff0000, 0xff0001010100ff00, 0xff00010101000001, 0xff00010101000101, - 0xff01ffffffffffff, 0xff01ffffffffff01, 0xff01ffffffff01ff, 0xff01ffffffff0101, - 0xff01ffffff000000, 0xff01ffffff01ffff, 0xff01ffffff01ff01, 0xff01ffffff010000, - 0xff01ffffff0101ff, 0xff01ffffff010101, 0xff01ffff00ff0000, 0xff01ffff0000ff00, - 0xff01ffff00000100, 0xff01ffff0001ff00, 0xff01ffff00010000, 0xff01ffff01ffffff, - 0xff01ffff01ffff01, 0xff01ffff01ff01ff, 0xff01ffff01ff0101, 0xff01ffff01000000, - 0xff01ffff0101ffff, 0xff01ffff0101ff01, 0xff01ffff01010000, 0xff01ffff010101ff, - 0xff01ffff01010101, 0xff01ff00ffff0000, 0xff01ff00ff00ff00, 0xff01ff00ff0000ff, - 0xff01ff00ff000100, 0xff01ff00ff010000, 0xff01ff0000ffff01, 0xff01ff0000ff00ff, - 0xff01ff0000ff0100, 0xff01ff0000000000, 0xff01ff00000001ff, 0xff01ff0000000101, - 0xff01ff000001ff00, 0xff01ff00000100ff, 0xff01ff0000010000, 0xff01ff0000010001, - 0xff01ff0001ff0000, 0xff01ff000100ffff, 0xff01ff0001000001, 0xff01ff0001000100, - 0xff01ff0001010000, 0xff01ff01ffffff00, 0xff01ff01ffff01ff, 0xff01ff01ffff0101, - 0xff01ff01ff00ff00, 0xff01ff01ff000000, 0xff01ff01ff01ffff, 0xff01ff01ff01ff01, - 0xff01ff01ff0101ff, 0xff01ff01ff010101, 0xff01ff0100ff0000, 0xff01ff010000ff00, - 0xff01ff0100000001, 0xff01ff0100000100, 0xff01ff0100010000, 0xff01ff0101ffff00, - 0xff01ff0101ff01ff, 0xff01ff0101ff0101, 0xff01ff010100ff00, 0xff01ff0101000000, - 0xff01ff010101ffff, 0xff01ff010101ff01, 0xff01ff01010101ff, 0xff01ff0101010101, - 0xff0100ffffff0000, 0xff0100ffff0000ff, 0xff0100ffff000001, 0xff0100ffff000100, - 0xff0100ffff010000, 0xff0100ff00ff00ff, 0xff0100ff00ff0000, 0xff0100ff00ff0001, - 0xff0100ff00ff0100, 0xff0100ff0000ff01, 0xff0100ff00000000, 0xff0100ff000001ff, - 0xff0100ff00000101, 0xff0100ff00010001, 0xff0100ff01ff0000, 0xff0100ff0100ff00, - 0xff0100ff010000ff, 0xff0100ff01000100, 0xff0100ff0101ff00, 0xff0100ff01010000, - 0xff010000ffff0100, 0xff010000ff000000, 0xff010000ff01ff00, 0xff010000ff010100, - 0xff01000000ffffff, 0xff01000000ff0000, 0xff01000000ff01ff, 0xff0100000000ff00, - 0xff010000000000ff, 0xff01000000000000, 0xff01000000000100, 0xff0100000001ff01, - 0xff01000000010000, 0xff010000000101ff, 0xff01000001ff0100, 0xff0100000100ffff, - 0xff010000010000ff, 0xff01000001000000, 0xff010000010001ff, 0xff01000001000101, - 0xff0100000101ff00, 0xff010000010100ff, 0xff01000001010001, 0xff01000001010100, - 0xff010001ffff0000, 0xff010001ff00ffff, 0xff010001ff00ff01, 0xff010001ff000100, - 0xff010001ff010000, 0xff01000100ffff00, 0xff01000100ff0100, 0xff01000100000000, - 0xff0100010001ffff, 0xff0100010001ff00, 0xff01000100010100, 0xff01000101ff00ff, - 0xff01000101ff0001, 0xff0100010100ffff, 0xff01000101000101, 0xff0101ffffffffff, - 0xff0101ffffffff01, 0xff0101ffffff01ff, 0xff0101ffffff0101, 0xff0101ffff000000, - 0xff0101ffff01ffff, 0xff0101ffff01ff01, 0xff0101ffff0101ff, 0xff0101ffff010101, - 0xff0101ff00ff0000, 0xff0101ff0000ff00, 0xff0101ff000000ff, 0xff0101ff00010000, - 0xff0101ff01ffffff, 0xff0101ff01ffff01, 0xff0101ff01ff01ff, 0xff0101ff01ff0101, - 0xff0101ff0101ffff, 0xff0101ff0101ff01, 0xff0101ff010101ff, 0xff0101ff01010101, - 0xff010100ffff0100, 0xff010100ff00ff00, 0xff010100ff0000ff, 0xff010100ff000100, - 0xff010100ff010000, 0xff01010000ff0001, 0xff01010000ff0100, 0xff0101000000ff01, - 0xff01010000000000, 0xff0101000001ff00, 0xff010100000100ff, 0xff01010000010001, - 0xff01010000010100, 0xff01010001ff0000, 0xff0101000100ffff, 0xff01010001000001, - 0xff01010001000100, 0xff010100010100ff, 0xff01010001010000, 0xff010101ffffffff, - 0xff010101ffffff01, 0xff010101ffff01ff, 0xff010101ffff0101, 0xff010101ff01ffff, - 0xff010101ff01ff01, 0xff010101ff0101ff, 0xff010101ff010101, 0xff01010100ff0000, - 0xff0101010000ff00, 0xff01010100000001, 0xff01010100000100, 0xff01010100010000, - 0xff01010101ffffff, 0xff01010101ffff01, 0xff01010101ff01ff, 0xff01010101ff0101, - 0xff01010101000000, 0xff0101010101ffff, 0xff0101010101ff01, 0xff010101010101ff, - 0xff01010101010101, 0x00ffffffffff0000, 0x00ffffffff00ff00, 0x00ffffffff000001, - 0x00ffffffff010000, 0x00ffffff00ff0100, 0x00ffffff0000ff01, 0x00ffffff00000000, - 0x00ffffff000001ff, 0x00ffffff00000101, 0x00ffffff0001ff00, 0x00ffffff000100ff, - 0x00ffffff00010001, 0x00ffffff010000ff, 0x00ffffff01000100, 0x00ffffff0101ff00, - 0x00ffffff01010001, 0x00ffff00ffffffff, 0x00ffff00ffffff00, 0x00ffff00ffff00ff, - 0x00ffff00ffff0001, 0x00ffff00ffff0100, 0x00ffff00ff00ff01, 0x00ffff00ff000000, - 0x00ffff00ff000001, 0x00ffff00ff0001ff, 0x00ffff00ff000101, 0x00ffff00ff01ff00, - 0x00ffff00ff010001, 0x00ffff00ff010100, 0x00ffff0000ff0000, 0x00ffff0000ff01ff, - 0x00ffff0000ff0101, 0x00ffff000000ff00, 0x00ffff00000000ff, 0x00ffff0000000000, - 0x00ffff0000000001, 0x00ffff0000000100, 0x00ffff0000000101, 0x00ffff0000010000, - 0x00ffff00000101ff, 0x00ffff0000010101, 0x00ffff0001ffff00, 0x00ffff0001ff00ff, - 0x00ffff0001ff0001, 0x00ffff000100ffff, 0x00ffff000100ff01, 0x00ffff0001000000, - 0x00ffff000101ffff, 0x00ffff000101ff00, 0x00ffff000101ff01, 0x00ffff01ffff0000, - 0x00ffff01ff00ff00, 0x00ffff01ff0000ff, 0x00ffff01ff000001, 0x00ffff01ff010000, - 0x00ffff0100ffff00, 0x00ffff010000ff01, 0x00ffff0100000000, 0x00ffff0100000101, - 0x00ffff01000100ff, 0x00ffff0100010100, 0x00ffff0101ff0100, 0x00ffff01010000ff, - 0x00ffff0101010000, 0x00ff00ffffffff00, 0x00ff00ffff000000, 0x00ff00ffff000100, - 0x00ff00ffff010100, 0x00ff00ff00ff0000, 0x00ff00ff00ff01ff, 0x00ff00ff00ff0101, - 0x00ff00ff0000ff00, 0x00ff00ff000000ff, 0x00ff00ff00000000, 0x00ff00ff00000001, - 0x00ff00ff0001ff00, 0x00ff00ff0001ff01, 0x00ff00ff00010000, 0x00ff00ff000101ff, - 0x00ff00ff00010101, 0x00ff00ff01ffff00, 0x00ff00ff01ff0001, 0x00ff00ff01ff0100, - 0x00ff00ff0100ffff, 0x00ff00ff0100ff01, 0x00ff00ff01000000, 0x00ff00ff0101ffff, - 0x00ff00ff0101ff00, 0x00ff00ff01010100, 0x00ff0000ffffff00, 0x00ff0000ffffff01, - 0x00ff0000ffff0000, 0x00ff0000ffff0101, 0x00ff0000ff00ff00, 0x00ff0000ff0000ff, - 0x00ff0000ff000000, 0x00ff0000ff000001, 0x00ff0000ff000100, 0x00ff0000ff01ffff, - 0x00ff0000ff010000, 0x00ff0000ff010101, 0x00ff000000ffff00, 0x00ff000000ff00ff, - 0x00ff000000ff0000, 0x00ff000000ff0001, 0x00ff000000ff0100, 0x00ff00000000ffff, - 0x00ff00000000ff00, 0x00ff0000000000ff, 0x00ff000000000000, 0x00ff000000000001, - 0x00ff0000000001ff, 0x00ff000000000100, 0x00ff00000001ff00, 0x00ff0000000100ff, - 0x00ff000000010000, 0x00ff000000010001, 0x00ff000000010100, 0x00ff000001ffff01, - 0x00ff000001ff00ff, 0x00ff000001ff0000, 0x00ff000001ff01ff, 0x00ff00000100ff00, - 0x00ff0000010000ff, 0x00ff000001000000, 0x00ff000001000001, 0x00ff000001000100, - 0x00ff000001000101, 0x00ff000001010000, 0x00ff0000010101ff, 0x00ff000001010101, - 0x00ff0001ffffff00, 0x00ff0001ffff0000, 0x00ff0001ffff0100, 0x00ff0001ff0000ff, - 0x00ff0001ff000000, 0x00ff0001ff0001ff, 0x00ff0001ff000101, 0x00ff0001ff01ff00, - 0x00ff0001ff0100ff, 0x00ff0001ff010100, 0x00ff000100ffffff, 0x00ff000100ffff01, - 0x00ff000100ff0000, 0x00ff000100ff01ff, 0x00ff00010000ffff, 0x00ff00010000ff00, - 0x00ff00010000ff01, 0x00ff000100000000, 0x00ff000100000001, 0x00ff000100000100, - 0x00ff00010001ff01, 0x00ff000100010000, 0x00ff0001000101ff, 0x00ff000101ffff00, - 0x00ff000101ff0000, 0x00ff000101ff0101, 0x00ff0001010000ff, 0x00ff000101000000, - 0x00ff00010101ff00, 0x00ff0001010100ff, 0x00ff000101010001, 0x00ff01ffffff0000, - 0x00ff01ffff00ff00, 0x00ff01ffff000000, 0x00ff01ffff000101, 0x00ff01ffff010000, - 0x00ff01ff00ffff01, 0x00ff01ff00ff0100, 0x00ff01ff0000ffff, 0x00ff01ff00000000, - 0x00ff01ff000001ff, 0x00ff01ff0001ff00, 0x00ff01ff000100ff, 0x00ff01ff00010001, - 0x00ff01ff00010100, 0x00ff01ff01ff0000, 0x00ff01ff0100ff00, 0x00ff01ff010000ff, - 0x00ff01ff01000001, 0x00ff01ff01000100, 0x00ff01ff01010000, 0x00ff0100ffffff00, - 0x00ff0100ffff0000, 0x00ff0100ffff0001, 0x00ff0100ffff0101, 0x00ff0100ff00ffff, - 0x00ff0100ff0000ff, 0x00ff0100ff000000, 0x00ff0100ff0001ff, 0x00ff0100ff01ff00, - 0x00ff0100ff0100ff, 0x00ff0100ff010001, 0x00ff010000ffffff, 0x00ff010000ff0000, - 0x00ff010000ff0101, 0x00ff01000000ff00, 0x00ff01000000ff01, 0x00ff0100000000ff, - 0x00ff010000000000, 0x00ff010000000001, 0x00ff010000000100, 0x00ff01000001ffff, - 0x00ff01000001ff01, 0x00ff010000010000, 0x00ff010000010001, 0x00ff010000010101, - 0x00ff010001ff0001, 0x00ff010001ff0100, 0x00ff01000100ff01, 0x00ff010001000000, - 0x00ff010001000001, 0x00ff0100010001ff, 0x00ff01000101ff00, 0x00ff0100010100ff, - 0x00ff010001010001, 0x00ff010001010100, 0x00ff0101ff000001, 0x00ff010100ff00ff, - 0x00ff010100ff0001, 0x00ff010100ff0100, 0x00ff010100000000, 0x00ff0101000001ff, - 0x00ff010100000101, 0x00ff0101000100ff, 0x00ff010100010100, 0x00ff0101010000ff, - 0x00ff010101010000, 0x0000ffffffffff00, 0x0000ffffffff00ff, 0x0000ffffffff0000, - 0x0000ffffffff0001, 0x0000ffffffff0100, 0x0000ffffff00ff01, 0x0000ffffff000000, - 0x0000ffffff000101, 0x0000ffffff01ff00, 0x0000ffffff0100ff, 0x0000ffffff010100, - 0x0000ffff00ffffff, 0x0000ffff00ff0000, 0x0000ffff00ff01ff, 0x0000ffff0000ff00, - 0x0000ffff000000ff, 0x0000ffff00000000, 0x0000ffff00000001, 0x0000ffff00000100, - 0x0000ffff00010000, 0x0000ffff000101ff, 0x0000ffff01ff0001, 0x0000ffff01ff0100, - 0x0000ffff01000000, 0x0000ffff010001ff, 0x0000ffff0101ffff, 0x0000ffff0101ff00, - 0x0000ffff01010001, 0x0000ffff01010100, 0x0000ff00ffff0000, 0x0000ff00ffff01ff, - 0x0000ff00ffff0100, 0x0000ff00ffff0101, 0x0000ff00ff00ff00, 0x0000ff00ff0000ff, - 0x0000ff00ff000000, 0x0000ff00ff000001, 0x0000ff00ff0001ff, 0x0000ff00ff000100, - 0x0000ff00ff01ffff, 0x0000ff00ff010000, 0x0000ff00ff010001, 0x0000ff00ff0101ff, - 0x0000ff00ff010101, 0x0000ff0000ffff00, 0x0000ff0000ff00ff, 0x0000ff0000ff0000, - 0x0000ff0000ff0001, 0x0000ff0000ff0100, 0x0000ff000000ffff, 0x0000ff000000ff00, - 0x0000ff000000ff01, 0x0000ff00000000ff, 0x0000ff0000000000, 0x0000ff0000000001, - 0x0000ff00000001ff, 0x0000ff0000000100, 0x0000ff0000000101, 0x0000ff000001ff00, - 0x0000ff00000100ff, 0x0000ff0000010000, 0x0000ff0000010001, 0x0000ff0000010100, - 0x0000ff0001ffff01, 0x0000ff0001ff0000, 0x0000ff000100ff00, 0x0000ff00010000ff, - 0x0000ff0001000000, 0x0000ff0001000001, 0x0000ff0001000100, 0x0000ff000101ffff, - 0x0000ff0001010000, 0x0000ff0001010101, 0x0000ff01ffffff00, 0x0000ff01ffff0001, - 0x0000ff01ff00ff01, 0x0000ff01ff000000, 0x0000ff01ff000101, 0x0000ff01ff01ff00, - 0x0000ff01ff0100ff, 0x0000ff0100ffff01, 0x0000ff0100ff0000, 0x0000ff0100ff0101, - 0x0000ff010000ff00, 0x0000ff01000000ff, 0x0000ff0100000000, 0x0000ff0100000001, - 0x0000ff0100000100, 0x0000ff010001ff01, 0x0000ff0100010000, 0x0000ff0101ff0000, - 0x0000ff010100ffff, 0x0000ff010100ff01, 0x0000ff0101000000, 0x0000ff0101000100, - 0x0000ff0101000101, 0x0000ff01010100ff, 0x000000ffffff00ff, 0x000000ffffff0000, - 0x000000ffff00ff00, 0x000000ffff0000ff, 0x000000ffff000000, 0x000000ffff000001, - 0x000000ffff0001ff, 0x000000ffff000100, 0x000000ffff01ff00, 0x000000ffff010000, - 0x000000ffff0101ff, 0x000000ffff010101, 0x000000ff00ffff00, 0x000000ff00ff00ff, - 0x000000ff00ff0000, 0x000000ff00ff0001, 0x000000ff00ff0100, 0x000000ff00ff0101, - 0x000000ff0000ffff, 0x000000ff0000ff00, 0x000000ff000000ff, 0x000000ff00000000, - 0x000000ff00000001, 0x000000ff000001ff, 0x000000ff00000100, 0x000000ff00000101, - 0x000000ff0001ff00, 0x000000ff0001ff01, 0x000000ff000100ff, 0x000000ff00010000, - 0x000000ff00010001, 0x000000ff00010100, 0x000000ff01ffffff, 0x000000ff01ff01ff, - 0x000000ff01ff0101, 0x000000ff0100ff00, 0x000000ff010000ff, 0x000000ff01000000, - 0x000000ff01000001, 0x000000ff01000100, 0x000000ff0101ff00, 0x000000ff010100ff, - 0x000000ff01010000, 0x000000ff01010101, 0x00000000ffffff00, 0x00000000ffffff01, - 0x00000000ffff00ff, 0x00000000ffff0000, 0x00000000ffff0001, 0x00000000ffff0100, - 0x00000000ff00ffff, 0x00000000ff00ff00, 0x00000000ff00ff01, 0x00000000ff0000ff, - 0x00000000ff000000, 0x00000000ff000001, 0x00000000ff000100, 0x00000000ff000101, - 0x00000000ff01ff00, 0x00000000ff0100ff, 0x00000000ff010000, 0x00000000ff010001, - 0x00000000ff010100, 0x0000000000ffffff, 0x0000000000ffff00, 0x0000000000ffff01, - 0x0000000000ff00ff, 0x0000000000ff0000, 0x0000000000ff0001, 0x0000000000ff01ff, - 0x0000000000ff0100, 0x000000000000ffff, 0x000000000000ff00, 0x000000000000ff01, - 0x00000000000000ff, 0x0000000000000000, 0x0000000000000001, 0x00000000000001ff, - 0x0000000000000100, 0x0000000000000101, 0x000000000001ffff, 0x000000000001ff00, - 0x00000000000100ff, 0x0000000000010000, 0x0000000000010001, 0x00000000000101ff, - 0x0000000000010100, 0x0000000000010101, 0x0000000001ffff00, 0x0000000001ff00ff, - 0x0000000001ff0000, 0x0000000001ff0100, 0x0000000001ff0101, 0x000000000100ffff, - 0x000000000100ff00, 0x00000000010000ff, 0x0000000001000000, 0x0000000001000001, - 0x00000000010001ff, 0x0000000001000100, 0x000000000101ff00, 0x00000000010100ff, - 0x0000000001010000, 0x0000000001010001, 0x0000000001010100, 0x00000001ffffffff, - 0x00000001ffffff00, 0x00000001ffffff01, 0x00000001ffff00ff, 0x00000001ffff0001, - 0x00000001ffff01ff, 0x00000001ffff0100, 0x00000001ff00ff00, 0x00000001ff0000ff, - 0x00000001ff000000, 0x00000001ff0001ff, 0x00000001ff000100, 0x00000001ff01ffff, - 0x00000001ff01ff00, 0x00000001ff01ff01, 0x00000001ff0100ff, 0x00000001ff010000, - 0x00000001ff010001, 0x00000001ff0101ff, 0x00000001ff010100, 0x0000000100ffff00, - 0x0000000100ff0000, 0x0000000100ff0001, 0x0000000100ff01ff, 0x0000000100ff0100, - 0x0000000100ff0101, 0x000000010000ffff, 0x000000010000ff00, 0x000000010000ff01, - 0x00000001000000ff, 0x0000000100000000, 0x0000000100000001, 0x00000001000001ff, - 0x0000000100000100, 0x0000000100000101, 0x000000010001ff00, 0x00000001000100ff, - 0x0000000100010000, 0x0000000100010100, 0x0000000101ffff01, 0x0000000101ff0000, - 0x0000000101ff0001, 0x0000000101ff01ff, 0x0000000101ff0100, 0x0000000101ff0101, - 0x000000010100ff00, 0x0000000101000000, 0x0000000101000101, 0x000000010101ff01, - 0x0000000101010000, 0x0000000101010001, 0x00000001010101ff, 0x0000000101010100, - 0x000001ffffff00ff, 0x000001ffffff0000, 0x000001ffffff0001, 0x000001ffffff0100, - 0x000001ffff00ffff, 0x000001ffff000000, 0x000001ffff0001ff, 0x000001ffff01ff00, - 0x000001ffff010101, 0x000001ff00ff0000, 0x000001ff00ff01ff, 0x000001ff00ff0101, - 0x000001ff0000ff00, 0x000001ff000000ff, 0x000001ff00000000, 0x000001ff00000001, - 0x000001ff000001ff, 0x000001ff00000100, 0x000001ff0001ffff, 0x000001ff0001ff01, - 0x000001ff000100ff, 0x000001ff00010000, 0x000001ff01ffff01, 0x000001ff01ff0100, - 0x000001ff0100ffff, 0x000001ff0100ff01, 0x000001ff01000000, 0x000001ff010001ff, - 0x000001ff0101ff00, 0x000001ff01010100, 0x00000100ffffff00, 0x00000100ffffff01, - 0x00000100ffff0000, 0x00000100ffff0101, 0x00000100ff00ff00, 0x00000100ff0000ff, - 0x00000100ff000000, 0x00000100ff000001, 0x00000100ff000100, 0x00000100ff010000, - 0x0000010000ffff00, 0x0000010000ff00ff, 0x0000010000ff0000, 0x0000010000ff0001, - 0x0000010000ff0100, 0x000001000000ffff, 0x000001000000ff00, 0x000001000000ff01, - 0x00000100000000ff, 0x0000010000000000, 0x0000010000000001, 0x00000100000001ff, - 0x0000010000000100, 0x0000010000000101, 0x000001000001ff00, 0x00000100000100ff, - 0x0000010000010000, 0x0000010000010001, 0x0000010000010100, 0x0000010001ffff00, - 0x0000010001ff0000, 0x0000010001ff0100, 0x000001000100ff00, 0x00000100010000ff, - 0x0000010001000000, 0x0000010001000001, 0x00000100010001ff, 0x0000010001000100, - 0x0000010001010000, 0x00000101ffff00ff, 0x00000101ffff01ff, 0x00000101ff000000, - 0x00000101ff000101, 0x00000101ff01ffff, 0x00000101ff010000, 0x00000101ff010001, - 0x00000101ff010100, 0x0000010100ff0000, 0x0000010100ff01ff, 0x0000010100ff0100, - 0x000001010000ff00, 0x0000010100000000, 0x0000010100000001, 0x00000101000001ff, - 0x0000010100000100, 0x000001010001ff01, 0x0000010100010000, 0x00000101000101ff, - 0x0000010100010101, 0x0000010101ffff00, 0x0000010101ff0101, 0x000001010100ff01, - 0x0000010101000000, 0x0000010101000001, 0x00000101010001ff, 0x0000010101000101, - 0x000001010101ff00, 0x0001ffffffff0000, 0x0001ffffff0000ff, 0x0001ffffff000001, - 0x0001ffffff000100, 0x0001ffffff010000, 0x0001ffff00ff00ff, 0x0001ffff0000ffff, - 0x0001ffff00000000, 0x0001ffff00000001, 0x0001ffff000001ff, 0x0001ffff00000101, - 0x0001ffff0001ff00, 0x0001ffff000100ff, 0x0001ffff00010001, 0x0001ffff00010100, - 0x0001ffff01ffff00, 0x0001ffff01000001, 0x0001ffff01010000, 0x0001ff00ffffff00, - 0x0001ff00ffff00ff, 0x0001ff00ffff0001, 0x0001ff00ffff0100, 0x0001ff00ff00ff01, - 0x0001ff00ff000000, 0x0001ff00ff01ff00, 0x0001ff00ff01ff01, 0x0001ff00ff010001, - 0x0001ff00ff010100, 0x0001ff0000ff0000, 0x0001ff0000ff0100, 0x0001ff000000ff00, - 0x0001ff0000000000, 0x0001ff0000000001, 0x0001ff0000000100, 0x0001ff0000010000, - 0x0001ff0000010001, 0x0001ff0000010101, 0x0001ff0001ff00ff, 0x0001ff0001ff0101, - 0x0001ff000100ff01, 0x0001ff0001000000, 0x0001ff000101ff00, 0x0001ff0001010001, - 0x0001ff0001010100, 0x0001ff01ff00ff00, 0x0001ff01ff000001, 0x0001ff01ff000100, - 0x0001ff0100ffffff, 0x0001ff0100ffff00, 0x0001ff0100ff0001, 0x0001ff0100000000, - 0x0001ff0100000001, 0x0001ff01000001ff, 0x0001ff010001ffff, 0x0001ff0101ff0000, - 0x0001ff010100ff00, 0x0001ff0101000001, 0x0001ff0101010000, 0x000100ffff00ff00, - 0x000100ffff00ff01, 0x000100ffff000000, 0x000100ffff000001, 0x000100ffff000101, - 0x000100ffff01ff00, 0x000100ffff010001, 0x000100ffff010100, 0x000100ff00ffffff, - 0x000100ff00ffff01, 0x000100ff00ff0000, 0x000100ff00ff01ff, 0x000100ff00ff0101, - 0x000100ff0000ff00, 0x000100ff000000ff, 0x000100ff00000000, 0x000100ff00000001, - 0x000100ff00000100, 0x000100ff00000101, 0x000100ff0001ffff, 0x000100ff0001ff01, - 0x000100ff00010000, 0x000100ff01ff00ff, 0x000100ff01ff0000, 0x000100ff01ff0100, - 0x000100ff0100ffff, 0x000100ff0100ff01, 0x000100ff010000ff, 0x000100ff01000000, - 0x000100ff01000001, 0x000100ff010001ff, 0x000100ff01000101, 0x000100ff0101ff00, - 0x000100ff010100ff, 0x000100ff01010100, 0x00010000ffff0000, 0x00010000ffff01ff, - 0x00010000ffff0101, 0x00010000ff00ff00, 0x00010000ff000000, 0x00010000ff000001, - 0x00010000ff000100, 0x0001000000ff00ff, 0x0001000000ff0000, 0x0001000000ff0001, - 0x0001000000ff0100, 0x000100000000ffff, 0x000100000000ff00, 0x00010000000000ff, - 0x0001000000000000, 0x0001000000000001, 0x0001000000000100, 0x000100000001ff00, - 0x00010000000100ff, 0x0001000000010000, 0x0001000000010001, 0x0001000000010100, - 0x0001000001ff0001, 0x0001000001ff0100, 0x0001000001ff0101, 0x000100000100ff00, - 0x0001000001000000, 0x0001000001000001, 0x0001000001000100, 0x0001000001000101, - 0x000100000101ff01, 0x0001000001010000, 0x0001000001010001, 0x00010000010101ff, - 0x00010001ffffff01, 0x00010001ffff0100, 0x00010001ff000000, 0x00010001ff01ffff, - 0x00010001ff010001, 0x00010001ff0101ff, 0x00010001ff010100, 0x0001000100ffffff, - 0x0001000100ff0000, 0x0001000100ff01ff, 0x0001000100ff0101, 0x000100010000ff00, - 0x00010001000000ff, 0x0001000100000000, 0x0001000100000001, 0x00010001000001ff, - 0x0001000100000101, 0x000100010001ffff, 0x0001000100010000, 0x00010001000101ff, - 0x0001000101ffffff, 0x0001000101ffff01, 0x0001000101ff0000, 0x0001000101ff0101, - 0x00010001010000ff, 0x0001000101000001, 0x00010001010001ff, 0x0001000101000100, - 0x000100010101ffff, 0x00010001010100ff, 0x0001000101010001, 0x0001000101010101, - 0x000101ffff000001, 0x000101ffff000100, 0x000101ffff010000, 0x000101ff00ffff00, - 0x000101ff0000ff01, 0x000101ff00000000, 0x000101ff00000101, 0x000101ff0001ff00, - 0x000101ff00010100, 0x000101ff01ff0000, 0x000101ff0100ff00, 0x000101ff010001ff, - 0x000101ff01010001, 0x00010100ffffff00, 0x00010100ffff00ff, 0x00010100ff00ffff, - 0x00010100ff000000, 0x00010100ff01ff00, 0x00010100ff0100ff, 0x00010100ff010001, - 0x00010100ff010100, 0x0001010000ffffff, 0x0001010000ffff00, 0x0001010000ff0000, - 0x0001010000ff0001, 0x0001010000ff01ff, 0x000101000000ff00, 0x00010100000000ff, - 0x0001010000000000, 0x0001010000000001, 0x0001010000000100, 0x000101000001ffff, - 0x0001010000010000, 0x0001010000010101, 0x0001010001ffff01, 0x0001010001ff00ff, - 0x0001010001ff0101, 0x0001010001000000, 0x000101000101ff00, 0x00010100010100ff, - 0x0001010001010000, 0x0001010001010100, 0x00010101ff00ff00, 0x00010101ff000001, - 0x00010101ff0001ff, 0x0001010100ffff00, 0x0001010100ff00ff, 0x0001010100ff0100, - 0x000101010000ffff, 0x0001010100000000, 0x00010101000001ff, 0x0001010100000101, - 0x00010101000100ff, 0x0001010100010000, 0x0001010100010100, 0x0001010101ff0001, - 0x00010101010000ff, 0x00010101010001ff, 0x0001010101000101, 0x0001010101010001, - 0x01ffffffffffffff, 0x01ffffffffffff01, 0x01ffffffffff01ff, 0x01ffffffffff0101, - 0x01ffffffff01ffff, 0x01ffffffff01ff01, 0x01ffffffff0101ff, 0x01ffffffff010101, - 0x01ffffff00ff0000, 0x01ffffff0000ffff, 0x01ffffff0000ff00, 0x01ffffff000000ff, - 0x01ffffff00000001, 0x01ffffff00000100, 0x01ffffff00010000, 0x01ffffff01ffffff, - 0x01ffffff01ffff01, 0x01ffffff01ff01ff, 0x01ffffff01ff0101, 0x01ffffff01000000, - 0x01ffffff0101ffff, 0x01ffffff0101ff01, 0x01ffffff010101ff, 0x01ffffff01010101, - 0x01ffff00ffff0000, 0x01ffff00ff00ff00, 0x01ffff00ff0000ff, 0x01ffff00ff000001, - 0x01ffff00ff000100, 0x01ffff00ff010000, 0x01ffff0000ffff00, 0x01ffff0000ff00ff, - 0x01ffff0000ff0100, 0x01ffff000000ffff, 0x01ffff000000ff01, 0x01ffff0000000000, - 0x01ffff0000000001, 0x01ffff00000001ff, 0x01ffff0000000100, 0x01ffff00000100ff, - 0x01ffff0000010001, 0x01ffff0000010100, 0x01ffff0001ff0000, 0x01ffff0001ff0100, - 0x01ffff00010000ff, 0x01ffff0001000001, 0x01ffff0001000100, 0x01ffff0001010000, - 0x01ffff01ffffffff, 0x01ffff01ffffff01, 0x01ffff01ffff01ff, 0x01ffff01ffff0101, - 0x01ffff01ff000000, 0x01ffff01ff01ffff, 0x01ffff01ff01ff01, 0x01ffff01ff0101ff, - 0x01ffff01ff010101, 0x01ffff010000ff00, 0x01ffff01000000ff, 0x01ffff0100000100, - 0x01ffff0100010000, 0x01ffff0101ffffff, 0x01ffff0101ffff01, 0x01ffff0101ff01ff, - 0x01ffff0101ff0101, 0x01ffff0101000000, 0x01ffff010101ffff, 0x01ffff010101ff01, - 0x01ffff01010101ff, 0x01ffff0101010101, 0x01ff00ffff0000ff, 0x01ff00ffff000100, - 0x01ff00ff00ffff00, 0x01ff00ff00ff00ff, 0x01ff00ff0000ff00, 0x01ff00ff00000000, - 0x01ff00ff00000101, 0x01ff00ff0001ff00, 0x01ff00ff000100ff, 0x01ff00ff00010100, - 0x01ff00ff010000ff, 0x01ff00ff01000100, 0x01ff0000ffffff00, 0x01ff0000ffff0100, - 0x01ff0000ff00ff01, 0x01ff0000ff000000, 0x01ff0000ff000101, 0x01ff0000ff010001, - 0x01ff0000ff010100, 0x01ff000000ffffff, 0x01ff000000ffff00, 0x01ff000000ff0000, - 0x01ff000000ff01ff, 0x01ff00000000ff00, 0x01ff0000000000ff, 0x01ff000000000000, - 0x01ff000000000001, 0x01ff000000000100, 0x01ff000000000101, 0x01ff000000010000, - 0x01ff000000010001, 0x01ff0000000101ff, 0x01ff000000010101, 0x01ff000001ffff00, - 0x01ff000001ff00ff, 0x01ff000001ff0001, 0x01ff000001ff0100, 0x01ff00000100ffff, - 0x01ff00000100ff01, 0x01ff000001000000, 0x01ff0000010001ff, 0x01ff000001010001, - 0x01ff0001ff00ff00, 0x01ff0001ff000001, 0x01ff0001ff000100, 0x01ff0001ff010000, - 0x01ff000100ffff00, 0x01ff000100ff00ff, 0x01ff000100ff0100, 0x01ff000100ff0101, - 0x01ff00010000ffff, 0x01ff000100000000, 0x01ff000100000100, 0x01ff000100000101, - 0x01ff00010001ff00, 0x01ff000100010001, 0x01ff000100010101, 0x01ff000101ff0000, - 0x01ff00010100ff00, 0x01ff000101000101, 0x01ff0001010100ff, 0x01ff01ffffffffff, - 0x01ff01ffffffff01, 0x01ff01ffffff01ff, 0x01ff01ffffff0101, 0x01ff01ffff000000, - 0x01ff01ffff01ffff, 0x01ff01ffff01ff01, 0x01ff01ffff0101ff, 0x01ff01ffff010101, - 0x01ff01ff00ffff00, 0x01ff01ff00ff0000, 0x01ff01ff0000ff00, 0x01ff01ff000000ff, - 0x01ff01ff00000100, 0x01ff01ff00010000, 0x01ff01ff00010100, 0x01ff01ff01ffffff, - 0x01ff01ff01ffff01, 0x01ff01ff01ff01ff, 0x01ff01ff01ff0101, 0x01ff01ff01000000, - 0x01ff01ff0101ffff, 0x01ff01ff0101ff01, 0x01ff01ff010101ff, 0x01ff01ff01010101, - 0x01ff0100ffff0000, 0x01ff0100ffff0001, 0x01ff0100ff00ff00, 0x01ff0100ff0000ff, - 0x01ff0100ff000001, 0x01ff0100ff010000, 0x01ff010000ffff00, 0x01ff010000ff00ff, - 0x01ff010000ff0001, 0x01ff010000ff0100, 0x01ff01000000ffff, 0x01ff01000000ff01, - 0x01ff010000000000, 0x01ff010000000101, 0x01ff01000001ff00, 0x01ff0100000100ff, - 0x01ff010001ff0000, 0x01ff010001000001, 0x01ff010001000100, 0x01ff010001010000, - 0x01ff0101ffffffff, 0x01ff0101ffffff01, 0x01ff0101ffff01ff, 0x01ff0101ffff0101, - 0x01ff0101ff000000, 0x01ff0101ff01ffff, 0x01ff0101ff01ff01, 0x01ff0101ff0101ff, - 0x01ff0101ff010101, 0x01ff010100ff0000, 0x01ff01010000ff00, 0x01ff0101000000ff, - 0x01ff010100000001, 0x01ff010101ffffff, 0x01ff010101ffff01, 0x01ff010101ff01ff, - 0x01ff010101ff0101, 0x01ff010101000000, 0x01ff01010101ffff, 0x01ff01010101ff01, - 0x01ff0101010101ff, 0x01ff010101010101, 0x0100ffffffff0000, 0x0100ffffff00ff00, - 0x0100ffffff000001, 0x0100ffffff0001ff, 0x0100ffffff000100, 0x0100ffffff010000, - 0x0100ffff00ffff00, 0x0100ffff00ff0001, 0x0100ffff00ff0100, 0x0100ffff00000000, - 0x0100ffff000001ff, 0x0100ffff00000101, 0x0100ffff00010100, 0x0100ffff00010101, - 0x0100ffff01ff0000, 0x0100ffff0100ff00, 0x0100ffff010000ff, 0x0100ffff01000001, - 0x0100ffff01000100, 0x0100ffff01010000, 0x0100ff00ffffff00, 0x0100ff00ffff00ff, - 0x0100ff00ffff0001, 0x0100ff00ffff0100, 0x0100ff00ff00ffff, 0x0100ff00ff000000, - 0x0100ff00ff0001ff, 0x0100ff00ff000101, 0x0100ff00ff01ff00, 0x0100ff00ff0100ff, - 0x0100ff00ff010001, 0x0100ff00ff010100, 0x0100ff0000ffffff, 0x0100ff0000ff0000, - 0x0100ff000000ffff, 0x0100ff000000ff00, 0x0100ff00000000ff, 0x0100ff0000000000, - 0x0100ff0000000001, 0x0100ff0000000100, 0x0100ff000001ff01, 0x0100ff0000010000, - 0x0100ff0001ff00ff, 0x0100ff0001ff0001, 0x0100ff000100ff01, 0x0100ff0001000000, - 0x0100ff00010001ff, 0x0100ff000101ff00, 0x0100ff00010100ff, 0x0100ff0001010001, - 0x0100ff0001010100, 0x0100ff01ffff0000, 0x0100ff01ff00ff00, 0x0100ff01ff0000ff, - 0x0100ff01ff000100, 0x0100ff01ff010000, 0x0100ff0100ff00ff, 0x0100ff0100ff0001, - 0x0100ff0100ff0100, 0x0100ff010000ffff, 0x0100ff010000ff01, 0x0100ff0100000000, - 0x0100ff01000001ff, 0x0100ff0100010001, 0x0100ff0100010100, 0x0100ff0101ff0000, - 0x0100ff01010000ff, 0x0100ff0101000001, 0x0100ff0101010100, 0x010000ffffffff00, - 0x010000ffffff00ff, 0x010000ffffff0001, 0x010000ffff00ffff, 0x010000ffff000000, - 0x010000ffff0001ff, 0x010000ffff010001, 0x010000ff00ffffff, 0x010000ff00ff0101, - 0x010000ff0000ff00, 0x010000ff000000ff, 0x010000ff00000000, 0x010000ff00000001, - 0x010000ff000001ff, 0x010000ff00000100, 0x010000ff0001ffff, 0x010000ff0001ff00, - 0x010000ff0001ff01, 0x010000ff00010000, 0x010000ff01ff00ff, 0x010000ff01ff0001, - 0x010000ff0100ff01, 0x010000ff010000ff, 0x010000ff01000000, 0x010000ff010001ff, - 0x010000ff0101ff00, 0x010000ff01010100, 0x01000000ffffffff, 0x01000000ffff0000, - 0x01000000ffff01ff, 0x01000000ffff0101, 0x01000000ff00ffff, 0x01000000ff00ff00, - 0x01000000ff0000ff, 0x01000000ff000000, 0x01000000ff000001, 0x01000000ff000100, - 0x01000000ff01ff00, 0x01000000ff010000, 0x01000000ff010100, 0x01000000ff010101, - 0x0100000000ffff00, 0x0100000000ff00ff, 0x0100000000ff0000, 0x0100000000ff0001, - 0x0100000000ff0100, 0x010000000000ffff, 0x010000000000ff00, 0x010000000000ff01, - 0x01000000000000ff, 0x0100000000000000, 0x0100000000000001, 0x01000000000001ff, - 0x0100000000000100, 0x0100000000000101, 0x010000000001ff00, 0x01000000000100ff, - 0x0100000000010000, 0x0100000000010001, 0x0100000000010100, 0x0100000001ffff00, - 0x0100000001ff0000, 0x0100000001ff01ff, 0x010000000100ff00, 0x010000000100ff01, - 0x01000000010000ff, 0x0100000001000000, 0x0100000001000001, 0x0100000001000100, - 0x0100000001000101, 0x010000000101ffff, 0x010000000101ff01, 0x0100000001010000, - 0x01000000010101ff, 0x0100000001010101, 0x01000001ffffff00, 0x01000001ffff00ff, - 0x01000001ff00ffff, 0x01000001ff000000, 0x01000001ff000100, 0x01000001ff01ffff, - 0x01000001ff010001, 0x01000001ff010100, 0x0100000100ff0000, 0x0100000100ff01ff, - 0x0100000100ff0100, 0x010000010000ff00, 0x010000010000ff01, 0x0100000100000000, - 0x0100000100000001, 0x0100000100000100, 0x0100000100010000, 0x01000001000101ff, - 0x0100000101ffff01, 0x0100000101ff00ff, 0x0100000101ff0100, 0x0100000101ff0101, - 0x010000010100ff01, 0x01000001010000ff, 0x0100000101000000, 0x01000001010100ff, - 0x0100000101010001, 0x0100000101010100, 0x010001ffffff0000, 0x010001ffff000001, - 0x010001ffff000100, 0x010001ffff010000, 0x010001ff00ffff00, 0x010001ff00ff0001, - 0x010001ff0000ffff, 0x010001ff0000ff01, 0x010001ff00000000, 0x010001ff00000001, - 0x010001ff00000101, 0x010001ff000100ff, 0x010001ff00010000, 0x010001ff01ff0000, - 0x010001ff0100ff00, 0x010001ff01000001, 0x010001ff01000100, 0x010001ff01010000, - 0x01000100ffff00ff, 0x01000100ffff0001, 0x01000100ffff0100, 0x01000100ff00ffff, - 0x01000100ff00ff01, 0x01000100ff000000, 0x01000100ff0001ff, 0x01000100ff000101, - 0x01000100ff01ffff, 0x01000100ff01ff00, 0x01000100ff0100ff, 0x01000100ff010001, - 0x0100010000ffffff, 0x0100010000ffff01, 0x0100010000ff0000, 0x0100010000ff01ff, - 0x0100010000ff0101, 0x010001000000ff00, 0x01000100000000ff, 0x0100010000000000, - 0x0100010000000001, 0x0100010000000100, 0x010001000001ff01, 0x0100010000010000, - 0x0100010000010001, 0x0100010000010101, 0x0100010001ffff00, 0x0100010001ff00ff, - 0x010001000100ffff, 0x010001000100ff01, 0x0100010001000000, 0x0100010001000101, - 0x010001000101ff00, 0x0100010001010001, 0x01000101ffff0000, 0x01000101ff000000, - 0x01000101ff010000, 0x0100010100ff00ff, 0x0100010100ff0001, 0x0100010100ff0100, - 0x010001010000ffff, 0x0100010100000000, 0x01000101000001ff, 0x010001010001ff00, - 0x0100010101ff0000, 0x010001010100ff00, 0x01000101010000ff, 0x0100010101000000, - 0x0100010101000001, 0x0101ffffffffffff, 0x0101ffffffffff01, 0x0101ffffffff01ff, - 0x0101ffffffff0101, 0x0101ffffff000000, 0x0101ffffff01ffff, 0x0101ffffff01ff01, - 0x0101ffffff0101ff, 0x0101ffffff010101, 0x0101ffff00ff0000, 0x0101ffff0000ff00, - 0x0101ffff000000ff, 0x0101ffff00000001, 0x0101ffff00000100, 0x0101ffff01ffffff, - 0x0101ffff01ffff01, 0x0101ffff01ff01ff, 0x0101ffff01ff0101, 0x0101ffff01000000, - 0x0101ffff0101ffff, 0x0101ffff0101ff01, 0x0101ffff010101ff, 0x0101ffff01010101, - 0x0101ff00ffff0000, 0x0101ff00ffff0100, 0x0101ff00ff00ff00, 0x0101ff00ff0000ff, - 0x0101ff00ff000001, 0x0101ff00ff000100, 0x0101ff00ff000101, 0x0101ff0000ff0001, - 0x0101ff0000ff0100, 0x0101ff000000ff00, 0x0101ff0000000000, 0x0101ff00000001ff, - 0x0101ff0000000101, 0x0101ff000001ff00, 0x0101ff00000100ff, 0x0101ff0001ff0000, - 0x0101ff000100ffff, 0x0101ff000100ff01, 0x0101ff0001000001, 0x0101ff0001000100, - 0x0101ff01ffffff01, 0x0101ff01ffff01ff, 0x0101ff01ffff0101, 0x0101ff01ff00ffff, - 0x0101ff01ff000100, 0x0101ff01ff01ff01, 0x0101ff01ff0101ff, 0x0101ff01ff010101, - 0x0101ff0100ff0000, 0x0101ff010000ff00, 0x0101ff0100000001, 0x0101ff0100000100, - 0x0101ff0100010000, 0x0101ff0101ffffff, 0x0101ff0101ffff01, 0x0101ff0101ff01ff, - 0x0101ff0101ff0101, 0x0101ff0101000000, 0x0101ff010101ffff, 0x0101ff010101ff01, - 0x0101ff01010101ff, 0x0101ff0101010101, 0x010100ffff000100, 0x010100ffff010000, - 0x010100ff00ffff00, 0x010100ff00ff00ff, 0x010100ff0000ffff, 0x010100ff000000ff, - 0x010100ff00000000, 0x010100ff000001ff, 0x010100ff00000101, 0x010100ff0001ff00, - 0x010100ff00010000, 0x010100ff00010001, 0x010100ff000101ff, 0x010100ff00010100, - 0x010100ff01ff0000, 0x01010000ffff0001, 0x01010000ffff0100, 0x01010000ff00ffff, - 0x01010000ff00ff01, 0x01010000ff000000, 0x01010000ff0001ff, 0x01010000ff010001, - 0x01010000ff010100, 0x0101000000ffff01, 0x0101000000ff0000, 0x010100000000ff00, - 0x01010000000000ff, 0x0101000000000000, 0x0101000000000001, 0x0101000000000100, - 0x0101000000010000, 0x0101000000010101, 0x0101000001ffff00, 0x0101000001ff00ff, - 0x0101000001ff0000, 0x0101000001ff0001, 0x0101000001ff0100, 0x010100000100ff01, - 0x0101000001000000, 0x01010000010001ff, 0x01010001ffff0000, 0x01010001ff00ff00, - 0x01010001ff000001, 0x01010001ff000101, 0x01010001ff01ff00, 0x01010001ff010000, - 0x0101000100ff00ff, 0x0101000100ff0001, 0x0101000100ff0101, 0x010100010000ff01, - 0x0101000100000000, 0x0101000100000001, 0x01010001000001ff, 0x010100010001ffff, - 0x010100010001ff01, 0x0101000101ff0001, 0x010100010100ffff, 0x0101000101000000, - 0x0101000101000001, 0x0101000101000100, 0x010100010101ff00, 0x01010001010100ff, - 0x0101000101010001, 0x010101ffffffffff, 0x010101ffffffff01, 0x010101ffffff01ff, - 0x010101ffffff0101, 0x010101ffff01ffff, 0x010101ffff01ff01, 0x010101ffff0101ff, - 0x010101ffff010101, 0x010101ff0000ff00, 0x010101ff000000ff, 0x010101ff00000001, - 0x010101ff00000100, 0x010101ff01ffffff, 0x010101ff01ffff01, 0x010101ff01ff01ff, - 0x010101ff01ff0101, 0x010101ff01000000, 0x010101ff0101ffff, 0x010101ff0101ff01, - 0x010101ff010101ff, 0x010101ff01010101, 0x01010100ffff0000, 0x01010100ff0000ff, - 0x01010100ff000100, 0x01010100ff01ff00, 0x01010100ff010000, 0x0101010000ffff00, - 0x010101000000ffff, 0x0101010000000000, 0x0101010000000101, 0x010101000001ff00, - 0x0101010000010001, 0x0101010000010100, 0x010101000100ffff, 0x0101010001000001, - 0x01010101ffffffff, 0x01010101ffffff01, 0x01010101ffff01ff, 0x01010101ffff0101, - 0x01010101ff01ffff, 0x01010101ff01ff01, 0x01010101ff0101ff, 0x01010101ff010101, - 0x010101010000ff00, 0x01010101000000ff, 0x0101010100000001, 0x0101010101ffffff, - 0x0101010101ffff01, 0x0101010101ff01ff, 0x0101010101ff0101, 0x0101010101000000, - 0x010101010101ffff, 0x010101010101ff01, 0x01010101010101ff, 0x0101010101010101, -GGML_TABLE_END() -#else -GGML_TABLE_BEGIN(uint32_t, iq1s_grid_gpu, NGRID_IQ1S) - 0x00000000, 0x00000002, 0x00000101, 0x00000200, 0x00000202, 0x00010001, 0x00010101, 0x00020000, - 0x00020002, 0x00020200, 0x00020202, 0x01000101, 0x01010001, 0x01010100, 0x01010102, 0x01020101, - 0x02000000, 0x02000002, 0x02000200, 0x02000202, 0x02010101, 0x02020000, 0x02020002, 0x02020200, - 0x02020202, 0x00000110, 0x00000111, 0x00010011, 0x00010110, 0x00010112, 0x00010211, 0x00010212, - 0x00020111, 0x01000011, 0x01000112, 0x01000211, 0x01010012, 0x01010111, 0x01010212, 0x01020011, - 0x01020110, 0x01020112, 0x01020210, 0x02000111, 0x02010011, 0x02010110, 0x02010112, 0x02020111, - 0x00000020, 0x00000022, 0x00000220, 0x00000222, 0x00010121, 0x00020020, 0x00020022, 0x00020220, - 0x00020222, 0x01000121, 0x01010021, 0x01010221, 0x01020120, 0x01020221, 0x02000020, 0x02000022, - 0x02000220, 0x02000222, 0x02010021, 0x02010121, 0x02010221, 0x02020020, 0x02020022, 0x02020220, - 0x02020222, 0x00011001, 0x00011100, 0x00011102, 0x00021101, 0x01001001, 0x01001201, 0x01011101, - 0x01011202, 0x01021100, 0x01021101, 0x02011001, 0x02011201, 0x02021101, 0x00001011, 0x00001110, - 0x00001111, 0x00001112, 0x00011111, 0x00011210, 0x00011212, 0x00021211, 0x01001010, 0x01001111, - 0x01001212, 0x01011010, 0x01011011, 0x01011110, 0x01011111, 0x01011112, 0x01011211, 0x01021010, - 0x01021012, 0x01021111, 0x01021210, 0x01021212, 0x02001011, 0x02011011, 0x02011111, 0x02011210, - 0x02011212, 0x02021011, 0x02021110, 0x02021111, 0x02021112, 0x02021211, 0x00011120, 0x00011221, - 0x01001021, 0x01001120, 0x01011020, 0x01011022, 0x01011121, 0x01011220, 0x01021020, 0x01021021, - 0x01021122, 0x01021221, 0x02001121, 0x02011021, 0x02011120, 0x02011221, 0x00002000, 0x00002002, - 0x00002200, 0x00002202, 0x00012101, 0x00022000, 0x00022002, 0x00022200, 0x00022202, 0x01002101, - 0x01012001, 0x01012102, 0x01022101, 0x02002000, 0x02002002, 0x02002200, 0x02002202, 0x02012101, - 0x02022000, 0x02022002, 0x02022200, 0x02022202, 0x00002111, 0x00012011, 0x00012110, 0x00012211, - 0x00022110, 0x00022111, 0x01002011, 0x01012010, 0x01012011, 0x01012111, 0x01022011, 0x01022110, - 0x01022211, 0x02012011, 0x02012110, 0x02012112, 0x02012211, 0x02022111, 0x00002020, 0x00002022, - 0x00002220, 0x00002222, 0x00012121, 0x00022020, 0x00022022, 0x00022220, 0x00022222, 0x01002121, - 0x01012021, 0x01012221, 0x01022021, 0x01022121, 0x02002020, 0x02002022, 0x02002121, 0x02002220, - 0x02002222, 0x02012121, 0x02022020, 0x02022022, 0x02022220, 0x02022222, 0x00110000, 0x00110001, - 0x00110100, 0x00110201, 0x00120100, 0x00120101, 0x01100001, 0x01100100, 0x01110000, 0x01110101, - 0x01110200, 0x01120001, 0x01120100, 0x01120101, 0x01120201, 0x02110001, 0x02110100, 0x02110102, - 0x02120001, 0x02120101, 0x00100011, 0x00100110, 0x00100112, 0x00100211, 0x00110010, 0x00110012, - 0x00110111, 0x00110210, 0x00120011, 0x00120110, 0x00120211, 0x01100111, 0x01100212, 0x01110010, - 0x01110011, 0x01110012, 0x01110110, 0x01110111, 0x01110112, 0x01110211, 0x01120010, 0x01120111, - 0x02100110, 0x02110012, 0x02110111, 0x02120011, 0x02120110, 0x00110021, 0x00110120, 0x00110122, - 0x00120121, 0x01100020, 0x01100122, 0x01100221, 0x01110022, 0x01110121, 0x01110220, 0x01110222, - 0x01120120, 0x01120122, 0x02100121, 0x02110021, 0x02110120, 0x02110122, 0x02120121, 0x00101001, - 0x00101102, 0x00101201, 0x00111100, 0x00111101, 0x00111200, 0x00111201, 0x00121001, 0x00121102, - 0x01101001, 0x01101101, 0x01101102, 0x01101200, 0x01101202, 0x01111001, 0x01111100, 0x01111101, - 0x01111102, 0x01111201, 0x01121002, 0x01121101, 0x01121200, 0x02101100, 0x02101201, 0x02111000, - 0x02111100, 0x02111101, 0x02111200, 0x02111201, 0x02111202, 0x02121001, 0x02121100, 0x02121101, - 0x02121201, 0x00101012, 0x00101111, 0x00101212, 0x00111011, 0x00111110, 0x00111111, 0x00111112, - 0x00111211, 0x00121010, 0x00121012, 0x00121111, 0x00121210, 0x00121212, 0x01101011, 0x01101110, - 0x01101111, 0x01101112, 0x01111011, 0x01111012, 0x01111110, 0x01111111, 0x01111112, 0x01111211, - 0x01111212, 0x01121011, 0x01121110, 0x01121111, 0x01121112, 0x01121211, 0x02101010, 0x02101012, - 0x02101110, 0x02101111, 0x02101210, 0x02101212, 0x02111010, 0x02111011, 0x02111110, 0x02111111, - 0x02111112, 0x02111211, 0x02111212, 0x02121010, 0x02121012, 0x02121111, 0x00101021, 0x00101120, - 0x00101121, 0x00101122, 0x00111121, 0x00111122, 0x00111220, 0x00111222, 0x00121021, 0x00121122, - 0x01101020, 0x01101022, 0x01101120, 0x01101121, 0x01101220, 0x01101222, 0x01111021, 0x01111121, - 0x01111122, 0x01111220, 0x01111221, 0x01121021, 0x01121120, 0x01121121, 0x01121220, 0x01121221, - 0x01121222, 0x02101122, 0x02101222, 0x02111022, 0x02111121, 0x02121120, 0x02121221, 0x00112001, - 0x00112102, 0x00122101, 0x01102001, 0x01102100, 0x01102102, 0x01102201, 0x01112000, 0x01112101, - 0x01112200, 0x01112202, 0x01122000, 0x01122001, 0x01122100, 0x01122102, 0x01122201, 0x02102101, - 0x02112001, 0x02112100, 0x02122101, 0x00112010, 0x00112012, 0x00112111, 0x00112212, 0x00122011, - 0x00122111, 0x01102012, 0x01102110, 0x01102111, 0x01102210, 0x01112011, 0x01112110, 0x01112111, - 0x01112112, 0x01112211, 0x01112212, 0x01122010, 0x01122111, 0x01122212, 0x02102211, 0x02112011, - 0x02112012, 0x02112111, 0x02112210, 0x02122011, 0x02122112, 0x02122211, 0x00102221, 0x00112122, - 0x00122120, 0x00122122, 0x01102120, 0x01102122, 0x01102221, 0x01112020, 0x01112022, 0x01112121, - 0x01112220, 0x01122021, 0x01122122, 0x01122221, 0x02102121, 0x02112021, 0x02112122, 0x02112222, - 0x00200000, 0x00200002, 0x00200200, 0x00200202, 0x00210101, 0x00220000, 0x00220002, 0x00220101, - 0x00220200, 0x00220202, 0x01200101, 0x01210001, 0x01210201, 0x01220001, 0x01220101, 0x02200000, - 0x02200002, 0x02200200, 0x02200202, 0x02210101, 0x02220000, 0x02220002, 0x02220101, 0x02220200, - 0x02220202, 0x00200111, 0x00210011, 0x00210110, 0x00210211, 0x00220111, 0x01200012, 0x01200110, - 0x01200211, 0x01210111, 0x01210210, 0x01210212, 0x01220011, 0x01220110, 0x01220111, 0x01220112, - 0x02200111, 0x02210010, 0x02210112, 0x02210211, 0x02220111, 0x00200021, 0x00200220, 0x00200222, - 0x00210021, 0x00210121, 0x00220020, 0x00220022, 0x00220220, 0x00220222, 0x01200121, 0x01210021, - 0x01210122, 0x01210221, 0x01220121, 0x02200021, 0x02200220, 0x02200222, 0x02210021, 0x02210121, - 0x02220020, 0x02220022, 0x02220220, 0x02220222, 0x00201101, 0x00211100, 0x00211102, 0x00211201, - 0x00221101, 0x01201100, 0x01201101, 0x01201102, 0x01201201, 0x01211002, 0x01211101, 0x01211200, - 0x01211202, 0x01221102, 0x02201101, 0x02211001, 0x02211100, 0x02211201, 0x02221001, 0x02221101, - 0x00201211, 0x00211111, 0x00221011, 0x00221211, 0x01201010, 0x01201111, 0x01201210, 0x01211011, - 0x01211110, 0x01211111, 0x01211211, 0x01221012, 0x01221111, 0x01221210, 0x02201211, 0x02211010, - 0x02211110, 0x02211111, 0x02211210, 0x02211212, 0x02221011, 0x02221110, 0x02221112, 0x02221211, - 0x00201121, 0x00211020, 0x00211022, 0x00211221, 0x00221121, 0x01201021, 0x01201221, 0x01211121, - 0x01221020, 0x01221021, 0x01221221, 0x02201120, 0x02201122, 0x02211020, 0x02211222, 0x00202000, - 0x00202002, 0x00202200, 0x00202202, 0x00212101, 0x00222000, 0x00222002, 0x00222200, 0x00222202, - 0x01202101, 0x01212001, 0x01212100, 0x01222101, 0x02202000, 0x02202002, 0x02202200, 0x02202202, - 0x02222000, 0x02222002, 0x02222200, 0x02222202, 0x00202211, 0x00212011, 0x00212110, 0x00212211, - 0x00222111, 0x01202112, 0x01202211, 0x01212012, 0x01212111, 0x01222011, 0x01222110, 0x01222112, - 0x01222211, 0x02202111, 0x02212010, 0x02212112, 0x02212211, 0x02222110, 0x02222111, 0x00202020, - 0x00202022, 0x00202220, 0x00202222, 0x00222020, 0x00222022, 0x00222220, 0x00222222, 0x01202121, - 0x01212021, 0x01212122, 0x01212221, 0x01222121, 0x02202020, 0x02202022, 0x02202220, 0x02202222, - 0x02212121, 0x02222020, 0x02222022, 0x02222220, 0x02222222, 0x10000101, 0x10010001, 0x10010102, - 0x10020101, 0x11000201, 0x11010002, 0x11010101, 0x11010200, 0x11010202, 0x11020001, 0x11020100, - 0x11020102, 0x12010100, 0x12010201, 0x12020001, 0x12020102, 0x10000010, 0x10000011, 0x10000110, - 0x10000112, 0x10000211, 0x10010012, 0x10010111, 0x10010112, 0x10010210, 0x10010212, 0x10020011, - 0x10020112, 0x10020211, 0x11000111, 0x11000210, 0x11000212, 0x11010011, 0x11010110, 0x11010111, - 0x11010112, 0x11010211, 0x11010212, 0x11020111, 0x11020210, 0x11020212, 0x12000011, 0x12000110, - 0x12000112, 0x12010010, 0x12010012, 0x12010111, 0x12020010, 0x12020011, 0x12020012, 0x10000121, - 0x10010021, 0x10010120, 0x10010122, 0x10020121, 0x11000021, 0x11010022, 0x11010121, 0x11010222, - 0x11020120, 0x11020221, 0x12000221, 0x12010120, 0x12020121, 0x10001001, 0x10011101, 0x10011201, - 0x10021201, 0x11001101, 0x11001200, 0x11001202, 0x11011001, 0x11011100, 0x11011101, 0x11011102, - 0x11021001, 0x11021002, 0x11021101, 0x11021200, 0x11021202, 0x12001001, 0x12001102, 0x12001201, - 0x12011000, 0x12011002, 0x12011101, 0x12021000, 0x12021001, 0x12021201, 0x10001011, 0x10001012, - 0x10001111, 0x10001212, 0x10011011, 0x10011110, 0x10011111, 0x10011112, 0x10011211, 0x10021010, - 0x10021111, 0x10021212, 0x11001011, 0x11001110, 0x11001111, 0x11001112, 0x11001211, 0x11011010, - 0x11011011, 0x11011110, 0x11011111, 0x11011112, 0x11011210, 0x11011211, 0x11021011, 0x11021110, - 0x11021111, 0x11021112, 0x11021211, 0x12001012, 0x12001110, 0x12001111, 0x12001210, 0x12011011, - 0x12011110, 0x12011111, 0x12011112, 0x12011211, 0x12011212, 0x12021111, 0x12021210, 0x12021212, - 0x10001021, 0x10001121, 0x10001221, 0x10011120, 0x10011121, 0x10011220, 0x10011222, 0x10021021, - 0x10021120, 0x10021221, 0x11001020, 0x11001022, 0x11001121, 0x11001220, 0x11011020, 0x11011021, - 0x11011022, 0x11011121, 0x11011122, 0x11011221, 0x11021022, 0x11021121, 0x11021220, 0x12001021, - 0x12001121, 0x12001222, 0x12011120, 0x12011121, 0x12021021, 0x12021120, 0x12021122, 0x10002101, - 0x10012001, 0x10012101, 0x10012202, 0x10022101, 0x11002002, 0x11002201, 0x11012000, 0x11012101, - 0x11012200, 0x11022001, 0x11022100, 0x11022102, 0x11022201, 0x12002101, 0x12012001, 0x12012100, - 0x12012102, 0x12012201, 0x12022101, 0x10002011, 0x10002111, 0x10002112, 0x10002212, 0x10012010, - 0x10012110, 0x10012111, 0x10012210, 0x10022011, 0x10022110, 0x10022112, 0x11002010, 0x11002111, - 0x11002212, 0x11012011, 0x11012012, 0x11012110, 0x11012111, 0x11012112, 0x11012211, 0x11022010, - 0x11022012, 0x11022111, 0x11022112, 0x11022212, 0x12002112, 0x12002211, 0x12012012, 0x12012111, - 0x12012112, 0x12012210, 0x12022011, 0x12022110, 0x12022112, 0x12022211, 0x10012122, 0x11002120, - 0x11002122, 0x11002221, 0x11012121, 0x11012220, 0x11012222, 0x11022120, 0x11022221, 0x12012120, - 0x12022121, 0x10100001, 0x10100100, 0x10100101, 0x10100102, 0x10100201, 0x10110002, 0x10110101, - 0x10110202, 0x10120001, 0x10120100, 0x10120201, 0x11100000, 0x11100101, 0x11100200, 0x11110001, - 0x11110100, 0x11110101, 0x11110102, 0x11110201, 0x11120101, 0x11120200, 0x12100102, 0x12100201, - 0x12110101, 0x12110200, 0x12120000, 0x12120001, 0x12120102, 0x12120201, 0x10100111, 0x10100210, - 0x10100211, 0x10100212, 0x10110011, 0x10110110, 0x10110111, 0x10110112, 0x10110210, 0x10110211, - 0x10120010, 0x10120111, 0x10120112, 0x10120210, 0x10120212, 0x11100011, 0x11100110, 0x11100111, - 0x11100112, 0x11100211, 0x11110010, 0x11110011, 0x11110012, 0x11110110, 0x11110111, 0x11110112, - 0x11110210, 0x11110211, 0x11110212, 0x11120011, 0x11120110, 0x11120111, 0x11120112, 0x11120211, - 0x12100012, 0x12100111, 0x12110011, 0x12110110, 0x12110111, 0x12110112, 0x12110211, 0x12120010, - 0x12120111, 0x12120212, 0x10100021, 0x10100122, 0x10110022, 0x10110121, 0x10110222, 0x10120021, - 0x10120120, 0x11100022, 0x11100121, 0x11100222, 0x11110021, 0x11110120, 0x11110121, 0x11110122, - 0x11110221, 0x11120022, 0x11120121, 0x12100121, 0x12110020, 0x12110022, 0x12110121, 0x12110221, - 0x12110222, 0x12120120, 0x10101100, 0x10101101, 0x10111001, 0x10111100, 0x10111101, 0x10111102, - 0x10111200, 0x10111201, 0x10121001, 0x10121101, 0x10121200, 0x10121202, 0x11101001, 0x11101100, - 0x11101101, 0x11101102, 0x11101201, 0x11101202, 0x11111000, 0x11111001, 0x11111100, 0x11111101, - 0x11111102, 0x11111200, 0x11111201, 0x11111202, 0x11121001, 0x11121002, 0x11121100, 0x11121101, - 0x11121102, 0x11121201, 0x12101000, 0x12101200, 0x12101202, 0x12111001, 0x12111100, 0x12111101, - 0x12111102, 0x12111201, 0x12121001, 0x12121100, 0x12121101, 0x12121202, 0x10101011, 0x10101012, - 0x10101110, 0x10101111, 0x10101112, 0x10101211, 0x10111010, 0x10111011, 0x10111012, 0x10111110, - 0x10111111, 0x10111112, 0x10111211, 0x10111212, 0x10121011, 0x10121110, 0x10121111, 0x10121112, - 0x10121211, 0x11101010, 0x11101011, 0x11101012, 0x11101110, 0x11101111, 0x11101112, 0x11101210, - 0x11101211, 0x11111010, 0x11111011, 0x11111012, 0x11111110, 0x11111111, 0x11111112, 0x11111210, - 0x11111211, 0x11111212, 0x11121010, 0x11121011, 0x11121110, 0x11121111, 0x11121112, 0x11121210, - 0x11121211, 0x11121212, 0x12101011, 0x12101110, 0x12101111, 0x12101211, 0x12101212, 0x12111010, - 0x12111011, 0x12111110, 0x12111111, 0x12111112, 0x12111210, 0x12111211, 0x12121011, 0x12121110, - 0x12121111, 0x12121112, 0x12121211, 0x10101020, 0x10101021, 0x10101022, 0x10101120, 0x10101122, - 0x10101220, 0x10101221, 0x10111021, 0x10111120, 0x10111121, 0x10111220, 0x10111221, 0x10121020, - 0x10121021, 0x10121022, 0x10121120, 0x10121121, 0x10121122, 0x10121220, 0x10121221, 0x11101021, - 0x11101121, 0x11101122, 0x11101220, 0x11101221, 0x11101222, 0x11111020, 0x11111021, 0x11111022, - 0x11111120, 0x11111121, 0x11111122, 0x11111220, 0x11111221, 0x11111222, 0x11121021, 0x11121120, - 0x11121121, 0x11121221, 0x12101022, 0x12101121, 0x12101122, 0x12101220, 0x12101221, 0x12101222, - 0x12111021, 0x12111121, 0x12111222, 0x12121022, 0x12121121, 0x12121122, 0x12121220, 0x12121221, - 0x10102100, 0x10102101, 0x10102102, 0x10102201, 0x10112000, 0x10112101, 0x10112200, 0x10122001, - 0x10122202, 0x11102101, 0x11102200, 0x11102202, 0x11112001, 0x11112100, 0x11112101, 0x11112102, - 0x11112200, 0x11112201, 0x11122000, 0x11122002, 0x11122100, 0x11122101, 0x12102002, 0x12102201, - 0x12112000, 0x12112002, 0x12112101, 0x12112200, 0x12122001, 0x12122201, 0x10102011, 0x10102012, - 0x10102111, 0x10102212, 0x10112011, 0x10112110, 0x10112111, 0x10112112, 0x10112211, 0x10122111, - 0x11102011, 0x11102110, 0x11102111, 0x11102112, 0x11102211, 0x11112010, 0x11112011, 0x11112012, - 0x11112110, 0x11112111, 0x11112112, 0x11112210, 0x11112211, 0x11112212, 0x11122011, 0x11122110, - 0x11122111, 0x11122112, 0x11122211, 0x12102011, 0x12102111, 0x12102211, 0x12112011, 0x12112110, - 0x12112111, 0x12112112, 0x12112210, 0x12112211, 0x12122111, 0x10102120, 0x10102220, 0x10112121, - 0x10112222, 0x10122020, 0x10122121, 0x10122122, 0x10122221, 0x11102121, 0x11102220, 0x11102221, - 0x11112021, 0x11112121, 0x11112122, 0x11112220, 0x11112221, 0x11122022, 0x11122121, 0x11122220, - 0x11122222, 0x12102021, 0x12102222, 0x12112022, 0x12112121, 0x12112122, 0x12112220, 0x12112222, - 0x12122021, 0x10200101, 0x10210100, 0x10210102, 0x10210201, 0x10220101, 0x11200100, 0x11210000, - 0x11210101, 0x11210102, 0x11210200, 0x11210202, 0x11220001, 0x11220100, 0x11220102, 0x11220201, - 0x12200001, 0x12210102, 0x12220101, 0x10200011, 0x10200110, 0x10200112, 0x10200211, 0x10210012, - 0x10210111, 0x10220011, 0x10220012, 0x10220112, 0x10220211, 0x11200111, 0x11200211, 0x11210011, - 0x11210111, 0x11210112, 0x11210211, 0x11220111, 0x11220112, 0x11220212, 0x12200110, 0x12200212, - 0x12210012, 0x12210111, 0x12220011, 0x12220112, 0x12220211, 0x10210021, 0x10210122, 0x10210221, - 0x11200020, 0x11200021, 0x11200122, 0x11210121, 0x11210122, 0x11210220, 0x11220020, 0x12200121, - 0x12210021, 0x12210122, 0x12220121, 0x10211001, 0x10211002, 0x10211101, 0x10211102, 0x10211202, - 0x10221001, 0x10221102, 0x10221201, 0x11201000, 0x11201002, 0x11201101, 0x11201200, 0x11201202, - 0x11211001, 0x11211100, 0x11211101, 0x11211102, 0x11211201, 0x11211202, 0x11221000, 0x11221002, - 0x11221101, 0x12201100, 0x12201101, 0x12201201, 0x12211000, 0x12211002, 0x12211100, 0x12211101, - 0x12211102, 0x12211200, 0x12211202, 0x12221001, 0x12221100, 0x12221201, 0x10201111, 0x10201210, - 0x10201212, 0x10211011, 0x10211111, 0x10211112, 0x10211211, 0x11201110, 0x11201111, 0x11201112, - 0x11201211, 0x11211010, 0x11211011, 0x11211110, 0x11211111, 0x11211112, 0x11211211, 0x11221011, - 0x11221110, 0x11221111, 0x11221112, 0x11221211, 0x12201112, 0x12201211, 0x12201212, 0x12211011, - 0x12211111, 0x12211112, 0x12211211, 0x12211212, 0x12221012, 0x12221111, 0x12221112, 0x12221210, - 0x10201022, 0x10201221, 0x10211121, 0x10221020, 0x10221122, 0x10221220, 0x10221221, 0x11201020, - 0x11201121, 0x11201220, 0x11201222, 0x11211021, 0x11211120, 0x11211121, 0x11211122, 0x11211220, - 0x11211222, 0x11221020, 0x11221121, 0x11221220, 0x12201020, 0x12201022, 0x12201121, 0x12201222, - 0x12211120, 0x12211122, 0x12211220, 0x12211221, 0x12221020, 0x12221120, 0x12221122, 0x12221222, - 0x10212102, 0x10212201, 0x10222101, 0x11202001, 0x11212002, 0x11212101, 0x11212202, 0x11222001, - 0x11222201, 0x12202101, 0x12212001, 0x12212200, 0x12222102, 0x10202011, 0x10202110, 0x10212010, - 0x10212111, 0x10222011, 0x10222110, 0x10222112, 0x10222211, 0x11202010, 0x11202011, 0x11202111, - 0x11202112, 0x11202210, 0x11212011, 0x11212110, 0x11212111, 0x11212112, 0x11212211, 0x11222010, - 0x11222111, 0x11222212, 0x12202012, 0x12202110, 0x12202212, 0x12212111, 0x12222011, 0x12222110, - 0x12222111, 0x12222211, 0x10212021, 0x10212122, 0x10212220, 0x11202021, 0x11202120, 0x11202221, - 0x11212020, 0x11212121, 0x11212220, 0x11212222, 0x11222120, 0x11222121, 0x11222221, 0x12202122, - 0x12212120, 0x12212220, 0x12212222, 0x12222122, 0x20000000, 0x20000002, 0x20000200, 0x20000202, - 0x20020000, 0x20020002, 0x20020200, 0x20020202, 0x21000101, 0x21010000, 0x21010001, 0x21010100, - 0x21010102, 0x21010201, 0x21020101, 0x22000000, 0x22000002, 0x22000200, 0x22000202, 0x22010101, - 0x22020000, 0x22020002, 0x22020200, 0x22020202, 0x20000111, 0x20010011, 0x20010110, 0x20010112, - 0x20010211, 0x20020111, 0x21000011, 0x21000110, 0x21000211, 0x21010010, 0x21010012, 0x21010111, - 0x21010112, 0x21010210, 0x21010211, 0x21020110, 0x21020112, 0x21020211, 0x22000111, 0x22000211, - 0x22010110, 0x22010112, 0x22010211, 0x22020111, 0x20000020, 0x20000022, 0x20000220, 0x20000222, - 0x20010121, 0x20020020, 0x20020022, 0x20020220, 0x20020222, 0x21010021, 0x21010120, 0x21010221, - 0x21020121, 0x22000020, 0x22000022, 0x22000220, 0x22000222, 0x22010121, 0x22020020, 0x22020022, - 0x22020220, 0x22020222, 0x20011100, 0x20011201, 0x21001001, 0x21001100, 0x21011001, 0x21011101, - 0x21011202, 0x21021001, 0x21021100, 0x21021201, 0x22011100, 0x22011201, 0x20001011, 0x20001211, - 0x20011012, 0x20011111, 0x20011212, 0x20021112, 0x20021211, 0x21001010, 0x21001011, 0x21001111, - 0x21001210, 0x21011011, 0x21011110, 0x21011111, 0x21011112, 0x21011211, 0x21011212, 0x21021111, - 0x21021112, 0x21021210, 0x21021212, 0x22001011, 0x22001110, 0x22001112, 0x22001211, 0x22011010, - 0x22011012, 0x22011111, 0x22011210, 0x22021112, 0x20011021, 0x20011122, 0x20011221, 0x20021121, - 0x21001021, 0x21001120, 0x21001221, 0x21001222, 0x21011020, 0x21011121, 0x21011221, 0x21011222, - 0x21021021, 0x21021122, 0x21021222, 0x22001121, 0x22011021, 0x22011222, 0x22021120, 0x20002000, - 0x20002002, 0x20002200, 0x20002202, 0x20012101, 0x20022000, 0x20022002, 0x20022200, 0x20022202, - 0x21002001, 0x21002101, 0x21012001, 0x21012100, 0x21012201, 0x21022101, 0x21022201, 0x22002000, - 0x22002002, 0x22002200, 0x22002202, 0x22012101, 0x22022000, 0x22022002, 0x22022200, 0x22022202, - 0x20002111, 0x20002112, 0x20012011, 0x20012110, 0x20012112, 0x20022111, 0x21002011, 0x21002110, - 0x21002112, 0x21002211, 0x21012010, 0x21012012, 0x21012111, 0x21012212, 0x21022011, 0x21022110, - 0x22002111, 0x22012112, 0x22012211, 0x22022111, 0x20002020, 0x20002022, 0x20002220, 0x20002222, - 0x20012121, 0x20022020, 0x20022022, 0x20022220, 0x20022222, 0x21002121, 0x21012021, 0x21012120, - 0x21012122, 0x22002020, 0x22002022, 0x22002220, 0x22002222, 0x22012121, 0x22022020, 0x22022022, - 0x22022220, 0x22022222, 0x20100101, 0x20110001, 0x20110102, 0x20110200, 0x20110201, 0x20120101, - 0x21100001, 0x21100102, 0x21100201, 0x21110101, 0x21110200, 0x21110202, 0x21120201, 0x21120202, - 0x22100101, 0x22110001, 0x22110100, 0x22110102, 0x22110201, 0x22120101, 0x20100011, 0x20100110, - 0x20100112, 0x20100211, 0x20110010, 0x20110111, 0x20110210, 0x20110212, 0x20120011, 0x20120110, - 0x20120112, 0x20120211, 0x21100010, 0x21100111, 0x21110010, 0x21110011, 0x21110110, 0x21110111, - 0x21110112, 0x21110211, 0x21120012, 0x21120111, 0x22100110, 0x22100112, 0x22110012, 0x22110111, - 0x22110210, 0x22120011, 0x22120110, 0x22120112, 0x22120211, 0x20100121, 0x20110021, 0x20110120, - 0x20110221, 0x20120121, 0x21100120, 0x21100122, 0x21100221, 0x21110020, 0x21110022, 0x21110121, - 0x21110220, 0x21120122, 0x21120221, 0x22100121, 0x22110120, 0x22110122, 0x22120221, 0x20101001, - 0x20101100, 0x20101102, 0x20111000, 0x20111101, 0x20111200, 0x20121102, 0x21101000, 0x21101202, - 0x21111001, 0x21111100, 0x21111101, 0x21111102, 0x21111200, 0x21111201, 0x21121000, 0x21121001, - 0x21121002, 0x21121101, 0x22101100, 0x22101102, 0x22111002, 0x22111100, 0x22111101, 0x22111200, - 0x22121001, 0x22121201, 0x20101010, 0x20101111, 0x20101210, 0x20101212, 0x20111010, 0x20111011, - 0x20111110, 0x20111111, 0x20111112, 0x20111211, 0x20121011, 0x20121111, 0x20121211, 0x20121212, - 0x21101011, 0x21101110, 0x21101111, 0x21101112, 0x21101211, 0x21111010, 0x21111011, 0x21111012, - 0x21111110, 0x21111111, 0x21111112, 0x21111210, 0x21111211, 0x21111212, 0x21121011, 0x21121110, - 0x21121111, 0x21121112, 0x21121211, 0x22101011, 0x22101111, 0x22101210, 0x22111011, 0x22111012, - 0x22111110, 0x22111111, 0x22111112, 0x22111211, 0x22111212, 0x22121010, 0x22121012, 0x22121111, - 0x22121210, 0x22121212, 0x20101021, 0x20101120, 0x20111020, 0x20111121, 0x20111221, 0x20121020, - 0x20121122, 0x20121221, 0x21101121, 0x21101220, 0x21101221, 0x21111021, 0x21111022, 0x21111121, - 0x21111122, 0x21111221, 0x21121121, 0x21121220, 0x22101022, 0x22101120, 0x22101221, 0x22101222, - 0x22111022, 0x22111120, 0x22111121, 0x22121120, 0x22121122, 0x22121221, 0x20102101, 0x20112102, - 0x20112201, 0x20122101, 0x21102001, 0x21102102, 0x21112000, 0x21112002, 0x21112101, 0x21112102, - 0x21112202, 0x21122100, 0x21122101, 0x22102101, 0x22112001, 0x22112102, 0x22112201, 0x22122101, - 0x20102110, 0x20102112, 0x20102211, 0x20112010, 0x20112012, 0x20112111, 0x20112210, 0x20112212, - 0x20122010, 0x20122011, 0x20122110, 0x20122112, 0x21102010, 0x21102012, 0x21102111, 0x21102210, - 0x21102212, 0x21112011, 0x21112110, 0x21112111, 0x21112112, 0x21112211, 0x21122012, 0x21122111, - 0x21122112, 0x21122212, 0x22102011, 0x22102110, 0x22112010, 0x22112012, 0x22112111, 0x22112212, - 0x22122011, 0x22122112, 0x20102121, 0x20112121, 0x20122121, 0x21102120, 0x21102122, 0x21102221, - 0x21112020, 0x21112121, 0x21112220, 0x21122021, 0x22102121, 0x22112021, 0x22112120, 0x22112121, - 0x22112122, 0x20200000, 0x20200002, 0x20200200, 0x20200202, 0x20210101, 0x20220000, 0x20220002, - 0x20220200, 0x20220202, 0x21200101, 0x21210001, 0x21210100, 0x21210102, 0x21210201, 0x22200000, - 0x22200002, 0x22200200, 0x22200202, 0x22210101, 0x22220000, 0x22220002, 0x22220200, 0x22220202, - 0x20200111, 0x20200211, 0x20210011, 0x20210110, 0x20210112, 0x20210211, 0x20210212, 0x21200112, - 0x21200211, 0x21210011, 0x21210111, 0x21210210, 0x21210212, 0x21220011, 0x21220110, 0x22200111, - 0x22210010, 0x22210012, 0x22210112, 0x22210211, 0x20200022, 0x20200220, 0x20200222, 0x20210020, - 0x20210221, 0x20220022, 0x20220220, 0x20220222, 0x21200121, 0x21210021, 0x21210122, 0x21210221, - 0x21220121, 0x22200020, 0x22200022, 0x22200220, 0x22200222, 0x22210121, 0x22220020, 0x22220022, - 0x22220220, 0x22220222, 0x20211201, 0x20221101, 0x21201001, 0x21201100, 0x21211000, 0x21211100, - 0x21211101, 0x21211200, 0x21211202, 0x21221001, 0x21221101, 0x21221102, 0x21221200, 0x21221201, - 0x22201101, 0x20201112, 0x20201211, 0x20211010, 0x20211012, 0x20211111, 0x20211210, 0x20221112, - 0x20221211, 0x21201012, 0x21201111, 0x21211011, 0x21211110, 0x21211111, 0x21211112, 0x21211211, - 0x21221111, 0x21221212, 0x22201011, 0x22201110, 0x22201111, 0x22201112, 0x22201211, 0x22211012, - 0x22211111, 0x22211210, 0x20201121, 0x20211021, 0x20211122, 0x20211222, 0x20221021, 0x20221121, - 0x21201120, 0x21201122, 0x21201222, 0x21211022, 0x21211121, 0x21211122, 0x21211220, 0x21221020, - 0x21221022, 0x22201122, 0x22211020, 0x22211121, 0x22211122, 0x22211221, 0x22221021, 0x22221120, - 0x22221122, 0x20202000, 0x20202002, 0x20202200, 0x20202202, 0x20222000, 0x20222002, 0x20222200, - 0x20222202, 0x21212001, 0x21212100, 0x21212102, 0x21212201, 0x22202000, 0x22202002, 0x22202200, - 0x22202202, 0x22212101, 0x22222000, 0x22222002, 0x22222200, 0x22222202, 0x20202111, 0x20212110, - 0x20212211, 0x20222011, 0x20222111, 0x21202011, 0x21212010, 0x21212111, 0x21212212, 0x21222011, - 0x21222112, 0x21222211, 0x22212010, 0x22212112, 0x20202020, 0x20202022, 0x20202220, 0x20202222, - 0x20222020, 0x20222022, 0x20222220, 0x20222222, 0x21212021, 0x21212120, 0x21212122, 0x22202020, - 0x22202022, 0x22202220, 0x22202222, 0x22212121, 0x22222020, 0x22222022, 0x22222220, 0x22222222, -GGML_TABLE_END() -#endif - -#endif // GGML_COMMON_IMPL -#endif // GGML_COMMON_IMPL +#ifndef GGML_COMMON_DECL + +#if defined(GGML_COMMON_DECL_C) +#include + +typedef uint16_t ggml_half; +typedef uint32_t ggml_half2; + +#define GGML_COMMON_AGGR + +#define GGML_COMMON_DECL +#elif defined(GGML_COMMON_DECL_METAL) +#include + +typedef half ggml_half; +typedef half2 ggml_half2; + +#define GGML_COMMON_AGGR + +#define GGML_COMMON_DECL +#elif defined(GGML_COMMON_DECL_CUDA) +#include +#include + +typedef half ggml_half; +typedef half2 ggml_half2; + +#define GGML_COMMON_AGGR data + +#define GGML_COMMON_DECL +#elif defined(GGML_COMMON_DECL_HIP) +#include +#include + +typedef half ggml_half; +typedef half2 ggml_half2; + +#define GGML_COMMON_AGGR data + +#define GGML_COMMON_DECL +#elif defined(GGML_COMMON_DECL_SYCL) +#include +#include + +typedef sycl::half ggml_half; +typedef sycl::half2 ggml_half2; + +#define GGML_COMMON_AGGR data + +#define GGML_COMMON_DECL +#endif + +#if defined(GGML_COMMON_DECL) + +#ifndef __cplusplus +#ifndef static_assert +#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L) +#define static_assert(cond, msg) _Static_assert(cond, msg) +#else +#define static_assert(cond, msg) struct global_scope_noop_trick +#endif +#endif +#endif // __cplusplus + +// QK = number of values after dequantization +// QK_K = super-block size + +#ifdef GGML_QKK_64 +#define QK_K 64 +#define K_SCALE_SIZE 4 +#else +#define QK_K 256 +#define K_SCALE_SIZE 12 +#endif // GGML_QKK_64 + +#if defined(GGML_COMMON_DECL_CUDA) || defined(GGML_COMMON_DECL_HIP) || defined(GGML_COMMON_DECL_SYCL) +// QR = QK / number of values before dequantization +// QI = number of 32 bit integers before dequantization + +#define QI4_0 (QK4_0 / (4 * QR4_0)) +#define QR4_0 2 + +#define QI4_1 (QK4_1 / (4 * QR4_1)) +#define QR4_1 2 + +#define QI5_0 (QK5_0 / (4 * QR5_0)) +#define QR5_0 2 + +#define QI5_1 (QK5_1 / (4 * QR5_1)) +#define QR5_1 2 + +#define QI8_0 (QK8_0 / (4 * QR8_0)) +#define QR8_0 1 + +#define QI8_1 (QK8_1 / (4 * QR8_1)) +#define QR8_1 1 + +#define QI2_K (QK_K / (4*QR2_K)) +#define QR2_K 4 + +#define QI3_K (QK_K / (4*QR3_K)) +#define QR3_K 4 + +#define QI4_K (QK_K / (4*QR4_K)) +#define QR4_K 2 + +#define QI5_K (QK_K / (4*QR5_K)) +#define QR5_K 2 + +#define QI6_K (QK_K / (4*QR6_K)) +#define QR6_K 2 + +#define QI2_XXS (QK_K / (4*QR2_XXS)) +#define QR2_XXS 8 + +#define QI2_XS (QK_K / (4*QR2_XS)) +#define QR2_XS 8 + +#define QI2_S (QK_K / (4*QR2_S)) +#define QR2_S 8 + +#define QI3_XXS (QK_K / (4*QR3_XXS)) +#define QR3_XXS 8 + +#define QI3_XS (QK_K / (4*QR3_XS)) +#define QR3_XS 8 + +#define QI1_S (QK_K / (4*QR1_S)) +#define QR1_S 8 + +#define QI4_NL (QK4_NL / (4*QR4_NL)) +#define QR4_NL 2 + +#if QK_K == 64 +#define QI4_XS QI4_NL +#define QR4_XS QR4_NL +#else +#define QI4_XS (QK_K / (4*QR4_XS)) +#define QR4_XS 8 +#endif + +#endif // GGML_COMMON_DECL_CUDA || GGML_COMMON_DECL_HIP + +#define QK4_0 32 +typedef struct { + ggml_half d; // delta + uint8_t qs[QK4_0 / 2]; // nibbles / quants +} block_q4_0; +static_assert(sizeof(block_q4_0) == sizeof(ggml_half) + QK4_0 / 2, "wrong q4_0 block size/padding"); + +#define QK4_1 32 +typedef struct { + union { + struct { + ggml_half d; // delta + ggml_half m; // min + } GGML_COMMON_AGGR; + ggml_half2 dm; + }; + uint8_t qs[QK4_1 / 2]; // nibbles / quants +} block_q4_1; +static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_half) + QK4_1 / 2, "wrong q4_1 block size/padding"); + +#define QK5_0 32 +typedef struct { + ggml_half d; // delta + uint8_t qh[4]; // 5-th bit of quants + uint8_t qs[QK5_0 / 2]; // nibbles / quants +} block_q5_0; +static_assert(sizeof(block_q5_0) == sizeof(ggml_half) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding"); + +#define QK5_1 32 +typedef struct { + union { + struct { + ggml_half d; // delta + ggml_half m; // min + } GGML_COMMON_AGGR; + ggml_half2 dm; + }; + uint8_t qh[4]; // 5-th bit of quants + uint8_t qs[QK5_1 / 2]; // nibbles / quants +} block_q5_1; +static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_half) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding"); + +#define QK8_0 32 +typedef struct { + ggml_half d; // delta + int8_t qs[QK8_0]; // quants +} block_q8_0; +static_assert(sizeof(block_q8_0) == sizeof(ggml_half) + QK8_0, "wrong q8_0 block size/padding"); + +#define QK8_1 32 +typedef struct { + union { + struct { + ggml_half d; // delta + ggml_half s; // d * sum(qs[i]) + } GGML_COMMON_AGGR; + ggml_half2 ds; + }; + int8_t qs[QK8_1]; // quants +} block_q8_1; +static_assert(sizeof(block_q8_1) == 2*sizeof(ggml_half) + QK8_1, "wrong q8_1 block size/padding"); + +// +// Super-block quantization structures +// + +// 2-bit quantization +// weight is represented as x = a * q + b +// 16 blocks of 16 elements each +// Effectively 2.625 bits per weight +typedef struct { + uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits + uint8_t qs[QK_K/4]; // quants + union { + struct { + ggml_half d; // super-block scale for quantized scales + ggml_half dmin; // super-block scale for quantized mins + } GGML_COMMON_AGGR; + ggml_half2 dm; + }; +} block_q2_K; +static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_half) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding"); + +// 3-bit quantization +// weight is represented as x = a * q +// 16 blocks of 16 elements each +// Effectively 3.4375 bits per weight +#ifdef GGML_QKK_64 +typedef struct { + uint8_t hmask[QK_K/8]; // quants - high bit + uint8_t qs[QK_K/4]; // quants - low 2 bits + uint8_t scales[2]; + ggml_half d; // super-block scale +} block_q3_K; +static_assert(sizeof(block_q3_K) == sizeof(ggml_half) + QK_K / 4 + QK_K / 8 + 2, "wrong q3_K block size/padding"); +#else +typedef struct { + uint8_t hmask[QK_K/8]; // quants - high bit + uint8_t qs[QK_K/4]; // quants - low 2 bits + uint8_t scales[12]; // scales, quantized with 6 bits + ggml_half d; // super-block scale +} block_q3_K; +static_assert(sizeof(block_q3_K) == sizeof(ggml_half) + QK_K / 4 + QK_K / 8 + 12, "wrong q3_K block size/padding"); +#endif + +// 4-bit quantization +// 8 blocks of 32 elements each +// weight is represented as x = a * q + b +// Effectively 4.5 bits per weight +#ifdef GGML_QKK_64 +typedef struct { + ggml_half d[2]; // super-block scales/mins + uint8_t scales[2]; // 4-bit block scales/mins + uint8_t qs[QK_K/2]; // 4--bit quants +} block_q4_K; +static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_half) + QK_K/2 + 2, "wrong q4_K block size/padding"); +#else +typedef struct { + union { + struct { + ggml_half d; // super-block scale for quantized scales + ggml_half dmin; // super-block scale for quantized mins + } GGML_COMMON_AGGR; + ggml_half2 dm; + }; + uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits + uint8_t qs[QK_K/2]; // 4--bit quants +} block_q4_K; +static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_half) + K_SCALE_SIZE + QK_K/2, "wrong q4_K block size/padding"); +#endif + +// 5-bit quantization +// 8 blocks of 32 elements each +// weight is represented as x = a * q + b +// Effectively 5.5 bits per weight +#ifdef GGML_QKK_64 +typedef struct { + ggml_half d; // super-block scale + int8_t scales[QK_K/16]; // 8-bit block scales + uint8_t qh[QK_K/8]; // quants, high bit + uint8_t qs[QK_K/2]; // quants, low 4 bits +} block_q5_K; +static_assert(sizeof(block_q5_K) == sizeof(ggml_half) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding"); +#else +typedef struct { + union { + struct { + ggml_half d; // super-block scale for quantized scales + ggml_half dmin; // super-block scale for quantized mins + } GGML_COMMON_AGGR; + ggml_half2 dm; + }; + uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits + uint8_t qh[QK_K/8]; // quants, high bit + uint8_t qs[QK_K/2]; // quants, low 4 bits +} block_q5_K; +static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_half) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding"); +#endif + +// 6-bit quantization +// weight is represented as x = a * q +// 16 blocks of 16 elements each +// Effectively 6.5625 bits per weight +typedef struct { + uint8_t ql[QK_K/2]; // quants, lower 4 bits + uint8_t qh[QK_K/4]; // quants, upper 2 bits + int8_t scales[QK_K/16]; // scales, quantized with 8 bits + ggml_half d; // super-block scale +} block_q6_K; +static_assert(sizeof(block_q6_K) == sizeof(ggml_half) + QK_K / 16 + 3*QK_K/4, "wrong q6_K block size/padding"); + +// This is only used for intermediate quantization and dot products +typedef struct { + float d; // delta + int8_t qs[QK_K]; // quants + int16_t bsums[QK_K/16]; // sum of quants in groups of 16 +} block_q8_K; +static_assert(sizeof(block_q8_K) == sizeof(float) + QK_K + QK_K/16*sizeof(int16_t), "wrong q8_K block size/padding"); + +// (Almost) "true" 2-bit quantization. +// Due to the need to use blocks as per ggml design, it ends up using +// 2.0625 bpw because of the 16-bit scale for each block of 256. +typedef struct { + ggml_half d; + uint16_t qs[QK_K/8]; +} block_iq2_xxs; +static_assert(sizeof(block_iq2_xxs) == sizeof(ggml_half) + QK_K/8*sizeof(uint16_t), "wrong iq2_xxs block size/padding"); + +// 2.3125 bpw quants +typedef struct { + ggml_half d; + uint16_t qs[QK_K/8]; + uint8_t scales[QK_K/32]; +} block_iq2_xs; +static_assert(sizeof(block_iq2_xs) == sizeof(ggml_half) + QK_K/8*sizeof(uint16_t) + QK_K/32, "wrong iq2_xs block size/padding"); + +// 2.5625 bpw quants +typedef struct { + ggml_half d; + uint8_t qs[QK_K/4]; + uint8_t qh[QK_K/32]; + uint8_t scales[QK_K/32]; +} block_iq2_s; +static_assert(sizeof(block_iq2_s) == sizeof(ggml_half) + QK_K/4 + QK_K/16, "wrong iq2_s block size/padding"); + +// (Almost) "true" 3-bit quantization. +// Due to the need to use blocks as per ggml design, it ends up using +// 3.0625 bpw because of the 16-bit scale for each block of 256. +typedef struct { + ggml_half d; + uint8_t qs[3*QK_K/8]; +} block_iq3_xxs; +static_assert(sizeof(block_iq3_xxs) == sizeof(ggml_half) + 3*(QK_K/8), "wrong iq3_xxs block size/padding"); + +// 3.4375 bpw +#if QK_K == 64 +#define IQ3S_N_SCALE 2 +#else +#define IQ3S_N_SCALE QK_K/64 +#endif +typedef struct { + ggml_half d; + uint8_t qs[QK_K/4]; + uint8_t qh[QK_K/32]; + uint8_t signs[QK_K/8]; + uint8_t scales[IQ3S_N_SCALE]; +} block_iq3_s; +static_assert(sizeof(block_iq3_s) == sizeof(ggml_half) + 13*(QK_K/32) + IQ3S_N_SCALE, "wrong iq3_s block size/padding"); + +typedef struct { + ggml_half d; + uint8_t qs[QK_K/8]; + uint16_t qh[QK_K/32]; +} block_iq1_s; +static_assert(sizeof(block_iq1_s) == sizeof(ggml_half) + QK_K/8 + QK_K/16, "wrong iq1_s block size/padding"); + +// 1.75 bpw +typedef struct { + uint8_t qs[QK_K/8]; // grid index, low 8 bits + uint8_t qh[QK_K/16]; // grid index, high 3 bits + grid shift bit (for two groups of 8) +#if QK_K == 64 + ggml_half d; +#endif + uint8_t scales[QK_K/32]; // 3-bit block scales (4-bit if QK_K == 64) +} block_iq1_m; +#if QK_K == 64 +static_assert(sizeof(block_iq1_m) == QK_K/8 + QK_K/16 + QK_K/32 + sizeof(ggml_half), "wrong iq1_m block size/padding"); +#else +static_assert(sizeof(block_iq1_m) == QK_K/8 + QK_K/16 + QK_K/32, "wrong iq1_m block size/padding"); +#endif + +// Used by IQ1_M quants +typedef union { + ggml_half f16; + uint16_t u16; +} iq1m_scale_t; + +// Non-linear quants +#define QK4_NL 32 +typedef struct { + ggml_half d; + uint8_t qs[QK4_NL/2]; +} block_iq4_nl; +static_assert(sizeof(block_iq4_nl) == sizeof(ggml_half) + QK4_NL/2, "wrong iq4_nl block size/padding"); + +#if QK_K == 64 +#define block_iq4_xs block_iq4_nl +#else +typedef struct { + ggml_half d; + uint16_t scales_h; + uint8_t scales_l[QK_K/64]; + uint8_t qs[QK_K/2]; +} block_iq4_xs; +static_assert(sizeof(block_iq4_xs) == sizeof(ggml_half) + sizeof(uint16_t) + QK_K/64 + QK_K/2, "wrong iq4_xs block size/padding"); +#endif + +#endif // GGML_COMMON_DECL +#endif // GGML_COMMON_DECL + +//////////////////////////////////////////////////////////////////////////////// + +#ifndef GGML_COMMON_IMPL + +#if defined(GGML_COMMON_IMPL_C) +#include + +#define GGML_TABLE_BEGIN(type, name, size) static const type name[size] = { +#define GGML_TABLE_END() }; + +#define GGML_COMMON_IMPL +#elif defined(GGML_COMMON_IMPL_METAL) +#include + +#define GGML_TABLE_BEGIN(type, name, size) static const constant type name[size] = { +#define GGML_TABLE_END() }; + +#define GGML_COMMON_IMPL +#elif defined(GGML_COMMON_IMPL_CUDA) || defined(GGML_COMMON_IMPL_HIP) +#include + +#define GGML_TABLE_BEGIN(type, name, size) static const __device__ type name[size] = { +#define GGML_TABLE_END() }; + +#define GGML_COMMON_IMPL +#elif defined(GGML_COMMON_IMPL_SYCL) + +#include + +#define GGML_TABLE_BEGIN(type, name, size) static const type name[size] = { +#define GGML_TABLE_END() }; + +#define GGML_COMMON_IMPL +#endif + +#if defined(GGML_COMMON_IMPL) + +GGML_TABLE_BEGIN(uint8_t, kmask_iq2xs, 8) + 1, 2, 4, 8, 16, 32, 64, 128 +GGML_TABLE_END() + +GGML_TABLE_BEGIN(uint8_t, ksigns_iq2xs, 128) + 0, 129, 130, 3, 132, 5, 6, 135, 136, 9, 10, 139, 12, 141, 142, 15, + 144, 17, 18, 147, 20, 149, 150, 23, 24, 153, 154, 27, 156, 29, 30, 159, + 160, 33, 34, 163, 36, 165, 166, 39, 40, 169, 170, 43, 172, 45, 46, 175, + 48, 177, 178, 51, 180, 53, 54, 183, 184, 57, 58, 187, 60, 189, 190, 63, + 192, 65, 66, 195, 68, 197, 198, 71, 72, 201, 202, 75, 204, 77, 78, 207, + 80, 209, 210, 83, 212, 85, 86, 215, 216, 89, 90, 219, 92, 221, 222, 95, + 96, 225, 226, 99, 228, 101, 102, 231, 232, 105, 106, 235, 108, 237, 238, 111, + 240, 113, 114, 243, 116, 245, 246, 119, 120, 249, 250, 123, 252, 125, 126, 255, +GGML_TABLE_END() + +//#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics +GGML_TABLE_BEGIN(uint64_t, ksigns64, 128) + 0x0000000000000000, 0xff000000000000ff, 0xff0000000000ff00, 0x000000000000ffff, + 0xff00000000ff0000, 0x0000000000ff00ff, 0x0000000000ffff00, 0xff00000000ffffff, + 0xff000000ff000000, 0x00000000ff0000ff, 0x00000000ff00ff00, 0xff000000ff00ffff, + 0x00000000ffff0000, 0xff000000ffff00ff, 0xff000000ffffff00, 0x00000000ffffffff, + 0xff0000ff00000000, 0x000000ff000000ff, 0x000000ff0000ff00, 0xff0000ff0000ffff, + 0x000000ff00ff0000, 0xff0000ff00ff00ff, 0xff0000ff00ffff00, 0x000000ff00ffffff, + 0x000000ffff000000, 0xff0000ffff0000ff, 0xff0000ffff00ff00, 0x000000ffff00ffff, + 0xff0000ffffff0000, 0x000000ffffff00ff, 0x000000ffffffff00, 0xff0000ffffffffff, + 0xff00ff0000000000, 0x0000ff00000000ff, 0x0000ff000000ff00, 0xff00ff000000ffff, + 0x0000ff0000ff0000, 0xff00ff0000ff00ff, 0xff00ff0000ffff00, 0x0000ff0000ffffff, + 0x0000ff00ff000000, 0xff00ff00ff0000ff, 0xff00ff00ff00ff00, 0x0000ff00ff00ffff, + 0xff00ff00ffff0000, 0x0000ff00ffff00ff, 0x0000ff00ffffff00, 0xff00ff00ffffffff, + 0x0000ffff00000000, 0xff00ffff000000ff, 0xff00ffff0000ff00, 0x0000ffff0000ffff, + 0xff00ffff00ff0000, 0x0000ffff00ff00ff, 0x0000ffff00ffff00, 0xff00ffff00ffffff, + 0xff00ffffff000000, 0x0000ffffff0000ff, 0x0000ffffff00ff00, 0xff00ffffff00ffff, + 0x0000ffffffff0000, 0xff00ffffffff00ff, 0xff00ffffffffff00, 0x0000ffffffffffff, + 0xffff000000000000, 0x00ff0000000000ff, 0x00ff00000000ff00, 0xffff00000000ffff, + 0x00ff000000ff0000, 0xffff000000ff00ff, 0xffff000000ffff00, 0x00ff000000ffffff, + 0x00ff0000ff000000, 0xffff0000ff0000ff, 0xffff0000ff00ff00, 0x00ff0000ff00ffff, + 0xffff0000ffff0000, 0x00ff0000ffff00ff, 0x00ff0000ffffff00, 0xffff0000ffffffff, + 0x00ff00ff00000000, 0xffff00ff000000ff, 0xffff00ff0000ff00, 0x00ff00ff0000ffff, + 0xffff00ff00ff0000, 0x00ff00ff00ff00ff, 0x00ff00ff00ffff00, 0xffff00ff00ffffff, + 0xffff00ffff000000, 0x00ff00ffff0000ff, 0x00ff00ffff00ff00, 0xffff00ffff00ffff, + 0x00ff00ffffff0000, 0xffff00ffffff00ff, 0xffff00ffffffff00, 0x00ff00ffffffffff, + 0x00ffff0000000000, 0xffffff00000000ff, 0xffffff000000ff00, 0x00ffff000000ffff, + 0xffffff0000ff0000, 0x00ffff0000ff00ff, 0x00ffff0000ffff00, 0xffffff0000ffffff, + 0xffffff00ff000000, 0x00ffff00ff0000ff, 0x00ffff00ff00ff00, 0xffffff00ff00ffff, + 0x00ffff00ffff0000, 0xffffff00ffff00ff, 0xffffff00ffffff00, 0x00ffff00ffffffff, + 0xffffffff00000000, 0x00ffffff000000ff, 0x00ffffff0000ff00, 0xffffffff0000ffff, + 0x00ffffff00ff0000, 0xffffffff00ff00ff, 0xffffffff00ffff00, 0x00ffffff00ffffff, + 0x00ffffffff000000, 0xffffffffff0000ff, 0xffffffffff00ff00, 0x00ffffffff00ffff, + 0xffffffffffff0000, 0x00ffffffffff00ff, 0x00ffffffffffff00, 0xffffffffffffffff, +GGML_TABLE_END() +//#endif + + +GGML_TABLE_BEGIN(uint64_t, iq2xxs_grid, 256) + 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08, + 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x08080808082b0808, + 0x08080808082b082b, 0x08080808082b2b08, 0x08080808082b2b2b, 0x0808080819080819, + 0x0808080819081908, 0x0808080819190808, 0x0808080819192b08, 0x08080808192b0819, + 0x08080808192b1908, 0x080808082b080808, 0x080808082b08082b, 0x080808082b082b2b, + 0x080808082b2b082b, 0x0808081908080819, 0x0808081908081908, 0x0808081908190808, + 0x0808081908191919, 0x0808081919080808, 0x080808192b081908, 0x080808192b192b08, + 0x0808082b08080808, 0x0808082b0808082b, 0x0808082b082b082b, 0x0808082b2b08082b, + 0x0808190808080819, 0x0808190808081908, 0x0808190808190808, 0x08081908082b0819, + 0x08081908082b1908, 0x0808190819080808, 0x080819081908082b, 0x0808190819082b08, + 0x08081908192b0808, 0x080819082b080819, 0x080819082b081908, 0x080819082b190808, + 0x080819082b2b1908, 0x0808191908080808, 0x080819190808082b, 0x0808191908082b08, + 0x08081919082b0808, 0x080819191908192b, 0x08081919192b2b19, 0x080819192b080808, + 0x080819192b190819, 0x0808192b08082b19, 0x0808192b08190808, 0x0808192b19080808, + 0x0808192b2b081908, 0x0808192b2b2b1908, 0x08082b0808080808, 0x08082b0808081919, + 0x08082b0808082b08, 0x08082b0808191908, 0x08082b08082b2b08, 0x08082b0819080819, + 0x08082b0819081908, 0x08082b0819190808, 0x08082b081919082b, 0x08082b082b082b08, + 0x08082b1908081908, 0x08082b1919080808, 0x08082b2b0808082b, 0x08082b2b08191908, + 0x0819080808080819, 0x0819080808081908, 0x0819080808190808, 0x08190808082b0819, + 0x0819080819080808, 0x08190808192b0808, 0x081908082b081908, 0x081908082b190808, + 0x081908082b191919, 0x0819081908080808, 0x0819081908082b08, 0x08190819082b0808, + 0x0819081919190808, 0x0819081919192b2b, 0x081908192b080808, 0x0819082b082b1908, + 0x0819082b19081919, 0x0819190808080808, 0x0819190808082b08, 0x08191908082b0808, + 0x08191908082b1919, 0x0819190819082b19, 0x081919082b080808, 0x0819191908192b08, + 0x08191919192b082b, 0x0819192b08080808, 0x0819192b0819192b, 0x08192b0808080819, + 0x08192b0808081908, 0x08192b0808190808, 0x08192b0819080808, 0x08192b082b080819, + 0x08192b1908080808, 0x08192b1908081919, 0x08192b192b2b0808, 0x08192b2b19190819, + 0x082b080808080808, 0x082b08080808082b, 0x082b080808082b2b, 0x082b080819081908, + 0x082b0808192b0819, 0x082b08082b080808, 0x082b08082b08082b, 0x082b0819082b2b19, + 0x082b081919082b08, 0x082b082b08080808, 0x082b082b0808082b, 0x082b190808080819, + 0x082b190808081908, 0x082b190808190808, 0x082b190819080808, 0x082b19081919192b, + 0x082b191908080808, 0x082b191919080819, 0x082b1919192b1908, 0x082b192b2b190808, + 0x082b2b0808082b08, 0x082b2b08082b0808, 0x082b2b082b191908, 0x082b2b2b19081908, + 0x1908080808080819, 0x1908080808081908, 0x1908080808190808, 0x1908080808192b08, + 0x19080808082b0819, 0x19080808082b1908, 0x1908080819080808, 0x1908080819082b08, + 0x190808081919192b, 0x19080808192b0808, 0x190808082b080819, 0x190808082b081908, + 0x190808082b190808, 0x1908081908080808, 0x19080819082b0808, 0x19080819192b0819, + 0x190808192b080808, 0x190808192b081919, 0x1908082b08080819, 0x1908082b08190808, + 0x1908082b19082b08, 0x1908082b1919192b, 0x1908082b192b2b08, 0x1908190808080808, + 0x1908190808082b08, 0x19081908082b0808, 0x190819082b080808, 0x190819082b192b19, + 0x190819190819082b, 0x19081919082b1908, 0x1908192b08080808, 0x19082b0808080819, + 0x19082b0808081908, 0x19082b0808190808, 0x19082b0819080808, 0x19082b0819081919, + 0x19082b1908080808, 0x19082b1919192b08, 0x19082b19192b0819, 0x19082b192b08082b, + 0x19082b2b19081919, 0x19082b2b2b190808, 0x1919080808080808, 0x1919080808082b08, + 0x1919080808190819, 0x1919080808192b19, 0x19190808082b0808, 0x191908082b080808, + 0x191908082b082b08, 0x1919081908081908, 0x191908191908082b, 0x191908192b2b1908, + 0x1919082b2b190819, 0x191919082b190808, 0x191919082b19082b, 0x1919191908082b2b, + 0x1919192b08080819, 0x1919192b19191908, 0x19192b0808080808, 0x19192b0808190819, + 0x19192b0808192b19, 0x19192b08192b1908, 0x19192b1919080808, 0x19192b2b08082b08, + 0x192b080808081908, 0x192b080808190808, 0x192b080819080808, 0x192b0808192b2b08, + 0x192b081908080808, 0x192b081919191919, 0x192b082b08192b08, 0x192b082b192b0808, + 0x192b190808080808, 0x192b190808081919, 0x192b191908190808, 0x192b19190819082b, + 0x192b19192b081908, 0x192b2b081908082b, 0x2b08080808080808, 0x2b0808080808082b, + 0x2b08080808082b2b, 0x2b08080819080819, 0x2b0808082b08082b, 0x2b08081908081908, + 0x2b08081908192b08, 0x2b08081919080808, 0x2b08082b08190819, 0x2b08190808080819, + 0x2b08190808081908, 0x2b08190808190808, 0x2b08190808191919, 0x2b08190819080808, + 0x2b081908192b0808, 0x2b08191908080808, 0x2b0819191908192b, 0x2b0819192b191908, + 0x2b08192b08082b19, 0x2b08192b19080808, 0x2b08192b192b0808, 0x2b082b080808082b, + 0x2b082b1908081908, 0x2b082b2b08190819, 0x2b19080808081908, 0x2b19080808190808, + 0x2b190808082b1908, 0x2b19080819080808, 0x2b1908082b2b0819, 0x2b1908190819192b, + 0x2b1908192b080808, 0x2b19082b19081919, 0x2b19190808080808, 0x2b191908082b082b, + 0x2b19190819081908, 0x2b19191919190819, 0x2b192b082b080819, 0x2b192b19082b0808, + 0x2b2b08080808082b, 0x2b2b080819190808, 0x2b2b08082b081919, 0x2b2b081908082b19, + 0x2b2b082b08080808, 0x2b2b190808192b08, 0x2b2b2b0819190808, 0x2b2b2b1908081908, +GGML_TABLE_END() + +GGML_TABLE_BEGIN(uint64_t, iq2xs_grid, 512) + 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08, + 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x080808080819192b, + 0x0808080808192b19, 0x08080808082b0808, 0x08080808082b082b, 0x08080808082b1919, + 0x08080808082b2b08, 0x0808080819080819, 0x0808080819081908, 0x080808081908192b, + 0x0808080819082b19, 0x0808080819190808, 0x080808081919082b, 0x0808080819191919, + 0x0808080819192b08, 0x08080808192b0819, 0x08080808192b1908, 0x080808082b080808, + 0x080808082b08082b, 0x080808082b081919, 0x080808082b082b08, 0x080808082b190819, + 0x080808082b191908, 0x080808082b192b19, 0x080808082b2b0808, 0x0808081908080819, + 0x0808081908081908, 0x080808190808192b, 0x0808081908082b19, 0x0808081908190808, + 0x080808190819082b, 0x0808081908191919, 0x0808081908192b08, 0x0808081908192b2b, + 0x08080819082b0819, 0x08080819082b1908, 0x0808081919080808, 0x080808191908082b, + 0x0808081919081919, 0x0808081919082b08, 0x0808081919190819, 0x0808081919191908, + 0x08080819192b0808, 0x08080819192b2b08, 0x080808192b080819, 0x080808192b081908, + 0x080808192b190808, 0x0808082b08080808, 0x0808082b0808082b, 0x0808082b08081919, + 0x0808082b08082b08, 0x0808082b08190819, 0x0808082b08191908, 0x0808082b082b0808, + 0x0808082b19080819, 0x0808082b19081908, 0x0808082b19190808, 0x0808082b19191919, + 0x0808082b2b080808, 0x0808082b2b082b2b, 0x0808190808080819, 0x0808190808081908, + 0x080819080808192b, 0x0808190808082b19, 0x0808190808190808, 0x080819080819082b, + 0x0808190808191919, 0x0808190808192b08, 0x08081908082b0819, 0x08081908082b1908, + 0x0808190819080808, 0x080819081908082b, 0x0808190819081919, 0x0808190819082b08, + 0x0808190819190819, 0x0808190819191908, 0x080819081919192b, 0x08081908192b0808, + 0x080819082b080819, 0x080819082b081908, 0x080819082b190808, 0x0808191908080808, + 0x080819190808082b, 0x0808191908081919, 0x0808191908082b08, 0x0808191908190819, + 0x0808191908191908, 0x08081919082b0808, 0x0808191919080819, 0x0808191919081908, + 0x0808191919190808, 0x08081919192b0819, 0x080819192b080808, 0x0808192b08080819, + 0x0808192b08081908, 0x0808192b08190808, 0x0808192b082b192b, 0x0808192b19080808, + 0x0808192b1908082b, 0x0808192b2b081908, 0x08082b0808080808, 0x08082b080808082b, + 0x08082b0808081919, 0x08082b0808082b08, 0x08082b0808082b2b, 0x08082b0808190819, + 0x08082b0808191908, 0x08082b08082b0808, 0x08082b08082b1919, 0x08082b0819080819, + 0x08082b0819081908, 0x08082b0819190808, 0x08082b0819192b08, 0x08082b082b080808, + 0x08082b082b2b0808, 0x08082b082b2b2b2b, 0x08082b1908080819, 0x08082b1908081908, + 0x08082b1908190808, 0x08082b1919080808, 0x08082b192b080819, 0x08082b192b082b19, + 0x08082b2b08080808, 0x08082b2b082b0808, 0x08082b2b082b2b08, 0x08082b2b2b19192b, + 0x08082b2b2b2b0808, 0x0819080808080819, 0x0819080808081908, 0x081908080808192b, + 0x0819080808082b19, 0x0819080808190808, 0x081908080819082b, 0x0819080808191919, + 0x0819080808192b08, 0x08190808082b0819, 0x08190808082b1908, 0x0819080819080808, + 0x081908081908082b, 0x0819080819081919, 0x0819080819082b08, 0x0819080819190819, + 0x0819080819191908, 0x08190808192b0808, 0x08190808192b2b2b, 0x081908082b080819, + 0x081908082b081908, 0x081908082b190808, 0x0819081908080808, 0x081908190808082b, + 0x0819081908081919, 0x0819081908082b08, 0x0819081908190819, 0x0819081908191908, + 0x08190819082b0808, 0x0819081919080819, 0x0819081919081908, 0x0819081919190808, + 0x081908192b080808, 0x081908192b191908, 0x081908192b19192b, 0x0819082b08080819, + 0x0819082b08081908, 0x0819082b0808192b, 0x0819082b08190808, 0x0819082b19080808, + 0x0819082b192b0808, 0x0819190808080808, 0x081919080808082b, 0x0819190808081919, + 0x0819190808082b08, 0x0819190808190819, 0x0819190808191908, 0x08191908082b0808, + 0x0819190819080819, 0x0819190819081908, 0x0819190819082b19, 0x0819190819190808, + 0x08191908192b1908, 0x081919082b080808, 0x0819191908080819, 0x0819191908081908, + 0x0819191908190808, 0x0819191919080808, 0x0819192b08080808, 0x0819192b08191908, + 0x0819192b19082b19, 0x08192b0808080819, 0x08192b0808081908, 0x08192b0808190808, + 0x08192b080819082b, 0x08192b0819080808, 0x08192b0819191908, 0x08192b082b08192b, + 0x08192b1908080808, 0x08192b1908081919, 0x08192b19192b192b, 0x08192b2b19190819, + 0x08192b2b2b2b2b19, 0x082b080808080808, 0x082b08080808082b, 0x082b080808081919, + 0x082b080808082b08, 0x082b080808082b2b, 0x082b080808190819, 0x082b080808191908, + 0x082b0808082b0808, 0x082b080819080819, 0x082b080819081908, 0x082b080819190808, + 0x082b08082b080808, 0x082b08082b2b0808, 0x082b081908080819, 0x082b081908081908, + 0x082b081908190808, 0x082b081919080808, 0x082b081919082b08, 0x082b0819192b1919, + 0x082b082b08080808, 0x082b082b082b082b, 0x082b082b2b080808, 0x082b082b2b2b2b08, + 0x082b190808080819, 0x082b190808081908, 0x082b190808190808, 0x082b1908082b2b19, + 0x082b190819080808, 0x082b191908080808, 0x082b191919080819, 0x082b19191919082b, + 0x082b19192b192b19, 0x082b192b08080819, 0x082b192b08192b2b, 0x082b192b2b2b192b, + 0x082b2b0808080808, 0x082b2b0808082b08, 0x082b2b0808082b2b, 0x082b2b08082b0808, + 0x082b2b0819191919, 0x082b2b082b082b08, 0x082b2b082b2b082b, 0x082b2b19192b2b08, + 0x082b2b192b190808, 0x082b2b2b08082b08, 0x082b2b2b082b0808, 0x082b2b2b2b08082b, + 0x082b2b2b2b082b08, 0x082b2b2b2b082b2b, 0x1908080808080819, 0x1908080808081908, + 0x190808080808192b, 0x1908080808082b19, 0x1908080808190808, 0x190808080819082b, + 0x1908080808191919, 0x1908080808192b08, 0x19080808082b0819, 0x19080808082b1908, + 0x1908080819080808, 0x190808081908082b, 0x1908080819081919, 0x1908080819082b08, + 0x1908080819082b2b, 0x1908080819190819, 0x1908080819191908, 0x19080808192b0808, + 0x19080808192b1919, 0x190808082b080819, 0x190808082b081908, 0x190808082b190808, + 0x1908081908080808, 0x190808190808082b, 0x1908081908081919, 0x1908081908082b08, + 0x1908081908190819, 0x1908081908191908, 0x19080819082b0808, 0x1908081919080819, + 0x1908081919081908, 0x1908081919190808, 0x190808192b080808, 0x190808192b081919, + 0x190808192b2b082b, 0x1908082b08080819, 0x1908082b08081908, 0x1908082b08190808, + 0x1908082b0819082b, 0x1908082b082b2b19, 0x1908082b19080808, 0x1908190808080808, + 0x190819080808082b, 0x1908190808081919, 0x1908190808082b08, 0x1908190808190819, + 0x1908190808191908, 0x1908190808192b19, 0x19081908082b0808, 0x1908190819080819, + 0x1908190819081908, 0x1908190819190808, 0x190819082b080808, 0x190819082b191908, + 0x1908191908080819, 0x1908191908081908, 0x1908191908190808, 0x19081919082b1908, + 0x1908191919080808, 0x190819192b192b2b, 0x1908192b08080808, 0x1908192b08082b2b, + 0x1908192b19081908, 0x1908192b19190808, 0x19082b0808080819, 0x19082b0808081908, + 0x19082b0808190808, 0x19082b0819080808, 0x19082b0819081919, 0x19082b0819191908, + 0x19082b08192b082b, 0x19082b1908080808, 0x19082b1908190819, 0x19082b1919081908, + 0x19082b1919190808, 0x19082b19192b2b19, 0x19082b2b08081908, 0x1919080808080808, + 0x191908080808082b, 0x1919080808081919, 0x1919080808082b08, 0x1919080808190819, + 0x1919080808191908, 0x19190808082b0808, 0x19190808082b2b08, 0x1919080819080819, + 0x1919080819081908, 0x1919080819190808, 0x191908082b080808, 0x1919081908080819, + 0x1919081908081908, 0x1919081908190808, 0x1919081908191919, 0x1919081919080808, + 0x191908191908082b, 0x1919082b08080808, 0x1919082b19081908, 0x1919082b2b2b2b2b, + 0x1919190808080819, 0x1919190808081908, 0x1919190808190808, 0x19191908082b0819, + 0x1919190819080808, 0x19191908192b0808, 0x191919082b080819, 0x191919082b2b0819, + 0x1919191908080808, 0x1919191908082b08, 0x191919192b080808, 0x191919192b082b08, + 0x1919192b082b0819, 0x1919192b192b2b08, 0x1919192b2b2b0819, 0x19192b0808080808, + 0x19192b0808191908, 0x19192b0819080819, 0x19192b0819190808, 0x19192b082b192b19, + 0x19192b1908192b2b, 0x19192b1919080808, 0x19192b191908082b, 0x19192b2b2b081919, + 0x192b080808080819, 0x192b080808081908, 0x192b080808190808, 0x192b080819080808, + 0x192b080819191908, 0x192b0808192b082b, 0x192b08082b08192b, 0x192b08082b2b2b19, + 0x192b081908080808, 0x192b082b082b1908, 0x192b082b19082b2b, 0x192b082b2b19082b, + 0x192b190808080808, 0x192b19080819192b, 0x192b191908190808, 0x192b191919080808, + 0x192b191919081919, 0x192b19192b2b1908, 0x192b2b0808080819, 0x192b2b08192b2b2b, + 0x192b2b19082b1919, 0x192b2b2b0808192b, 0x192b2b2b19191908, 0x192b2b2b192b082b, + 0x2b08080808080808, 0x2b0808080808082b, 0x2b08080808081919, 0x2b08080808082b08, + 0x2b08080808190819, 0x2b08080808191908, 0x2b080808082b0808, 0x2b080808082b2b2b, + 0x2b08080819080819, 0x2b08080819081908, 0x2b08080819190808, 0x2b0808082b080808, + 0x2b0808082b08082b, 0x2b0808082b2b2b08, 0x2b0808082b2b2b2b, 0x2b08081908080819, + 0x2b08081908081908, 0x2b0808190808192b, 0x2b08081908190808, 0x2b08081919080808, + 0x2b08081919190819, 0x2b08081919192b19, 0x2b08082b08080808, 0x2b08082b082b0808, + 0x2b08082b2b080808, 0x2b08082b2b08082b, 0x2b08082b2b2b0808, 0x2b08082b2b2b2b08, + 0x2b08190808080819, 0x2b08190808081908, 0x2b08190808190808, 0x2b0819080819082b, + 0x2b08190808191919, 0x2b08190819080808, 0x2b081908192b0808, 0x2b0819082b082b19, + 0x2b08191908080808, 0x2b08191919081908, 0x2b0819192b2b1919, 0x2b08192b08192b08, + 0x2b08192b192b2b2b, 0x2b082b0808080808, 0x2b082b0808082b08, 0x2b082b08082b1919, + 0x2b082b0819192b2b, 0x2b082b082b080808, 0x2b082b082b08082b, 0x2b082b082b2b2b08, + 0x2b082b190808192b, 0x2b082b2b082b082b, 0x2b082b2b2b080808, 0x2b082b2b2b082b08, + 0x2b082b2b2b19192b, 0x2b082b2b2b2b2b08, 0x2b19080808080819, 0x2b19080808081908, + 0x2b19080808190808, 0x2b19080819080808, 0x2b1908081919192b, 0x2b1908082b081908, + 0x2b19081908080808, 0x2b190819082b082b, 0x2b190819192b1908, 0x2b19082b1919192b, + 0x2b19082b2b082b19, 0x2b19190808080808, 0x2b19190808081919, 0x2b19190819081908, + 0x2b19190819190808, 0x2b19190819192b08, 0x2b191919082b2b19, 0x2b1919192b190808, + 0x2b1919192b19082b, 0x2b19192b19080819, 0x2b192b0819190819, 0x2b192b082b2b192b, + 0x2b192b1919082b19, 0x2b192b2b08191919, 0x2b192b2b192b0808, 0x2b2b080808080808, + 0x2b2b08080808082b, 0x2b2b080808082b08, 0x2b2b080808082b2b, 0x2b2b0808082b0808, + 0x2b2b0808082b2b2b, 0x2b2b08082b2b0808, 0x2b2b081919190819, 0x2b2b081919192b19, + 0x2b2b08192b2b192b, 0x2b2b082b08080808, 0x2b2b082b0808082b, 0x2b2b082b08082b08, + 0x2b2b082b082b2b2b, 0x2b2b082b2b080808, 0x2b2b082b2b2b0808, 0x2b2b190819080808, + 0x2b2b19082b191919, 0x2b2b192b192b1919, 0x2b2b192b2b192b08, 0x2b2b2b0808082b2b, + 0x2b2b2b08082b0808, 0x2b2b2b08082b082b, 0x2b2b2b08082b2b08, 0x2b2b2b082b2b0808, + 0x2b2b2b082b2b2b08, 0x2b2b2b1908081908, 0x2b2b2b192b081908, 0x2b2b2b192b08192b, + 0x2b2b2b2b082b2b08, 0x2b2b2b2b082b2b2b, 0x2b2b2b2b2b190819, 0x2b2b2b2b2b2b2b2b, +GGML_TABLE_END() + +GGML_TABLE_BEGIN(uint64_t, iq2s_grid, 1024) + 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08, + 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x080808080819192b, + 0x0808080808192b19, 0x08080808082b0808, 0x08080808082b082b, 0x08080808082b1919, + 0x08080808082b2b08, 0x0808080819080819, 0x0808080819081908, 0x080808081908192b, + 0x0808080819082b19, 0x0808080819190808, 0x080808081919082b, 0x0808080819191919, + 0x0808080819192b08, 0x08080808192b0819, 0x08080808192b1908, 0x08080808192b192b, + 0x08080808192b2b19, 0x080808082b080808, 0x080808082b08082b, 0x080808082b081919, + 0x080808082b082b08, 0x080808082b190819, 0x080808082b191908, 0x080808082b2b0808, + 0x080808082b2b1919, 0x080808082b2b2b2b, 0x0808081908080819, 0x0808081908081908, + 0x080808190808192b, 0x0808081908082b19, 0x0808081908190808, 0x080808190819082b, + 0x0808081908191919, 0x0808081908192b08, 0x08080819082b0819, 0x08080819082b1908, + 0x0808081919080808, 0x080808191908082b, 0x0808081919081919, 0x0808081919082b08, + 0x0808081919190819, 0x0808081919191908, 0x080808191919192b, 0x0808081919192b19, + 0x08080819192b0808, 0x08080819192b1919, 0x08080819192b2b08, 0x080808192b080819, + 0x080808192b081908, 0x080808192b190808, 0x080808192b19082b, 0x080808192b191919, + 0x080808192b2b0819, 0x080808192b2b1908, 0x0808082b08080808, 0x0808082b0808082b, + 0x0808082b08081919, 0x0808082b08082b08, 0x0808082b08190819, 0x0808082b08191908, + 0x0808082b082b0808, 0x0808082b082b2b2b, 0x0808082b19080819, 0x0808082b19081908, + 0x0808082b1908192b, 0x0808082b19082b19, 0x0808082b19190808, 0x0808082b19191919, + 0x0808082b2b080808, 0x0808082b2b081919, 0x0808082b2b082b2b, 0x0808082b2b191908, + 0x0808082b2b2b082b, 0x0808190808080819, 0x0808190808081908, 0x080819080808192b, + 0x0808190808082b19, 0x0808190808190808, 0x080819080819082b, 0x0808190808191919, + 0x0808190808192b08, 0x08081908082b0819, 0x08081908082b1908, 0x08081908082b192b, + 0x08081908082b2b19, 0x0808190819080808, 0x080819081908082b, 0x0808190819081919, + 0x0808190819082b08, 0x0808190819082b2b, 0x0808190819190819, 0x0808190819191908, + 0x080819081919192b, 0x0808190819192b19, 0x08081908192b0808, 0x08081908192b082b, + 0x08081908192b1919, 0x080819082b080819, 0x080819082b081908, 0x080819082b08192b, + 0x080819082b082b19, 0x080819082b190808, 0x080819082b191919, 0x080819082b192b08, + 0x080819082b2b0819, 0x080819082b2b1908, 0x0808191908080808, 0x080819190808082b, + 0x0808191908081919, 0x0808191908082b08, 0x0808191908082b2b, 0x0808191908190819, + 0x0808191908191908, 0x080819190819192b, 0x0808191908192b19, 0x08081919082b0808, + 0x08081919082b1919, 0x08081919082b2b08, 0x0808191919080819, 0x0808191919081908, + 0x080819191908192b, 0x0808191919082b19, 0x0808191919190808, 0x080819191919082b, + 0x0808191919191919, 0x0808191919192b08, 0x08081919192b0819, 0x08081919192b1908, + 0x080819192b080808, 0x080819192b08082b, 0x080819192b081919, 0x080819192b082b08, + 0x080819192b190819, 0x080819192b191908, 0x080819192b2b0808, 0x0808192b08080819, + 0x0808192b08081908, 0x0808192b0808192b, 0x0808192b08082b19, 0x0808192b08190808, + 0x0808192b08191919, 0x0808192b19080808, 0x0808192b19081919, 0x0808192b19082b08, + 0x0808192b19190819, 0x0808192b19191908, 0x0808192b192b0808, 0x0808192b2b080819, + 0x0808192b2b081908, 0x0808192b2b190808, 0x08082b0808080808, 0x08082b080808082b, + 0x08082b0808081919, 0x08082b0808082b08, 0x08082b0808190819, 0x08082b0808191908, + 0x08082b080819192b, 0x08082b0808192b19, 0x08082b08082b0808, 0x08082b08082b1919, + 0x08082b08082b2b2b, 0x08082b0819080819, 0x08082b0819081908, 0x08082b081908192b, + 0x08082b0819082b19, 0x08082b0819190808, 0x08082b081919082b, 0x08082b0819191919, + 0x08082b0819192b08, 0x08082b08192b0819, 0x08082b08192b1908, 0x08082b082b080808, + 0x08082b082b081919, 0x08082b082b191908, 0x08082b082b2b2b2b, 0x08082b1908080819, + 0x08082b1908081908, 0x08082b1908190808, 0x08082b190819082b, 0x08082b1908191919, + 0x08082b1908192b08, 0x08082b19082b0819, 0x08082b1919080808, 0x08082b1919081919, + 0x08082b1919082b08, 0x08082b1919190819, 0x08082b1919191908, 0x08082b19192b0808, + 0x08082b192b080819, 0x08082b192b190808, 0x08082b2b08080808, 0x08082b2b08190819, + 0x08082b2b08191908, 0x08082b2b082b082b, 0x08082b2b082b2b08, 0x08082b2b082b2b2b, + 0x08082b2b19190808, 0x08082b2b2b192b19, 0x0819080808080819, 0x0819080808081908, + 0x081908080808192b, 0x0819080808082b19, 0x0819080808190808, 0x081908080819082b, + 0x0819080808191919, 0x0819080808192b08, 0x08190808082b0819, 0x08190808082b1908, + 0x08190808082b192b, 0x0819080819080808, 0x081908081908082b, 0x0819080819081919, + 0x0819080819082b08, 0x0819080819190819, 0x0819080819191908, 0x081908081919192b, + 0x0819080819192b19, 0x08190808192b0808, 0x08190808192b082b, 0x08190808192b1919, + 0x08190808192b2b08, 0x081908082b080819, 0x081908082b081908, 0x081908082b08192b, + 0x081908082b190808, 0x081908082b191919, 0x081908082b192b08, 0x081908082b2b0819, + 0x081908082b2b1908, 0x0819081908080808, 0x081908190808082b, 0x0819081908081919, + 0x0819081908082b08, 0x0819081908082b2b, 0x0819081908190819, 0x0819081908191908, + 0x081908190819192b, 0x0819081908192b19, 0x08190819082b0808, 0x08190819082b082b, + 0x08190819082b1919, 0x08190819082b2b08, 0x0819081919080819, 0x0819081919081908, + 0x081908191908192b, 0x0819081919082b19, 0x0819081919190808, 0x081908191919082b, + 0x0819081919191919, 0x0819081919192b08, 0x08190819192b0819, 0x08190819192b1908, + 0x081908192b080808, 0x081908192b08082b, 0x081908192b081919, 0x081908192b082b08, + 0x081908192b190819, 0x081908192b191908, 0x0819082b08080819, 0x0819082b08081908, + 0x0819082b08082b19, 0x0819082b08190808, 0x0819082b08191919, 0x0819082b082b0819, + 0x0819082b082b1908, 0x0819082b19080808, 0x0819082b19081919, 0x0819082b19190819, + 0x0819082b19191908, 0x0819082b2b080819, 0x0819082b2b081908, 0x0819082b2b190808, + 0x0819190808080808, 0x081919080808082b, 0x0819190808081919, 0x0819190808082b08, + 0x0819190808190819, 0x0819190808191908, 0x081919080819192b, 0x0819190808192b19, + 0x08191908082b0808, 0x08191908082b1919, 0x08191908082b2b08, 0x0819190819080819, + 0x0819190819081908, 0x081919081908192b, 0x0819190819082b19, 0x0819190819190808, + 0x081919081919082b, 0x0819190819191919, 0x0819190819192b08, 0x08191908192b0819, + 0x08191908192b1908, 0x081919082b080808, 0x081919082b08082b, 0x081919082b081919, + 0x081919082b082b08, 0x081919082b190819, 0x081919082b191908, 0x081919082b2b0808, + 0x0819191908080819, 0x0819191908081908, 0x081919190808192b, 0x0819191908082b19, + 0x0819191908190808, 0x081919190819082b, 0x0819191908191919, 0x0819191908192b08, + 0x08191919082b0819, 0x08191919082b1908, 0x0819191919080808, 0x081919191908082b, + 0x0819191919081919, 0x0819191919082b08, 0x0819191919190819, 0x0819191919191908, + 0x08191919192b0808, 0x081919192b080819, 0x081919192b081908, 0x081919192b190808, + 0x0819192b08080808, 0x0819192b08081919, 0x0819192b08082b08, 0x0819192b08190819, + 0x0819192b08191908, 0x0819192b082b0808, 0x0819192b19080819, 0x0819192b19081908, + 0x0819192b19190808, 0x0819192b2b080808, 0x0819192b2b2b2b2b, 0x08192b0808080819, + 0x08192b0808081908, 0x08192b080808192b, 0x08192b0808082b19, 0x08192b0808190808, + 0x08192b0808191919, 0x08192b0808192b08, 0x08192b08082b0819, 0x08192b0819080808, + 0x08192b081908082b, 0x08192b0819081919, 0x08192b0819082b08, 0x08192b0819190819, + 0x08192b0819191908, 0x08192b08192b0808, 0x08192b082b080819, 0x08192b082b081908, + 0x08192b1908080808, 0x08192b190808082b, 0x08192b1908081919, 0x08192b1908082b08, + 0x08192b1908190819, 0x08192b1908191908, 0x08192b19082b0808, 0x08192b1919080819, + 0x08192b1919081908, 0x08192b1919190808, 0x08192b19192b2b19, 0x08192b192b2b082b, + 0x08192b2b08081908, 0x08192b2b08190808, 0x08192b2b19080808, 0x08192b2b1919192b, + 0x082b080808080808, 0x082b08080808082b, 0x082b080808081919, 0x082b080808082b08, + 0x082b080808190819, 0x082b080808191908, 0x082b08080819192b, 0x082b080808192b19, + 0x082b0808082b0808, 0x082b0808082b1919, 0x082b0808082b2b2b, 0x082b080819080819, + 0x082b080819081908, 0x082b080819190808, 0x082b08081919082b, 0x082b080819191919, + 0x082b0808192b1908, 0x082b08082b080808, 0x082b08082b082b2b, 0x082b08082b191908, + 0x082b08082b2b2b2b, 0x082b081908080819, 0x082b081908081908, 0x082b081908190808, + 0x082b08190819082b, 0x082b081908191919, 0x082b0819082b0819, 0x082b081919080808, + 0x082b08191908082b, 0x082b081919081919, 0x082b081919190819, 0x082b081919191908, + 0x082b0819192b0808, 0x082b08192b080819, 0x082b08192b081908, 0x082b08192b190808, + 0x082b082b08080808, 0x082b082b08082b2b, 0x082b082b082b082b, 0x082b082b082b2b08, + 0x082b082b082b2b2b, 0x082b082b19081908, 0x082b082b19190808, 0x082b082b2b082b08, + 0x082b082b2b082b2b, 0x082b082b2b2b2b08, 0x082b190808080819, 0x082b190808081908, + 0x082b19080808192b, 0x082b190808082b19, 0x082b190808190808, 0x082b190808191919, + 0x082b190808192b08, 0x082b1908082b0819, 0x082b1908082b1908, 0x082b190819080808, + 0x082b19081908082b, 0x082b190819081919, 0x082b190819082b08, 0x082b190819190819, + 0x082b190819191908, 0x082b1908192b0808, 0x082b19082b080819, 0x082b19082b081908, + 0x082b19082b190808, 0x082b191908080808, 0x082b191908081919, 0x082b191908082b08, + 0x082b191908190819, 0x082b191908191908, 0x082b1919082b0808, 0x082b191919080819, + 0x082b191919081908, 0x082b191919190808, 0x082b1919192b192b, 0x082b19192b080808, + 0x082b192b08080819, 0x082b192b08081908, 0x082b192b08190808, 0x082b192b19080808, + 0x082b192b19192b19, 0x082b2b0808080808, 0x082b2b0808081919, 0x082b2b0808190819, + 0x082b2b0808191908, 0x082b2b0819080819, 0x082b2b0819081908, 0x082b2b0819190808, + 0x082b2b082b082b2b, 0x082b2b082b2b2b2b, 0x082b2b1908080819, 0x082b2b1908081908, + 0x082b2b1908190808, 0x082b2b192b191919, 0x082b2b2b08082b2b, 0x082b2b2b082b082b, + 0x082b2b2b192b1908, 0x082b2b2b2b082b08, 0x082b2b2b2b082b2b, 0x1908080808080819, + 0x1908080808081908, 0x190808080808192b, 0x1908080808082b19, 0x1908080808190808, + 0x190808080819082b, 0x1908080808191919, 0x1908080808192b08, 0x1908080808192b2b, + 0x19080808082b0819, 0x19080808082b1908, 0x19080808082b192b, 0x1908080819080808, + 0x190808081908082b, 0x1908080819081919, 0x1908080819082b08, 0x1908080819082b2b, + 0x1908080819190819, 0x1908080819191908, 0x190808081919192b, 0x1908080819192b19, + 0x19080808192b0808, 0x19080808192b082b, 0x19080808192b1919, 0x190808082b080819, + 0x190808082b081908, 0x190808082b190808, 0x190808082b191919, 0x190808082b192b08, + 0x190808082b2b0819, 0x190808082b2b1908, 0x1908081908080808, 0x190808190808082b, + 0x1908081908081919, 0x1908081908082b08, 0x1908081908190819, 0x1908081908191908, + 0x190808190819192b, 0x1908081908192b19, 0x19080819082b0808, 0x19080819082b082b, + 0x19080819082b1919, 0x1908081919080819, 0x1908081919081908, 0x190808191908192b, + 0x1908081919082b19, 0x1908081919190808, 0x190808191919082b, 0x1908081919191919, + 0x1908081919192b08, 0x19080819192b0819, 0x19080819192b1908, 0x190808192b080808, + 0x190808192b08082b, 0x190808192b081919, 0x190808192b082b08, 0x190808192b190819, + 0x190808192b191908, 0x190808192b2b0808, 0x1908082b08080819, 0x1908082b08081908, + 0x1908082b08190808, 0x1908082b0819082b, 0x1908082b08191919, 0x1908082b08192b08, + 0x1908082b082b1908, 0x1908082b19080808, 0x1908082b19081919, 0x1908082b19082b08, + 0x1908082b19190819, 0x1908082b19191908, 0x1908082b192b0808, 0x1908082b2b080819, + 0x1908082b2b081908, 0x1908190808080808, 0x190819080808082b, 0x1908190808081919, + 0x1908190808082b08, 0x1908190808082b2b, 0x1908190808190819, 0x1908190808191908, + 0x190819080819192b, 0x1908190808192b19, 0x19081908082b0808, 0x19081908082b082b, + 0x19081908082b1919, 0x19081908082b2b08, 0x1908190819080819, 0x1908190819081908, + 0x190819081908192b, 0x1908190819082b19, 0x1908190819190808, 0x190819081919082b, + 0x1908190819191919, 0x1908190819192b08, 0x19081908192b0819, 0x19081908192b1908, + 0x190819082b080808, 0x190819082b08082b, 0x190819082b081919, 0x190819082b082b08, + 0x190819082b190819, 0x190819082b191908, 0x190819082b2b0808, 0x1908191908080819, + 0x1908191908081908, 0x190819190808192b, 0x1908191908082b19, 0x1908191908190808, + 0x190819190819082b, 0x1908191908191919, 0x1908191908192b08, 0x19081919082b0819, + 0x19081919082b1908, 0x1908191919080808, 0x190819191908082b, 0x1908191919081919, + 0x1908191919082b08, 0x1908191919190819, 0x1908191919191908, 0x19081919192b0808, + 0x19081919192b2b2b, 0x190819192b080819, 0x190819192b081908, 0x190819192b190808, + 0x1908192b08080808, 0x1908192b0808082b, 0x1908192b08081919, 0x1908192b08082b08, + 0x1908192b08190819, 0x1908192b08191908, 0x1908192b082b0808, 0x1908192b19080819, + 0x1908192b19081908, 0x1908192b19190808, 0x1908192b2b080808, 0x1908192b2b2b1919, + 0x19082b0808080819, 0x19082b0808081908, 0x19082b0808082b19, 0x19082b0808190808, + 0x19082b080819082b, 0x19082b0808191919, 0x19082b0808192b08, 0x19082b08082b0819, + 0x19082b08082b1908, 0x19082b0819080808, 0x19082b081908082b, 0x19082b0819081919, + 0x19082b0819082b08, 0x19082b0819190819, 0x19082b0819191908, 0x19082b08192b0808, + 0x19082b082b081908, 0x19082b082b190808, 0x19082b1908080808, 0x19082b190808082b, + 0x19082b1908081919, 0x19082b1908082b08, 0x19082b1908190819, 0x19082b1908191908, + 0x19082b19082b0808, 0x19082b1919080819, 0x19082b1919081908, 0x19082b1919190808, + 0x19082b192b080808, 0x19082b192b19192b, 0x19082b2b08080819, 0x19082b2b08081908, + 0x19082b2b08190808, 0x19082b2b19080808, 0x1919080808080808, 0x191908080808082b, + 0x1919080808081919, 0x1919080808082b08, 0x1919080808190819, 0x1919080808191908, + 0x191908080819192b, 0x1919080808192b19, 0x19190808082b0808, 0x19190808082b082b, + 0x19190808082b1919, 0x19190808082b2b08, 0x1919080819080819, 0x1919080819081908, + 0x191908081908192b, 0x1919080819082b19, 0x1919080819190808, 0x191908081919082b, + 0x1919080819191919, 0x1919080819192b08, 0x19190808192b0819, 0x19190808192b1908, + 0x191908082b080808, 0x191908082b08082b, 0x191908082b081919, 0x191908082b082b08, + 0x191908082b190819, 0x191908082b191908, 0x1919081908080819, 0x1919081908081908, + 0x191908190808192b, 0x1919081908082b19, 0x1919081908190808, 0x191908190819082b, + 0x1919081908191919, 0x1919081908192b08, 0x19190819082b0819, 0x19190819082b1908, + 0x1919081919080808, 0x191908191908082b, 0x1919081919081919, 0x1919081919082b08, + 0x1919081919190819, 0x1919081919191908, 0x19190819192b0808, 0x191908192b080819, + 0x191908192b081908, 0x191908192b190808, 0x1919082b08080808, 0x1919082b08081919, + 0x1919082b08082b08, 0x1919082b08190819, 0x1919082b08191908, 0x1919082b082b0808, + 0x1919082b19080819, 0x1919082b19081908, 0x1919082b19190808, 0x1919082b192b2b19, + 0x1919082b2b080808, 0x1919190808080819, 0x1919190808081908, 0x191919080808192b, + 0x1919190808082b19, 0x1919190808190808, 0x191919080819082b, 0x1919190808191919, + 0x1919190808192b08, 0x19191908082b0819, 0x19191908082b1908, 0x1919190819080808, + 0x191919081908082b, 0x1919190819081919, 0x1919190819082b08, 0x1919190819190819, + 0x1919190819191908, 0x19191908192b0808, 0x191919082b080819, 0x191919082b081908, + 0x191919082b190808, 0x1919191908080808, 0x191919190808082b, 0x1919191908081919, + 0x1919191908082b08, 0x1919191908190819, 0x1919191908191908, 0x19191919082b0808, + 0x1919191919080819, 0x1919191919081908, 0x1919191919190808, 0x191919192b080808, + 0x1919192b08080819, 0x1919192b08081908, 0x1919192b08190808, 0x1919192b082b192b, + 0x1919192b19080808, 0x19192b0808080808, 0x19192b080808082b, 0x19192b0808081919, + 0x19192b0808082b08, 0x19192b0808190819, 0x19192b0808191908, 0x19192b08082b0808, + 0x19192b0819080819, 0x19192b0819081908, 0x19192b0819190808, 0x19192b0819192b2b, + 0x19192b082b080808, 0x19192b1908080819, 0x19192b1908081908, 0x19192b1908190808, + 0x19192b1919080808, 0x19192b2b08080808, 0x19192b2b08192b19, 0x19192b2b2b081919, + 0x19192b2b2b2b2b08, 0x192b080808080819, 0x192b080808081908, 0x192b08080808192b, + 0x192b080808190808, 0x192b08080819082b, 0x192b080808191919, 0x192b080808192b08, + 0x192b0808082b0819, 0x192b0808082b1908, 0x192b080819080808, 0x192b080819081919, + 0x192b080819082b08, 0x192b080819190819, 0x192b080819191908, 0x192b0808192b0808, + 0x192b08082b081908, 0x192b08082b190808, 0x192b081908080808, 0x192b08190808082b, + 0x192b081908081919, 0x192b081908082b08, 0x192b081908190819, 0x192b081908191908, + 0x192b0819082b0808, 0x192b081919080819, 0x192b081919081908, 0x192b081919190808, + 0x192b08192b080808, 0x192b08192b192b19, 0x192b082b08081908, 0x192b082b08190808, + 0x192b082b19080808, 0x192b082b1919192b, 0x192b082b2b2b0819, 0x192b190808080808, + 0x192b190808081919, 0x192b190808082b08, 0x192b190808190819, 0x192b190808191908, + 0x192b1908082b0808, 0x192b190819080819, 0x192b190819081908, 0x192b190819190808, + 0x192b19082b080808, 0x192b191908080819, 0x192b191908081908, 0x192b191908190808, + 0x192b191919080808, 0x192b191919082b2b, 0x192b1919192b2b08, 0x192b19192b19082b, + 0x192b192b08080808, 0x192b192b2b191908, 0x192b2b0808080819, 0x192b2b0808081908, + 0x192b2b0808190808, 0x192b2b08192b1919, 0x192b2b082b192b08, 0x192b2b1908080808, + 0x192b2b19082b2b2b, 0x192b2b2b1908082b, 0x192b2b2b2b2b0819, 0x2b08080808080808, + 0x2b0808080808082b, 0x2b08080808081919, 0x2b08080808082b08, 0x2b08080808190819, + 0x2b08080808191908, 0x2b08080808192b19, 0x2b080808082b0808, 0x2b080808082b1919, + 0x2b08080819080819, 0x2b08080819081908, 0x2b08080819190808, 0x2b0808081919082b, + 0x2b08080819191919, 0x2b08080819192b08, 0x2b080808192b0819, 0x2b0808082b080808, + 0x2b0808082b081919, 0x2b0808082b190819, 0x2b0808082b191908, 0x2b08081908080819, + 0x2b08081908081908, 0x2b08081908082b19, 0x2b08081908190808, 0x2b0808190819082b, + 0x2b08081908191919, 0x2b08081908192b08, 0x2b080819082b0819, 0x2b080819082b1908, + 0x2b08081919080808, 0x2b0808191908082b, 0x2b08081919081919, 0x2b08081919082b08, + 0x2b08081919190819, 0x2b08081919191908, 0x2b0808192b080819, 0x2b0808192b081908, + 0x2b0808192b190808, 0x2b0808192b2b2b19, 0x2b08082b08080808, 0x2b08082b08081919, + 0x2b08082b08082b2b, 0x2b08082b08190819, 0x2b08082b08191908, 0x2b08082b19080819, + 0x2b08082b19081908, 0x2b08082b19190808, 0x2b08190808080819, 0x2b08190808081908, + 0x2b0819080808192b, 0x2b08190808082b19, 0x2b08190808190808, 0x2b0819080819082b, + 0x2b08190808191919, 0x2b08190808192b08, 0x2b081908082b0819, 0x2b08190819080808, + 0x2b0819081908082b, 0x2b08190819081919, 0x2b08190819082b08, 0x2b08190819190819, + 0x2b08190819191908, 0x2b081908192b0808, 0x2b0819082b080819, 0x2b0819082b081908, + 0x2b0819082b190808, 0x2b08191908080808, 0x2b0819190808082b, 0x2b08191908081919, + 0x2b08191908082b08, 0x2b08191908190819, 0x2b08191908191908, 0x2b081919082b0808, + 0x2b08191919080819, 0x2b08191919081908, 0x2b08191919190808, 0x2b0819192b080808, + 0x2b0819192b082b2b, 0x2b08192b08080819, 0x2b08192b08081908, 0x2b08192b08190808, + 0x2b08192b082b2b19, 0x2b08192b19080808, 0x2b082b0808080808, 0x2b082b0808081919, + 0x2b082b0808190819, 0x2b082b0808191908, 0x2b082b0819080819, 0x2b082b0819081908, + 0x2b082b0819190808, 0x2b082b082b2b082b, 0x2b082b1908080819, 0x2b082b1908081908, + 0x2b082b1919080808, 0x2b082b19192b1919, 0x2b082b2b082b082b, 0x2b082b2b19192b08, + 0x2b082b2b19192b2b, 0x2b082b2b2b08082b, 0x2b082b2b2b2b082b, 0x2b19080808080819, + 0x2b19080808081908, 0x2b19080808082b19, 0x2b19080808190808, 0x2b1908080819082b, + 0x2b19080808191919, 0x2b19080808192b08, 0x2b190808082b1908, 0x2b19080819080808, + 0x2b1908081908082b, 0x2b19080819081919, 0x2b19080819082b08, 0x2b19080819190819, + 0x2b19080819191908, 0x2b190808192b0808, 0x2b1908082b080819, 0x2b1908082b081908, + 0x2b1908082b190808, 0x2b19081908080808, 0x2b19081908081919, 0x2b19081908190819, + 0x2b19081908191908, 0x2b19081919080819, 0x2b19081919081908, 0x2b19081919190808, + 0x2b19081919192b2b, 0x2b19082b08080819, 0x2b19082b08081908, 0x2b19082b08190808, + 0x2b19082b19080808, 0x2b19082b2b2b192b, 0x2b19190808080808, 0x2b1919080808082b, + 0x2b19190808081919, 0x2b19190808082b08, 0x2b19190808190819, 0x2b19190808191908, + 0x2b191908082b0808, 0x2b19190819080819, 0x2b19190819081908, 0x2b19190819190808, + 0x2b1919082b080808, 0x2b1919082b19192b, 0x2b19191908080819, 0x2b19191908081908, + 0x2b19191908190808, 0x2b19191919080808, 0x2b1919192b192b08, 0x2b1919192b2b0819, + 0x2b19192b08080808, 0x2b19192b1908192b, 0x2b19192b192b1908, 0x2b192b0808080819, + 0x2b192b0808081908, 0x2b192b0808190808, 0x2b192b08082b192b, 0x2b192b0819080808, + 0x2b192b082b2b2b19, 0x2b192b1908080808, 0x2b192b1919082b19, 0x2b192b191919082b, + 0x2b192b2b2b190808, 0x2b2b080808080808, 0x2b2b080808081919, 0x2b2b080808082b2b, + 0x2b2b080808191908, 0x2b2b0808082b082b, 0x2b2b0808082b2b2b, 0x2b2b080819080819, + 0x2b2b080819081908, 0x2b2b080819190808, 0x2b2b08082b2b082b, 0x2b2b08082b2b2b2b, + 0x2b2b081919080808, 0x2b2b0819192b1919, 0x2b2b082b0808082b, 0x2b2b082b08082b2b, + 0x2b2b082b082b082b, 0x2b2b082b082b2b08, 0x2b2b082b082b2b2b, 0x2b2b082b2b08082b, + 0x2b2b082b2b082b08, 0x2b2b082b2b082b2b, 0x2b2b082b2b2b2b08, 0x2b2b190808080819, + 0x2b2b190808081908, 0x2b2b190808190808, 0x2b2b190819080808, 0x2b2b19082b082b19, + 0x2b2b19082b2b1908, 0x2b2b191908080808, 0x2b2b191908192b19, 0x2b2b192b19190819, + 0x2b2b2b0808082b2b, 0x2b2b2b08082b2b08, 0x2b2b2b082b2b082b, 0x2b2b2b1919191908, + 0x2b2b2b192b08192b, 0x2b2b2b2b08082b08, 0x2b2b2b2b08082b2b, 0x2b2b2b2b082b0808, + 0x2b2b2b2b082b082b, 0x2b2b2b2b082b2b08, 0x2b2b2b2b2b082b08, 0x2b2b2b2b2b2b2b2b, +GGML_TABLE_END() + +GGML_TABLE_BEGIN(uint32_t, iq3xxs_grid, 256) + 0x04040404, 0x04040414, 0x04040424, 0x04040c0c, 0x04040c1c, 0x04040c3e, 0x04041404, 0x04041414, + 0x04041c0c, 0x04042414, 0x04043e1c, 0x04043e2c, 0x040c040c, 0x040c041c, 0x040c0c04, 0x040c0c14, + 0x040c140c, 0x040c142c, 0x040c1c04, 0x040c1c14, 0x040c240c, 0x040c2c24, 0x040c3e04, 0x04140404, + 0x04140414, 0x04140424, 0x04140c0c, 0x04141404, 0x04141414, 0x04141c0c, 0x04141c1c, 0x04141c3e, + 0x04142c0c, 0x04142c3e, 0x04143e2c, 0x041c040c, 0x041c043e, 0x041c0c04, 0x041c0c14, 0x041c142c, + 0x041c3e04, 0x04240c1c, 0x04241c3e, 0x04242424, 0x04242c3e, 0x04243e1c, 0x04243e2c, 0x042c040c, + 0x042c043e, 0x042c1c14, 0x042c2c14, 0x04341c2c, 0x04343424, 0x043e0c04, 0x043e0c24, 0x043e0c34, + 0x043e241c, 0x043e340c, 0x0c04040c, 0x0c04041c, 0x0c040c04, 0x0c040c14, 0x0c04140c, 0x0c04141c, + 0x0c041c04, 0x0c041c14, 0x0c041c24, 0x0c04243e, 0x0c042c04, 0x0c0c0404, 0x0c0c0414, 0x0c0c0c0c, + 0x0c0c1404, 0x0c0c1414, 0x0c14040c, 0x0c14041c, 0x0c140c04, 0x0c140c14, 0x0c14140c, 0x0c141c04, + 0x0c143e14, 0x0c1c0404, 0x0c1c0414, 0x0c1c1404, 0x0c1c1c0c, 0x0c1c2434, 0x0c1c3434, 0x0c24040c, + 0x0c24042c, 0x0c242c04, 0x0c2c1404, 0x0c2c1424, 0x0c2c2434, 0x0c2c3e0c, 0x0c34042c, 0x0c3e1414, + 0x0c3e2404, 0x14040404, 0x14040414, 0x14040c0c, 0x14040c1c, 0x14041404, 0x14041414, 0x14041434, + 0x14041c0c, 0x14042414, 0x140c040c, 0x140c041c, 0x140c042c, 0x140c0c04, 0x140c0c14, 0x140c140c, + 0x140c1c04, 0x140c341c, 0x140c343e, 0x140c3e04, 0x14140404, 0x14140414, 0x14140c0c, 0x14140c3e, + 0x14141404, 0x14141414, 0x14141c3e, 0x14142404, 0x14142c2c, 0x141c040c, 0x141c0c04, 0x141c0c24, + 0x141c3e04, 0x141c3e24, 0x14241c2c, 0x14242c1c, 0x142c041c, 0x142c143e, 0x142c240c, 0x142c3e24, + 0x143e040c, 0x143e041c, 0x143e0c34, 0x143e242c, 0x1c04040c, 0x1c040c04, 0x1c040c14, 0x1c04140c, + 0x1c04141c, 0x1c042c04, 0x1c04342c, 0x1c043e14, 0x1c0c0404, 0x1c0c0414, 0x1c0c1404, 0x1c0c1c0c, + 0x1c0c2424, 0x1c0c2434, 0x1c14040c, 0x1c14041c, 0x1c140c04, 0x1c14142c, 0x1c142c14, 0x1c143e14, + 0x1c1c0c0c, 0x1c1c1c1c, 0x1c241c04, 0x1c24243e, 0x1c243e14, 0x1c2c0404, 0x1c2c0434, 0x1c2c1414, + 0x1c2c2c2c, 0x1c340c24, 0x1c341c34, 0x1c34341c, 0x1c3e1c1c, 0x1c3e3404, 0x24040424, 0x24040c3e, + 0x24041c2c, 0x24041c3e, 0x24042c1c, 0x24042c3e, 0x240c3e24, 0x24141404, 0x24141c3e, 0x24142404, + 0x24143404, 0x24143434, 0x241c043e, 0x241c242c, 0x24240424, 0x24242c0c, 0x24243424, 0x242c142c, + 0x242c241c, 0x242c3e04, 0x243e042c, 0x243e0c04, 0x243e0c14, 0x243e1c04, 0x2c040c14, 0x2c04240c, + 0x2c043e04, 0x2c0c0404, 0x2c0c0434, 0x2c0c1434, 0x2c0c2c2c, 0x2c140c24, 0x2c141c14, 0x2c143e14, + 0x2c1c0414, 0x2c1c2c1c, 0x2c240c04, 0x2c24141c, 0x2c24143e, 0x2c243e14, 0x2c2c0414, 0x2c2c1c0c, + 0x2c342c04, 0x2c3e1424, 0x2c3e2414, 0x34041424, 0x34042424, 0x34042434, 0x34043424, 0x340c140c, + 0x340c340c, 0x34140c3e, 0x34143424, 0x341c1c04, 0x341c1c34, 0x34242424, 0x342c042c, 0x342c2c14, + 0x34341c1c, 0x343e041c, 0x343e140c, 0x3e04041c, 0x3e04042c, 0x3e04043e, 0x3e040c04, 0x3e041c14, + 0x3e042c14, 0x3e0c1434, 0x3e0c2404, 0x3e140c14, 0x3e14242c, 0x3e142c14, 0x3e1c0404, 0x3e1c0c2c, + 0x3e1c1c1c, 0x3e1c3404, 0x3e24140c, 0x3e24240c, 0x3e2c0404, 0x3e2c0414, 0x3e2c1424, 0x3e341c04, +GGML_TABLE_END() + +GGML_TABLE_BEGIN(uint32_t, iq3s_grid, 512) + 0x01010101, 0x01010103, 0x01010105, 0x0101010b, 0x0101010f, 0x01010301, 0x01010303, 0x01010305, + 0x01010309, 0x0101030d, 0x01010501, 0x01010503, 0x0101050b, 0x01010707, 0x01010901, 0x01010905, + 0x0101090b, 0x0101090f, 0x01010b03, 0x01010b07, 0x01010d01, 0x01010d05, 0x01010f03, 0x01010f09, + 0x01010f0f, 0x01030101, 0x01030103, 0x01030105, 0x01030109, 0x01030301, 0x01030303, 0x0103030b, + 0x01030501, 0x01030507, 0x0103050f, 0x01030703, 0x0103070b, 0x01030909, 0x01030d03, 0x01030d0b, + 0x01030f05, 0x01050101, 0x01050103, 0x0105010b, 0x0105010f, 0x01050301, 0x01050307, 0x0105030d, + 0x01050503, 0x0105050b, 0x01050701, 0x01050709, 0x01050905, 0x0105090b, 0x0105090f, 0x01050b03, + 0x01050b07, 0x01050f01, 0x01050f07, 0x01070107, 0x01070303, 0x0107030b, 0x01070501, 0x01070505, + 0x01070703, 0x01070707, 0x0107070d, 0x01070909, 0x01070b01, 0x01070b05, 0x01070d0f, 0x01070f03, + 0x01070f0b, 0x01090101, 0x01090307, 0x0109030f, 0x01090503, 0x01090509, 0x01090705, 0x01090901, + 0x01090907, 0x01090b03, 0x01090f01, 0x010b0105, 0x010b0109, 0x010b0501, 0x010b0505, 0x010b050d, + 0x010b0707, 0x010b0903, 0x010b090b, 0x010b090f, 0x010b0d0d, 0x010b0f07, 0x010d010d, 0x010d0303, + 0x010d0307, 0x010d0703, 0x010d0b05, 0x010d0f03, 0x010f0101, 0x010f0105, 0x010f0109, 0x010f0501, + 0x010f0505, 0x010f050d, 0x010f0707, 0x010f0b01, 0x010f0b09, 0x03010101, 0x03010103, 0x03010105, + 0x03010109, 0x03010301, 0x03010303, 0x03010307, 0x0301030b, 0x0301030f, 0x03010501, 0x03010505, + 0x03010703, 0x03010709, 0x0301070d, 0x03010b09, 0x03010b0d, 0x03010d03, 0x03010f05, 0x03030101, + 0x03030103, 0x03030107, 0x0303010d, 0x03030301, 0x03030309, 0x03030503, 0x03030701, 0x03030707, + 0x03030903, 0x03030b01, 0x03030b05, 0x03030f01, 0x03030f0d, 0x03050101, 0x03050305, 0x0305030b, + 0x0305030f, 0x03050501, 0x03050509, 0x03050705, 0x03050901, 0x03050907, 0x03050b0b, 0x03050d01, + 0x03050f05, 0x03070103, 0x03070109, 0x0307010f, 0x03070301, 0x03070307, 0x03070503, 0x0307050f, + 0x03070701, 0x03070709, 0x03070903, 0x03070d05, 0x03070f01, 0x03090107, 0x0309010b, 0x03090305, + 0x03090309, 0x03090703, 0x03090707, 0x03090905, 0x0309090d, 0x03090b01, 0x03090b09, 0x030b0103, + 0x030b0301, 0x030b0307, 0x030b0503, 0x030b0701, 0x030b0705, 0x030b0b03, 0x030d0501, 0x030d0509, + 0x030d050f, 0x030d0909, 0x030d090d, 0x030f0103, 0x030f0107, 0x030f0301, 0x030f0305, 0x030f0503, + 0x030f070b, 0x030f0903, 0x030f0d05, 0x030f0f01, 0x05010101, 0x05010103, 0x05010107, 0x0501010b, + 0x0501010f, 0x05010301, 0x05010305, 0x05010309, 0x0501030d, 0x05010503, 0x05010507, 0x0501050f, + 0x05010701, 0x05010705, 0x05010903, 0x05010907, 0x0501090b, 0x05010b01, 0x05010b05, 0x05010d0f, + 0x05010f01, 0x05010f07, 0x05010f0b, 0x05030101, 0x05030105, 0x05030301, 0x05030307, 0x0503030f, + 0x05030505, 0x0503050b, 0x05030703, 0x05030709, 0x05030905, 0x05030b03, 0x05050103, 0x05050109, + 0x0505010f, 0x05050503, 0x05050507, 0x05050701, 0x0505070f, 0x05050903, 0x05050b07, 0x05050b0f, + 0x05050f03, 0x05050f09, 0x05070101, 0x05070105, 0x0507010b, 0x05070303, 0x05070505, 0x05070509, + 0x05070703, 0x05070707, 0x05070905, 0x05070b01, 0x05070d0d, 0x05090103, 0x0509010f, 0x05090501, + 0x05090507, 0x05090705, 0x0509070b, 0x05090903, 0x05090f05, 0x05090f0b, 0x050b0109, 0x050b0303, + 0x050b0505, 0x050b070f, 0x050b0901, 0x050b0b07, 0x050b0f01, 0x050d0101, 0x050d0105, 0x050d010f, + 0x050d0503, 0x050d0b0b, 0x050d0d03, 0x050f010b, 0x050f0303, 0x050f050d, 0x050f0701, 0x050f0907, + 0x050f0b01, 0x07010105, 0x07010303, 0x07010307, 0x0701030b, 0x0701030f, 0x07010505, 0x07010703, + 0x07010707, 0x0701070b, 0x07010905, 0x07010909, 0x0701090f, 0x07010b03, 0x07010d07, 0x07010f03, + 0x07030103, 0x07030107, 0x0703010b, 0x07030309, 0x07030503, 0x07030507, 0x07030901, 0x07030d01, + 0x07030f05, 0x07030f0d, 0x07050101, 0x07050305, 0x07050501, 0x07050705, 0x07050709, 0x07050b01, + 0x07070103, 0x07070301, 0x07070309, 0x07070503, 0x07070507, 0x0707050f, 0x07070701, 0x07070903, + 0x07070907, 0x0707090f, 0x07070b0b, 0x07070f07, 0x07090107, 0x07090303, 0x0709030d, 0x07090505, + 0x07090703, 0x07090b05, 0x07090d01, 0x07090d09, 0x070b0103, 0x070b0301, 0x070b0305, 0x070b050b, + 0x070b0705, 0x070b0909, 0x070b0b0d, 0x070b0f07, 0x070d030d, 0x070d0903, 0x070f0103, 0x070f0107, + 0x070f0501, 0x070f0505, 0x070f070b, 0x09010101, 0x09010109, 0x09010305, 0x09010501, 0x09010509, + 0x0901050f, 0x09010705, 0x09010903, 0x09010b01, 0x09010f01, 0x09030105, 0x0903010f, 0x09030303, + 0x09030307, 0x09030505, 0x09030701, 0x0903070b, 0x09030907, 0x09030b03, 0x09030b0b, 0x09050103, + 0x09050107, 0x09050301, 0x0905030b, 0x09050503, 0x09050707, 0x09050901, 0x09050b0f, 0x09050d05, + 0x09050f01, 0x09070109, 0x09070303, 0x09070307, 0x09070501, 0x09070505, 0x09070703, 0x0907070b, + 0x09090101, 0x09090105, 0x09090509, 0x0909070f, 0x09090901, 0x09090f03, 0x090b010b, 0x090b010f, + 0x090b0503, 0x090b0d05, 0x090d0307, 0x090d0709, 0x090d0d01, 0x090f0301, 0x090f030b, 0x090f0701, + 0x090f0907, 0x090f0b03, 0x0b010105, 0x0b010301, 0x0b010309, 0x0b010505, 0x0b010901, 0x0b010909, + 0x0b01090f, 0x0b010b05, 0x0b010d0d, 0x0b010f09, 0x0b030103, 0x0b030107, 0x0b03010b, 0x0b030305, + 0x0b030503, 0x0b030705, 0x0b030f05, 0x0b050101, 0x0b050303, 0x0b050507, 0x0b050701, 0x0b05070d, + 0x0b050b07, 0x0b070105, 0x0b07010f, 0x0b070301, 0x0b07050f, 0x0b070909, 0x0b070b03, 0x0b070d0b, + 0x0b070f07, 0x0b090103, 0x0b090109, 0x0b090501, 0x0b090705, 0x0b09090d, 0x0b0b0305, 0x0b0b050d, + 0x0b0b0b03, 0x0b0b0b07, 0x0b0d0905, 0x0b0f0105, 0x0b0f0109, 0x0b0f0505, 0x0d010303, 0x0d010307, + 0x0d01030b, 0x0d010703, 0x0d010707, 0x0d010d01, 0x0d030101, 0x0d030501, 0x0d03050f, 0x0d030d09, + 0x0d050305, 0x0d050709, 0x0d050905, 0x0d050b0b, 0x0d050d05, 0x0d050f01, 0x0d070101, 0x0d070309, + 0x0d070503, 0x0d070901, 0x0d09050b, 0x0d090907, 0x0d090d05, 0x0d0b0101, 0x0d0b0107, 0x0d0b0709, + 0x0d0b0d01, 0x0d0d010b, 0x0d0d0901, 0x0d0f0303, 0x0d0f0307, 0x0f010101, 0x0f010109, 0x0f01010f, + 0x0f010501, 0x0f010505, 0x0f01070d, 0x0f010901, 0x0f010b09, 0x0f010d05, 0x0f030105, 0x0f030303, + 0x0f030509, 0x0f030907, 0x0f03090b, 0x0f050103, 0x0f050109, 0x0f050301, 0x0f05030d, 0x0f050503, + 0x0f050701, 0x0f050b03, 0x0f070105, 0x0f070705, 0x0f07070b, 0x0f070b07, 0x0f090103, 0x0f09010b, + 0x0f090307, 0x0f090501, 0x0f090b01, 0x0f0b0505, 0x0f0b0905, 0x0f0d0105, 0x0f0d0703, 0x0f0f0101, +GGML_TABLE_END() + +#define NGRID_IQ1S 2048 +#define IQ1S_DELTA 0.125f +#define IQ1M_DELTA 0.125f +#if defined(GGML_COMMON_IMPL_C) +GGML_TABLE_BEGIN(uint64_t, iq1s_grid, NGRID_IQ1S) + 0xffffffffffffffff, 0xffffffffffffff01, 0xffffffffffff0000, 0xffffffffffff01ff, + 0xffffffffffff0101, 0xffffffffff00ff00, 0xffffffffff000000, 0xffffffffff01ffff, + 0xffffffffff01ff01, 0xffffffffff0101ff, 0xffffffffff010101, 0xffffffff00ff0000, + 0xffffffff0000ff00, 0xffffffff000000ff, 0xffffffff00000001, 0xffffffff00010000, + 0xffffffff01ffffff, 0xffffffff01ffff01, 0xffffffff01ff01ff, 0xffffffff01ff0101, + 0xffffffff01000000, 0xffffffff0101ffff, 0xffffffff0101ff01, 0xffffffff010101ff, + 0xffffffff01010101, 0xffffff00ffff00ff, 0xffffff00ffff0000, 0xffffff00ff00ff00, + 0xffffff00ff0000ff, 0xffffff00ff000001, 0xffffff00ff000100, 0xffffff00ff000101, + 0xffffff00ff010000, 0xffffff0000ffff00, 0xffffff0000ff0001, 0xffffff0000ff0100, + 0xffffff000000ff01, 0xffffff0000000000, 0xffffff0000000101, 0xffffff000001ff00, + 0xffffff00000100ff, 0xffffff0000010001, 0xffffff00000101ff, 0xffffff0001ff0000, + 0xffffff000100ff00, 0xffffff00010000ff, 0xffffff0001000001, 0xffffff0001010000, + 0xffffff01ffffffff, 0xffffff01ffffff01, 0xffffff01ffff01ff, 0xffffff01ffff0101, + 0xffffff01ff000000, 0xffffff01ff01ffff, 0xffffff01ff01ff01, 0xffffff01ff0101ff, + 0xffffff01ff010101, 0xffffff0100ff0000, 0xffffff010000ff00, 0xffffff0100000100, + 0xffffff01000100ff, 0xffffff0100010100, 0xffffff0101ffffff, 0xffffff0101ffff01, + 0xffffff0101ff01ff, 0xffffff0101ff0101, 0xffffff010100ff00, 0xffffff0101000000, + 0xffffff0101000100, 0xffffff010101ffff, 0xffffff010101ff01, 0xffffff01010101ff, + 0xffffff0101010101, 0xffff00ffff00ff00, 0xffff00ffff0000ff, 0xffff00ffff000001, + 0xffff00ffff010000, 0xffff00ff00ffff00, 0xffff00ff00ff0100, 0xffff00ff00000000, + 0xffff00ff00000101, 0xffff00ff000100ff, 0xffff00ff00010000, 0xffff00ff0100ff00, + 0xffff00ff01000100, 0xffff00ff01010000, 0xffff0000ffffff00, 0xffff0000ffff00ff, + 0xffff0000ffff0000, 0xffff0000ffff0001, 0xffff0000ff000000, 0xffff0000ff0001ff, + 0xffff0000ff000101, 0xffff0000ff010100, 0xffff000000ffffff, 0xffff000000ff0000, + 0xffff000000ff0101, 0xffff00000000ffff, 0xffff00000000ff00, 0xffff0000000000ff, + 0xffff000000000000, 0xffff000000000001, 0xffff000000000100, 0xffff00000001ffff, + 0xffff00000001ff01, 0xffff000000010000, 0xffff0000000101ff, 0xffff000000010101, + 0xffff000001ffff00, 0xffff00000100ff00, 0xffff000001000000, 0xffff0000010001ff, + 0xffff000001000101, 0xffff00000101ff00, 0xffff0000010100ff, 0xffff000001010000, + 0xffff000001010001, 0xffff000001010100, 0xffff0001ff0000ff, 0xffff0001ff000100, + 0xffff000100ffff00, 0xffff000100ff00ff, 0xffff00010000ffff, 0xffff00010000ff01, + 0xffff000100000000, 0xffff0001000001ff, 0xffff00010001ffff, 0xffff00010001ff00, + 0xffff000100010001, 0xffff000100010100, 0xffff000101ff0000, 0xffff00010100ff00, + 0xffff0001010000ff, 0xffff000101000100, 0xffff01ffffffffff, 0xffff01ffffffff01, + 0xffff01ffffff01ff, 0xffff01ffffff0101, 0xffff01ffff000000, 0xffff01ffff01ffff, + 0xffff01ffff01ff01, 0xffff01ffff0101ff, 0xffff01ffff010101, 0xffff01ff00ff0000, + 0xffff01ff0000ff00, 0xffff01ff00000001, 0xffff01ff00010000, 0xffff01ff01ffffff, + 0xffff01ff01ffff01, 0xffff01ff01ff01ff, 0xffff01ff01ff0101, 0xffff01ff01000000, + 0xffff01ff0101ffff, 0xffff01ff0101ff01, 0xffff01ff010101ff, 0xffff01ff01010101, + 0xffff0100ffff0000, 0xffff0100ff00ff00, 0xffff0100ff0000ff, 0xffff0100ff000100, + 0xffff0100ff0100ff, 0xffff0100ff010000, 0xffff010000ffff00, 0xffff01000000ffff, + 0xffff01000000ff00, 0xffff010000000000, 0xffff01000001ff00, 0xffff0100000100ff, + 0xffff010000010100, 0xffff01000100ff00, 0xffff0100010000ff, 0xffff010001000001, + 0xffff010001000100, 0xffff010001010000, 0xffff0101ffffffff, 0xffff0101ffffff01, + 0xffff0101ffff01ff, 0xffff0101ffff0101, 0xffff0101ff000000, 0xffff0101ff01ffff, + 0xffff0101ff01ff01, 0xffff0101ff0101ff, 0xffff0101ff010101, 0xffff010100ff0000, + 0xffff01010000ff00, 0xffff010100000100, 0xffff01010001ff00, 0xffff010100010000, + 0xffff010101ffffff, 0xffff010101ffff01, 0xffff010101ff0000, 0xffff010101ff01ff, + 0xffff010101ff0101, 0xffff010101000000, 0xffff01010101ffff, 0xffff01010101ff01, + 0xffff0101010101ff, 0xffff010101010101, 0xff00ffffff00ffff, 0xff00ffffff00ff00, + 0xff00ffffff0000ff, 0xff00ffffff000100, 0xff00ffffff0100ff, 0xff00ffffff010000, + 0xff00ffff00ffff00, 0xff00ffff00ff00ff, 0xff00ffff0000ffff, 0xff00ffff00000000, + 0xff00ffff000001ff, 0xff00ffff0001ff00, 0xff00ffff000100ff, 0xff00ffff00010000, + 0xff00ffff00010100, 0xff00ffff0100ff00, 0xff00ffff010000ff, 0xff00ffff01000001, + 0xff00ffff0101ff00, 0xff00ffff01010000, 0xff00ff00ffffff00, 0xff00ff00ffff00ff, + 0xff00ff00ffff0001, 0xff00ff00ffff0100, 0xff00ff00ff00ffff, 0xff00ff00ff00ff01, + 0xff00ff00ff000000, 0xff00ff00ff0001ff, 0xff00ff00ff01ff00, 0xff00ff00ff0100ff, + 0xff00ff00ff010100, 0xff00ff0000ff0000, 0xff00ff0000ff0101, 0xff00ff000000ffff, + 0xff00ff000000ff00, 0xff00ff000000ff01, 0xff00ff00000000ff, 0xff00ff0000000000, + 0xff00ff0000000001, 0xff00ff0000000100, 0xff00ff000001ffff, 0xff00ff0000010000, + 0xff00ff0001ff00ff, 0xff00ff000100ff01, 0xff00ff0001000000, 0xff00ff000101ff00, + 0xff00ff00010100ff, 0xff00ff01ff00ff00, 0xff00ff01ff0000ff, 0xff00ff01ff000001, + 0xff00ff01ff010000, 0xff00ff0100ffffff, 0xff00ff0100ff0001, 0xff00ff0100ff0100, + 0xff00ff010000ff01, 0xff00ff0100000000, 0xff00ff01000001ff, 0xff00ff0100000101, + 0xff00ff01000100ff, 0xff00ff0100010001, 0xff00ff0101ff0000, 0xff00ff010100ff00, + 0xff00ff01010000ff, 0xff00ff0101000001, 0xff00ff0101010000, 0xff0000ffffffff00, + 0xff0000ffffff0001, 0xff0000ffffff0100, 0xff0000ffff0000ff, 0xff0000ffff000000, + 0xff0000ffff0001ff, 0xff0000ffff000100, 0xff0000ffff01ff00, 0xff0000ffff010001, + 0xff0000ff00ffff00, 0xff0000ff00ff0000, 0xff0000ff00ff0001, 0xff0000ff00ff01ff, + 0xff0000ff00ff0101, 0xff0000ff0000ff00, 0xff0000ff000000ff, 0xff0000ff00000000, + 0xff0000ff00000001, 0xff0000ff00000100, 0xff0000ff0001ff01, 0xff0000ff00010000, + 0xff0000ff000101ff, 0xff0000ff01ff00ff, 0xff0000ff01ff0100, 0xff0000ff0100ffff, + 0xff0000ff010000ff, 0xff0000ff01000000, 0xff0000ff010001ff, 0xff0000ff01000100, + 0xff0000ff01000101, 0xff0000ff0101ff00, 0xff0000ff010100ff, 0xff0000ff01010000, + 0xff0000ff01010100, 0xff000000ffffff01, 0xff000000ffff0000, 0xff000000ffff0101, + 0xff000000ff00ff00, 0xff000000ff0000ff, 0xff000000ff000000, 0xff000000ff000001, + 0xff000000ff000100, 0xff000000ff01ffff, 0xff000000ff01ff01, 0xff000000ff010000, + 0xff000000ff0101ff, 0xff000000ff010101, 0xff00000000ffff00, 0xff00000000ff00ff, + 0xff00000000ff0000, 0xff00000000ff0001, 0xff0000000000ff00, 0xff0000000000ff01, + 0xff000000000000ff, 0xff00000000000000, 0xff00000000000001, 0xff00000000000100, + 0xff00000000000101, 0xff0000000001ff00, 0xff000000000100ff, 0xff00000000010000, + 0xff00000000010001, 0xff00000000010100, 0xff00000001ffffff, 0xff00000001ffff01, + 0xff00000001ff00ff, 0xff00000001ff0000, 0xff00000001ff01ff, 0xff00000001ff0101, + 0xff0000000100ffff, 0xff0000000100ff00, 0xff000000010000ff, 0xff00000001000000, + 0xff00000001000001, 0xff00000001000100, 0xff00000001000101, 0xff0000000101ffff, + 0xff0000000101ff01, 0xff00000001010000, 0xff000001ffffff00, 0xff000001ffff00ff, + 0xff000001ffff0000, 0xff000001ffff0001, 0xff000001ff000000, 0xff000001ff000001, + 0xff000001ff0001ff, 0xff000001ff000101, 0xff000001ff01ff00, 0xff000001ff010001, + 0xff00000100ffffff, 0xff00000100ffff01, 0xff00000100ff00ff, 0xff00000100ff0000, + 0xff00000100ff01ff, 0xff00000100ff0101, 0xff0000010000ff00, 0xff00000100000000, + 0xff00000100000001, 0xff000001000001ff, 0xff00000100000100, 0xff0000010001ff00, + 0xff000001000100ff, 0xff00000100010000, 0xff000001000101ff, 0xff00000100010100, + 0xff00000100010101, 0xff00000101ff0001, 0xff00000101ff0101, 0xff0000010100ff01, + 0xff00000101000000, 0xff000001010100ff, 0xff00000101010100, 0xff0001ffff00ff00, + 0xff0001ffff000001, 0xff0001ffff010000, 0xff0001ff00ffff00, 0xff0001ff00ff00ff, + 0xff0001ff00ff0001, 0xff0001ff00ff0100, 0xff0001ff0000ffff, 0xff0001ff00000000, + 0xff0001ff000001ff, 0xff0001ff00000101, 0xff0001ff0001ffff, 0xff0001ff0001ff00, + 0xff0001ff000100ff, 0xff0001ff00010001, 0xff0001ff00010100, 0xff0001ff01ff0000, + 0xff0001ff0100ff00, 0xff0001ff010000ff, 0xff0001ff01010000, 0xff000100ff00ffff, + 0xff000100ff00ff01, 0xff000100ff000000, 0xff000100ff000101, 0xff000100ff01ff00, + 0xff000100ff010000, 0xff00010000ffff01, 0xff00010000ff00ff, 0xff00010000ff0000, + 0xff00010000ff01ff, 0xff0001000000ff00, 0xff000100000000ff, 0xff00010000000000, + 0xff00010000000001, 0xff00010000000100, 0xff00010000000101, 0xff0001000001ffff, + 0xff00010000010000, 0xff00010000010101, 0xff00010001ff0100, 0xff0001000100ff00, + 0xff0001000100ff01, 0xff00010001000000, 0xff000100010001ff, 0xff0001000101ff00, + 0xff00010001010001, 0xff00010001010100, 0xff000101ffff0100, 0xff000101ff000001, + 0xff000101ff0100ff, 0xff000101ff010001, 0xff00010100ff00ff, 0xff00010100ff0001, + 0xff00010100ff0100, 0xff0001010000ffff, 0xff0001010000ff01, 0xff00010100000000, + 0xff000101000001ff, 0xff0001010001ff00, 0xff00010100010001, 0xff00010100010100, + 0xff00010101ff0000, 0xff0001010100ff00, 0xff00010101000001, 0xff00010101000101, + 0xff01ffffffffffff, 0xff01ffffffffff01, 0xff01ffffffff01ff, 0xff01ffffffff0101, + 0xff01ffffff000000, 0xff01ffffff01ffff, 0xff01ffffff01ff01, 0xff01ffffff010000, + 0xff01ffffff0101ff, 0xff01ffffff010101, 0xff01ffff00ff0000, 0xff01ffff0000ff00, + 0xff01ffff00000100, 0xff01ffff0001ff00, 0xff01ffff00010000, 0xff01ffff01ffffff, + 0xff01ffff01ffff01, 0xff01ffff01ff01ff, 0xff01ffff01ff0101, 0xff01ffff01000000, + 0xff01ffff0101ffff, 0xff01ffff0101ff01, 0xff01ffff01010000, 0xff01ffff010101ff, + 0xff01ffff01010101, 0xff01ff00ffff0000, 0xff01ff00ff00ff00, 0xff01ff00ff0000ff, + 0xff01ff00ff000100, 0xff01ff00ff010000, 0xff01ff0000ffff01, 0xff01ff0000ff00ff, + 0xff01ff0000ff0100, 0xff01ff0000000000, 0xff01ff00000001ff, 0xff01ff0000000101, + 0xff01ff000001ff00, 0xff01ff00000100ff, 0xff01ff0000010000, 0xff01ff0000010001, + 0xff01ff0001ff0000, 0xff01ff000100ffff, 0xff01ff0001000001, 0xff01ff0001000100, + 0xff01ff0001010000, 0xff01ff01ffffff00, 0xff01ff01ffff01ff, 0xff01ff01ffff0101, + 0xff01ff01ff00ff00, 0xff01ff01ff000000, 0xff01ff01ff01ffff, 0xff01ff01ff01ff01, + 0xff01ff01ff0101ff, 0xff01ff01ff010101, 0xff01ff0100ff0000, 0xff01ff010000ff00, + 0xff01ff0100000001, 0xff01ff0100000100, 0xff01ff0100010000, 0xff01ff0101ffff00, + 0xff01ff0101ff01ff, 0xff01ff0101ff0101, 0xff01ff010100ff00, 0xff01ff0101000000, + 0xff01ff010101ffff, 0xff01ff010101ff01, 0xff01ff01010101ff, 0xff01ff0101010101, + 0xff0100ffffff0000, 0xff0100ffff0000ff, 0xff0100ffff000001, 0xff0100ffff000100, + 0xff0100ffff010000, 0xff0100ff00ff00ff, 0xff0100ff00ff0000, 0xff0100ff00ff0001, + 0xff0100ff00ff0100, 0xff0100ff0000ff01, 0xff0100ff00000000, 0xff0100ff000001ff, + 0xff0100ff00000101, 0xff0100ff00010001, 0xff0100ff01ff0000, 0xff0100ff0100ff00, + 0xff0100ff010000ff, 0xff0100ff01000100, 0xff0100ff0101ff00, 0xff0100ff01010000, + 0xff010000ffff0100, 0xff010000ff000000, 0xff010000ff01ff00, 0xff010000ff010100, + 0xff01000000ffffff, 0xff01000000ff0000, 0xff01000000ff01ff, 0xff0100000000ff00, + 0xff010000000000ff, 0xff01000000000000, 0xff01000000000100, 0xff0100000001ff01, + 0xff01000000010000, 0xff010000000101ff, 0xff01000001ff0100, 0xff0100000100ffff, + 0xff010000010000ff, 0xff01000001000000, 0xff010000010001ff, 0xff01000001000101, + 0xff0100000101ff00, 0xff010000010100ff, 0xff01000001010001, 0xff01000001010100, + 0xff010001ffff0000, 0xff010001ff00ffff, 0xff010001ff00ff01, 0xff010001ff000100, + 0xff010001ff010000, 0xff01000100ffff00, 0xff01000100ff0100, 0xff01000100000000, + 0xff0100010001ffff, 0xff0100010001ff00, 0xff01000100010100, 0xff01000101ff00ff, + 0xff01000101ff0001, 0xff0100010100ffff, 0xff01000101000101, 0xff0101ffffffffff, + 0xff0101ffffffff01, 0xff0101ffffff01ff, 0xff0101ffffff0101, 0xff0101ffff000000, + 0xff0101ffff01ffff, 0xff0101ffff01ff01, 0xff0101ffff0101ff, 0xff0101ffff010101, + 0xff0101ff00ff0000, 0xff0101ff0000ff00, 0xff0101ff000000ff, 0xff0101ff00010000, + 0xff0101ff01ffffff, 0xff0101ff01ffff01, 0xff0101ff01ff01ff, 0xff0101ff01ff0101, + 0xff0101ff0101ffff, 0xff0101ff0101ff01, 0xff0101ff010101ff, 0xff0101ff01010101, + 0xff010100ffff0100, 0xff010100ff00ff00, 0xff010100ff0000ff, 0xff010100ff000100, + 0xff010100ff010000, 0xff01010000ff0001, 0xff01010000ff0100, 0xff0101000000ff01, + 0xff01010000000000, 0xff0101000001ff00, 0xff010100000100ff, 0xff01010000010001, + 0xff01010000010100, 0xff01010001ff0000, 0xff0101000100ffff, 0xff01010001000001, + 0xff01010001000100, 0xff010100010100ff, 0xff01010001010000, 0xff010101ffffffff, + 0xff010101ffffff01, 0xff010101ffff01ff, 0xff010101ffff0101, 0xff010101ff01ffff, + 0xff010101ff01ff01, 0xff010101ff0101ff, 0xff010101ff010101, 0xff01010100ff0000, + 0xff0101010000ff00, 0xff01010100000001, 0xff01010100000100, 0xff01010100010000, + 0xff01010101ffffff, 0xff01010101ffff01, 0xff01010101ff01ff, 0xff01010101ff0101, + 0xff01010101000000, 0xff0101010101ffff, 0xff0101010101ff01, 0xff010101010101ff, + 0xff01010101010101, 0x00ffffffffff0000, 0x00ffffffff00ff00, 0x00ffffffff000001, + 0x00ffffffff010000, 0x00ffffff00ff0100, 0x00ffffff0000ff01, 0x00ffffff00000000, + 0x00ffffff000001ff, 0x00ffffff00000101, 0x00ffffff0001ff00, 0x00ffffff000100ff, + 0x00ffffff00010001, 0x00ffffff010000ff, 0x00ffffff01000100, 0x00ffffff0101ff00, + 0x00ffffff01010001, 0x00ffff00ffffffff, 0x00ffff00ffffff00, 0x00ffff00ffff00ff, + 0x00ffff00ffff0001, 0x00ffff00ffff0100, 0x00ffff00ff00ff01, 0x00ffff00ff000000, + 0x00ffff00ff000001, 0x00ffff00ff0001ff, 0x00ffff00ff000101, 0x00ffff00ff01ff00, + 0x00ffff00ff010001, 0x00ffff00ff010100, 0x00ffff0000ff0000, 0x00ffff0000ff01ff, + 0x00ffff0000ff0101, 0x00ffff000000ff00, 0x00ffff00000000ff, 0x00ffff0000000000, + 0x00ffff0000000001, 0x00ffff0000000100, 0x00ffff0000000101, 0x00ffff0000010000, + 0x00ffff00000101ff, 0x00ffff0000010101, 0x00ffff0001ffff00, 0x00ffff0001ff00ff, + 0x00ffff0001ff0001, 0x00ffff000100ffff, 0x00ffff000100ff01, 0x00ffff0001000000, + 0x00ffff000101ffff, 0x00ffff000101ff00, 0x00ffff000101ff01, 0x00ffff01ffff0000, + 0x00ffff01ff00ff00, 0x00ffff01ff0000ff, 0x00ffff01ff000001, 0x00ffff01ff010000, + 0x00ffff0100ffff00, 0x00ffff010000ff01, 0x00ffff0100000000, 0x00ffff0100000101, + 0x00ffff01000100ff, 0x00ffff0100010100, 0x00ffff0101ff0100, 0x00ffff01010000ff, + 0x00ffff0101010000, 0x00ff00ffffffff00, 0x00ff00ffff000000, 0x00ff00ffff000100, + 0x00ff00ffff010100, 0x00ff00ff00ff0000, 0x00ff00ff00ff01ff, 0x00ff00ff00ff0101, + 0x00ff00ff0000ff00, 0x00ff00ff000000ff, 0x00ff00ff00000000, 0x00ff00ff00000001, + 0x00ff00ff0001ff00, 0x00ff00ff0001ff01, 0x00ff00ff00010000, 0x00ff00ff000101ff, + 0x00ff00ff00010101, 0x00ff00ff01ffff00, 0x00ff00ff01ff0001, 0x00ff00ff01ff0100, + 0x00ff00ff0100ffff, 0x00ff00ff0100ff01, 0x00ff00ff01000000, 0x00ff00ff0101ffff, + 0x00ff00ff0101ff00, 0x00ff00ff01010100, 0x00ff0000ffffff00, 0x00ff0000ffffff01, + 0x00ff0000ffff0000, 0x00ff0000ffff0101, 0x00ff0000ff00ff00, 0x00ff0000ff0000ff, + 0x00ff0000ff000000, 0x00ff0000ff000001, 0x00ff0000ff000100, 0x00ff0000ff01ffff, + 0x00ff0000ff010000, 0x00ff0000ff010101, 0x00ff000000ffff00, 0x00ff000000ff00ff, + 0x00ff000000ff0000, 0x00ff000000ff0001, 0x00ff000000ff0100, 0x00ff00000000ffff, + 0x00ff00000000ff00, 0x00ff0000000000ff, 0x00ff000000000000, 0x00ff000000000001, + 0x00ff0000000001ff, 0x00ff000000000100, 0x00ff00000001ff00, 0x00ff0000000100ff, + 0x00ff000000010000, 0x00ff000000010001, 0x00ff000000010100, 0x00ff000001ffff01, + 0x00ff000001ff00ff, 0x00ff000001ff0000, 0x00ff000001ff01ff, 0x00ff00000100ff00, + 0x00ff0000010000ff, 0x00ff000001000000, 0x00ff000001000001, 0x00ff000001000100, + 0x00ff000001000101, 0x00ff000001010000, 0x00ff0000010101ff, 0x00ff000001010101, + 0x00ff0001ffffff00, 0x00ff0001ffff0000, 0x00ff0001ffff0100, 0x00ff0001ff0000ff, + 0x00ff0001ff000000, 0x00ff0001ff0001ff, 0x00ff0001ff000101, 0x00ff0001ff01ff00, + 0x00ff0001ff0100ff, 0x00ff0001ff010100, 0x00ff000100ffffff, 0x00ff000100ffff01, + 0x00ff000100ff0000, 0x00ff000100ff01ff, 0x00ff00010000ffff, 0x00ff00010000ff00, + 0x00ff00010000ff01, 0x00ff000100000000, 0x00ff000100000001, 0x00ff000100000100, + 0x00ff00010001ff01, 0x00ff000100010000, 0x00ff0001000101ff, 0x00ff000101ffff00, + 0x00ff000101ff0000, 0x00ff000101ff0101, 0x00ff0001010000ff, 0x00ff000101000000, + 0x00ff00010101ff00, 0x00ff0001010100ff, 0x00ff000101010001, 0x00ff01ffffff0000, + 0x00ff01ffff00ff00, 0x00ff01ffff000000, 0x00ff01ffff000101, 0x00ff01ffff010000, + 0x00ff01ff00ffff01, 0x00ff01ff00ff0100, 0x00ff01ff0000ffff, 0x00ff01ff00000000, + 0x00ff01ff000001ff, 0x00ff01ff0001ff00, 0x00ff01ff000100ff, 0x00ff01ff00010001, + 0x00ff01ff00010100, 0x00ff01ff01ff0000, 0x00ff01ff0100ff00, 0x00ff01ff010000ff, + 0x00ff01ff01000001, 0x00ff01ff01000100, 0x00ff01ff01010000, 0x00ff0100ffffff00, + 0x00ff0100ffff0000, 0x00ff0100ffff0001, 0x00ff0100ffff0101, 0x00ff0100ff00ffff, + 0x00ff0100ff0000ff, 0x00ff0100ff000000, 0x00ff0100ff0001ff, 0x00ff0100ff01ff00, + 0x00ff0100ff0100ff, 0x00ff0100ff010001, 0x00ff010000ffffff, 0x00ff010000ff0000, + 0x00ff010000ff0101, 0x00ff01000000ff00, 0x00ff01000000ff01, 0x00ff0100000000ff, + 0x00ff010000000000, 0x00ff010000000001, 0x00ff010000000100, 0x00ff01000001ffff, + 0x00ff01000001ff01, 0x00ff010000010000, 0x00ff010000010001, 0x00ff010000010101, + 0x00ff010001ff0001, 0x00ff010001ff0100, 0x00ff01000100ff01, 0x00ff010001000000, + 0x00ff010001000001, 0x00ff0100010001ff, 0x00ff01000101ff00, 0x00ff0100010100ff, + 0x00ff010001010001, 0x00ff010001010100, 0x00ff0101ff000001, 0x00ff010100ff00ff, + 0x00ff010100ff0001, 0x00ff010100ff0100, 0x00ff010100000000, 0x00ff0101000001ff, + 0x00ff010100000101, 0x00ff0101000100ff, 0x00ff010100010100, 0x00ff0101010000ff, + 0x00ff010101010000, 0x0000ffffffffff00, 0x0000ffffffff00ff, 0x0000ffffffff0000, + 0x0000ffffffff0001, 0x0000ffffffff0100, 0x0000ffffff00ff01, 0x0000ffffff000000, + 0x0000ffffff000101, 0x0000ffffff01ff00, 0x0000ffffff0100ff, 0x0000ffffff010100, + 0x0000ffff00ffffff, 0x0000ffff00ff0000, 0x0000ffff00ff01ff, 0x0000ffff0000ff00, + 0x0000ffff000000ff, 0x0000ffff00000000, 0x0000ffff00000001, 0x0000ffff00000100, + 0x0000ffff00010000, 0x0000ffff000101ff, 0x0000ffff01ff0001, 0x0000ffff01ff0100, + 0x0000ffff01000000, 0x0000ffff010001ff, 0x0000ffff0101ffff, 0x0000ffff0101ff00, + 0x0000ffff01010001, 0x0000ffff01010100, 0x0000ff00ffff0000, 0x0000ff00ffff01ff, + 0x0000ff00ffff0100, 0x0000ff00ffff0101, 0x0000ff00ff00ff00, 0x0000ff00ff0000ff, + 0x0000ff00ff000000, 0x0000ff00ff000001, 0x0000ff00ff0001ff, 0x0000ff00ff000100, + 0x0000ff00ff01ffff, 0x0000ff00ff010000, 0x0000ff00ff010001, 0x0000ff00ff0101ff, + 0x0000ff00ff010101, 0x0000ff0000ffff00, 0x0000ff0000ff00ff, 0x0000ff0000ff0000, + 0x0000ff0000ff0001, 0x0000ff0000ff0100, 0x0000ff000000ffff, 0x0000ff000000ff00, + 0x0000ff000000ff01, 0x0000ff00000000ff, 0x0000ff0000000000, 0x0000ff0000000001, + 0x0000ff00000001ff, 0x0000ff0000000100, 0x0000ff0000000101, 0x0000ff000001ff00, + 0x0000ff00000100ff, 0x0000ff0000010000, 0x0000ff0000010001, 0x0000ff0000010100, + 0x0000ff0001ffff01, 0x0000ff0001ff0000, 0x0000ff000100ff00, 0x0000ff00010000ff, + 0x0000ff0001000000, 0x0000ff0001000001, 0x0000ff0001000100, 0x0000ff000101ffff, + 0x0000ff0001010000, 0x0000ff0001010101, 0x0000ff01ffffff00, 0x0000ff01ffff0001, + 0x0000ff01ff00ff01, 0x0000ff01ff000000, 0x0000ff01ff000101, 0x0000ff01ff01ff00, + 0x0000ff01ff0100ff, 0x0000ff0100ffff01, 0x0000ff0100ff0000, 0x0000ff0100ff0101, + 0x0000ff010000ff00, 0x0000ff01000000ff, 0x0000ff0100000000, 0x0000ff0100000001, + 0x0000ff0100000100, 0x0000ff010001ff01, 0x0000ff0100010000, 0x0000ff0101ff0000, + 0x0000ff010100ffff, 0x0000ff010100ff01, 0x0000ff0101000000, 0x0000ff0101000100, + 0x0000ff0101000101, 0x0000ff01010100ff, 0x000000ffffff00ff, 0x000000ffffff0000, + 0x000000ffff00ff00, 0x000000ffff0000ff, 0x000000ffff000000, 0x000000ffff000001, + 0x000000ffff0001ff, 0x000000ffff000100, 0x000000ffff01ff00, 0x000000ffff010000, + 0x000000ffff0101ff, 0x000000ffff010101, 0x000000ff00ffff00, 0x000000ff00ff00ff, + 0x000000ff00ff0000, 0x000000ff00ff0001, 0x000000ff00ff0100, 0x000000ff00ff0101, + 0x000000ff0000ffff, 0x000000ff0000ff00, 0x000000ff000000ff, 0x000000ff00000000, + 0x000000ff00000001, 0x000000ff000001ff, 0x000000ff00000100, 0x000000ff00000101, + 0x000000ff0001ff00, 0x000000ff0001ff01, 0x000000ff000100ff, 0x000000ff00010000, + 0x000000ff00010001, 0x000000ff00010100, 0x000000ff01ffffff, 0x000000ff01ff01ff, + 0x000000ff01ff0101, 0x000000ff0100ff00, 0x000000ff010000ff, 0x000000ff01000000, + 0x000000ff01000001, 0x000000ff01000100, 0x000000ff0101ff00, 0x000000ff010100ff, + 0x000000ff01010000, 0x000000ff01010101, 0x00000000ffffff00, 0x00000000ffffff01, + 0x00000000ffff00ff, 0x00000000ffff0000, 0x00000000ffff0001, 0x00000000ffff0100, + 0x00000000ff00ffff, 0x00000000ff00ff00, 0x00000000ff00ff01, 0x00000000ff0000ff, + 0x00000000ff000000, 0x00000000ff000001, 0x00000000ff000100, 0x00000000ff000101, + 0x00000000ff01ff00, 0x00000000ff0100ff, 0x00000000ff010000, 0x00000000ff010001, + 0x00000000ff010100, 0x0000000000ffffff, 0x0000000000ffff00, 0x0000000000ffff01, + 0x0000000000ff00ff, 0x0000000000ff0000, 0x0000000000ff0001, 0x0000000000ff01ff, + 0x0000000000ff0100, 0x000000000000ffff, 0x000000000000ff00, 0x000000000000ff01, + 0x00000000000000ff, 0x0000000000000000, 0x0000000000000001, 0x00000000000001ff, + 0x0000000000000100, 0x0000000000000101, 0x000000000001ffff, 0x000000000001ff00, + 0x00000000000100ff, 0x0000000000010000, 0x0000000000010001, 0x00000000000101ff, + 0x0000000000010100, 0x0000000000010101, 0x0000000001ffff00, 0x0000000001ff00ff, + 0x0000000001ff0000, 0x0000000001ff0100, 0x0000000001ff0101, 0x000000000100ffff, + 0x000000000100ff00, 0x00000000010000ff, 0x0000000001000000, 0x0000000001000001, + 0x00000000010001ff, 0x0000000001000100, 0x000000000101ff00, 0x00000000010100ff, + 0x0000000001010000, 0x0000000001010001, 0x0000000001010100, 0x00000001ffffffff, + 0x00000001ffffff00, 0x00000001ffffff01, 0x00000001ffff00ff, 0x00000001ffff0001, + 0x00000001ffff01ff, 0x00000001ffff0100, 0x00000001ff00ff00, 0x00000001ff0000ff, + 0x00000001ff000000, 0x00000001ff0001ff, 0x00000001ff000100, 0x00000001ff01ffff, + 0x00000001ff01ff00, 0x00000001ff01ff01, 0x00000001ff0100ff, 0x00000001ff010000, + 0x00000001ff010001, 0x00000001ff0101ff, 0x00000001ff010100, 0x0000000100ffff00, + 0x0000000100ff0000, 0x0000000100ff0001, 0x0000000100ff01ff, 0x0000000100ff0100, + 0x0000000100ff0101, 0x000000010000ffff, 0x000000010000ff00, 0x000000010000ff01, + 0x00000001000000ff, 0x0000000100000000, 0x0000000100000001, 0x00000001000001ff, + 0x0000000100000100, 0x0000000100000101, 0x000000010001ff00, 0x00000001000100ff, + 0x0000000100010000, 0x0000000100010100, 0x0000000101ffff01, 0x0000000101ff0000, + 0x0000000101ff0001, 0x0000000101ff01ff, 0x0000000101ff0100, 0x0000000101ff0101, + 0x000000010100ff00, 0x0000000101000000, 0x0000000101000101, 0x000000010101ff01, + 0x0000000101010000, 0x0000000101010001, 0x00000001010101ff, 0x0000000101010100, + 0x000001ffffff00ff, 0x000001ffffff0000, 0x000001ffffff0001, 0x000001ffffff0100, + 0x000001ffff00ffff, 0x000001ffff000000, 0x000001ffff0001ff, 0x000001ffff01ff00, + 0x000001ffff010101, 0x000001ff00ff0000, 0x000001ff00ff01ff, 0x000001ff00ff0101, + 0x000001ff0000ff00, 0x000001ff000000ff, 0x000001ff00000000, 0x000001ff00000001, + 0x000001ff000001ff, 0x000001ff00000100, 0x000001ff0001ffff, 0x000001ff0001ff01, + 0x000001ff000100ff, 0x000001ff00010000, 0x000001ff01ffff01, 0x000001ff01ff0100, + 0x000001ff0100ffff, 0x000001ff0100ff01, 0x000001ff01000000, 0x000001ff010001ff, + 0x000001ff0101ff00, 0x000001ff01010100, 0x00000100ffffff00, 0x00000100ffffff01, + 0x00000100ffff0000, 0x00000100ffff0101, 0x00000100ff00ff00, 0x00000100ff0000ff, + 0x00000100ff000000, 0x00000100ff000001, 0x00000100ff000100, 0x00000100ff010000, + 0x0000010000ffff00, 0x0000010000ff00ff, 0x0000010000ff0000, 0x0000010000ff0001, + 0x0000010000ff0100, 0x000001000000ffff, 0x000001000000ff00, 0x000001000000ff01, + 0x00000100000000ff, 0x0000010000000000, 0x0000010000000001, 0x00000100000001ff, + 0x0000010000000100, 0x0000010000000101, 0x000001000001ff00, 0x00000100000100ff, + 0x0000010000010000, 0x0000010000010001, 0x0000010000010100, 0x0000010001ffff00, + 0x0000010001ff0000, 0x0000010001ff0100, 0x000001000100ff00, 0x00000100010000ff, + 0x0000010001000000, 0x0000010001000001, 0x00000100010001ff, 0x0000010001000100, + 0x0000010001010000, 0x00000101ffff00ff, 0x00000101ffff01ff, 0x00000101ff000000, + 0x00000101ff000101, 0x00000101ff01ffff, 0x00000101ff010000, 0x00000101ff010001, + 0x00000101ff010100, 0x0000010100ff0000, 0x0000010100ff01ff, 0x0000010100ff0100, + 0x000001010000ff00, 0x0000010100000000, 0x0000010100000001, 0x00000101000001ff, + 0x0000010100000100, 0x000001010001ff01, 0x0000010100010000, 0x00000101000101ff, + 0x0000010100010101, 0x0000010101ffff00, 0x0000010101ff0101, 0x000001010100ff01, + 0x0000010101000000, 0x0000010101000001, 0x00000101010001ff, 0x0000010101000101, + 0x000001010101ff00, 0x0001ffffffff0000, 0x0001ffffff0000ff, 0x0001ffffff000001, + 0x0001ffffff000100, 0x0001ffffff010000, 0x0001ffff00ff00ff, 0x0001ffff0000ffff, + 0x0001ffff00000000, 0x0001ffff00000001, 0x0001ffff000001ff, 0x0001ffff00000101, + 0x0001ffff0001ff00, 0x0001ffff000100ff, 0x0001ffff00010001, 0x0001ffff00010100, + 0x0001ffff01ffff00, 0x0001ffff01000001, 0x0001ffff01010000, 0x0001ff00ffffff00, + 0x0001ff00ffff00ff, 0x0001ff00ffff0001, 0x0001ff00ffff0100, 0x0001ff00ff00ff01, + 0x0001ff00ff000000, 0x0001ff00ff01ff00, 0x0001ff00ff01ff01, 0x0001ff00ff010001, + 0x0001ff00ff010100, 0x0001ff0000ff0000, 0x0001ff0000ff0100, 0x0001ff000000ff00, + 0x0001ff0000000000, 0x0001ff0000000001, 0x0001ff0000000100, 0x0001ff0000010000, + 0x0001ff0000010001, 0x0001ff0000010101, 0x0001ff0001ff00ff, 0x0001ff0001ff0101, + 0x0001ff000100ff01, 0x0001ff0001000000, 0x0001ff000101ff00, 0x0001ff0001010001, + 0x0001ff0001010100, 0x0001ff01ff00ff00, 0x0001ff01ff000001, 0x0001ff01ff000100, + 0x0001ff0100ffffff, 0x0001ff0100ffff00, 0x0001ff0100ff0001, 0x0001ff0100000000, + 0x0001ff0100000001, 0x0001ff01000001ff, 0x0001ff010001ffff, 0x0001ff0101ff0000, + 0x0001ff010100ff00, 0x0001ff0101000001, 0x0001ff0101010000, 0x000100ffff00ff00, + 0x000100ffff00ff01, 0x000100ffff000000, 0x000100ffff000001, 0x000100ffff000101, + 0x000100ffff01ff00, 0x000100ffff010001, 0x000100ffff010100, 0x000100ff00ffffff, + 0x000100ff00ffff01, 0x000100ff00ff0000, 0x000100ff00ff01ff, 0x000100ff00ff0101, + 0x000100ff0000ff00, 0x000100ff000000ff, 0x000100ff00000000, 0x000100ff00000001, + 0x000100ff00000100, 0x000100ff00000101, 0x000100ff0001ffff, 0x000100ff0001ff01, + 0x000100ff00010000, 0x000100ff01ff00ff, 0x000100ff01ff0000, 0x000100ff01ff0100, + 0x000100ff0100ffff, 0x000100ff0100ff01, 0x000100ff010000ff, 0x000100ff01000000, + 0x000100ff01000001, 0x000100ff010001ff, 0x000100ff01000101, 0x000100ff0101ff00, + 0x000100ff010100ff, 0x000100ff01010100, 0x00010000ffff0000, 0x00010000ffff01ff, + 0x00010000ffff0101, 0x00010000ff00ff00, 0x00010000ff000000, 0x00010000ff000001, + 0x00010000ff000100, 0x0001000000ff00ff, 0x0001000000ff0000, 0x0001000000ff0001, + 0x0001000000ff0100, 0x000100000000ffff, 0x000100000000ff00, 0x00010000000000ff, + 0x0001000000000000, 0x0001000000000001, 0x0001000000000100, 0x000100000001ff00, + 0x00010000000100ff, 0x0001000000010000, 0x0001000000010001, 0x0001000000010100, + 0x0001000001ff0001, 0x0001000001ff0100, 0x0001000001ff0101, 0x000100000100ff00, + 0x0001000001000000, 0x0001000001000001, 0x0001000001000100, 0x0001000001000101, + 0x000100000101ff01, 0x0001000001010000, 0x0001000001010001, 0x00010000010101ff, + 0x00010001ffffff01, 0x00010001ffff0100, 0x00010001ff000000, 0x00010001ff01ffff, + 0x00010001ff010001, 0x00010001ff0101ff, 0x00010001ff010100, 0x0001000100ffffff, + 0x0001000100ff0000, 0x0001000100ff01ff, 0x0001000100ff0101, 0x000100010000ff00, + 0x00010001000000ff, 0x0001000100000000, 0x0001000100000001, 0x00010001000001ff, + 0x0001000100000101, 0x000100010001ffff, 0x0001000100010000, 0x00010001000101ff, + 0x0001000101ffffff, 0x0001000101ffff01, 0x0001000101ff0000, 0x0001000101ff0101, + 0x00010001010000ff, 0x0001000101000001, 0x00010001010001ff, 0x0001000101000100, + 0x000100010101ffff, 0x00010001010100ff, 0x0001000101010001, 0x0001000101010101, + 0x000101ffff000001, 0x000101ffff000100, 0x000101ffff010000, 0x000101ff00ffff00, + 0x000101ff0000ff01, 0x000101ff00000000, 0x000101ff00000101, 0x000101ff0001ff00, + 0x000101ff00010100, 0x000101ff01ff0000, 0x000101ff0100ff00, 0x000101ff010001ff, + 0x000101ff01010001, 0x00010100ffffff00, 0x00010100ffff00ff, 0x00010100ff00ffff, + 0x00010100ff000000, 0x00010100ff01ff00, 0x00010100ff0100ff, 0x00010100ff010001, + 0x00010100ff010100, 0x0001010000ffffff, 0x0001010000ffff00, 0x0001010000ff0000, + 0x0001010000ff0001, 0x0001010000ff01ff, 0x000101000000ff00, 0x00010100000000ff, + 0x0001010000000000, 0x0001010000000001, 0x0001010000000100, 0x000101000001ffff, + 0x0001010000010000, 0x0001010000010101, 0x0001010001ffff01, 0x0001010001ff00ff, + 0x0001010001ff0101, 0x0001010001000000, 0x000101000101ff00, 0x00010100010100ff, + 0x0001010001010000, 0x0001010001010100, 0x00010101ff00ff00, 0x00010101ff000001, + 0x00010101ff0001ff, 0x0001010100ffff00, 0x0001010100ff00ff, 0x0001010100ff0100, + 0x000101010000ffff, 0x0001010100000000, 0x00010101000001ff, 0x0001010100000101, + 0x00010101000100ff, 0x0001010100010000, 0x0001010100010100, 0x0001010101ff0001, + 0x00010101010000ff, 0x00010101010001ff, 0x0001010101000101, 0x0001010101010001, + 0x01ffffffffffffff, 0x01ffffffffffff01, 0x01ffffffffff01ff, 0x01ffffffffff0101, + 0x01ffffffff01ffff, 0x01ffffffff01ff01, 0x01ffffffff0101ff, 0x01ffffffff010101, + 0x01ffffff00ff0000, 0x01ffffff0000ffff, 0x01ffffff0000ff00, 0x01ffffff000000ff, + 0x01ffffff00000001, 0x01ffffff00000100, 0x01ffffff00010000, 0x01ffffff01ffffff, + 0x01ffffff01ffff01, 0x01ffffff01ff01ff, 0x01ffffff01ff0101, 0x01ffffff01000000, + 0x01ffffff0101ffff, 0x01ffffff0101ff01, 0x01ffffff010101ff, 0x01ffffff01010101, + 0x01ffff00ffff0000, 0x01ffff00ff00ff00, 0x01ffff00ff0000ff, 0x01ffff00ff000001, + 0x01ffff00ff000100, 0x01ffff00ff010000, 0x01ffff0000ffff00, 0x01ffff0000ff00ff, + 0x01ffff0000ff0100, 0x01ffff000000ffff, 0x01ffff000000ff01, 0x01ffff0000000000, + 0x01ffff0000000001, 0x01ffff00000001ff, 0x01ffff0000000100, 0x01ffff00000100ff, + 0x01ffff0000010001, 0x01ffff0000010100, 0x01ffff0001ff0000, 0x01ffff0001ff0100, + 0x01ffff00010000ff, 0x01ffff0001000001, 0x01ffff0001000100, 0x01ffff0001010000, + 0x01ffff01ffffffff, 0x01ffff01ffffff01, 0x01ffff01ffff01ff, 0x01ffff01ffff0101, + 0x01ffff01ff000000, 0x01ffff01ff01ffff, 0x01ffff01ff01ff01, 0x01ffff01ff0101ff, + 0x01ffff01ff010101, 0x01ffff010000ff00, 0x01ffff01000000ff, 0x01ffff0100000100, + 0x01ffff0100010000, 0x01ffff0101ffffff, 0x01ffff0101ffff01, 0x01ffff0101ff01ff, + 0x01ffff0101ff0101, 0x01ffff0101000000, 0x01ffff010101ffff, 0x01ffff010101ff01, + 0x01ffff01010101ff, 0x01ffff0101010101, 0x01ff00ffff0000ff, 0x01ff00ffff000100, + 0x01ff00ff00ffff00, 0x01ff00ff00ff00ff, 0x01ff00ff0000ff00, 0x01ff00ff00000000, + 0x01ff00ff00000101, 0x01ff00ff0001ff00, 0x01ff00ff000100ff, 0x01ff00ff00010100, + 0x01ff00ff010000ff, 0x01ff00ff01000100, 0x01ff0000ffffff00, 0x01ff0000ffff0100, + 0x01ff0000ff00ff01, 0x01ff0000ff000000, 0x01ff0000ff000101, 0x01ff0000ff010001, + 0x01ff0000ff010100, 0x01ff000000ffffff, 0x01ff000000ffff00, 0x01ff000000ff0000, + 0x01ff000000ff01ff, 0x01ff00000000ff00, 0x01ff0000000000ff, 0x01ff000000000000, + 0x01ff000000000001, 0x01ff000000000100, 0x01ff000000000101, 0x01ff000000010000, + 0x01ff000000010001, 0x01ff0000000101ff, 0x01ff000000010101, 0x01ff000001ffff00, + 0x01ff000001ff00ff, 0x01ff000001ff0001, 0x01ff000001ff0100, 0x01ff00000100ffff, + 0x01ff00000100ff01, 0x01ff000001000000, 0x01ff0000010001ff, 0x01ff000001010001, + 0x01ff0001ff00ff00, 0x01ff0001ff000001, 0x01ff0001ff000100, 0x01ff0001ff010000, + 0x01ff000100ffff00, 0x01ff000100ff00ff, 0x01ff000100ff0100, 0x01ff000100ff0101, + 0x01ff00010000ffff, 0x01ff000100000000, 0x01ff000100000100, 0x01ff000100000101, + 0x01ff00010001ff00, 0x01ff000100010001, 0x01ff000100010101, 0x01ff000101ff0000, + 0x01ff00010100ff00, 0x01ff000101000101, 0x01ff0001010100ff, 0x01ff01ffffffffff, + 0x01ff01ffffffff01, 0x01ff01ffffff01ff, 0x01ff01ffffff0101, 0x01ff01ffff000000, + 0x01ff01ffff01ffff, 0x01ff01ffff01ff01, 0x01ff01ffff0101ff, 0x01ff01ffff010101, + 0x01ff01ff00ffff00, 0x01ff01ff00ff0000, 0x01ff01ff0000ff00, 0x01ff01ff000000ff, + 0x01ff01ff00000100, 0x01ff01ff00010000, 0x01ff01ff00010100, 0x01ff01ff01ffffff, + 0x01ff01ff01ffff01, 0x01ff01ff01ff01ff, 0x01ff01ff01ff0101, 0x01ff01ff01000000, + 0x01ff01ff0101ffff, 0x01ff01ff0101ff01, 0x01ff01ff010101ff, 0x01ff01ff01010101, + 0x01ff0100ffff0000, 0x01ff0100ffff0001, 0x01ff0100ff00ff00, 0x01ff0100ff0000ff, + 0x01ff0100ff000001, 0x01ff0100ff010000, 0x01ff010000ffff00, 0x01ff010000ff00ff, + 0x01ff010000ff0001, 0x01ff010000ff0100, 0x01ff01000000ffff, 0x01ff01000000ff01, + 0x01ff010000000000, 0x01ff010000000101, 0x01ff01000001ff00, 0x01ff0100000100ff, + 0x01ff010001ff0000, 0x01ff010001000001, 0x01ff010001000100, 0x01ff010001010000, + 0x01ff0101ffffffff, 0x01ff0101ffffff01, 0x01ff0101ffff01ff, 0x01ff0101ffff0101, + 0x01ff0101ff000000, 0x01ff0101ff01ffff, 0x01ff0101ff01ff01, 0x01ff0101ff0101ff, + 0x01ff0101ff010101, 0x01ff010100ff0000, 0x01ff01010000ff00, 0x01ff0101000000ff, + 0x01ff010100000001, 0x01ff010101ffffff, 0x01ff010101ffff01, 0x01ff010101ff01ff, + 0x01ff010101ff0101, 0x01ff010101000000, 0x01ff01010101ffff, 0x01ff01010101ff01, + 0x01ff0101010101ff, 0x01ff010101010101, 0x0100ffffffff0000, 0x0100ffffff00ff00, + 0x0100ffffff000001, 0x0100ffffff0001ff, 0x0100ffffff000100, 0x0100ffffff010000, + 0x0100ffff00ffff00, 0x0100ffff00ff0001, 0x0100ffff00ff0100, 0x0100ffff00000000, + 0x0100ffff000001ff, 0x0100ffff00000101, 0x0100ffff00010100, 0x0100ffff00010101, + 0x0100ffff01ff0000, 0x0100ffff0100ff00, 0x0100ffff010000ff, 0x0100ffff01000001, + 0x0100ffff01000100, 0x0100ffff01010000, 0x0100ff00ffffff00, 0x0100ff00ffff00ff, + 0x0100ff00ffff0001, 0x0100ff00ffff0100, 0x0100ff00ff00ffff, 0x0100ff00ff000000, + 0x0100ff00ff0001ff, 0x0100ff00ff000101, 0x0100ff00ff01ff00, 0x0100ff00ff0100ff, + 0x0100ff00ff010001, 0x0100ff00ff010100, 0x0100ff0000ffffff, 0x0100ff0000ff0000, + 0x0100ff000000ffff, 0x0100ff000000ff00, 0x0100ff00000000ff, 0x0100ff0000000000, + 0x0100ff0000000001, 0x0100ff0000000100, 0x0100ff000001ff01, 0x0100ff0000010000, + 0x0100ff0001ff00ff, 0x0100ff0001ff0001, 0x0100ff000100ff01, 0x0100ff0001000000, + 0x0100ff00010001ff, 0x0100ff000101ff00, 0x0100ff00010100ff, 0x0100ff0001010001, + 0x0100ff0001010100, 0x0100ff01ffff0000, 0x0100ff01ff00ff00, 0x0100ff01ff0000ff, + 0x0100ff01ff000100, 0x0100ff01ff010000, 0x0100ff0100ff00ff, 0x0100ff0100ff0001, + 0x0100ff0100ff0100, 0x0100ff010000ffff, 0x0100ff010000ff01, 0x0100ff0100000000, + 0x0100ff01000001ff, 0x0100ff0100010001, 0x0100ff0100010100, 0x0100ff0101ff0000, + 0x0100ff01010000ff, 0x0100ff0101000001, 0x0100ff0101010100, 0x010000ffffffff00, + 0x010000ffffff00ff, 0x010000ffffff0001, 0x010000ffff00ffff, 0x010000ffff000000, + 0x010000ffff0001ff, 0x010000ffff010001, 0x010000ff00ffffff, 0x010000ff00ff0101, + 0x010000ff0000ff00, 0x010000ff000000ff, 0x010000ff00000000, 0x010000ff00000001, + 0x010000ff000001ff, 0x010000ff00000100, 0x010000ff0001ffff, 0x010000ff0001ff00, + 0x010000ff0001ff01, 0x010000ff00010000, 0x010000ff01ff00ff, 0x010000ff01ff0001, + 0x010000ff0100ff01, 0x010000ff010000ff, 0x010000ff01000000, 0x010000ff010001ff, + 0x010000ff0101ff00, 0x010000ff01010100, 0x01000000ffffffff, 0x01000000ffff0000, + 0x01000000ffff01ff, 0x01000000ffff0101, 0x01000000ff00ffff, 0x01000000ff00ff00, + 0x01000000ff0000ff, 0x01000000ff000000, 0x01000000ff000001, 0x01000000ff000100, + 0x01000000ff01ff00, 0x01000000ff010000, 0x01000000ff010100, 0x01000000ff010101, + 0x0100000000ffff00, 0x0100000000ff00ff, 0x0100000000ff0000, 0x0100000000ff0001, + 0x0100000000ff0100, 0x010000000000ffff, 0x010000000000ff00, 0x010000000000ff01, + 0x01000000000000ff, 0x0100000000000000, 0x0100000000000001, 0x01000000000001ff, + 0x0100000000000100, 0x0100000000000101, 0x010000000001ff00, 0x01000000000100ff, + 0x0100000000010000, 0x0100000000010001, 0x0100000000010100, 0x0100000001ffff00, + 0x0100000001ff0000, 0x0100000001ff01ff, 0x010000000100ff00, 0x010000000100ff01, + 0x01000000010000ff, 0x0100000001000000, 0x0100000001000001, 0x0100000001000100, + 0x0100000001000101, 0x010000000101ffff, 0x010000000101ff01, 0x0100000001010000, + 0x01000000010101ff, 0x0100000001010101, 0x01000001ffffff00, 0x01000001ffff00ff, + 0x01000001ff00ffff, 0x01000001ff000000, 0x01000001ff000100, 0x01000001ff01ffff, + 0x01000001ff010001, 0x01000001ff010100, 0x0100000100ff0000, 0x0100000100ff01ff, + 0x0100000100ff0100, 0x010000010000ff00, 0x010000010000ff01, 0x0100000100000000, + 0x0100000100000001, 0x0100000100000100, 0x0100000100010000, 0x01000001000101ff, + 0x0100000101ffff01, 0x0100000101ff00ff, 0x0100000101ff0100, 0x0100000101ff0101, + 0x010000010100ff01, 0x01000001010000ff, 0x0100000101000000, 0x01000001010100ff, + 0x0100000101010001, 0x0100000101010100, 0x010001ffffff0000, 0x010001ffff000001, + 0x010001ffff000100, 0x010001ffff010000, 0x010001ff00ffff00, 0x010001ff00ff0001, + 0x010001ff0000ffff, 0x010001ff0000ff01, 0x010001ff00000000, 0x010001ff00000001, + 0x010001ff00000101, 0x010001ff000100ff, 0x010001ff00010000, 0x010001ff01ff0000, + 0x010001ff0100ff00, 0x010001ff01000001, 0x010001ff01000100, 0x010001ff01010000, + 0x01000100ffff00ff, 0x01000100ffff0001, 0x01000100ffff0100, 0x01000100ff00ffff, + 0x01000100ff00ff01, 0x01000100ff000000, 0x01000100ff0001ff, 0x01000100ff000101, + 0x01000100ff01ffff, 0x01000100ff01ff00, 0x01000100ff0100ff, 0x01000100ff010001, + 0x0100010000ffffff, 0x0100010000ffff01, 0x0100010000ff0000, 0x0100010000ff01ff, + 0x0100010000ff0101, 0x010001000000ff00, 0x01000100000000ff, 0x0100010000000000, + 0x0100010000000001, 0x0100010000000100, 0x010001000001ff01, 0x0100010000010000, + 0x0100010000010001, 0x0100010000010101, 0x0100010001ffff00, 0x0100010001ff00ff, + 0x010001000100ffff, 0x010001000100ff01, 0x0100010001000000, 0x0100010001000101, + 0x010001000101ff00, 0x0100010001010001, 0x01000101ffff0000, 0x01000101ff000000, + 0x01000101ff010000, 0x0100010100ff00ff, 0x0100010100ff0001, 0x0100010100ff0100, + 0x010001010000ffff, 0x0100010100000000, 0x01000101000001ff, 0x010001010001ff00, + 0x0100010101ff0000, 0x010001010100ff00, 0x01000101010000ff, 0x0100010101000000, + 0x0100010101000001, 0x0101ffffffffffff, 0x0101ffffffffff01, 0x0101ffffffff01ff, + 0x0101ffffffff0101, 0x0101ffffff000000, 0x0101ffffff01ffff, 0x0101ffffff01ff01, + 0x0101ffffff0101ff, 0x0101ffffff010101, 0x0101ffff00ff0000, 0x0101ffff0000ff00, + 0x0101ffff000000ff, 0x0101ffff00000001, 0x0101ffff00000100, 0x0101ffff01ffffff, + 0x0101ffff01ffff01, 0x0101ffff01ff01ff, 0x0101ffff01ff0101, 0x0101ffff01000000, + 0x0101ffff0101ffff, 0x0101ffff0101ff01, 0x0101ffff010101ff, 0x0101ffff01010101, + 0x0101ff00ffff0000, 0x0101ff00ffff0100, 0x0101ff00ff00ff00, 0x0101ff00ff0000ff, + 0x0101ff00ff000001, 0x0101ff00ff000100, 0x0101ff00ff000101, 0x0101ff0000ff0001, + 0x0101ff0000ff0100, 0x0101ff000000ff00, 0x0101ff0000000000, 0x0101ff00000001ff, + 0x0101ff0000000101, 0x0101ff000001ff00, 0x0101ff00000100ff, 0x0101ff0001ff0000, + 0x0101ff000100ffff, 0x0101ff000100ff01, 0x0101ff0001000001, 0x0101ff0001000100, + 0x0101ff01ffffff01, 0x0101ff01ffff01ff, 0x0101ff01ffff0101, 0x0101ff01ff00ffff, + 0x0101ff01ff000100, 0x0101ff01ff01ff01, 0x0101ff01ff0101ff, 0x0101ff01ff010101, + 0x0101ff0100ff0000, 0x0101ff010000ff00, 0x0101ff0100000001, 0x0101ff0100000100, + 0x0101ff0100010000, 0x0101ff0101ffffff, 0x0101ff0101ffff01, 0x0101ff0101ff01ff, + 0x0101ff0101ff0101, 0x0101ff0101000000, 0x0101ff010101ffff, 0x0101ff010101ff01, + 0x0101ff01010101ff, 0x0101ff0101010101, 0x010100ffff000100, 0x010100ffff010000, + 0x010100ff00ffff00, 0x010100ff00ff00ff, 0x010100ff0000ffff, 0x010100ff000000ff, + 0x010100ff00000000, 0x010100ff000001ff, 0x010100ff00000101, 0x010100ff0001ff00, + 0x010100ff00010000, 0x010100ff00010001, 0x010100ff000101ff, 0x010100ff00010100, + 0x010100ff01ff0000, 0x01010000ffff0001, 0x01010000ffff0100, 0x01010000ff00ffff, + 0x01010000ff00ff01, 0x01010000ff000000, 0x01010000ff0001ff, 0x01010000ff010001, + 0x01010000ff010100, 0x0101000000ffff01, 0x0101000000ff0000, 0x010100000000ff00, + 0x01010000000000ff, 0x0101000000000000, 0x0101000000000001, 0x0101000000000100, + 0x0101000000010000, 0x0101000000010101, 0x0101000001ffff00, 0x0101000001ff00ff, + 0x0101000001ff0000, 0x0101000001ff0001, 0x0101000001ff0100, 0x010100000100ff01, + 0x0101000001000000, 0x01010000010001ff, 0x01010001ffff0000, 0x01010001ff00ff00, + 0x01010001ff000001, 0x01010001ff000101, 0x01010001ff01ff00, 0x01010001ff010000, + 0x0101000100ff00ff, 0x0101000100ff0001, 0x0101000100ff0101, 0x010100010000ff01, + 0x0101000100000000, 0x0101000100000001, 0x01010001000001ff, 0x010100010001ffff, + 0x010100010001ff01, 0x0101000101ff0001, 0x010100010100ffff, 0x0101000101000000, + 0x0101000101000001, 0x0101000101000100, 0x010100010101ff00, 0x01010001010100ff, + 0x0101000101010001, 0x010101ffffffffff, 0x010101ffffffff01, 0x010101ffffff01ff, + 0x010101ffffff0101, 0x010101ffff01ffff, 0x010101ffff01ff01, 0x010101ffff0101ff, + 0x010101ffff010101, 0x010101ff0000ff00, 0x010101ff000000ff, 0x010101ff00000001, + 0x010101ff00000100, 0x010101ff01ffffff, 0x010101ff01ffff01, 0x010101ff01ff01ff, + 0x010101ff01ff0101, 0x010101ff01000000, 0x010101ff0101ffff, 0x010101ff0101ff01, + 0x010101ff010101ff, 0x010101ff01010101, 0x01010100ffff0000, 0x01010100ff0000ff, + 0x01010100ff000100, 0x01010100ff01ff00, 0x01010100ff010000, 0x0101010000ffff00, + 0x010101000000ffff, 0x0101010000000000, 0x0101010000000101, 0x010101000001ff00, + 0x0101010000010001, 0x0101010000010100, 0x010101000100ffff, 0x0101010001000001, + 0x01010101ffffffff, 0x01010101ffffff01, 0x01010101ffff01ff, 0x01010101ffff0101, + 0x01010101ff01ffff, 0x01010101ff01ff01, 0x01010101ff0101ff, 0x01010101ff010101, + 0x010101010000ff00, 0x01010101000000ff, 0x0101010100000001, 0x0101010101ffffff, + 0x0101010101ffff01, 0x0101010101ff01ff, 0x0101010101ff0101, 0x0101010101000000, + 0x010101010101ffff, 0x010101010101ff01, 0x01010101010101ff, 0x0101010101010101, +GGML_TABLE_END() +#else +GGML_TABLE_BEGIN(uint32_t, iq1s_grid_gpu, NGRID_IQ1S) + 0x00000000, 0x00000002, 0x00000101, 0x00000200, 0x00000202, 0x00010001, 0x00010101, 0x00020000, + 0x00020002, 0x00020200, 0x00020202, 0x01000101, 0x01010001, 0x01010100, 0x01010102, 0x01020101, + 0x02000000, 0x02000002, 0x02000200, 0x02000202, 0x02010101, 0x02020000, 0x02020002, 0x02020200, + 0x02020202, 0x00000110, 0x00000111, 0x00010011, 0x00010110, 0x00010112, 0x00010211, 0x00010212, + 0x00020111, 0x01000011, 0x01000112, 0x01000211, 0x01010012, 0x01010111, 0x01010212, 0x01020011, + 0x01020110, 0x01020112, 0x01020210, 0x02000111, 0x02010011, 0x02010110, 0x02010112, 0x02020111, + 0x00000020, 0x00000022, 0x00000220, 0x00000222, 0x00010121, 0x00020020, 0x00020022, 0x00020220, + 0x00020222, 0x01000121, 0x01010021, 0x01010221, 0x01020120, 0x01020221, 0x02000020, 0x02000022, + 0x02000220, 0x02000222, 0x02010021, 0x02010121, 0x02010221, 0x02020020, 0x02020022, 0x02020220, + 0x02020222, 0x00011001, 0x00011100, 0x00011102, 0x00021101, 0x01001001, 0x01001201, 0x01011101, + 0x01011202, 0x01021100, 0x01021101, 0x02011001, 0x02011201, 0x02021101, 0x00001011, 0x00001110, + 0x00001111, 0x00001112, 0x00011111, 0x00011210, 0x00011212, 0x00021211, 0x01001010, 0x01001111, + 0x01001212, 0x01011010, 0x01011011, 0x01011110, 0x01011111, 0x01011112, 0x01011211, 0x01021010, + 0x01021012, 0x01021111, 0x01021210, 0x01021212, 0x02001011, 0x02011011, 0x02011111, 0x02011210, + 0x02011212, 0x02021011, 0x02021110, 0x02021111, 0x02021112, 0x02021211, 0x00011120, 0x00011221, + 0x01001021, 0x01001120, 0x01011020, 0x01011022, 0x01011121, 0x01011220, 0x01021020, 0x01021021, + 0x01021122, 0x01021221, 0x02001121, 0x02011021, 0x02011120, 0x02011221, 0x00002000, 0x00002002, + 0x00002200, 0x00002202, 0x00012101, 0x00022000, 0x00022002, 0x00022200, 0x00022202, 0x01002101, + 0x01012001, 0x01012102, 0x01022101, 0x02002000, 0x02002002, 0x02002200, 0x02002202, 0x02012101, + 0x02022000, 0x02022002, 0x02022200, 0x02022202, 0x00002111, 0x00012011, 0x00012110, 0x00012211, + 0x00022110, 0x00022111, 0x01002011, 0x01012010, 0x01012011, 0x01012111, 0x01022011, 0x01022110, + 0x01022211, 0x02012011, 0x02012110, 0x02012112, 0x02012211, 0x02022111, 0x00002020, 0x00002022, + 0x00002220, 0x00002222, 0x00012121, 0x00022020, 0x00022022, 0x00022220, 0x00022222, 0x01002121, + 0x01012021, 0x01012221, 0x01022021, 0x01022121, 0x02002020, 0x02002022, 0x02002121, 0x02002220, + 0x02002222, 0x02012121, 0x02022020, 0x02022022, 0x02022220, 0x02022222, 0x00110000, 0x00110001, + 0x00110100, 0x00110201, 0x00120100, 0x00120101, 0x01100001, 0x01100100, 0x01110000, 0x01110101, + 0x01110200, 0x01120001, 0x01120100, 0x01120101, 0x01120201, 0x02110001, 0x02110100, 0x02110102, + 0x02120001, 0x02120101, 0x00100011, 0x00100110, 0x00100112, 0x00100211, 0x00110010, 0x00110012, + 0x00110111, 0x00110210, 0x00120011, 0x00120110, 0x00120211, 0x01100111, 0x01100212, 0x01110010, + 0x01110011, 0x01110012, 0x01110110, 0x01110111, 0x01110112, 0x01110211, 0x01120010, 0x01120111, + 0x02100110, 0x02110012, 0x02110111, 0x02120011, 0x02120110, 0x00110021, 0x00110120, 0x00110122, + 0x00120121, 0x01100020, 0x01100122, 0x01100221, 0x01110022, 0x01110121, 0x01110220, 0x01110222, + 0x01120120, 0x01120122, 0x02100121, 0x02110021, 0x02110120, 0x02110122, 0x02120121, 0x00101001, + 0x00101102, 0x00101201, 0x00111100, 0x00111101, 0x00111200, 0x00111201, 0x00121001, 0x00121102, + 0x01101001, 0x01101101, 0x01101102, 0x01101200, 0x01101202, 0x01111001, 0x01111100, 0x01111101, + 0x01111102, 0x01111201, 0x01121002, 0x01121101, 0x01121200, 0x02101100, 0x02101201, 0x02111000, + 0x02111100, 0x02111101, 0x02111200, 0x02111201, 0x02111202, 0x02121001, 0x02121100, 0x02121101, + 0x02121201, 0x00101012, 0x00101111, 0x00101212, 0x00111011, 0x00111110, 0x00111111, 0x00111112, + 0x00111211, 0x00121010, 0x00121012, 0x00121111, 0x00121210, 0x00121212, 0x01101011, 0x01101110, + 0x01101111, 0x01101112, 0x01111011, 0x01111012, 0x01111110, 0x01111111, 0x01111112, 0x01111211, + 0x01111212, 0x01121011, 0x01121110, 0x01121111, 0x01121112, 0x01121211, 0x02101010, 0x02101012, + 0x02101110, 0x02101111, 0x02101210, 0x02101212, 0x02111010, 0x02111011, 0x02111110, 0x02111111, + 0x02111112, 0x02111211, 0x02111212, 0x02121010, 0x02121012, 0x02121111, 0x00101021, 0x00101120, + 0x00101121, 0x00101122, 0x00111121, 0x00111122, 0x00111220, 0x00111222, 0x00121021, 0x00121122, + 0x01101020, 0x01101022, 0x01101120, 0x01101121, 0x01101220, 0x01101222, 0x01111021, 0x01111121, + 0x01111122, 0x01111220, 0x01111221, 0x01121021, 0x01121120, 0x01121121, 0x01121220, 0x01121221, + 0x01121222, 0x02101122, 0x02101222, 0x02111022, 0x02111121, 0x02121120, 0x02121221, 0x00112001, + 0x00112102, 0x00122101, 0x01102001, 0x01102100, 0x01102102, 0x01102201, 0x01112000, 0x01112101, + 0x01112200, 0x01112202, 0x01122000, 0x01122001, 0x01122100, 0x01122102, 0x01122201, 0x02102101, + 0x02112001, 0x02112100, 0x02122101, 0x00112010, 0x00112012, 0x00112111, 0x00112212, 0x00122011, + 0x00122111, 0x01102012, 0x01102110, 0x01102111, 0x01102210, 0x01112011, 0x01112110, 0x01112111, + 0x01112112, 0x01112211, 0x01112212, 0x01122010, 0x01122111, 0x01122212, 0x02102211, 0x02112011, + 0x02112012, 0x02112111, 0x02112210, 0x02122011, 0x02122112, 0x02122211, 0x00102221, 0x00112122, + 0x00122120, 0x00122122, 0x01102120, 0x01102122, 0x01102221, 0x01112020, 0x01112022, 0x01112121, + 0x01112220, 0x01122021, 0x01122122, 0x01122221, 0x02102121, 0x02112021, 0x02112122, 0x02112222, + 0x00200000, 0x00200002, 0x00200200, 0x00200202, 0x00210101, 0x00220000, 0x00220002, 0x00220101, + 0x00220200, 0x00220202, 0x01200101, 0x01210001, 0x01210201, 0x01220001, 0x01220101, 0x02200000, + 0x02200002, 0x02200200, 0x02200202, 0x02210101, 0x02220000, 0x02220002, 0x02220101, 0x02220200, + 0x02220202, 0x00200111, 0x00210011, 0x00210110, 0x00210211, 0x00220111, 0x01200012, 0x01200110, + 0x01200211, 0x01210111, 0x01210210, 0x01210212, 0x01220011, 0x01220110, 0x01220111, 0x01220112, + 0x02200111, 0x02210010, 0x02210112, 0x02210211, 0x02220111, 0x00200021, 0x00200220, 0x00200222, + 0x00210021, 0x00210121, 0x00220020, 0x00220022, 0x00220220, 0x00220222, 0x01200121, 0x01210021, + 0x01210122, 0x01210221, 0x01220121, 0x02200021, 0x02200220, 0x02200222, 0x02210021, 0x02210121, + 0x02220020, 0x02220022, 0x02220220, 0x02220222, 0x00201101, 0x00211100, 0x00211102, 0x00211201, + 0x00221101, 0x01201100, 0x01201101, 0x01201102, 0x01201201, 0x01211002, 0x01211101, 0x01211200, + 0x01211202, 0x01221102, 0x02201101, 0x02211001, 0x02211100, 0x02211201, 0x02221001, 0x02221101, + 0x00201211, 0x00211111, 0x00221011, 0x00221211, 0x01201010, 0x01201111, 0x01201210, 0x01211011, + 0x01211110, 0x01211111, 0x01211211, 0x01221012, 0x01221111, 0x01221210, 0x02201211, 0x02211010, + 0x02211110, 0x02211111, 0x02211210, 0x02211212, 0x02221011, 0x02221110, 0x02221112, 0x02221211, + 0x00201121, 0x00211020, 0x00211022, 0x00211221, 0x00221121, 0x01201021, 0x01201221, 0x01211121, + 0x01221020, 0x01221021, 0x01221221, 0x02201120, 0x02201122, 0x02211020, 0x02211222, 0x00202000, + 0x00202002, 0x00202200, 0x00202202, 0x00212101, 0x00222000, 0x00222002, 0x00222200, 0x00222202, + 0x01202101, 0x01212001, 0x01212100, 0x01222101, 0x02202000, 0x02202002, 0x02202200, 0x02202202, + 0x02222000, 0x02222002, 0x02222200, 0x02222202, 0x00202211, 0x00212011, 0x00212110, 0x00212211, + 0x00222111, 0x01202112, 0x01202211, 0x01212012, 0x01212111, 0x01222011, 0x01222110, 0x01222112, + 0x01222211, 0x02202111, 0x02212010, 0x02212112, 0x02212211, 0x02222110, 0x02222111, 0x00202020, + 0x00202022, 0x00202220, 0x00202222, 0x00222020, 0x00222022, 0x00222220, 0x00222222, 0x01202121, + 0x01212021, 0x01212122, 0x01212221, 0x01222121, 0x02202020, 0x02202022, 0x02202220, 0x02202222, + 0x02212121, 0x02222020, 0x02222022, 0x02222220, 0x02222222, 0x10000101, 0x10010001, 0x10010102, + 0x10020101, 0x11000201, 0x11010002, 0x11010101, 0x11010200, 0x11010202, 0x11020001, 0x11020100, + 0x11020102, 0x12010100, 0x12010201, 0x12020001, 0x12020102, 0x10000010, 0x10000011, 0x10000110, + 0x10000112, 0x10000211, 0x10010012, 0x10010111, 0x10010112, 0x10010210, 0x10010212, 0x10020011, + 0x10020112, 0x10020211, 0x11000111, 0x11000210, 0x11000212, 0x11010011, 0x11010110, 0x11010111, + 0x11010112, 0x11010211, 0x11010212, 0x11020111, 0x11020210, 0x11020212, 0x12000011, 0x12000110, + 0x12000112, 0x12010010, 0x12010012, 0x12010111, 0x12020010, 0x12020011, 0x12020012, 0x10000121, + 0x10010021, 0x10010120, 0x10010122, 0x10020121, 0x11000021, 0x11010022, 0x11010121, 0x11010222, + 0x11020120, 0x11020221, 0x12000221, 0x12010120, 0x12020121, 0x10001001, 0x10011101, 0x10011201, + 0x10021201, 0x11001101, 0x11001200, 0x11001202, 0x11011001, 0x11011100, 0x11011101, 0x11011102, + 0x11021001, 0x11021002, 0x11021101, 0x11021200, 0x11021202, 0x12001001, 0x12001102, 0x12001201, + 0x12011000, 0x12011002, 0x12011101, 0x12021000, 0x12021001, 0x12021201, 0x10001011, 0x10001012, + 0x10001111, 0x10001212, 0x10011011, 0x10011110, 0x10011111, 0x10011112, 0x10011211, 0x10021010, + 0x10021111, 0x10021212, 0x11001011, 0x11001110, 0x11001111, 0x11001112, 0x11001211, 0x11011010, + 0x11011011, 0x11011110, 0x11011111, 0x11011112, 0x11011210, 0x11011211, 0x11021011, 0x11021110, + 0x11021111, 0x11021112, 0x11021211, 0x12001012, 0x12001110, 0x12001111, 0x12001210, 0x12011011, + 0x12011110, 0x12011111, 0x12011112, 0x12011211, 0x12011212, 0x12021111, 0x12021210, 0x12021212, + 0x10001021, 0x10001121, 0x10001221, 0x10011120, 0x10011121, 0x10011220, 0x10011222, 0x10021021, + 0x10021120, 0x10021221, 0x11001020, 0x11001022, 0x11001121, 0x11001220, 0x11011020, 0x11011021, + 0x11011022, 0x11011121, 0x11011122, 0x11011221, 0x11021022, 0x11021121, 0x11021220, 0x12001021, + 0x12001121, 0x12001222, 0x12011120, 0x12011121, 0x12021021, 0x12021120, 0x12021122, 0x10002101, + 0x10012001, 0x10012101, 0x10012202, 0x10022101, 0x11002002, 0x11002201, 0x11012000, 0x11012101, + 0x11012200, 0x11022001, 0x11022100, 0x11022102, 0x11022201, 0x12002101, 0x12012001, 0x12012100, + 0x12012102, 0x12012201, 0x12022101, 0x10002011, 0x10002111, 0x10002112, 0x10002212, 0x10012010, + 0x10012110, 0x10012111, 0x10012210, 0x10022011, 0x10022110, 0x10022112, 0x11002010, 0x11002111, + 0x11002212, 0x11012011, 0x11012012, 0x11012110, 0x11012111, 0x11012112, 0x11012211, 0x11022010, + 0x11022012, 0x11022111, 0x11022112, 0x11022212, 0x12002112, 0x12002211, 0x12012012, 0x12012111, + 0x12012112, 0x12012210, 0x12022011, 0x12022110, 0x12022112, 0x12022211, 0x10012122, 0x11002120, + 0x11002122, 0x11002221, 0x11012121, 0x11012220, 0x11012222, 0x11022120, 0x11022221, 0x12012120, + 0x12022121, 0x10100001, 0x10100100, 0x10100101, 0x10100102, 0x10100201, 0x10110002, 0x10110101, + 0x10110202, 0x10120001, 0x10120100, 0x10120201, 0x11100000, 0x11100101, 0x11100200, 0x11110001, + 0x11110100, 0x11110101, 0x11110102, 0x11110201, 0x11120101, 0x11120200, 0x12100102, 0x12100201, + 0x12110101, 0x12110200, 0x12120000, 0x12120001, 0x12120102, 0x12120201, 0x10100111, 0x10100210, + 0x10100211, 0x10100212, 0x10110011, 0x10110110, 0x10110111, 0x10110112, 0x10110210, 0x10110211, + 0x10120010, 0x10120111, 0x10120112, 0x10120210, 0x10120212, 0x11100011, 0x11100110, 0x11100111, + 0x11100112, 0x11100211, 0x11110010, 0x11110011, 0x11110012, 0x11110110, 0x11110111, 0x11110112, + 0x11110210, 0x11110211, 0x11110212, 0x11120011, 0x11120110, 0x11120111, 0x11120112, 0x11120211, + 0x12100012, 0x12100111, 0x12110011, 0x12110110, 0x12110111, 0x12110112, 0x12110211, 0x12120010, + 0x12120111, 0x12120212, 0x10100021, 0x10100122, 0x10110022, 0x10110121, 0x10110222, 0x10120021, + 0x10120120, 0x11100022, 0x11100121, 0x11100222, 0x11110021, 0x11110120, 0x11110121, 0x11110122, + 0x11110221, 0x11120022, 0x11120121, 0x12100121, 0x12110020, 0x12110022, 0x12110121, 0x12110221, + 0x12110222, 0x12120120, 0x10101100, 0x10101101, 0x10111001, 0x10111100, 0x10111101, 0x10111102, + 0x10111200, 0x10111201, 0x10121001, 0x10121101, 0x10121200, 0x10121202, 0x11101001, 0x11101100, + 0x11101101, 0x11101102, 0x11101201, 0x11101202, 0x11111000, 0x11111001, 0x11111100, 0x11111101, + 0x11111102, 0x11111200, 0x11111201, 0x11111202, 0x11121001, 0x11121002, 0x11121100, 0x11121101, + 0x11121102, 0x11121201, 0x12101000, 0x12101200, 0x12101202, 0x12111001, 0x12111100, 0x12111101, + 0x12111102, 0x12111201, 0x12121001, 0x12121100, 0x12121101, 0x12121202, 0x10101011, 0x10101012, + 0x10101110, 0x10101111, 0x10101112, 0x10101211, 0x10111010, 0x10111011, 0x10111012, 0x10111110, + 0x10111111, 0x10111112, 0x10111211, 0x10111212, 0x10121011, 0x10121110, 0x10121111, 0x10121112, + 0x10121211, 0x11101010, 0x11101011, 0x11101012, 0x11101110, 0x11101111, 0x11101112, 0x11101210, + 0x11101211, 0x11111010, 0x11111011, 0x11111012, 0x11111110, 0x11111111, 0x11111112, 0x11111210, + 0x11111211, 0x11111212, 0x11121010, 0x11121011, 0x11121110, 0x11121111, 0x11121112, 0x11121210, + 0x11121211, 0x11121212, 0x12101011, 0x12101110, 0x12101111, 0x12101211, 0x12101212, 0x12111010, + 0x12111011, 0x12111110, 0x12111111, 0x12111112, 0x12111210, 0x12111211, 0x12121011, 0x12121110, + 0x12121111, 0x12121112, 0x12121211, 0x10101020, 0x10101021, 0x10101022, 0x10101120, 0x10101122, + 0x10101220, 0x10101221, 0x10111021, 0x10111120, 0x10111121, 0x10111220, 0x10111221, 0x10121020, + 0x10121021, 0x10121022, 0x10121120, 0x10121121, 0x10121122, 0x10121220, 0x10121221, 0x11101021, + 0x11101121, 0x11101122, 0x11101220, 0x11101221, 0x11101222, 0x11111020, 0x11111021, 0x11111022, + 0x11111120, 0x11111121, 0x11111122, 0x11111220, 0x11111221, 0x11111222, 0x11121021, 0x11121120, + 0x11121121, 0x11121221, 0x12101022, 0x12101121, 0x12101122, 0x12101220, 0x12101221, 0x12101222, + 0x12111021, 0x12111121, 0x12111222, 0x12121022, 0x12121121, 0x12121122, 0x12121220, 0x12121221, + 0x10102100, 0x10102101, 0x10102102, 0x10102201, 0x10112000, 0x10112101, 0x10112200, 0x10122001, + 0x10122202, 0x11102101, 0x11102200, 0x11102202, 0x11112001, 0x11112100, 0x11112101, 0x11112102, + 0x11112200, 0x11112201, 0x11122000, 0x11122002, 0x11122100, 0x11122101, 0x12102002, 0x12102201, + 0x12112000, 0x12112002, 0x12112101, 0x12112200, 0x12122001, 0x12122201, 0x10102011, 0x10102012, + 0x10102111, 0x10102212, 0x10112011, 0x10112110, 0x10112111, 0x10112112, 0x10112211, 0x10122111, + 0x11102011, 0x11102110, 0x11102111, 0x11102112, 0x11102211, 0x11112010, 0x11112011, 0x11112012, + 0x11112110, 0x11112111, 0x11112112, 0x11112210, 0x11112211, 0x11112212, 0x11122011, 0x11122110, + 0x11122111, 0x11122112, 0x11122211, 0x12102011, 0x12102111, 0x12102211, 0x12112011, 0x12112110, + 0x12112111, 0x12112112, 0x12112210, 0x12112211, 0x12122111, 0x10102120, 0x10102220, 0x10112121, + 0x10112222, 0x10122020, 0x10122121, 0x10122122, 0x10122221, 0x11102121, 0x11102220, 0x11102221, + 0x11112021, 0x11112121, 0x11112122, 0x11112220, 0x11112221, 0x11122022, 0x11122121, 0x11122220, + 0x11122222, 0x12102021, 0x12102222, 0x12112022, 0x12112121, 0x12112122, 0x12112220, 0x12112222, + 0x12122021, 0x10200101, 0x10210100, 0x10210102, 0x10210201, 0x10220101, 0x11200100, 0x11210000, + 0x11210101, 0x11210102, 0x11210200, 0x11210202, 0x11220001, 0x11220100, 0x11220102, 0x11220201, + 0x12200001, 0x12210102, 0x12220101, 0x10200011, 0x10200110, 0x10200112, 0x10200211, 0x10210012, + 0x10210111, 0x10220011, 0x10220012, 0x10220112, 0x10220211, 0x11200111, 0x11200211, 0x11210011, + 0x11210111, 0x11210112, 0x11210211, 0x11220111, 0x11220112, 0x11220212, 0x12200110, 0x12200212, + 0x12210012, 0x12210111, 0x12220011, 0x12220112, 0x12220211, 0x10210021, 0x10210122, 0x10210221, + 0x11200020, 0x11200021, 0x11200122, 0x11210121, 0x11210122, 0x11210220, 0x11220020, 0x12200121, + 0x12210021, 0x12210122, 0x12220121, 0x10211001, 0x10211002, 0x10211101, 0x10211102, 0x10211202, + 0x10221001, 0x10221102, 0x10221201, 0x11201000, 0x11201002, 0x11201101, 0x11201200, 0x11201202, + 0x11211001, 0x11211100, 0x11211101, 0x11211102, 0x11211201, 0x11211202, 0x11221000, 0x11221002, + 0x11221101, 0x12201100, 0x12201101, 0x12201201, 0x12211000, 0x12211002, 0x12211100, 0x12211101, + 0x12211102, 0x12211200, 0x12211202, 0x12221001, 0x12221100, 0x12221201, 0x10201111, 0x10201210, + 0x10201212, 0x10211011, 0x10211111, 0x10211112, 0x10211211, 0x11201110, 0x11201111, 0x11201112, + 0x11201211, 0x11211010, 0x11211011, 0x11211110, 0x11211111, 0x11211112, 0x11211211, 0x11221011, + 0x11221110, 0x11221111, 0x11221112, 0x11221211, 0x12201112, 0x12201211, 0x12201212, 0x12211011, + 0x12211111, 0x12211112, 0x12211211, 0x12211212, 0x12221012, 0x12221111, 0x12221112, 0x12221210, + 0x10201022, 0x10201221, 0x10211121, 0x10221020, 0x10221122, 0x10221220, 0x10221221, 0x11201020, + 0x11201121, 0x11201220, 0x11201222, 0x11211021, 0x11211120, 0x11211121, 0x11211122, 0x11211220, + 0x11211222, 0x11221020, 0x11221121, 0x11221220, 0x12201020, 0x12201022, 0x12201121, 0x12201222, + 0x12211120, 0x12211122, 0x12211220, 0x12211221, 0x12221020, 0x12221120, 0x12221122, 0x12221222, + 0x10212102, 0x10212201, 0x10222101, 0x11202001, 0x11212002, 0x11212101, 0x11212202, 0x11222001, + 0x11222201, 0x12202101, 0x12212001, 0x12212200, 0x12222102, 0x10202011, 0x10202110, 0x10212010, + 0x10212111, 0x10222011, 0x10222110, 0x10222112, 0x10222211, 0x11202010, 0x11202011, 0x11202111, + 0x11202112, 0x11202210, 0x11212011, 0x11212110, 0x11212111, 0x11212112, 0x11212211, 0x11222010, + 0x11222111, 0x11222212, 0x12202012, 0x12202110, 0x12202212, 0x12212111, 0x12222011, 0x12222110, + 0x12222111, 0x12222211, 0x10212021, 0x10212122, 0x10212220, 0x11202021, 0x11202120, 0x11202221, + 0x11212020, 0x11212121, 0x11212220, 0x11212222, 0x11222120, 0x11222121, 0x11222221, 0x12202122, + 0x12212120, 0x12212220, 0x12212222, 0x12222122, 0x20000000, 0x20000002, 0x20000200, 0x20000202, + 0x20020000, 0x20020002, 0x20020200, 0x20020202, 0x21000101, 0x21010000, 0x21010001, 0x21010100, + 0x21010102, 0x21010201, 0x21020101, 0x22000000, 0x22000002, 0x22000200, 0x22000202, 0x22010101, + 0x22020000, 0x22020002, 0x22020200, 0x22020202, 0x20000111, 0x20010011, 0x20010110, 0x20010112, + 0x20010211, 0x20020111, 0x21000011, 0x21000110, 0x21000211, 0x21010010, 0x21010012, 0x21010111, + 0x21010112, 0x21010210, 0x21010211, 0x21020110, 0x21020112, 0x21020211, 0x22000111, 0x22000211, + 0x22010110, 0x22010112, 0x22010211, 0x22020111, 0x20000020, 0x20000022, 0x20000220, 0x20000222, + 0x20010121, 0x20020020, 0x20020022, 0x20020220, 0x20020222, 0x21010021, 0x21010120, 0x21010221, + 0x21020121, 0x22000020, 0x22000022, 0x22000220, 0x22000222, 0x22010121, 0x22020020, 0x22020022, + 0x22020220, 0x22020222, 0x20011100, 0x20011201, 0x21001001, 0x21001100, 0x21011001, 0x21011101, + 0x21011202, 0x21021001, 0x21021100, 0x21021201, 0x22011100, 0x22011201, 0x20001011, 0x20001211, + 0x20011012, 0x20011111, 0x20011212, 0x20021112, 0x20021211, 0x21001010, 0x21001011, 0x21001111, + 0x21001210, 0x21011011, 0x21011110, 0x21011111, 0x21011112, 0x21011211, 0x21011212, 0x21021111, + 0x21021112, 0x21021210, 0x21021212, 0x22001011, 0x22001110, 0x22001112, 0x22001211, 0x22011010, + 0x22011012, 0x22011111, 0x22011210, 0x22021112, 0x20011021, 0x20011122, 0x20011221, 0x20021121, + 0x21001021, 0x21001120, 0x21001221, 0x21001222, 0x21011020, 0x21011121, 0x21011221, 0x21011222, + 0x21021021, 0x21021122, 0x21021222, 0x22001121, 0x22011021, 0x22011222, 0x22021120, 0x20002000, + 0x20002002, 0x20002200, 0x20002202, 0x20012101, 0x20022000, 0x20022002, 0x20022200, 0x20022202, + 0x21002001, 0x21002101, 0x21012001, 0x21012100, 0x21012201, 0x21022101, 0x21022201, 0x22002000, + 0x22002002, 0x22002200, 0x22002202, 0x22012101, 0x22022000, 0x22022002, 0x22022200, 0x22022202, + 0x20002111, 0x20002112, 0x20012011, 0x20012110, 0x20012112, 0x20022111, 0x21002011, 0x21002110, + 0x21002112, 0x21002211, 0x21012010, 0x21012012, 0x21012111, 0x21012212, 0x21022011, 0x21022110, + 0x22002111, 0x22012112, 0x22012211, 0x22022111, 0x20002020, 0x20002022, 0x20002220, 0x20002222, + 0x20012121, 0x20022020, 0x20022022, 0x20022220, 0x20022222, 0x21002121, 0x21012021, 0x21012120, + 0x21012122, 0x22002020, 0x22002022, 0x22002220, 0x22002222, 0x22012121, 0x22022020, 0x22022022, + 0x22022220, 0x22022222, 0x20100101, 0x20110001, 0x20110102, 0x20110200, 0x20110201, 0x20120101, + 0x21100001, 0x21100102, 0x21100201, 0x21110101, 0x21110200, 0x21110202, 0x21120201, 0x21120202, + 0x22100101, 0x22110001, 0x22110100, 0x22110102, 0x22110201, 0x22120101, 0x20100011, 0x20100110, + 0x20100112, 0x20100211, 0x20110010, 0x20110111, 0x20110210, 0x20110212, 0x20120011, 0x20120110, + 0x20120112, 0x20120211, 0x21100010, 0x21100111, 0x21110010, 0x21110011, 0x21110110, 0x21110111, + 0x21110112, 0x21110211, 0x21120012, 0x21120111, 0x22100110, 0x22100112, 0x22110012, 0x22110111, + 0x22110210, 0x22120011, 0x22120110, 0x22120112, 0x22120211, 0x20100121, 0x20110021, 0x20110120, + 0x20110221, 0x20120121, 0x21100120, 0x21100122, 0x21100221, 0x21110020, 0x21110022, 0x21110121, + 0x21110220, 0x21120122, 0x21120221, 0x22100121, 0x22110120, 0x22110122, 0x22120221, 0x20101001, + 0x20101100, 0x20101102, 0x20111000, 0x20111101, 0x20111200, 0x20121102, 0x21101000, 0x21101202, + 0x21111001, 0x21111100, 0x21111101, 0x21111102, 0x21111200, 0x21111201, 0x21121000, 0x21121001, + 0x21121002, 0x21121101, 0x22101100, 0x22101102, 0x22111002, 0x22111100, 0x22111101, 0x22111200, + 0x22121001, 0x22121201, 0x20101010, 0x20101111, 0x20101210, 0x20101212, 0x20111010, 0x20111011, + 0x20111110, 0x20111111, 0x20111112, 0x20111211, 0x20121011, 0x20121111, 0x20121211, 0x20121212, + 0x21101011, 0x21101110, 0x21101111, 0x21101112, 0x21101211, 0x21111010, 0x21111011, 0x21111012, + 0x21111110, 0x21111111, 0x21111112, 0x21111210, 0x21111211, 0x21111212, 0x21121011, 0x21121110, + 0x21121111, 0x21121112, 0x21121211, 0x22101011, 0x22101111, 0x22101210, 0x22111011, 0x22111012, + 0x22111110, 0x22111111, 0x22111112, 0x22111211, 0x22111212, 0x22121010, 0x22121012, 0x22121111, + 0x22121210, 0x22121212, 0x20101021, 0x20101120, 0x20111020, 0x20111121, 0x20111221, 0x20121020, + 0x20121122, 0x20121221, 0x21101121, 0x21101220, 0x21101221, 0x21111021, 0x21111022, 0x21111121, + 0x21111122, 0x21111221, 0x21121121, 0x21121220, 0x22101022, 0x22101120, 0x22101221, 0x22101222, + 0x22111022, 0x22111120, 0x22111121, 0x22121120, 0x22121122, 0x22121221, 0x20102101, 0x20112102, + 0x20112201, 0x20122101, 0x21102001, 0x21102102, 0x21112000, 0x21112002, 0x21112101, 0x21112102, + 0x21112202, 0x21122100, 0x21122101, 0x22102101, 0x22112001, 0x22112102, 0x22112201, 0x22122101, + 0x20102110, 0x20102112, 0x20102211, 0x20112010, 0x20112012, 0x20112111, 0x20112210, 0x20112212, + 0x20122010, 0x20122011, 0x20122110, 0x20122112, 0x21102010, 0x21102012, 0x21102111, 0x21102210, + 0x21102212, 0x21112011, 0x21112110, 0x21112111, 0x21112112, 0x21112211, 0x21122012, 0x21122111, + 0x21122112, 0x21122212, 0x22102011, 0x22102110, 0x22112010, 0x22112012, 0x22112111, 0x22112212, + 0x22122011, 0x22122112, 0x20102121, 0x20112121, 0x20122121, 0x21102120, 0x21102122, 0x21102221, + 0x21112020, 0x21112121, 0x21112220, 0x21122021, 0x22102121, 0x22112021, 0x22112120, 0x22112121, + 0x22112122, 0x20200000, 0x20200002, 0x20200200, 0x20200202, 0x20210101, 0x20220000, 0x20220002, + 0x20220200, 0x20220202, 0x21200101, 0x21210001, 0x21210100, 0x21210102, 0x21210201, 0x22200000, + 0x22200002, 0x22200200, 0x22200202, 0x22210101, 0x22220000, 0x22220002, 0x22220200, 0x22220202, + 0x20200111, 0x20200211, 0x20210011, 0x20210110, 0x20210112, 0x20210211, 0x20210212, 0x21200112, + 0x21200211, 0x21210011, 0x21210111, 0x21210210, 0x21210212, 0x21220011, 0x21220110, 0x22200111, + 0x22210010, 0x22210012, 0x22210112, 0x22210211, 0x20200022, 0x20200220, 0x20200222, 0x20210020, + 0x20210221, 0x20220022, 0x20220220, 0x20220222, 0x21200121, 0x21210021, 0x21210122, 0x21210221, + 0x21220121, 0x22200020, 0x22200022, 0x22200220, 0x22200222, 0x22210121, 0x22220020, 0x22220022, + 0x22220220, 0x22220222, 0x20211201, 0x20221101, 0x21201001, 0x21201100, 0x21211000, 0x21211100, + 0x21211101, 0x21211200, 0x21211202, 0x21221001, 0x21221101, 0x21221102, 0x21221200, 0x21221201, + 0x22201101, 0x20201112, 0x20201211, 0x20211010, 0x20211012, 0x20211111, 0x20211210, 0x20221112, + 0x20221211, 0x21201012, 0x21201111, 0x21211011, 0x21211110, 0x21211111, 0x21211112, 0x21211211, + 0x21221111, 0x21221212, 0x22201011, 0x22201110, 0x22201111, 0x22201112, 0x22201211, 0x22211012, + 0x22211111, 0x22211210, 0x20201121, 0x20211021, 0x20211122, 0x20211222, 0x20221021, 0x20221121, + 0x21201120, 0x21201122, 0x21201222, 0x21211022, 0x21211121, 0x21211122, 0x21211220, 0x21221020, + 0x21221022, 0x22201122, 0x22211020, 0x22211121, 0x22211122, 0x22211221, 0x22221021, 0x22221120, + 0x22221122, 0x20202000, 0x20202002, 0x20202200, 0x20202202, 0x20222000, 0x20222002, 0x20222200, + 0x20222202, 0x21212001, 0x21212100, 0x21212102, 0x21212201, 0x22202000, 0x22202002, 0x22202200, + 0x22202202, 0x22212101, 0x22222000, 0x22222002, 0x22222200, 0x22222202, 0x20202111, 0x20212110, + 0x20212211, 0x20222011, 0x20222111, 0x21202011, 0x21212010, 0x21212111, 0x21212212, 0x21222011, + 0x21222112, 0x21222211, 0x22212010, 0x22212112, 0x20202020, 0x20202022, 0x20202220, 0x20202222, + 0x20222020, 0x20222022, 0x20222220, 0x20222222, 0x21212021, 0x21212120, 0x21212122, 0x22202020, + 0x22202022, 0x22202220, 0x22202222, 0x22212121, 0x22222020, 0x22222022, 0x22222220, 0x22222222, +GGML_TABLE_END() +#endif + +#endif // GGML_COMMON_IMPL +#endif // GGML_COMMON_IMPL diff --git a/llama/ggml-cuda.cu b/llama/ggml-cuda.cu index f6870f1e..04b6e528 100644 --- a/llama/ggml-cuda.cu +++ b/llama/ggml-cuda.cu @@ -715,9 +715,6 @@ static bool ggml_backend_buffer_is_cuda_split(ggml_backend_buffer_t buffer) { GGML_CALL static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) { ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context; delete ctx; - - // HACK: this needs to be freed in msvc - free(buffer); } GGML_CALL static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) { @@ -3031,7 +3028,7 @@ GGML_CALL static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, GGML_UNUSED(params); } -// extern "C" GGML_CALL int ggml_backend_cuda_reg_devices(); +extern "C" GGML_CALL int ggml_backend_cuda_reg_devices(); GGML_CALL int ggml_backend_cuda_reg_devices() { int device_count = ggml_backend_cuda_get_device_count(); diff --git a/llama/ggml-cuda.h b/llama/ggml-cuda.h index e07a8051..5eb4af40 100644 --- a/llama/ggml-cuda.h +++ b/llama/ggml-cuda.h @@ -1,45 +1,43 @@ -#pragma once - -#include "ggml.h" -#include "ggml-backend.h" - -#ifdef GGML_USE_HIPBLAS -#define GGML_CUDA_NAME "ROCm" -#define GGML_CUBLAS_NAME "hipBLAS" -#else -#define GGML_CUDA_NAME "CUDA" -#define GGML_CUBLAS_NAME "cuBLAS" -#endif - -#ifdef __cplusplus -extern "C" { -#endif - -#define GGML_CUDA_MAX_DEVICES 16 - -// backend API -GGML_API GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device); - -GGML_API GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend); - -// device buffer -GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device); - -// split tensor buffer that splits matrices by rows across multiple devices -GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split); - -// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU -GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void); - -GGML_API GGML_CALL int ggml_backend_cuda_reg_devices(); - -GGML_API GGML_CALL int ggml_backend_cuda_get_device_count(void); -GGML_API GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size); -GGML_API GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total); - -GGML_API GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size); -GGML_API GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer); - -#ifdef __cplusplus -} -#endif +#pragma once + +#include "ggml.h" +#include "ggml-backend.h" + +#ifdef GGML_USE_HIPBLAS +#define GGML_CUDA_NAME "ROCm" +#define GGML_CUBLAS_NAME "hipBLAS" +#else +#define GGML_CUDA_NAME "CUDA" +#define GGML_CUBLAS_NAME "cuBLAS" +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +#define GGML_CUDA_MAX_DEVICES 16 + +// backend API +GGML_API GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device); + +GGML_API GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend); + +// device buffer +GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device); + +// split tensor buffer that splits matrices by rows across multiple devices +GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split); + +// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU +GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void); + +GGML_API GGML_CALL int ggml_backend_cuda_get_device_count(void); +GGML_API GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size); +GGML_API GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total); + +GGML_API GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size); +GGML_API GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer); + +#ifdef __cplusplus +} +#endif diff --git a/llama/ggml-cuda/acc.cu b/llama/ggml-cuda/acc.cu index 8d705ac9..96bfe1c9 100644 --- a/llama/ggml-cuda/acc.cu +++ b/llama/ggml-cuda/acc.cu @@ -1,47 +1,47 @@ -#include "acc.cuh" - -static __global__ void acc_f32(const float * x, const float * y, float * dst, const int ne, - const int ne10, const int ne11, const int ne12, - const int nb1, const int nb2, int offset) { - const int i = blockDim.x * blockIdx.x + threadIdx.x; - if (i >= ne) { - return; - } - int src1_idx = i - offset; - int oz = src1_idx / nb2; - int oy = (src1_idx - (oz * nb2)) / nb1; - int ox = src1_idx % nb1; - if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) { - dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11]; - } else { - dst[i] = x[i]; - } -} - -static void acc_f32_cuda(const float * x, const float * y, float * dst, const int n_elements, - const int ne10, const int ne11, const int ne12, - const int nb1, const int nb2, const int offset, cudaStream_t stream) { - int num_blocks = (n_elements + CUDA_ACC_BLOCK_SIZE - 1) / CUDA_ACC_BLOCK_SIZE; - acc_f32<<>>(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset); -} - -void ggml_cuda_op_acc(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const ggml_tensor * src1 = dst->src[1]; - const float * src0_d = (const float *)src0->data; - const float * src1_d = (const float *)src1->data; - float * dst_d = (float *)dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(src0->type == GGML_TYPE_F32); - GGML_ASSERT(src1->type == GGML_TYPE_F32); - GGML_ASSERT( dst->type == GGML_TYPE_F32); - GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported - - int nb1 = dst->op_params[0] / 4; // 4 bytes of float32 - int nb2 = dst->op_params[1] / 4; // 4 bytes of float32 - // int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused - int offset = dst->op_params[3] / 4; // offset in bytes - - acc_f32_cuda(src0_d, src1_d, dst_d, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, stream); -} +#include "acc.cuh" + +static __global__ void acc_f32(const float * x, const float * y, float * dst, const int ne, + const int ne10, const int ne11, const int ne12, + const int nb1, const int nb2, int offset) { + const int i = blockDim.x * blockIdx.x + threadIdx.x; + if (i >= ne) { + return; + } + int src1_idx = i - offset; + int oz = src1_idx / nb2; + int oy = (src1_idx - (oz * nb2)) / nb1; + int ox = src1_idx % nb1; + if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) { + dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11]; + } else { + dst[i] = x[i]; + } +} + +static void acc_f32_cuda(const float * x, const float * y, float * dst, const int n_elements, + const int ne10, const int ne11, const int ne12, + const int nb1, const int nb2, const int offset, cudaStream_t stream) { + int num_blocks = (n_elements + CUDA_ACC_BLOCK_SIZE - 1) / CUDA_ACC_BLOCK_SIZE; + acc_f32<<>>(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset); +} + +void ggml_cuda_op_acc(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * src0 = dst->src[0]; + const ggml_tensor * src1 = dst->src[1]; + const float * src0_d = (const float *)src0->data; + const float * src1_d = (const float *)src1->data; + float * dst_d = (float *)dst->data; + cudaStream_t stream = ctx.stream(); + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported + + int nb1 = dst->op_params[0] / 4; // 4 bytes of float32 + int nb2 = dst->op_params[1] / 4; // 4 bytes of float32 + // int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused + int offset = dst->op_params[3] / 4; // offset in bytes + + acc_f32_cuda(src0_d, src1_d, dst_d, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, stream); +} diff --git a/llama/ggml-cuda/acc.cuh b/llama/ggml-cuda/acc.cuh index a476eb9a..1168ea1b 100644 --- a/llama/ggml-cuda/acc.cuh +++ b/llama/ggml-cuda/acc.cuh @@ -1,5 +1,5 @@ -#include "common.cuh" - -#define CUDA_ACC_BLOCK_SIZE 256 - -void ggml_cuda_op_acc(ggml_backend_cuda_context & ctx, ggml_tensor * dst); +#include "common.cuh" + +#define CUDA_ACC_BLOCK_SIZE 256 + +void ggml_cuda_op_acc(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/llama/ggml-cuda/arange.cu b/llama/ggml-cuda/arange.cu index e35045dd..b5e495a2 100644 --- a/llama/ggml-cuda/arange.cu +++ b/llama/ggml-cuda/arange.cu @@ -1,34 +1,34 @@ -#include "arange.cuh" - -static __global__ void arange_f32(float * dst, const int ne0, const float start, const float step) { - // blockIDx.x: idx of ne0 / BLOCK_SIZE - int nidx = threadIdx.x + blockIdx.x * blockDim.x; - if (nidx >= ne0) { - return; - } - dst[nidx] = start + step * nidx; -} - -static void arange_f32_cuda(float * dst, const int ne0, const float start, const float step, cudaStream_t stream) { - int num_blocks = (ne0 + CUDA_ARANGE_BLOCK_SIZE - 1) / CUDA_ARANGE_BLOCK_SIZE; - arange_f32<<>>(dst, ne0, start, step); -} - -void ggml_cuda_op_arange(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - float * dst_d = (float *)dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(dst->type == GGML_TYPE_F32); - - float start; - float stop; - float step; - memcpy(&start, (float *)dst->op_params + 0, sizeof(float)); - memcpy(&stop, (float *)dst->op_params + 1, sizeof(float)); - memcpy(&step, (float *)dst->op_params + 2, sizeof(float)); - - int64_t steps = (int64_t)ceil((stop - start) / step); - GGML_ASSERT(ggml_nelements(dst) == steps); - - arange_f32_cuda(dst_d, dst->ne[0], start, step, stream); -} +#include "arange.cuh" + +static __global__ void arange_f32(float * dst, const int ne0, const float start, const float step) { + // blockIDx.x: idx of ne0 / BLOCK_SIZE + int nidx = threadIdx.x + blockIdx.x * blockDim.x; + if (nidx >= ne0) { + return; + } + dst[nidx] = start + step * nidx; +} + +static void arange_f32_cuda(float * dst, const int ne0, const float start, const float step, cudaStream_t stream) { + int num_blocks = (ne0 + CUDA_ARANGE_BLOCK_SIZE - 1) / CUDA_ARANGE_BLOCK_SIZE; + arange_f32<<>>(dst, ne0, start, step); +} + +void ggml_cuda_op_arange(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + float * dst_d = (float *)dst->data; + cudaStream_t stream = ctx.stream(); + + GGML_ASSERT(dst->type == GGML_TYPE_F32); + + float start; + float stop; + float step; + memcpy(&start, (float *)dst->op_params + 0, sizeof(float)); + memcpy(&stop, (float *)dst->op_params + 1, sizeof(float)); + memcpy(&step, (float *)dst->op_params + 2, sizeof(float)); + + int64_t steps = (int64_t)ceil((stop - start) / step); + GGML_ASSERT(ggml_nelements(dst) == steps); + + arange_f32_cuda(dst_d, dst->ne[0], start, step, stream); +} diff --git a/llama/ggml-cuda/arange.cuh b/llama/ggml-cuda/arange.cuh index 13236306..41e74fdf 100644 --- a/llama/ggml-cuda/arange.cuh +++ b/llama/ggml-cuda/arange.cuh @@ -1,5 +1,5 @@ -#include "common.cuh" - -#define CUDA_ARANGE_BLOCK_SIZE 256 - -void ggml_cuda_op_arange(ggml_backend_cuda_context & ctx, ggml_tensor * dst); +#include "common.cuh" + +#define CUDA_ARANGE_BLOCK_SIZE 256 + +void ggml_cuda_op_arange(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/llama/ggml-cuda/argsort.cu b/llama/ggml-cuda/argsort.cu index d5b42c66..16414406 100644 --- a/llama/ggml-cuda/argsort.cu +++ b/llama/ggml-cuda/argsort.cu @@ -1,103 +1,103 @@ -#include "argsort.cuh" - -template -static inline __device__ void ggml_cuda_swap(T & a, T & b) { - T tmp = a; - a = b; - b = tmp; -} - -template -static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int ncols, int ncols_pad) { - // bitonic sort - int col = threadIdx.x; - int row = blockIdx.y; - - if (col >= ncols_pad) { - return; - } - - const float * x_row = x + row * ncols; - extern __shared__ int dst_row[]; - - // initialize indices - dst_row[col] = col; - - __syncthreads(); - - for (int k = 2; k <= ncols_pad; k *= 2) { - for (int j = k / 2; j > 0; j /= 2) { - int ixj = col ^ j; - if (ixj > col) { - if ((col & k) == 0) { - if (dst_row[col] >= ncols || - (dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ? - x_row[dst_row[col]] > x_row[dst_row[ixj]] : - x_row[dst_row[col]] < x_row[dst_row[ixj]])) - ) { - ggml_cuda_swap(dst_row[col], dst_row[ixj]); - } - } else { - if (dst_row[ixj] >= ncols || - (dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ? - x_row[dst_row[col]] < x_row[dst_row[ixj]] : - x_row[dst_row[col]] > x_row[dst_row[ixj]])) - ) { - ggml_cuda_swap(dst_row[col], dst_row[ixj]); - } - } - } - __syncthreads(); - } - } - - // copy the result to dst without the padding - if (col < ncols) { - dst[row * ncols + col] = dst_row[col]; - } -} - -static int next_power_of_2(int x) { - int n = 1; - while (n < x) { - n *= 2; - } - return n; -} - -static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) { - // bitonic sort requires ncols to be power of 2 - const int ncols_pad = next_power_of_2(ncols); - - const dim3 block_dims(ncols_pad, 1, 1); - const dim3 block_nums(1, nrows, 1); - const size_t shared_mem = ncols_pad * sizeof(int); - - GGML_ASSERT(shared_mem <= ggml_cuda_info().devices[ggml_cuda_get_device()].smpb); - - if (order == GGML_SORT_ORDER_ASC) { - k_argsort_f32_i32<<>>(x, dst, ncols, ncols_pad); - } else if (order == GGML_SORT_ORDER_DESC) { - k_argsort_f32_i32<<>>(x, dst, ncols, ncols_pad); - } else { - GGML_ASSERT(false); - } -} - -void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const float * src0_d = (const float *)src0->data; - float * dst_d = (float *)dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(src0->type == GGML_TYPE_F32); - GGML_ASSERT( dst->type == GGML_TYPE_I32); - GGML_ASSERT(ggml_is_contiguous(src0)); - - const int64_t ncols = src0->ne[0]; - const int64_t nrows = ggml_nrows(src0); - - enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0]; - - argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream); -} +#include "argsort.cuh" + +template +static inline __device__ void ggml_cuda_swap(T & a, T & b) { + T tmp = a; + a = b; + b = tmp; +} + +template +static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int ncols, int ncols_pad) { + // bitonic sort + int col = threadIdx.x; + int row = blockIdx.y; + + if (col >= ncols_pad) { + return; + } + + const float * x_row = x + row * ncols; + extern __shared__ int dst_row[]; + + // initialize indices + dst_row[col] = col; + + __syncthreads(); + + for (int k = 2; k <= ncols_pad; k *= 2) { + for (int j = k / 2; j > 0; j /= 2) { + int ixj = col ^ j; + if (ixj > col) { + if ((col & k) == 0) { + if (dst_row[col] >= ncols || + (dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ? + x_row[dst_row[col]] > x_row[dst_row[ixj]] : + x_row[dst_row[col]] < x_row[dst_row[ixj]])) + ) { + ggml_cuda_swap(dst_row[col], dst_row[ixj]); + } + } else { + if (dst_row[ixj] >= ncols || + (dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ? + x_row[dst_row[col]] < x_row[dst_row[ixj]] : + x_row[dst_row[col]] > x_row[dst_row[ixj]])) + ) { + ggml_cuda_swap(dst_row[col], dst_row[ixj]); + } + } + } + __syncthreads(); + } + } + + // copy the result to dst without the padding + if (col < ncols) { + dst[row * ncols + col] = dst_row[col]; + } +} + +static int next_power_of_2(int x) { + int n = 1; + while (n < x) { + n *= 2; + } + return n; +} + +static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) { + // bitonic sort requires ncols to be power of 2 + const int ncols_pad = next_power_of_2(ncols); + + const dim3 block_dims(ncols_pad, 1, 1); + const dim3 block_nums(1, nrows, 1); + const size_t shared_mem = ncols_pad * sizeof(int); + + GGML_ASSERT(shared_mem <= ggml_cuda_info().devices[ggml_cuda_get_device()].smpb); + + if (order == GGML_SORT_ORDER_ASC) { + k_argsort_f32_i32<<>>(x, dst, ncols, ncols_pad); + } else if (order == GGML_SORT_ORDER_DESC) { + k_argsort_f32_i32<<>>(x, dst, ncols, ncols_pad); + } else { + GGML_ASSERT(false); + } +} + +void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * src0 = dst->src[0]; + const float * src0_d = (const float *)src0->data; + float * dst_d = (float *)dst->data; + cudaStream_t stream = ctx.stream(); + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_I32); + GGML_ASSERT(ggml_is_contiguous(src0)); + + const int64_t ncols = src0->ne[0]; + const int64_t nrows = ggml_nrows(src0); + + enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0]; + + argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream); +} diff --git a/llama/ggml-cuda/argsort.cuh b/llama/ggml-cuda/argsort.cuh index b455d21d..68a00154 100644 --- a/llama/ggml-cuda/argsort.cuh +++ b/llama/ggml-cuda/argsort.cuh @@ -1,3 +1,3 @@ -#include "common.cuh" - -void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst); +#include "common.cuh" + +void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/llama/ggml-cuda/binbcast.cu b/llama/ggml-cuda/binbcast.cu index 9ce4a7ca..19b08b74 100644 --- a/llama/ggml-cuda/binbcast.cu +++ b/llama/ggml-cuda/binbcast.cu @@ -1,280 +1,280 @@ -#include "binbcast.cuh" - -static __device__ __forceinline__ float op_repeat(const float a, const float b) { - return b; - GGML_UNUSED(a); -} - -static __device__ __forceinline__ float op_add(const float a, const float b) { - return a + b; -} - -static __device__ __forceinline__ float op_mul(const float a, const float b) { - return a * b; -} - -static __device__ __forceinline__ float op_div(const float a, const float b) { - return a / b; -} - -template -static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst, - int ne0, int ne1, int ne2, int ne3, - int ne10, int ne11, int ne12, int ne13, - /*int s0, */ int s1, int s2, int s3, - /*int s00,*/ int s01, int s02, int s03, - /*int s10,*/ int s11, int s12, int s13) { - const int i0s = blockDim.x*blockIdx.x + threadIdx.x; - const int i1 = (blockDim.y*blockIdx.y + threadIdx.y); - const int i2 = (blockDim.z*blockIdx.z + threadIdx.z) / ne3; - const int i3 = (blockDim.z*blockIdx.z + threadIdx.z) % ne3; - - if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) { - return; - } - - const int i11 = i1 % ne11; - const int i12 = i2 % ne12; - const int i13 = i3 % ne13; - - const size_t i_src0 = i3*s03 + i2*s02 + i1*s01; - const size_t i_src1 = i13*s13 + i12*s12 + i11*s11; - const size_t i_dst = i3*s3 + i2*s2 + i1*s1; - - const src0_t * src0_row = src0 + i_src0; - const src1_t * src1_row = src1 + i_src1; - dst_t * dst_row = dst + i_dst; - - for (int i0 = i0s; i0 < ne0; i0 += blockDim.x*gridDim.x) { - const int i10 = i0 % ne10; - dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]); - } -} - -template -static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst, - int ne0, int ne1, int ne2, int ne3, - int ne10, int ne11, int ne12, int ne13, - /*int s0, */ int s1, int s2, int s3, - /*int s00,*/ int s01, int s02, int s03, - /*int s10,*/ int s11, int s12, int s13) { - - const int i = blockDim.x*blockIdx.x + threadIdx.x; - - const int i3 = i/(ne2*ne1*ne0); - const int i2 = (i/(ne1*ne0)) % ne2; - const int i1 = (i/ne0) % ne1; - const int i0 = i % ne0; - - if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) { - return; - } - - const int i11 = i1 % ne11; - const int i12 = i2 % ne12; - const int i13 = i3 % ne13; - - const size_t i_src0 = i3*s03 + i2*s02 + i1*s01; - const size_t i_src1 = i13*s13 + i12*s12 + i11*s11; - const size_t i_dst = i3*s3 + i2*s2 + i1*s1; - - const src0_t * src0_row = src0 + i_src0; - const src1_t * src1_row = src1 + i_src1; - dst_t * dst_row = dst + i_dst; - - const int i10 = i0 % ne10; - dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]); -} - -template -struct bin_bcast_cuda { - template - void operator()(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, - const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd, - cudaStream_t stream) { - - GGML_TENSOR_BINARY_OP_LOCALS - - int nr0 = ne10/ne0; - int nr1 = ne11/ne1; - int nr2 = ne12/ne2; - int nr3 = ne13/ne3; - - int nr[4] = { nr0, nr1, nr2, nr3 }; - - // collapse dimensions until first broadcast dimension - int64_t cne[] = {ne0, ne1, ne2, ne3}; - int64_t cne0[] = {ne00, ne01, ne02, ne03}; - int64_t cne1[] = {ne10, ne11, ne12, ne13}; - - size_t cnb[] = {nb0, nb1, nb2, nb3}; - size_t cnb0[] = {nb00, nb01, nb02, nb03}; - size_t cnb1[] = {nb10, nb11, nb12, nb13}; - - auto collapse = [](int64_t cne[]) { - cne[0] *= cne[1]; - cne[1] = cne[2]; - cne[2] = cne[3]; - cne[3] = 1; - }; - - auto collapse_nb = [](size_t cnb[], const int64_t cne[]) { - cnb[1] *= cne[1]; - cnb[2] *= cne[2]; - cnb[3] *= cne[3]; - }; - - if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) { - for (int i = 0; i < 4; i++) { - if (nr[i] != 1) { - break; - } - if (i > 0) { - collapse_nb(cnb, cne); - collapse_nb(cnb0, cne0); - collapse_nb(cnb1, cne1); - collapse(cne); - collapse(cne0); - collapse(cne1); - } - } - } - - { - int64_t ne0 = cne[0]; - int64_t ne1 = cne[1]; - int64_t ne2 = cne[2]; - int64_t ne3 = cne[3]; - - //int64_t ne00 = cne0[0]; GGML_UNUSED(ne00); - //int64_t ne01 = cne0[1]; GGML_UNUSED(ne01); - //int64_t ne02 = cne0[2]; GGML_UNUSED(ne02); - //int64_t ne03 = cne0[3]; GGML_UNUSED(ne03); - - int64_t ne10 = cne1[0]; - int64_t ne11 = cne1[1]; - int64_t ne12 = cne1[2]; - int64_t ne13 = cne1[3]; - - size_t nb0 = cnb[0]; - size_t nb1 = cnb[1]; - size_t nb2 = cnb[2]; - size_t nb3 = cnb[3]; - - size_t nb00 = cnb0[0]; - size_t nb01 = cnb0[1]; - size_t nb02 = cnb0[2]; - size_t nb03 = cnb0[3]; - - size_t nb10 = cnb1[0]; - size_t nb11 = cnb1[1]; - size_t nb12 = cnb1[2]; - size_t nb13 = cnb1[3]; - - size_t s0 = nb0 / sizeof(dst_t); - size_t s1 = nb1 / sizeof(dst_t); - size_t s2 = nb2 / sizeof(dst_t); - size_t s3 = nb3 / sizeof(dst_t); - - size_t s10 = nb10 / sizeof(src1_t); - size_t s11 = nb11 / sizeof(src1_t); - size_t s12 = nb12 / sizeof(src1_t); - size_t s13 = nb13 / sizeof(src1_t); - - size_t s00 = nb00 / sizeof(src0_t); - size_t s01 = nb01 / sizeof(src0_t); - size_t s02 = nb02 / sizeof(src0_t); - size_t s03 = nb03 / sizeof(src0_t); - - GGML_ASSERT(nb0 % sizeof(dst_t) == 0); - GGML_ASSERT(nb1 % sizeof(dst_t) == 0); - GGML_ASSERT(nb2 % sizeof(dst_t) == 0); - GGML_ASSERT(nb3 % sizeof(dst_t) == 0); - - GGML_ASSERT(nb00 % sizeof(src0_t) == 0); - GGML_ASSERT(nb01 % sizeof(src0_t) == 0); - GGML_ASSERT(nb02 % sizeof(src0_t) == 0); - GGML_ASSERT(nb03 % sizeof(src0_t) == 0); - - GGML_ASSERT(nb10 % sizeof(src1_t) == 0); - GGML_ASSERT(nb11 % sizeof(src1_t) == 0); - GGML_ASSERT(nb12 % sizeof(src1_t) == 0); - GGML_ASSERT(nb13 % sizeof(src1_t) == 0); - - GGML_ASSERT(s0 == 1); - GGML_ASSERT(s00 == 1); - GGML_ASSERT(s10 == 1); - - const int block_size = 128; - - int64_t hne0 = std::max(ne0/2LL, 1LL); - - dim3 block_dims; - block_dims.x = std::min(hne0, block_size); - block_dims.y = std::min(ne1, block_size / block_dims.x); - block_dims.z = std::min(std::min(ne2*ne3, block_size / block_dims.x / block_dims.y), 64U); - - dim3 block_nums( - (hne0 + block_dims.x - 1) / block_dims.x, - (ne1 + block_dims.y - 1) / block_dims.y, - (ne2*ne3 + block_dims.z - 1) / block_dims.z - ); - - if (block_nums.z > 65535) { - // this is the maximum number of blocks in z dimension, fallback to 1D grid kernel - int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size; - k_bin_bcast_unravel<<>>( - src0_dd, src1_dd, dst_dd, - ne0, ne1, ne2, ne3, - ne10, ne11, ne12, ne13, - /* s0, */ s1, s2, s3, - /* s00, */ s01, s02, s03, - /* s10, */ s11, s12, s13); - } else { - k_bin_bcast<<>>( - src0_dd, src1_dd, dst_dd, - ne0, ne1, ne2, ne3, - ne10, ne11, ne12, ne13, - /* s0, */ s1, s2, s3, - /* s00, */ s01, s02, s03, - /* s10, */ s11, s12, s13); - } - } - } -}; - -template -static void ggml_cuda_op_bin_bcast( - const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const void * src0_dd, const void * src1_dd, void * dst_dd, cudaStream_t stream) { - - GGML_ASSERT(src1->type == GGML_TYPE_F32); - - if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { - op()(src0, src1, dst, (const float *)src0_dd, (const float *)src1_dd, (float *)dst_dd, stream); - } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { - op()(src0, src1, dst, (const half *) src0_dd, (const float *)src1_dd, (half *) dst_dd, stream); - } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) { - op()(src0, src1, dst, (const half *) src0_dd, (const float *)src1_dd, (float *)dst_dd, stream); - } else { - fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__, - ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type)); - GGML_ASSERT(false); - } -} - -void ggml_cuda_op_repeat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - ggml_cuda_op_bin_bcast>(dst, dst->src[0], dst, nullptr, dst->src[0]->data, dst->data, ctx.stream()); -} - -void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - ggml_cuda_op_bin_bcast>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream()); -} - -void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - ggml_cuda_op_bin_bcast>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream()); -} - -void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - ggml_cuda_op_bin_bcast>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream()); -} +#include "binbcast.cuh" + +static __device__ __forceinline__ float op_repeat(const float a, const float b) { + return b; + GGML_UNUSED(a); +} + +static __device__ __forceinline__ float op_add(const float a, const float b) { + return a + b; +} + +static __device__ __forceinline__ float op_mul(const float a, const float b) { + return a * b; +} + +static __device__ __forceinline__ float op_div(const float a, const float b) { + return a / b; +} + +template +static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst, + int ne0, int ne1, int ne2, int ne3, + int ne10, int ne11, int ne12, int ne13, + /*int s0, */ int s1, int s2, int s3, + /*int s00,*/ int s01, int s02, int s03, + /*int s10,*/ int s11, int s12, int s13) { + const int i0s = blockDim.x*blockIdx.x + threadIdx.x; + const int i1 = (blockDim.y*blockIdx.y + threadIdx.y); + const int i2 = (blockDim.z*blockIdx.z + threadIdx.z) / ne3; + const int i3 = (blockDim.z*blockIdx.z + threadIdx.z) % ne3; + + if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) { + return; + } + + const int i11 = i1 % ne11; + const int i12 = i2 % ne12; + const int i13 = i3 % ne13; + + const size_t i_src0 = i3*s03 + i2*s02 + i1*s01; + const size_t i_src1 = i13*s13 + i12*s12 + i11*s11; + const size_t i_dst = i3*s3 + i2*s2 + i1*s1; + + const src0_t * src0_row = src0 + i_src0; + const src1_t * src1_row = src1 + i_src1; + dst_t * dst_row = dst + i_dst; + + for (int i0 = i0s; i0 < ne0; i0 += blockDim.x*gridDim.x) { + const int i10 = i0 % ne10; + dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]); + } +} + +template +static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst, + int ne0, int ne1, int ne2, int ne3, + int ne10, int ne11, int ne12, int ne13, + /*int s0, */ int s1, int s2, int s3, + /*int s00,*/ int s01, int s02, int s03, + /*int s10,*/ int s11, int s12, int s13) { + + const int i = blockDim.x*blockIdx.x + threadIdx.x; + + const int i3 = i/(ne2*ne1*ne0); + const int i2 = (i/(ne1*ne0)) % ne2; + const int i1 = (i/ne0) % ne1; + const int i0 = i % ne0; + + if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) { + return; + } + + const int i11 = i1 % ne11; + const int i12 = i2 % ne12; + const int i13 = i3 % ne13; + + const size_t i_src0 = i3*s03 + i2*s02 + i1*s01; + const size_t i_src1 = i13*s13 + i12*s12 + i11*s11; + const size_t i_dst = i3*s3 + i2*s2 + i1*s1; + + const src0_t * src0_row = src0 + i_src0; + const src1_t * src1_row = src1 + i_src1; + dst_t * dst_row = dst + i_dst; + + const int i10 = i0 % ne10; + dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]); +} + +template +struct bin_bcast_cuda { + template + void operator()(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, + const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd, + cudaStream_t stream) { + + GGML_TENSOR_BINARY_OP_LOCALS + + int nr0 = ne10/ne0; + int nr1 = ne11/ne1; + int nr2 = ne12/ne2; + int nr3 = ne13/ne3; + + int nr[4] = { nr0, nr1, nr2, nr3 }; + + // collapse dimensions until first broadcast dimension + int64_t cne[] = {ne0, ne1, ne2, ne3}; + int64_t cne0[] = {ne00, ne01, ne02, ne03}; + int64_t cne1[] = {ne10, ne11, ne12, ne13}; + + size_t cnb[] = {nb0, nb1, nb2, nb3}; + size_t cnb0[] = {nb00, nb01, nb02, nb03}; + size_t cnb1[] = {nb10, nb11, nb12, nb13}; + + auto collapse = [](int64_t cne[]) { + cne[0] *= cne[1]; + cne[1] = cne[2]; + cne[2] = cne[3]; + cne[3] = 1; + }; + + auto collapse_nb = [](size_t cnb[], const int64_t cne[]) { + cnb[1] *= cne[1]; + cnb[2] *= cne[2]; + cnb[3] *= cne[3]; + }; + + if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) { + for (int i = 0; i < 4; i++) { + if (nr[i] != 1) { + break; + } + if (i > 0) { + collapse_nb(cnb, cne); + collapse_nb(cnb0, cne0); + collapse_nb(cnb1, cne1); + collapse(cne); + collapse(cne0); + collapse(cne1); + } + } + } + + { + int64_t ne0 = cne[0]; + int64_t ne1 = cne[1]; + int64_t ne2 = cne[2]; + int64_t ne3 = cne[3]; + + //int64_t ne00 = cne0[0]; GGML_UNUSED(ne00); + //int64_t ne01 = cne0[1]; GGML_UNUSED(ne01); + //int64_t ne02 = cne0[2]; GGML_UNUSED(ne02); + //int64_t ne03 = cne0[3]; GGML_UNUSED(ne03); + + int64_t ne10 = cne1[0]; + int64_t ne11 = cne1[1]; + int64_t ne12 = cne1[2]; + int64_t ne13 = cne1[3]; + + size_t nb0 = cnb[0]; + size_t nb1 = cnb[1]; + size_t nb2 = cnb[2]; + size_t nb3 = cnb[3]; + + size_t nb00 = cnb0[0]; + size_t nb01 = cnb0[1]; + size_t nb02 = cnb0[2]; + size_t nb03 = cnb0[3]; + + size_t nb10 = cnb1[0]; + size_t nb11 = cnb1[1]; + size_t nb12 = cnb1[2]; + size_t nb13 = cnb1[3]; + + size_t s0 = nb0 / sizeof(dst_t); + size_t s1 = nb1 / sizeof(dst_t); + size_t s2 = nb2 / sizeof(dst_t); + size_t s3 = nb3 / sizeof(dst_t); + + size_t s10 = nb10 / sizeof(src1_t); + size_t s11 = nb11 / sizeof(src1_t); + size_t s12 = nb12 / sizeof(src1_t); + size_t s13 = nb13 / sizeof(src1_t); + + size_t s00 = nb00 / sizeof(src0_t); + size_t s01 = nb01 / sizeof(src0_t); + size_t s02 = nb02 / sizeof(src0_t); + size_t s03 = nb03 / sizeof(src0_t); + + GGML_ASSERT(nb0 % sizeof(dst_t) == 0); + GGML_ASSERT(nb1 % sizeof(dst_t) == 0); + GGML_ASSERT(nb2 % sizeof(dst_t) == 0); + GGML_ASSERT(nb3 % sizeof(dst_t) == 0); + + GGML_ASSERT(nb00 % sizeof(src0_t) == 0); + GGML_ASSERT(nb01 % sizeof(src0_t) == 0); + GGML_ASSERT(nb02 % sizeof(src0_t) == 0); + GGML_ASSERT(nb03 % sizeof(src0_t) == 0); + + GGML_ASSERT(nb10 % sizeof(src1_t) == 0); + GGML_ASSERT(nb11 % sizeof(src1_t) == 0); + GGML_ASSERT(nb12 % sizeof(src1_t) == 0); + GGML_ASSERT(nb13 % sizeof(src1_t) == 0); + + GGML_ASSERT(s0 == 1); + GGML_ASSERT(s00 == 1); + GGML_ASSERT(s10 == 1); + + const int block_size = 128; + + int64_t hne0 = std::max(ne0/2LL, 1LL); + + dim3 block_dims; + block_dims.x = std::min(hne0, block_size); + block_dims.y = std::min(ne1, block_size / block_dims.x); + block_dims.z = std::min(std::min(ne2*ne3, block_size / block_dims.x / block_dims.y), 64U); + + dim3 block_nums( + (hne0 + block_dims.x - 1) / block_dims.x, + (ne1 + block_dims.y - 1) / block_dims.y, + (ne2*ne3 + block_dims.z - 1) / block_dims.z + ); + + if (block_nums.z > 65535) { + // this is the maximum number of blocks in z dimension, fallback to 1D grid kernel + int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size; + k_bin_bcast_unravel<<>>( + src0_dd, src1_dd, dst_dd, + ne0, ne1, ne2, ne3, + ne10, ne11, ne12, ne13, + /* s0, */ s1, s2, s3, + /* s00, */ s01, s02, s03, + /* s10, */ s11, s12, s13); + } else { + k_bin_bcast<<>>( + src0_dd, src1_dd, dst_dd, + ne0, ne1, ne2, ne3, + ne10, ne11, ne12, ne13, + /* s0, */ s1, s2, s3, + /* s00, */ s01, s02, s03, + /* s10, */ s11, s12, s13); + } + } + } +}; + +template +static void ggml_cuda_op_bin_bcast( + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, + const void * src0_dd, const void * src1_dd, void * dst_dd, cudaStream_t stream) { + + GGML_ASSERT(src1->type == GGML_TYPE_F32); + + if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { + op()(src0, src1, dst, (const float *)src0_dd, (const float *)src1_dd, (float *)dst_dd, stream); + } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { + op()(src0, src1, dst, (const half *) src0_dd, (const float *)src1_dd, (half *) dst_dd, stream); + } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) { + op()(src0, src1, dst, (const half *) src0_dd, (const float *)src1_dd, (float *)dst_dd, stream); + } else { + fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__, + ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type)); + GGML_ASSERT(false); + } +} + +void ggml_cuda_op_repeat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + ggml_cuda_op_bin_bcast>(dst, dst->src[0], dst, nullptr, dst->src[0]->data, dst->data, ctx.stream()); +} + +void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + ggml_cuda_op_bin_bcast>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream()); +} + +void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + ggml_cuda_op_bin_bcast>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream()); +} + +void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + ggml_cuda_op_bin_bcast>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream()); +} diff --git a/llama/ggml-cuda/binbcast.cuh b/llama/ggml-cuda/binbcast.cuh index 0e1d3c7c..4f63d637 100644 --- a/llama/ggml-cuda/binbcast.cuh +++ b/llama/ggml-cuda/binbcast.cuh @@ -1,6 +1,6 @@ -#include "common.cuh" - -void ggml_cuda_op_repeat(ggml_backend_cuda_context & ctx, ggml_tensor * dst); -void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst); -void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst); -void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst); +#include "common.cuh" + +void ggml_cuda_op_repeat(ggml_backend_cuda_context & ctx, ggml_tensor * dst); +void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst); +void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst); +void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/llama/ggml-cuda/clamp.cuh b/llama/ggml-cuda/clamp.cuh index 8cbba12c..7f9559dd 100644 --- a/llama/ggml-cuda/clamp.cuh +++ b/llama/ggml-cuda/clamp.cuh @@ -1,5 +1,5 @@ -#include "common.cuh" - -#define CUDA_CLAMP_BLOCK_SIZE 256 - -void ggml_cuda_op_clamp(ggml_backend_cuda_context & ctx, ggml_tensor * dst); +#include "common.cuh" + +#define CUDA_CLAMP_BLOCK_SIZE 256 + +void ggml_cuda_op_clamp(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/llama/ggml-cuda/concat.cu b/llama/ggml-cuda/concat.cu index 31a7f662..2941d2f1 100644 --- a/llama/ggml-cuda/concat.cu +++ b/llama/ggml-cuda/concat.cu @@ -1,49 +1,49 @@ -#include "concat.cuh" - -static __global__ void concat_f32(const float * x,const float * y, float * dst, const int ne0, const int ne02) { - int nidx = threadIdx.x + blockIdx.x * blockDim.x; - if (nidx >= ne0) { - return; - } - // operation - int offset_dst = - nidx + - blockIdx.y * ne0 + - blockIdx.z * ne0 * gridDim.y; - if (blockIdx.z < ne02) { // src0 - int offset_src = - nidx + - blockIdx.y * ne0 + - blockIdx.z * ne0 * gridDim.y; - dst[offset_dst] = x[offset_src]; - } else { - int offset_src = - nidx + - blockIdx.y * ne0 + - (blockIdx.z - ne02) * ne0 * gridDim.y; - dst[offset_dst] = y[offset_src]; - } -} - -static void concat_f32_cuda(const float * x, const float * y, float * dst, const int ne0, int ne1, int ne2, int ne02, cudaStream_t stream) { - int num_blocks = (ne0 + CUDA_CONCAT_BLOCK_SIZE - 1) / CUDA_CONCAT_BLOCK_SIZE; - dim3 gridDim(num_blocks, ne1, ne2); - concat_f32<<>>(x, y, dst, ne0, ne02); -} - -void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const ggml_tensor * src1 = dst->src[1]; - const float * src0_d = (const float *)src0->data; - const float * src1_d = (const float *)src1->data; - float * dst_d = (float *)dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(src0->type == GGML_TYPE_F32); - GGML_ASSERT(src1->type == GGML_TYPE_F32); - GGML_ASSERT(dst->type == GGML_TYPE_F32); - - for (int i3 = 0; i3 < dst->ne[3]; i3++) { - concat_f32_cuda(src0_d + i3 * (src0->nb[3] / 4), src1_d + i3 * (src1->nb[3] / 4), dst_d + i3 * (dst->nb[3] / 4), dst->ne[0], dst->ne[1], dst->ne[2], src0->ne[2], stream); - } -} +#include "concat.cuh" + +static __global__ void concat_f32(const float * x,const float * y, float * dst, const int ne0, const int ne02) { + int nidx = threadIdx.x + blockIdx.x * blockDim.x; + if (nidx >= ne0) { + return; + } + // operation + int offset_dst = + nidx + + blockIdx.y * ne0 + + blockIdx.z * ne0 * gridDim.y; + if (blockIdx.z < ne02) { // src0 + int offset_src = + nidx + + blockIdx.y * ne0 + + blockIdx.z * ne0 * gridDim.y; + dst[offset_dst] = x[offset_src]; + } else { + int offset_src = + nidx + + blockIdx.y * ne0 + + (blockIdx.z - ne02) * ne0 * gridDim.y; + dst[offset_dst] = y[offset_src]; + } +} + +static void concat_f32_cuda(const float * x, const float * y, float * dst, const int ne0, int ne1, int ne2, int ne02, cudaStream_t stream) { + int num_blocks = (ne0 + CUDA_CONCAT_BLOCK_SIZE - 1) / CUDA_CONCAT_BLOCK_SIZE; + dim3 gridDim(num_blocks, ne1, ne2); + concat_f32<<>>(x, y, dst, ne0, ne02); +} + +void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * src0 = dst->src[0]; + const ggml_tensor * src1 = dst->src[1]; + const float * src0_d = (const float *)src0->data; + const float * src1_d = (const float *)src1->data; + float * dst_d = (float *)dst->data; + cudaStream_t stream = ctx.stream(); + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT(dst->type == GGML_TYPE_F32); + + for (int i3 = 0; i3 < dst->ne[3]; i3++) { + concat_f32_cuda(src0_d + i3 * (src0->nb[3] / 4), src1_d + i3 * (src1->nb[3] / 4), dst_d + i3 * (dst->nb[3] / 4), dst->ne[0], dst->ne[1], dst->ne[2], src0->ne[2], stream); + } +} diff --git a/llama/ggml-cuda/concat.cuh b/llama/ggml-cuda/concat.cuh index b88a8d07..aa506a05 100644 --- a/llama/ggml-cuda/concat.cuh +++ b/llama/ggml-cuda/concat.cuh @@ -1,5 +1,5 @@ -#include "common.cuh" - -#define CUDA_CONCAT_BLOCK_SIZE 256 - -void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst); +#include "common.cuh" + +#define CUDA_CONCAT_BLOCK_SIZE 256 + +void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/llama/ggml-cuda/convert.cuh b/llama/ggml-cuda/convert.cuh index f34d783f..5394be9f 100644 --- a/llama/ggml-cuda/convert.cuh +++ b/llama/ggml-cuda/convert.cuh @@ -1,13 +1,13 @@ -#include "common.cuh" - -#define CUDA_DEQUANTIZE_BLOCK_SIZE 256 - -template -using to_t_cuda_t = void (*)(const void * __restrict__ x, T * __restrict__ y, int64_t k, cudaStream_t stream); - -typedef to_t_cuda_t to_fp32_cuda_t; -typedef to_t_cuda_t to_fp16_cuda_t; - -to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type); - -to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type); +#include "common.cuh" + +#define CUDA_DEQUANTIZE_BLOCK_SIZE 256 + +template +using to_t_cuda_t = void (*)(const void * __restrict__ x, T * __restrict__ y, int64_t k, cudaStream_t stream); + +typedef to_t_cuda_t to_fp32_cuda_t; +typedef to_t_cuda_t to_fp16_cuda_t; + +to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type); + +to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type); diff --git a/llama/ggml-cuda/dequantize.cuh b/llama/ggml-cuda/dequantize.cuh index 44eb23f8..bd3c2d9d 100644 --- a/llama/ggml-cuda/dequantize.cuh +++ b/llama/ggml-cuda/dequantize.cuh @@ -1,103 +1,103 @@ -#include "common.cuh" - -static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){ - const block_q4_0 * x = (const block_q4_0 *) vx; - - const dfloat d = x[ib].d; - - const int vui = x[ib].qs[iqs]; - - v.x = vui & 0xF; - v.y = vui >> 4; - -#ifdef GGML_CUDA_F16 - v = __hsub2(v, {8.0f, 8.0f}); - v = __hmul2(v, {d, d}); -#else - v.x = (v.x - 8.0f) * d; - v.y = (v.y - 8.0f) * d; -#endif // GGML_CUDA_F16 -} - -static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){ - const block_q4_1 * x = (const block_q4_1 *) vx; - - const dfloat d = __low2half(x[ib].dm); - const dfloat m = __high2half(x[ib].dm); - - const int vui = x[ib].qs[iqs]; - - v.x = vui & 0xF; - v.y = vui >> 4; - -#ifdef GGML_CUDA_F16 - v = __hmul2(v, {d, d}); - v = __hadd2(v, {m, m}); -#else - v.x = (v.x * d) + m; - v.y = (v.y * d) + m; -#endif // GGML_CUDA_F16 -} - -static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){ - const block_q5_0 * x = (const block_q5_0 *) vx; - - const dfloat d = x[ib].d; - - uint32_t qh; - memcpy(&qh, x[ib].qh, sizeof(qh)); - - const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; - const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10; - - v.x = ((x[ib].qs[iqs] & 0xf) | xh_0); - v.y = ((x[ib].qs[iqs] >> 4) | xh_1); - -#ifdef GGML_CUDA_F16 - v = __hsub2(v, {16.0f, 16.0f}); - v = __hmul2(v, {d, d}); -#else - v.x = (v.x - 16.0f) * d; - v.y = (v.y - 16.0f) * d; -#endif // GGML_CUDA_F16 -} - -static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){ - const block_q5_1 * x = (const block_q5_1 *) vx; - - const dfloat d = __low2half(x[ib].dm); - const dfloat m = __high2half(x[ib].dm); - - uint32_t qh; - memcpy(&qh, x[ib].qh, sizeof(qh)); - - const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; - const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10; - - v.x = ((x[ib].qs[iqs] & 0xf) | xh_0); - v.y = ((x[ib].qs[iqs] >> 4) | xh_1); - -#ifdef GGML_CUDA_F16 - v = __hmul2(v, {d, d}); - v = __hadd2(v, {m, m}); -#else - v.x = (v.x * d) + m; - v.y = (v.y * d) + m; -#endif // GGML_CUDA_F16 -} - -static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){ - const block_q8_0 * x = (const block_q8_0 *) vx; - - const dfloat d = x[ib].d; - - v.x = x[ib].qs[iqs + 0]; - v.y = x[ib].qs[iqs + 1]; - -#ifdef GGML_CUDA_F16 - v = __hmul2(v, {d, d}); -#else - v.x *= d; - v.y *= d; -#endif // GGML_CUDA_F16 -} +#include "common.cuh" + +static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){ + const block_q4_0 * x = (const block_q4_0 *) vx; + + const dfloat d = x[ib].d; + + const int vui = x[ib].qs[iqs]; + + v.x = vui & 0xF; + v.y = vui >> 4; + +#ifdef GGML_CUDA_F16 + v = __hsub2(v, {8.0f, 8.0f}); + v = __hmul2(v, {d, d}); +#else + v.x = (v.x - 8.0f) * d; + v.y = (v.y - 8.0f) * d; +#endif // GGML_CUDA_F16 +} + +static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){ + const block_q4_1 * x = (const block_q4_1 *) vx; + + const dfloat d = __low2half(x[ib].dm); + const dfloat m = __high2half(x[ib].dm); + + const int vui = x[ib].qs[iqs]; + + v.x = vui & 0xF; + v.y = vui >> 4; + +#ifdef GGML_CUDA_F16 + v = __hmul2(v, {d, d}); + v = __hadd2(v, {m, m}); +#else + v.x = (v.x * d) + m; + v.y = (v.y * d) + m; +#endif // GGML_CUDA_F16 +} + +static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){ + const block_q5_0 * x = (const block_q5_0 *) vx; + + const dfloat d = x[ib].d; + + uint32_t qh; + memcpy(&qh, x[ib].qh, sizeof(qh)); + + const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; + const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10; + + v.x = ((x[ib].qs[iqs] & 0xf) | xh_0); + v.y = ((x[ib].qs[iqs] >> 4) | xh_1); + +#ifdef GGML_CUDA_F16 + v = __hsub2(v, {16.0f, 16.0f}); + v = __hmul2(v, {d, d}); +#else + v.x = (v.x - 16.0f) * d; + v.y = (v.y - 16.0f) * d; +#endif // GGML_CUDA_F16 +} + +static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){ + const block_q5_1 * x = (const block_q5_1 *) vx; + + const dfloat d = __low2half(x[ib].dm); + const dfloat m = __high2half(x[ib].dm); + + uint32_t qh; + memcpy(&qh, x[ib].qh, sizeof(qh)); + + const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; + const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10; + + v.x = ((x[ib].qs[iqs] & 0xf) | xh_0); + v.y = ((x[ib].qs[iqs] >> 4) | xh_1); + +#ifdef GGML_CUDA_F16 + v = __hmul2(v, {d, d}); + v = __hadd2(v, {m, m}); +#else + v.x = (v.x * d) + m; + v.y = (v.y * d) + m; +#endif // GGML_CUDA_F16 +} + +static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){ + const block_q8_0 * x = (const block_q8_0 *) vx; + + const dfloat d = x[ib].d; + + v.x = x[ib].qs[iqs + 0]; + v.y = x[ib].qs[iqs + 1]; + +#ifdef GGML_CUDA_F16 + v = __hmul2(v, {d, d}); +#else + v.x *= d; + v.y *= d; +#endif // GGML_CUDA_F16 +} diff --git a/llama/ggml-cuda/diagmask.cu b/llama/ggml-cuda/diagmask.cu index a2ac4a85..4b713ba2 100644 --- a/llama/ggml-cuda/diagmask.cu +++ b/llama/ggml-cuda/diagmask.cu @@ -1,40 +1,40 @@ -#include "diagmask.cuh" - -static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) { - const int col = blockDim.y*blockIdx.y + threadIdx.y; - const int row = blockDim.x*blockIdx.x + threadIdx.x; - - if (col >= ncols) { - return; - } - - const int i = row*ncols + col; - //dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i]; - //dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU - dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX; -} - -static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) { - const dim3 block_dims(1, CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1); - const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE; - const dim3 block_nums(nrows_x, block_num_x, 1); - diag_mask_inf_f32<<>>(x, dst, ncols_x, rows_per_channel, n_past); -} - -void ggml_cuda_op_diag_mask_inf(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const float * src0_d = (const float *)src0->data; - float * dst_d = (float *)dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(src0->type == GGML_TYPE_F32); - GGML_ASSERT( dst->type == GGML_TYPE_F32); - - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int nrows0 = ggml_nrows(src0); - - const int n_past = ((int32_t *) dst->op_params)[0]; - - diag_mask_inf_f32_cuda(src0_d, dst_d, ne00, nrows0, ne01, n_past, stream); -} +#include "diagmask.cuh" + +static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) { + const int col = blockDim.y*blockIdx.y + threadIdx.y; + const int row = blockDim.x*blockIdx.x + threadIdx.x; + + if (col >= ncols) { + return; + } + + const int i = row*ncols + col; + //dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i]; + //dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU + dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX; +} + +static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) { + const dim3 block_dims(1, CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1); + const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE; + const dim3 block_nums(nrows_x, block_num_x, 1); + diag_mask_inf_f32<<>>(x, dst, ncols_x, rows_per_channel, n_past); +} + +void ggml_cuda_op_diag_mask_inf(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * src0 = dst->src[0]; + const float * src0_d = (const float *)src0->data; + float * dst_d = (float *)dst->data; + cudaStream_t stream = ctx.stream(); + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int nrows0 = ggml_nrows(src0); + + const int n_past = ((int32_t *) dst->op_params)[0]; + + diag_mask_inf_f32_cuda(src0_d, dst_d, ne00, nrows0, ne01, n_past, stream); +} diff --git a/llama/ggml-cuda/diagmask.cuh b/llama/ggml-cuda/diagmask.cuh index b7da8f89..6cdbef17 100644 --- a/llama/ggml-cuda/diagmask.cuh +++ b/llama/ggml-cuda/diagmask.cuh @@ -1,5 +1,5 @@ -#include "common.cuh" - -#define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32 - -void ggml_cuda_op_diag_mask_inf(ggml_backend_cuda_context & ctx, ggml_tensor * dst); +#include "common.cuh" + +#define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32 + +void ggml_cuda_op_diag_mask_inf(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/llama/ggml-cuda/dmmv.cu b/llama/ggml-cuda/dmmv.cu index a942dd3c..7313e3e1 100644 --- a/llama/ggml-cuda/dmmv.cu +++ b/llama/ggml-cuda/dmmv.cu @@ -1,813 +1,813 @@ -#include "dmmv.cuh" -#include "dequantize.cuh" -#include "convert.cuh" - -#ifndef K_QUANTS_PER_ITERATION -#define K_QUANTS_PER_ITERATION 2 -#else -static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2"); -#endif - -static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) { - - static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION"); - - const int row = blockIdx.x*blockDim.y + threadIdx.y; - if (row > nrows) return; - - const int num_blocks_per_row = ncols / QK_K; - const int ib0 = row*num_blocks_per_row; - - const block_q2_K * x = (const block_q2_K *)vx + ib0; - - float tmp = 0; // partial sum for thread in warp - -#if QK_K == 256 - const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15 - const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1 - - const int step = 16/K_QUANTS_PER_ITERATION; - - const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128... - const int in = tid - step*im; // 0...15 or 0...7 - - const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2 - const int q_offset = 32*im + l0; - const int s_offset = 8*im; - const int y_offset = 128*im + l0; - - uint32_t aux[4]; - const uint8_t * d = (const uint8_t *)aux; - const uint8_t * m = (const uint8_t *)(aux + 2); - - for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { - - const float * y = yy + i * QK_K + y_offset; - const uint8_t * q = x[i].qs + q_offset; - - const float dall = __low2half(x[i].dm); - const float dmin = __high2half(x[i].dm); - - const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset); - aux[0] = a[0] & 0x0f0f0f0f; - aux[1] = a[1] & 0x0f0f0f0f; - aux[2] = (a[0] >> 4) & 0x0f0f0f0f; - aux[3] = (a[1] >> 4) & 0x0f0f0f0f; - - float sum1 = 0, sum2 = 0; - for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) { - sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3) - + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3) - + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3) - + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3) - + y[l+16] * d[1] * ((q[l+16] >> 0) & 3) - + y[l+48] * d[3] * ((q[l+16] >> 2) & 3) - + y[l+80] * d[5] * ((q[l+16] >> 4) & 3) - +y[l+112] * d[7] * ((q[l+16] >> 6) & 3); - sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6] - + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7]; - - } - tmp += dall * sum1 - dmin * sum2; - - } -#else - const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7 - const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3 - const int offset = tid * K_QUANTS_PER_ITERATION; - - uint32_t uaux[2]; - const uint8_t * d = (const uint8_t *)uaux; - - for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) { - - const float * y = yy + i * QK_K + offset; - const uint8_t * q = x[i].qs + offset; - const uint32_t * s = (const uint32_t *)x[i].scales; - - uaux[0] = s[0] & 0x0f0f0f0f; - uaux[1] = (s[0] >> 4) & 0x0f0f0f0f; - - const float2 dall = __half22float2(x[i].dm); - - float sum1 = 0, sum2 = 0; - for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) { - const uint8_t ql = q[l]; - sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3) - + y[l+16] * d[1] * ((ql >> 2) & 3) - + y[l+32] * d[2] * ((ql >> 4) & 3) - + y[l+48] * d[3] * ((ql >> 6) & 3); - sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7]; - } - tmp += dall.x * sum1 - dall.y * sum2; - } -#endif - - // sum up partial sums and write back result - tmp = warp_reduce_sum(tmp); - - if (threadIdx.x == 0) { - dst[row] = tmp; - } -} - -static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) { - - const int row = blockIdx.x*blockDim.y + threadIdx.y; - if (row > nrows) return; - - const int num_blocks_per_row = ncols / QK_K; - const int ib0 = row*num_blocks_per_row; - - const block_q3_K * x = (const block_q3_K *)vx + ib0; - - float tmp = 0; // partial sum for thread in warp - -#if QK_K == 256 - - const uint16_t kmask1 = 0x0303; - const uint16_t kmask2 = 0x0f0f; - - const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16 - const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1 - - const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop - const int step = 16/K_QUANTS_PER_ITERATION; - const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128... - const int in = tid - step*im; // 0....15 or 0...7 - - const uint8_t m = 1 << (4*im); - - const int l0 = n*in; // 0...15 or 0...14 in steps of 2 - const int q_offset = 32*im + l0; - const int y_offset = 128*im + l0; - - uint16_t utmp[4]; - const int8_t * s = (const int8_t *)utmp; - - const uint16_t s_shift = 4*im; - - for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { - - const float * y = yy + i * QK_K + y_offset; - const uint8_t * q = x[i].qs + q_offset; - const uint8_t * h = x[i].hmask + l0; - - const uint16_t * a = (const uint16_t *)x[i].scales; - utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4); - utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4); - utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4); - utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4); - - const float d = x[i].d; - - float sum = 0; - for (int l = 0; l < n; ++l) { - sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4)) - + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4)) - + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4)) - + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4)); - sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4)) - + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4)) - + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4)) - + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4)); - } - tmp += d * sum; - - } -#else - - const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7 - const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3 - const int offset = tid * K_QUANTS_PER_ITERATION; // 0...15 or 0...14 - const int in = offset/8; // 0 or 1 - const int im = offset%8; // 0...7 - - for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) { - - const float * y = yy + i * QK_K + offset; - const uint8_t * q = x[i].qs + offset; - const uint8_t * s = x[i].scales; - - const float dall = (float)x[i].d; - - float sum = 0; - for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) { - const uint8_t hl = x[i].hmask[im+l] >> in; - const uint8_t ql = q[l]; - sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4)) - + y[l+16] * dall * ((s[0] >> 4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4)) - + y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4)) - + y[l+48] * dall * ((s[1] >> 4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4)); - } - tmp += sum; - } -#endif - - // sum up partial sums and write back result - tmp = warp_reduce_sum(tmp); - - if (threadIdx.x == 0) { - dst[row] = tmp; - } -} - -static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) { - - const int row = blockIdx.x*blockDim.y + threadIdx.y; - if (row > nrows) return; - const int num_blocks_per_row = ncols / QK_K; - const int ib0 = row*num_blocks_per_row; - - const block_q4_K * x = (const block_q4_K *)vx + ib0; - -#if QK_K == 256 - const uint16_t kmask1 = 0x3f3f; - const uint16_t kmask2 = 0x0f0f; - const uint16_t kmask3 = 0xc0c0; - - const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16 - const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1 - - const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4 - - const int il = tid/step; // 0...3 - const int ir = tid - step*il; // 0...7 or 0...3 - const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4 - - const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224 - const int in = il%2; - - const int l0 = n*(2*ir + in); - const int q_offset = 32*im + l0; - const int y_offset = 64*im + l0; - - uint16_t aux[4]; - const uint8_t * sc = (const uint8_t *)aux; - -#if K_QUANTS_PER_ITERATION == 2 - uint32_t q32[4]; - const uint8_t * q4 = (const uint8_t *)q32; -#else - uint16_t q16[4]; - const uint8_t * q4 = (const uint8_t *)q16; -#endif - - float tmp = 0; // partial sum for thread in warp - - for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { - - const float * y1 = yy + i*QK_K + y_offset; - const float * y2 = y1 + 128; - - const float dall = __low2half(x[i].dm); - const float dmin = __high2half(x[i].dm); - - const uint16_t * a = (const uint16_t *)x[i].scales; - aux[0] = a[im+0] & kmask1; - aux[1] = a[im+2] & kmask1; - aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2); - aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2); - -#if K_QUANTS_PER_ITERATION == 2 - const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset); - const uint32_t * q2 = q1 + 16; - - q32[0] = q1[0] & 0x0f0f0f0f; - q32[1] = q1[0] & 0xf0f0f0f0; - q32[2] = q2[0] & 0x0f0f0f0f; - q32[3] = q2[0] & 0xf0f0f0f0; - - float4 s = {0.f, 0.f, 0.f, 0.f}; - float smin = 0; - for (int l = 0; l < 4; ++l) { - s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+ 4]; - s.z += y2[l] * q4[l+8]; s.w += y2[l+32] * q4[l+12]; - smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7]; - } - tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin; -#else - const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset); - const uint16_t * q2 = q1 + 32; - - q16[0] = q1[0] & 0x0f0f; - q16[1] = q1[0] & 0xf0f0; - q16[2] = q2[0] & 0x0f0f; - q16[3] = q2[0] & 0xf0f0; - - float4 s = {0.f, 0.f, 0.f, 0.f}; - float smin = 0; - for (int l = 0; l < 2; ++l) { - s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2]; - s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6]; - smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7]; - } - tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin; -#endif - - } -#else - const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 - const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); - - const int step = tid * K_QUANTS_PER_ITERATION; - - uint16_t aux16[2]; - const uint8_t * s = (const uint8_t *)aux16; - - float tmp = 0; - - for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) { - const uint8_t * q = x[i].qs + step; - const float * y = yy + i*QK_K + step; - const uint16_t * a = (const uint16_t *)x[i].scales; - aux16[0] = a[0] & 0x0f0f; - aux16[1] = (a[0] >> 4) & 0x0f0f; - const float d = (float)x[i].dm[0]; - const float m = (float)x[i].dm[1]; - float sum = 0.f; - for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) { - sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2]) - + y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2]) - + y[j+32] * (d * s[1] * (q[j+ 0] >> 4) - m * s[3]) - + y[j+48] * (d * s[1] * (q[j+16] >> 4) - m * s[3]); - } - tmp += sum; - } - -#endif - - // sum up partial sums and write back result - tmp = warp_reduce_sum(tmp); - - if (tid == 0) { - dst[row] = tmp; - } -} - -static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols) { - - const int row = blockIdx.x; - const int num_blocks_per_row = ncols / QK_K; - const int ib0 = row*num_blocks_per_row; - - const block_q5_K * x = (const block_q5_K *)vx + ib0; - - float tmp = 0; // partial sum for thread in warp - -#if QK_K == 256 - const uint16_t kmask1 = 0x3f3f; - const uint16_t kmask2 = 0x0f0f; - const uint16_t kmask3 = 0xc0c0; - - const int tid = threadIdx.x/2; // 0...15 - const int ix = threadIdx.x%2; - - const int il = tid/4; // 0...3 - const int ir = tid - 4*il;// 0...3 - const int n = 2; - - const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224 - const int in = il%2; - - const int l0 = n*(2*ir + in); - const int q_offset = 32*im + l0; - const int y_offset = 64*im + l0; - - const uint8_t hm1 = 1 << (2*im); - const uint8_t hm2 = hm1 << 4; - - uint16_t aux[4]; - const uint8_t * sc = (const uint8_t *)aux; - - uint16_t q16[8]; - const uint8_t * q4 = (const uint8_t *)q16; - - for (int i = ix; i < num_blocks_per_row; i += 2) { - - const uint8_t * ql1 = x[i].qs + q_offset; - const uint8_t * qh = x[i].qh + l0; - const float * y1 = yy + i*QK_K + y_offset; - const float * y2 = y1 + 128; - - const float dall = __low2half(x[i].dm); - const float dmin = __high2half(x[i].dm); - - const uint16_t * a = (const uint16_t *)x[i].scales; - aux[0] = a[im+0] & kmask1; - aux[1] = a[im+2] & kmask1; - aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2); - aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2); - - float4 sum = {0.f, 0.f, 0.f, 0.f}; - float smin = 0; - const uint16_t * q1 = (const uint16_t *)ql1; - const uint16_t * q2 = q1 + 32; - q16[0] = q1[0] & 0x0f0f; - q16[1] = q1[8] & 0x0f0f; - q16[2] = (q1[0] >> 4) & 0x0f0f; - q16[3] = (q1[8] >> 4) & 0x0f0f; - q16[4] = q2[0] & 0x0f0f; - q16[5] = q2[8] & 0x0f0f; - q16[6] = (q2[0] >> 4) & 0x0f0f; - q16[7] = (q2[8] >> 4) & 0x0f0f; - for (int l = 0; l < n; ++l) { - sum.x += y1[l+ 0] * (q4[l +0] + (qh[l+ 0] & (hm1 << 0) ? 16 : 0)) - + y1[l+16] * (q4[l +2] + (qh[l+16] & (hm1 << 0) ? 16 : 0)); - sum.y += y1[l+32] * (q4[l +4] + (qh[l+ 0] & (hm1 << 1) ? 16 : 0)) - + y1[l+48] * (q4[l +6] + (qh[l+16] & (hm1 << 1) ? 16 : 0)); - sum.z += y2[l+ 0] * (q4[l +8] + (qh[l+ 0] & (hm2 << 0) ? 16 : 0)) - + y2[l+16] * (q4[l+10] + (qh[l+16] & (hm2 << 0) ? 16 : 0)); - sum.w += y2[l+32] * (q4[l+12] + (qh[l+ 0] & (hm2 << 1) ? 16 : 0)) - + y2[l+48] * (q4[l+14] + (qh[l+16] & (hm2 << 1) ? 16 : 0)); - smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3] - + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7]; - } - tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin; - } - -#else - const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 - const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); - const int step = tid * K_QUANTS_PER_ITERATION; - const int im = step/8; - const int in = step%8; - - for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) { - const uint8_t * q = x[i].qs + step; - const int8_t * s = x[i].scales; - const float * y = yy + i*QK_K + step; - const float d = x[i].d; - float sum = 0.f; - for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) { - const uint8_t h = x[i].qh[in+j] >> im; - sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16)) - + y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16)) - + y[j+32] * d * s[2] * ((q[j+ 0] >> 4) - ((h >> 4) & 1 ? 0 : 16)) - + y[j+48] * d * s[3] * ((q[j+16] >> 4) - ((h >> 6) & 1 ? 0 : 16)); - } - tmp += sum; - } -#endif - - // sum up partial sums and write back result - tmp = warp_reduce_sum(tmp); - - if (threadIdx.x == 0) { - dst[row] = tmp; - } -} - -static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) { - - static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION"); - - const int row = blockIdx.x*blockDim.y + threadIdx.y; - if (row > nrows) return; - - const int num_blocks_per_row = ncols / QK_K; - const int ib0 = row*num_blocks_per_row; - - const block_q6_K * x = (const block_q6_K *)vx + ib0; - -#if QK_K == 256 - - const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16 - const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1 - - const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8 - - const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128... - const int in = tid - step*im; // 0...15 or 0...7 - -#if K_QUANTS_PER_ITERATION == 1 - const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 - const int is = 0; -#else - const int l0 = 4 * in; // 0, 4, 8, ..., 28 - const int is = in / 4; -#endif - const int ql_offset = 64*im + l0; - const int qh_offset = 32*im + l0; - const int s_offset = 8*im + is; - const int y_offset = 128*im + l0; - - float tmp = 0; // partial sum for thread in warp - - for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { - - const float * y = yy + i * QK_K + y_offset; - const uint8_t * ql = x[i].ql + ql_offset; - const uint8_t * qh = x[i].qh + qh_offset; - const int8_t * s = x[i].scales + s_offset; - - const float d = x[i].d; - -#if K_QUANTS_PER_ITERATION == 1 - float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32) - + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32) - + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32) - + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32) - + y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32) - + y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32) - + y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32) - +y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32); - tmp += sum; -#else - float sum = 0; - for (int l = 0; l < 4; ++l) { - sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32) - + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32) - + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32) - + y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32); - } - tmp += sum; -#endif - - } - -#else - - const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...7 - const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0...3 - - const int step = tid * K_QUANTS_PER_ITERATION; - - float tmp = 0; // partial sum for thread in warp - - for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) { - - const float * y = yy + i * QK_K + step; - const uint8_t * ql = x[i].ql + step; - const uint8_t * qh = x[i].qh + step; - const int8_t * s = x[i].scales; - - const float d = x[i+0].d; - - float sum = 0; - for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) { - sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32) - + y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32) - + y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >> 4) | ((qh[j] & 0x30) >> 0)) - 32) - + y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >> 4) | ((qh[j] & 0xc0) >> 2)) - 32); - } - tmp += sum; - - } - -#endif - - // sum up partial sums and write back result - tmp = warp_reduce_sum(tmp); - - if (tid == 0) { - dst[row] = tmp; - } -} - -static __device__ void convert_f16(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){ - const half * x = (const half *) vx; - - // automatic half -> float type cast if dfloat == float - v.x = x[ib + iqs + 0]; - v.y = x[ib + iqs + 1]; -} - -template -static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) { - // qk = quantized weights per x block - // qr = number of quantized weights per data value in x block - const int64_t row = (int64_t)blockIdx.x*blockDim.y + threadIdx.y; - - if (row >= nrows) { - return; - } - - const int tid = threadIdx.x; - - const int iter_stride = 2*GGML_CUDA_DMMV_X; - const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter - const int y_offset = qr == 1 ? 1 : qk/2; - -// partial sum for each thread -#ifdef GGML_CUDA_F16 - half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics -#else - float tmp = 0.0f; -#endif // GGML_CUDA_F16 - - for (int i = 0; i < ncols; i += iter_stride) { - const int col = i + vals_per_iter*tid; - const int64_t ib = ((int64_t)row*ncols + col)/qk; // x block index - const int iqs = (col%qk)/qr; // x quant index - const int iybs = col - col%qk; // y block start index - -// processing >2 values per i iter is faster for fast GPUs -#pragma unroll - for (int j = 0; j < vals_per_iter; j += 2) { - // process 2 vals per j iter - - // dequantize - // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val - dfloat2 v; - dequantize_kernel(vx, ib, iqs + j/qr, v); - - // matrix multiplication - // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2 -#ifdef GGML_CUDA_F16 - tmp += __hmul2(v, { - y[iybs + iqs + j/qr + 0], - y[iybs + iqs + j/qr + y_offset] - }); -#else - tmp += v.x * y[iybs + iqs + j/qr + 0]; - tmp += v.y * y[iybs + iqs + j/qr + y_offset]; -#endif // GGML_CUDA_F16 - } - } - - // sum up partial sums and write back result - tmp = warp_reduce_sum(tmp); - - if (tid == 0) { -#ifdef GGML_CUDA_F16 - dst[row] = tmp.x + tmp.y; -#else - dst[row] = tmp; -#endif // GGML_CUDA_F16 - } -} - -static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { - GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); - const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; - // the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead - const dim3 block_nums(block_num_y, 1, 1); - const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); - dequantize_mul_mat_vec - <<>>(vx, y, dst, ncols, nrows); -} - -static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { - GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); - const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; - const dim3 block_nums(block_num_y, 1, 1); - const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); - dequantize_mul_mat_vec - <<>>(vx, y, dst, ncols, nrows); -} - -static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { - GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); - const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; - const dim3 block_nums(block_num_y, 1, 1); - const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); - dequantize_mul_mat_vec - <<>>(vx, y, dst, ncols, nrows); -} - -static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { - GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); - const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; - const dim3 block_nums(block_num_y, 1, 1); - const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); - dequantize_mul_mat_vec - <<>>(vx, y, dst, ncols, nrows); -} - -static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { - GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); - const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; - const dim3 block_nums(block_num_y, 1, 1); - const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); - dequantize_mul_mat_vec - <<>>(vx, y, dst, ncols, nrows); -} - -static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { - GGML_ASSERT(ncols % QK_K == 0); - const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2 - const int block_num_y = (nrows + ny - 1) / ny; - const dim3 block_nums(block_num_y, 1, 1); - const dim3 block_dims(32, ny, 1); - dequantize_mul_mat_vec_q2_k<<>>(vx, y, dst, ncols, nrows); -} - -static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { - GGML_ASSERT(ncols % QK_K == 0); - const int ny = 2 / K_QUANTS_PER_ITERATION; - const int block_num_y = (nrows + ny - 1) / ny; - const dim3 block_nums(block_num_y, 1, 1); - const dim3 block_dims(32, ny, 1); - dequantize_mul_mat_vec_q3_k<<>>(vx, y, dst, ncols, nrows); -} - -static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { - GGML_ASSERT(ncols % QK_K == 0); - const int ny = 2 / K_QUANTS_PER_ITERATION; - const int block_num_y = (nrows + ny - 1) / ny; - const dim3 block_nums(block_num_y, 1, 1); - const dim3 block_dims(32, ny, 1); - dequantize_mul_mat_vec_q4_k<<>>(vx, y, dst, ncols, nrows); -} - -static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { - GGML_ASSERT(ncols % QK_K == 0); - const dim3 block_dims(32, 1, 1); - dequantize_mul_mat_vec_q5_k<<>>(vx, y, dst, ncols); -} - -static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { - GGML_ASSERT(ncols % QK_K == 0); - const int ny = 2 / K_QUANTS_PER_ITERATION; - const int block_num_y = (nrows + ny - 1) / ny; - const dim3 block_nums(block_num_y, 1, 1); - const dim3 block_dims(32, ny, 1); - dequantize_mul_mat_vec_q6_k<<>>(vx, y, dst, ncols, nrows); -} - -static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { - GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); - const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; - const dim3 block_nums(block_num_y, 1, 1); - const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); - dequantize_mul_mat_vec<1, 1, convert_f16> - <<>>(vx, y, dst, ncols, nrows); -} - -void ggml_cuda_op_dequantize_mul_mat_vec( - ggml_backend_cuda_context & ctx, - const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, - const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, - const int64_t src1_padded_row_size, cudaStream_t stream) { - GGML_UNUSED(ctx); - const int64_t ne00 = src0->ne[0]; - const int64_t row_diff = row_high - row_low; - - GGML_ASSERT(src1->type == GGML_TYPE_F32); - - // on some GPUs it is faster to convert src1 to half and to use half precision intrinsics -#ifdef GGML_CUDA_F16 - ggml_cuda_pool_alloc src1_dfloat_a(ctx.pool()); - half * src1_dfloat = nullptr; // dfloat == half - - bool src1_convert_f16 = - src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 || - src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 || - src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16; - - if (src1_convert_f16) { - src1_dfloat = src1_dfloat_a.alloc(ne00); - const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type); - GGML_ASSERT(to_fp16_cuda != nullptr); - to_fp16_cuda(src1_ddf_i, src1_dfloat, ne00, stream); - } -#else - const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion -#endif // GGML_CUDA_F16 - - switch (src0->type) { - case GGML_TYPE_Q4_0: - dequantize_mul_mat_vec_q4_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream); - break; - case GGML_TYPE_Q4_1: - dequantize_mul_mat_vec_q4_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream); - break; - case GGML_TYPE_Q5_0: - dequantize_mul_mat_vec_q5_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream); - break; - case GGML_TYPE_Q5_1: - dequantize_mul_mat_vec_q5_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream); - break; - case GGML_TYPE_Q8_0: - dequantize_mul_mat_vec_q8_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream); - break; - case GGML_TYPE_Q2_K: - dequantize_mul_mat_vec_q2_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream); - break; - case GGML_TYPE_Q3_K: - dequantize_mul_mat_vec_q3_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream); - break; - case GGML_TYPE_Q4_K: - dequantize_mul_mat_vec_q4_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream); - break; - case GGML_TYPE_Q5_K: - dequantize_mul_mat_vec_q5_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream); - break; - case GGML_TYPE_Q6_K: - dequantize_mul_mat_vec_q6_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream); - break; - case GGML_TYPE_F16: - convert_mul_mat_vec_f16_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream); - break; - default: - GGML_ASSERT(false); - break; - } - - GGML_UNUSED(src1); - GGML_UNUSED(dst); - GGML_UNUSED(src1_ddq_i); - GGML_UNUSED(src1_ncols); - GGML_UNUSED(src1_padded_row_size); -} +#include "dmmv.cuh" +#include "dequantize.cuh" +#include "convert.cuh" + +#ifndef K_QUANTS_PER_ITERATION +#define K_QUANTS_PER_ITERATION 2 +#else +static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2"); +#endif + +static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) { + + static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION"); + + const int row = blockIdx.x*blockDim.y + threadIdx.y; + if (row > nrows) return; + + const int num_blocks_per_row = ncols / QK_K; + const int ib0 = row*num_blocks_per_row; + + const block_q2_K * x = (const block_q2_K *)vx + ib0; + + float tmp = 0; // partial sum for thread in warp + +#if QK_K == 256 + const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15 + const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1 + + const int step = 16/K_QUANTS_PER_ITERATION; + + const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128... + const int in = tid - step*im; // 0...15 or 0...7 + + const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2 + const int q_offset = 32*im + l0; + const int s_offset = 8*im; + const int y_offset = 128*im + l0; + + uint32_t aux[4]; + const uint8_t * d = (const uint8_t *)aux; + const uint8_t * m = (const uint8_t *)(aux + 2); + + for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { + + const float * y = yy + i * QK_K + y_offset; + const uint8_t * q = x[i].qs + q_offset; + + const float dall = __low2half(x[i].dm); + const float dmin = __high2half(x[i].dm); + + const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset); + aux[0] = a[0] & 0x0f0f0f0f; + aux[1] = a[1] & 0x0f0f0f0f; + aux[2] = (a[0] >> 4) & 0x0f0f0f0f; + aux[3] = (a[1] >> 4) & 0x0f0f0f0f; + + float sum1 = 0, sum2 = 0; + for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) { + sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3) + + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3) + + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3) + + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3) + + y[l+16] * d[1] * ((q[l+16] >> 0) & 3) + + y[l+48] * d[3] * ((q[l+16] >> 2) & 3) + + y[l+80] * d[5] * ((q[l+16] >> 4) & 3) + +y[l+112] * d[7] * ((q[l+16] >> 6) & 3); + sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6] + + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7]; + + } + tmp += dall * sum1 - dmin * sum2; + + } +#else + const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7 + const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3 + const int offset = tid * K_QUANTS_PER_ITERATION; + + uint32_t uaux[2]; + const uint8_t * d = (const uint8_t *)uaux; + + for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) { + + const float * y = yy + i * QK_K + offset; + const uint8_t * q = x[i].qs + offset; + const uint32_t * s = (const uint32_t *)x[i].scales; + + uaux[0] = s[0] & 0x0f0f0f0f; + uaux[1] = (s[0] >> 4) & 0x0f0f0f0f; + + const float2 dall = __half22float2(x[i].dm); + + float sum1 = 0, sum2 = 0; + for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) { + const uint8_t ql = q[l]; + sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3) + + y[l+16] * d[1] * ((ql >> 2) & 3) + + y[l+32] * d[2] * ((ql >> 4) & 3) + + y[l+48] * d[3] * ((ql >> 6) & 3); + sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7]; + } + tmp += dall.x * sum1 - dall.y * sum2; + } +#endif + + // sum up partial sums and write back result + tmp = warp_reduce_sum(tmp); + + if (threadIdx.x == 0) { + dst[row] = tmp; + } +} + +static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) { + + const int row = blockIdx.x*blockDim.y + threadIdx.y; + if (row > nrows) return; + + const int num_blocks_per_row = ncols / QK_K; + const int ib0 = row*num_blocks_per_row; + + const block_q3_K * x = (const block_q3_K *)vx + ib0; + + float tmp = 0; // partial sum for thread in warp + +#if QK_K == 256 + + const uint16_t kmask1 = 0x0303; + const uint16_t kmask2 = 0x0f0f; + + const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16 + const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1 + + const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop + const int step = 16/K_QUANTS_PER_ITERATION; + const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128... + const int in = tid - step*im; // 0....15 or 0...7 + + const uint8_t m = 1 << (4*im); + + const int l0 = n*in; // 0...15 or 0...14 in steps of 2 + const int q_offset = 32*im + l0; + const int y_offset = 128*im + l0; + + uint16_t utmp[4]; + const int8_t * s = (const int8_t *)utmp; + + const uint16_t s_shift = 4*im; + + for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { + + const float * y = yy + i * QK_K + y_offset; + const uint8_t * q = x[i].qs + q_offset; + const uint8_t * h = x[i].hmask + l0; + + const uint16_t * a = (const uint16_t *)x[i].scales; + utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4); + utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4); + utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4); + utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4); + + const float d = x[i].d; + + float sum = 0; + for (int l = 0; l < n; ++l) { + sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4)) + + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4)) + + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4)) + + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4)); + sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4)) + + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4)) + + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4)) + + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4)); + } + tmp += d * sum; + + } +#else + + const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7 + const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3 + const int offset = tid * K_QUANTS_PER_ITERATION; // 0...15 or 0...14 + const int in = offset/8; // 0 or 1 + const int im = offset%8; // 0...7 + + for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) { + + const float * y = yy + i * QK_K + offset; + const uint8_t * q = x[i].qs + offset; + const uint8_t * s = x[i].scales; + + const float dall = (float)x[i].d; + + float sum = 0; + for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) { + const uint8_t hl = x[i].hmask[im+l] >> in; + const uint8_t ql = q[l]; + sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4)) + + y[l+16] * dall * ((s[0] >> 4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4)) + + y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4)) + + y[l+48] * dall * ((s[1] >> 4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4)); + } + tmp += sum; + } +#endif + + // sum up partial sums and write back result + tmp = warp_reduce_sum(tmp); + + if (threadIdx.x == 0) { + dst[row] = tmp; + } +} + +static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) { + + const int row = blockIdx.x*blockDim.y + threadIdx.y; + if (row > nrows) return; + const int num_blocks_per_row = ncols / QK_K; + const int ib0 = row*num_blocks_per_row; + + const block_q4_K * x = (const block_q4_K *)vx + ib0; + +#if QK_K == 256 + const uint16_t kmask1 = 0x3f3f; + const uint16_t kmask2 = 0x0f0f; + const uint16_t kmask3 = 0xc0c0; + + const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16 + const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1 + + const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4 + + const int il = tid/step; // 0...3 + const int ir = tid - step*il; // 0...7 or 0...3 + const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4 + + const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224 + const int in = il%2; + + const int l0 = n*(2*ir + in); + const int q_offset = 32*im + l0; + const int y_offset = 64*im + l0; + + uint16_t aux[4]; + const uint8_t * sc = (const uint8_t *)aux; + +#if K_QUANTS_PER_ITERATION == 2 + uint32_t q32[4]; + const uint8_t * q4 = (const uint8_t *)q32; +#else + uint16_t q16[4]; + const uint8_t * q4 = (const uint8_t *)q16; +#endif + + float tmp = 0; // partial sum for thread in warp + + for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { + + const float * y1 = yy + i*QK_K + y_offset; + const float * y2 = y1 + 128; + + const float dall = __low2half(x[i].dm); + const float dmin = __high2half(x[i].dm); + + const uint16_t * a = (const uint16_t *)x[i].scales; + aux[0] = a[im+0] & kmask1; + aux[1] = a[im+2] & kmask1; + aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2); + aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2); + +#if K_QUANTS_PER_ITERATION == 2 + const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset); + const uint32_t * q2 = q1 + 16; + + q32[0] = q1[0] & 0x0f0f0f0f; + q32[1] = q1[0] & 0xf0f0f0f0; + q32[2] = q2[0] & 0x0f0f0f0f; + q32[3] = q2[0] & 0xf0f0f0f0; + + float4 s = {0.f, 0.f, 0.f, 0.f}; + float smin = 0; + for (int l = 0; l < 4; ++l) { + s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+ 4]; + s.z += y2[l] * q4[l+8]; s.w += y2[l+32] * q4[l+12]; + smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7]; + } + tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin; +#else + const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset); + const uint16_t * q2 = q1 + 32; + + q16[0] = q1[0] & 0x0f0f; + q16[1] = q1[0] & 0xf0f0; + q16[2] = q2[0] & 0x0f0f; + q16[3] = q2[0] & 0xf0f0; + + float4 s = {0.f, 0.f, 0.f, 0.f}; + float smin = 0; + for (int l = 0; l < 2; ++l) { + s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2]; + s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6]; + smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7]; + } + tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin; +#endif + + } +#else + const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 + const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); + + const int step = tid * K_QUANTS_PER_ITERATION; + + uint16_t aux16[2]; + const uint8_t * s = (const uint8_t *)aux16; + + float tmp = 0; + + for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) { + const uint8_t * q = x[i].qs + step; + const float * y = yy + i*QK_K + step; + const uint16_t * a = (const uint16_t *)x[i].scales; + aux16[0] = a[0] & 0x0f0f; + aux16[1] = (a[0] >> 4) & 0x0f0f; + const float d = (float)x[i].dm[0]; + const float m = (float)x[i].dm[1]; + float sum = 0.f; + for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) { + sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2]) + + y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2]) + + y[j+32] * (d * s[1] * (q[j+ 0] >> 4) - m * s[3]) + + y[j+48] * (d * s[1] * (q[j+16] >> 4) - m * s[3]); + } + tmp += sum; + } + +#endif + + // sum up partial sums and write back result + tmp = warp_reduce_sum(tmp); + + if (tid == 0) { + dst[row] = tmp; + } +} + +static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols) { + + const int row = blockIdx.x; + const int num_blocks_per_row = ncols / QK_K; + const int ib0 = row*num_blocks_per_row; + + const block_q5_K * x = (const block_q5_K *)vx + ib0; + + float tmp = 0; // partial sum for thread in warp + +#if QK_K == 256 + const uint16_t kmask1 = 0x3f3f; + const uint16_t kmask2 = 0x0f0f; + const uint16_t kmask3 = 0xc0c0; + + const int tid = threadIdx.x/2; // 0...15 + const int ix = threadIdx.x%2; + + const int il = tid/4; // 0...3 + const int ir = tid - 4*il;// 0...3 + const int n = 2; + + const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224 + const int in = il%2; + + const int l0 = n*(2*ir + in); + const int q_offset = 32*im + l0; + const int y_offset = 64*im + l0; + + const uint8_t hm1 = 1 << (2*im); + const uint8_t hm2 = hm1 << 4; + + uint16_t aux[4]; + const uint8_t * sc = (const uint8_t *)aux; + + uint16_t q16[8]; + const uint8_t * q4 = (const uint8_t *)q16; + + for (int i = ix; i < num_blocks_per_row; i += 2) { + + const uint8_t * ql1 = x[i].qs + q_offset; + const uint8_t * qh = x[i].qh + l0; + const float * y1 = yy + i*QK_K + y_offset; + const float * y2 = y1 + 128; + + const float dall = __low2half(x[i].dm); + const float dmin = __high2half(x[i].dm); + + const uint16_t * a = (const uint16_t *)x[i].scales; + aux[0] = a[im+0] & kmask1; + aux[1] = a[im+2] & kmask1; + aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2); + aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2); + + float4 sum = {0.f, 0.f, 0.f, 0.f}; + float smin = 0; + const uint16_t * q1 = (const uint16_t *)ql1; + const uint16_t * q2 = q1 + 32; + q16[0] = q1[0] & 0x0f0f; + q16[1] = q1[8] & 0x0f0f; + q16[2] = (q1[0] >> 4) & 0x0f0f; + q16[3] = (q1[8] >> 4) & 0x0f0f; + q16[4] = q2[0] & 0x0f0f; + q16[5] = q2[8] & 0x0f0f; + q16[6] = (q2[0] >> 4) & 0x0f0f; + q16[7] = (q2[8] >> 4) & 0x0f0f; + for (int l = 0; l < n; ++l) { + sum.x += y1[l+ 0] * (q4[l +0] + (qh[l+ 0] & (hm1 << 0) ? 16 : 0)) + + y1[l+16] * (q4[l +2] + (qh[l+16] & (hm1 << 0) ? 16 : 0)); + sum.y += y1[l+32] * (q4[l +4] + (qh[l+ 0] & (hm1 << 1) ? 16 : 0)) + + y1[l+48] * (q4[l +6] + (qh[l+16] & (hm1 << 1) ? 16 : 0)); + sum.z += y2[l+ 0] * (q4[l +8] + (qh[l+ 0] & (hm2 << 0) ? 16 : 0)) + + y2[l+16] * (q4[l+10] + (qh[l+16] & (hm2 << 0) ? 16 : 0)); + sum.w += y2[l+32] * (q4[l+12] + (qh[l+ 0] & (hm2 << 1) ? 16 : 0)) + + y2[l+48] * (q4[l+14] + (qh[l+16] & (hm2 << 1) ? 16 : 0)); + smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3] + + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7]; + } + tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin; + } + +#else + const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 + const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); + const int step = tid * K_QUANTS_PER_ITERATION; + const int im = step/8; + const int in = step%8; + + for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) { + const uint8_t * q = x[i].qs + step; + const int8_t * s = x[i].scales; + const float * y = yy + i*QK_K + step; + const float d = x[i].d; + float sum = 0.f; + for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) { + const uint8_t h = x[i].qh[in+j] >> im; + sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16)) + + y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16)) + + y[j+32] * d * s[2] * ((q[j+ 0] >> 4) - ((h >> 4) & 1 ? 0 : 16)) + + y[j+48] * d * s[3] * ((q[j+16] >> 4) - ((h >> 6) & 1 ? 0 : 16)); + } + tmp += sum; + } +#endif + + // sum up partial sums and write back result + tmp = warp_reduce_sum(tmp); + + if (threadIdx.x == 0) { + dst[row] = tmp; + } +} + +static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) { + + static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION"); + + const int row = blockIdx.x*blockDim.y + threadIdx.y; + if (row > nrows) return; + + const int num_blocks_per_row = ncols / QK_K; + const int ib0 = row*num_blocks_per_row; + + const block_q6_K * x = (const block_q6_K *)vx + ib0; + +#if QK_K == 256 + + const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16 + const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1 + + const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8 + + const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128... + const int in = tid - step*im; // 0...15 or 0...7 + +#if K_QUANTS_PER_ITERATION == 1 + const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 + const int is = 0; +#else + const int l0 = 4 * in; // 0, 4, 8, ..., 28 + const int is = in / 4; +#endif + const int ql_offset = 64*im + l0; + const int qh_offset = 32*im + l0; + const int s_offset = 8*im + is; + const int y_offset = 128*im + l0; + + float tmp = 0; // partial sum for thread in warp + + for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { + + const float * y = yy + i * QK_K + y_offset; + const uint8_t * ql = x[i].ql + ql_offset; + const uint8_t * qh = x[i].qh + qh_offset; + const int8_t * s = x[i].scales + s_offset; + + const float d = x[i].d; + +#if K_QUANTS_PER_ITERATION == 1 + float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32) + + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32) + + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32) + + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32) + + y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32) + + y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32) + + y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32) + +y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32); + tmp += sum; +#else + float sum = 0; + for (int l = 0; l < 4; ++l) { + sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32) + + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32) + + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32) + + y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32); + } + tmp += sum; +#endif + + } + +#else + + const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...7 + const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0...3 + + const int step = tid * K_QUANTS_PER_ITERATION; + + float tmp = 0; // partial sum for thread in warp + + for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) { + + const float * y = yy + i * QK_K + step; + const uint8_t * ql = x[i].ql + step; + const uint8_t * qh = x[i].qh + step; + const int8_t * s = x[i].scales; + + const float d = x[i+0].d; + + float sum = 0; + for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) { + sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32) + + y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32) + + y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >> 4) | ((qh[j] & 0x30) >> 0)) - 32) + + y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >> 4) | ((qh[j] & 0xc0) >> 2)) - 32); + } + tmp += sum; + + } + +#endif + + // sum up partial sums and write back result + tmp = warp_reduce_sum(tmp); + + if (tid == 0) { + dst[row] = tmp; + } +} + +static __device__ void convert_f16(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){ + const half * x = (const half *) vx; + + // automatic half -> float type cast if dfloat == float + v.x = x[ib + iqs + 0]; + v.y = x[ib + iqs + 1]; +} + +template +static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) { + // qk = quantized weights per x block + // qr = number of quantized weights per data value in x block + const int64_t row = (int64_t)blockIdx.x*blockDim.y + threadIdx.y; + + if (row >= nrows) { + return; + } + + const int tid = threadIdx.x; + + const int iter_stride = 2*GGML_CUDA_DMMV_X; + const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter + const int y_offset = qr == 1 ? 1 : qk/2; + +// partial sum for each thread +#ifdef GGML_CUDA_F16 + half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics +#else + float tmp = 0.0f; +#endif // GGML_CUDA_F16 + + for (int i = 0; i < ncols; i += iter_stride) { + const int col = i + vals_per_iter*tid; + const int64_t ib = ((int64_t)row*ncols + col)/qk; // x block index + const int iqs = (col%qk)/qr; // x quant index + const int iybs = col - col%qk; // y block start index + +// processing >2 values per i iter is faster for fast GPUs +#pragma unroll + for (int j = 0; j < vals_per_iter; j += 2) { + // process 2 vals per j iter + + // dequantize + // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val + dfloat2 v; + dequantize_kernel(vx, ib, iqs + j/qr, v); + + // matrix multiplication + // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2 +#ifdef GGML_CUDA_F16 + tmp += __hmul2(v, { + y[iybs + iqs + j/qr + 0], + y[iybs + iqs + j/qr + y_offset] + }); +#else + tmp += v.x * y[iybs + iqs + j/qr + 0]; + tmp += v.y * y[iybs + iqs + j/qr + y_offset]; +#endif // GGML_CUDA_F16 + } + } + + // sum up partial sums and write back result + tmp = warp_reduce_sum(tmp); + + if (tid == 0) { +#ifdef GGML_CUDA_F16 + dst[row] = tmp.x + tmp.y; +#else + dst[row] = tmp; +#endif // GGML_CUDA_F16 + } +} + +static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { + GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + // the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead + const dim3 block_nums(block_num_y, 1, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + dequantize_mul_mat_vec + <<>>(vx, y, dst, ncols, nrows); +} + +static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { + GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + const dim3 block_nums(block_num_y, 1, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + dequantize_mul_mat_vec + <<>>(vx, y, dst, ncols, nrows); +} + +static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { + GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + const dim3 block_nums(block_num_y, 1, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + dequantize_mul_mat_vec + <<>>(vx, y, dst, ncols, nrows); +} + +static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { + GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + const dim3 block_nums(block_num_y, 1, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + dequantize_mul_mat_vec + <<>>(vx, y, dst, ncols, nrows); +} + +static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { + GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + const dim3 block_nums(block_num_y, 1, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + dequantize_mul_mat_vec + <<>>(vx, y, dst, ncols, nrows); +} + +static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { + GGML_ASSERT(ncols % QK_K == 0); + const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2 + const int block_num_y = (nrows + ny - 1) / ny; + const dim3 block_nums(block_num_y, 1, 1); + const dim3 block_dims(32, ny, 1); + dequantize_mul_mat_vec_q2_k<<>>(vx, y, dst, ncols, nrows); +} + +static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { + GGML_ASSERT(ncols % QK_K == 0); + const int ny = 2 / K_QUANTS_PER_ITERATION; + const int block_num_y = (nrows + ny - 1) / ny; + const dim3 block_nums(block_num_y, 1, 1); + const dim3 block_dims(32, ny, 1); + dequantize_mul_mat_vec_q3_k<<>>(vx, y, dst, ncols, nrows); +} + +static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { + GGML_ASSERT(ncols % QK_K == 0); + const int ny = 2 / K_QUANTS_PER_ITERATION; + const int block_num_y = (nrows + ny - 1) / ny; + const dim3 block_nums(block_num_y, 1, 1); + const dim3 block_dims(32, ny, 1); + dequantize_mul_mat_vec_q4_k<<>>(vx, y, dst, ncols, nrows); +} + +static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { + GGML_ASSERT(ncols % QK_K == 0); + const dim3 block_dims(32, 1, 1); + dequantize_mul_mat_vec_q5_k<<>>(vx, y, dst, ncols); +} + +static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { + GGML_ASSERT(ncols % QK_K == 0); + const int ny = 2 / K_QUANTS_PER_ITERATION; + const int block_num_y = (nrows + ny - 1) / ny; + const dim3 block_nums(block_num_y, 1, 1); + const dim3 block_dims(32, ny, 1); + dequantize_mul_mat_vec_q6_k<<>>(vx, y, dst, ncols, nrows); +} + +static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { + GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + const dim3 block_nums(block_num_y, 1, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + dequantize_mul_mat_vec<1, 1, convert_f16> + <<>>(vx, y, dst, ncols, nrows); +} + +void ggml_cuda_op_dequantize_mul_mat_vec( + ggml_backend_cuda_context & ctx, + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, + const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, + const int64_t src1_padded_row_size, cudaStream_t stream) { + GGML_UNUSED(ctx); + const int64_t ne00 = src0->ne[0]; + const int64_t row_diff = row_high - row_low; + + GGML_ASSERT(src1->type == GGML_TYPE_F32); + + // on some GPUs it is faster to convert src1 to half and to use half precision intrinsics +#ifdef GGML_CUDA_F16 + ggml_cuda_pool_alloc src1_dfloat_a(ctx.pool()); + half * src1_dfloat = nullptr; // dfloat == half + + bool src1_convert_f16 = + src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 || + src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 || + src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16; + + if (src1_convert_f16) { + src1_dfloat = src1_dfloat_a.alloc(ne00); + const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type); + GGML_ASSERT(to_fp16_cuda != nullptr); + to_fp16_cuda(src1_ddf_i, src1_dfloat, ne00, stream); + } +#else + const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion +#endif // GGML_CUDA_F16 + + switch (src0->type) { + case GGML_TYPE_Q4_0: + dequantize_mul_mat_vec_q4_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_Q4_1: + dequantize_mul_mat_vec_q4_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_Q5_0: + dequantize_mul_mat_vec_q5_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_Q5_1: + dequantize_mul_mat_vec_q5_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_Q8_0: + dequantize_mul_mat_vec_q8_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_Q2_K: + dequantize_mul_mat_vec_q2_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_Q3_K: + dequantize_mul_mat_vec_q3_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_Q4_K: + dequantize_mul_mat_vec_q4_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_Q5_K: + dequantize_mul_mat_vec_q5_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_Q6_K: + dequantize_mul_mat_vec_q6_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_F16: + convert_mul_mat_vec_f16_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream); + break; + default: + GGML_ASSERT(false); + break; + } + + GGML_UNUSED(src1); + GGML_UNUSED(dst); + GGML_UNUSED(src1_ddq_i); + GGML_UNUSED(src1_ncols); + GGML_UNUSED(src1_padded_row_size); +} diff --git a/llama/ggml-cuda/dmmv.cuh b/llama/ggml-cuda/dmmv.cuh index 85329e7c..4c5ebd47 100644 --- a/llama/ggml-cuda/dmmv.cuh +++ b/llama/ggml-cuda/dmmv.cuh @@ -1,18 +1,18 @@ -#include "common.cuh" - -// dmmv = dequantize_mul_mat_vec - -// TODO: remove this? -#ifndef GGML_CUDA_DMMV_X -#define GGML_CUDA_DMMV_X 32 -#endif - -#ifndef GGML_CUDA_MMV_Y -#define GGML_CUDA_MMV_Y 1 -#endif - -void ggml_cuda_op_dequantize_mul_mat_vec( - ggml_backend_cuda_context & ctx, - const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, - const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, - const int64_t src1_padded_row_size, cudaStream_t stream); +#include "common.cuh" + +// dmmv = dequantize_mul_mat_vec + +// TODO: remove this? +#ifndef GGML_CUDA_DMMV_X +#define GGML_CUDA_DMMV_X 32 +#endif + +#ifndef GGML_CUDA_MMV_Y +#define GGML_CUDA_MMV_Y 1 +#endif + +void ggml_cuda_op_dequantize_mul_mat_vec( + ggml_backend_cuda_context & ctx, + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, + const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, + const int64_t src1_padded_row_size, cudaStream_t stream); diff --git a/llama/ggml-cuda/getrows.cu b/llama/ggml-cuda/getrows.cu index 7f8091bc..55af195f 100644 --- a/llama/ggml-cuda/getrows.cu +++ b/llama/ggml-cuda/getrows.cu @@ -1,178 +1,178 @@ -#include "getrows.cuh" -#include "dequantize.cuh" - -template -static __global__ void k_get_rows( - const void * src0, const int32_t * src1, dst_t * dst, - int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/ - /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/ - /*size_t s0,*/ size_t s1, size_t s2, size_t s3, - /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03, - size_t s10, size_t s11, size_t s12/*, size_t s13*/) { - - const int i00 = (blockIdx.x*blockDim.x + threadIdx.x)*2; - const int i10 = blockDim.y*blockIdx.y + threadIdx.y; - const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12; - const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12; - - if (i00 >= ne00) { - return; - } - - const int i01 = src1[i10*s10 + i11*s11 + i12*s12]; - - dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3; - const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03; - - const int ib = i00/qk; // block index - const int iqs = (i00%qk)/qr; // quant index - const int iybs = i00 - i00%qk; // dst block start index - const int y_offset = qr == 1 ? 1 : qk/2; - - // dequantize - dfloat2 v; - dequantize_kernel(src0_row, ib, iqs, v); - - dst_row[iybs + iqs + 0] = v.x; - dst_row[iybs + iqs + y_offset] = v.y; -} - -template -static __global__ void k_get_rows_float( - const src0_t * src0, const int32_t * src1, dst_t * dst, - int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/ - /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/ - /*size_t s0,*/ size_t s1, size_t s2, size_t s3, - /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03, - size_t s10, size_t s11, size_t s12/*, size_t s13*/) { - - const int i00 = blockIdx.x*blockDim.x + threadIdx.x; - const int i10 = blockDim.y*blockIdx.y + threadIdx.y; - const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12; - const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12; - - if (i00 >= ne00) { - return; - } - - const int i01 = src1[i10*s10 + i11*s11 + i12*s12]; - - dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3; - const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03); - - dst_row[i00] = src0_row[i00]; -} - -template -static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) { - - GGML_TENSOR_BINARY_OP_LOCALS - - const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1); - const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE); - const dim3 block_nums(block_num_x, ne10, ne11*ne12); - - // strides in elements - //const size_t s0 = nb0 / ggml_element_size(dst); - const size_t s1 = nb1 / ggml_element_size(dst); - const size_t s2 = nb2 / ggml_element_size(dst); - const size_t s3 = nb3 / ggml_element_size(dst); - - const size_t s10 = nb10 / ggml_element_size(src1); - const size_t s11 = nb11 / ggml_element_size(src1); - const size_t s12 = nb12 / ggml_element_size(src1); - //const size_t s13 = nb13 / ggml_element_size(src1); - - GGML_ASSERT(ne00 % 2 == 0); - - k_get_rows<<>>( - src0_dd, src1_dd, dst_dd, - ne00, /*ne01, ne02, ne03,*/ - /*ne10, ne11,*/ ne12, /*ne13,*/ - /* s0,*/ s1, s2, s3, - /* nb00,*/ nb01, nb02, nb03, - s10, s11, s12/*, s13*/); - - GGML_UNUSED(dst); -} - -template -static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) { - - GGML_TENSOR_BINARY_OP_LOCALS - - const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1); - const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE; - const dim3 block_nums(block_num_x, ne10, ne11*ne12); - - // strides in elements - //const size_t s0 = nb0 / ggml_element_size(dst); - const size_t s1 = nb1 / ggml_element_size(dst); - const size_t s2 = nb2 / ggml_element_size(dst); - const size_t s3 = nb3 / ggml_element_size(dst); - - const size_t s10 = nb10 / ggml_element_size(src1); - const size_t s11 = nb11 / ggml_element_size(src1); - const size_t s12 = nb12 / ggml_element_size(src1); - //const size_t s13 = nb13 / ggml_element_size(src1); - - k_get_rows_float<<>>( - src0_dd, src1_dd, dst_dd, - ne00, /*ne01, ne02, ne03,*/ - /*ne10, ne11,*/ ne12, /*ne13,*/ - /* s0,*/ s1, s2, s3, - /* nb00,*/ nb01, nb02, nb03, - s10, s11, s12/*, s13*/); - - GGML_UNUSED(dst); -} - -void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const ggml_tensor * src1 = dst->src[1]; - const float * src0_d = (const float *)src0->data; - const float * src1_d = (const float *)src1->data; - float * dst_d = (float *)dst->data; - cudaStream_t stream = ctx.stream(); - - - GGML_ASSERT(src1->type == GGML_TYPE_I32); - GGML_ASSERT(dst->type == GGML_TYPE_F32); - - GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type)); - GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type)); - GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type)); - - const int32_t * src1_i32 = (const int32_t *) src1_d; - - switch (src0->type) { - case GGML_TYPE_F16: - get_rows_cuda_float(src0, src1, dst, (const half *)src0_d, src1_i32, dst_d, stream); - break; - case GGML_TYPE_F32: - get_rows_cuda_float(src0, src1, dst, src0_d, src1_i32, dst_d, stream); - break; - case GGML_TYPE_Q4_0: - get_rows_cuda(src0, src1, dst, src0_d, src1_i32, dst_d, stream); - break; - case GGML_TYPE_Q4_1: - get_rows_cuda(src0, src1, dst, src0_d, src1_i32, dst_d, stream); - break; - case GGML_TYPE_Q5_0: - get_rows_cuda(src0, src1, dst, src0_d, src1_i32, dst_d, stream); - break; - case GGML_TYPE_Q5_1: - get_rows_cuda(src0, src1, dst, src0_d, src1_i32, dst_d, stream); - break; - case GGML_TYPE_Q8_0: - get_rows_cuda(src0, src1, dst, src0_d, src1_i32, dst_d, stream); - break; - default: - // TODO: k-quants - fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type)); - GGML_ASSERT(false); - break; - } -} +#include "getrows.cuh" +#include "dequantize.cuh" + +template +static __global__ void k_get_rows( + const void * src0, const int32_t * src1, dst_t * dst, + int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/ + /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/ + /*size_t s0,*/ size_t s1, size_t s2, size_t s3, + /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03, + size_t s10, size_t s11, size_t s12/*, size_t s13*/) { + + const int i00 = (blockIdx.x*blockDim.x + threadIdx.x)*2; + const int i10 = blockDim.y*blockIdx.y + threadIdx.y; + const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12; + const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12; + + if (i00 >= ne00) { + return; + } + + const int i01 = src1[i10*s10 + i11*s11 + i12*s12]; + + dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3; + const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03; + + const int ib = i00/qk; // block index + const int iqs = (i00%qk)/qr; // quant index + const int iybs = i00 - i00%qk; // dst block start index + const int y_offset = qr == 1 ? 1 : qk/2; + + // dequantize + dfloat2 v; + dequantize_kernel(src0_row, ib, iqs, v); + + dst_row[iybs + iqs + 0] = v.x; + dst_row[iybs + iqs + y_offset] = v.y; +} + +template +static __global__ void k_get_rows_float( + const src0_t * src0, const int32_t * src1, dst_t * dst, + int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/ + /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/ + /*size_t s0,*/ size_t s1, size_t s2, size_t s3, + /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03, + size_t s10, size_t s11, size_t s12/*, size_t s13*/) { + + const int i00 = blockIdx.x*blockDim.x + threadIdx.x; + const int i10 = blockDim.y*blockIdx.y + threadIdx.y; + const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12; + const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12; + + if (i00 >= ne00) { + return; + } + + const int i01 = src1[i10*s10 + i11*s11 + i12*s12]; + + dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3; + const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03); + + dst_row[i00] = src0_row[i00]; +} + +template +static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, + const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) { + + GGML_TENSOR_BINARY_OP_LOCALS + + const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1); + const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE); + const dim3 block_nums(block_num_x, ne10, ne11*ne12); + + // strides in elements + //const size_t s0 = nb0 / ggml_element_size(dst); + const size_t s1 = nb1 / ggml_element_size(dst); + const size_t s2 = nb2 / ggml_element_size(dst); + const size_t s3 = nb3 / ggml_element_size(dst); + + const size_t s10 = nb10 / ggml_element_size(src1); + const size_t s11 = nb11 / ggml_element_size(src1); + const size_t s12 = nb12 / ggml_element_size(src1); + //const size_t s13 = nb13 / ggml_element_size(src1); + + GGML_ASSERT(ne00 % 2 == 0); + + k_get_rows<<>>( + src0_dd, src1_dd, dst_dd, + ne00, /*ne01, ne02, ne03,*/ + /*ne10, ne11,*/ ne12, /*ne13,*/ + /* s0,*/ s1, s2, s3, + /* nb00,*/ nb01, nb02, nb03, + s10, s11, s12/*, s13*/); + + GGML_UNUSED(dst); +} + +template +static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, + const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) { + + GGML_TENSOR_BINARY_OP_LOCALS + + const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1); + const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE; + const dim3 block_nums(block_num_x, ne10, ne11*ne12); + + // strides in elements + //const size_t s0 = nb0 / ggml_element_size(dst); + const size_t s1 = nb1 / ggml_element_size(dst); + const size_t s2 = nb2 / ggml_element_size(dst); + const size_t s3 = nb3 / ggml_element_size(dst); + + const size_t s10 = nb10 / ggml_element_size(src1); + const size_t s11 = nb11 / ggml_element_size(src1); + const size_t s12 = nb12 / ggml_element_size(src1); + //const size_t s13 = nb13 / ggml_element_size(src1); + + k_get_rows_float<<>>( + src0_dd, src1_dd, dst_dd, + ne00, /*ne01, ne02, ne03,*/ + /*ne10, ne11,*/ ne12, /*ne13,*/ + /* s0,*/ s1, s2, s3, + /* nb00,*/ nb01, nb02, nb03, + s10, s11, s12/*, s13*/); + + GGML_UNUSED(dst); +} + +void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * src0 = dst->src[0]; + const ggml_tensor * src1 = dst->src[1]; + const float * src0_d = (const float *)src0->data; + const float * src1_d = (const float *)src1->data; + float * dst_d = (float *)dst->data; + cudaStream_t stream = ctx.stream(); + + + GGML_ASSERT(src1->type == GGML_TYPE_I32); + GGML_ASSERT(dst->type == GGML_TYPE_F32); + + GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type)); + GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type)); + GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type)); + + const int32_t * src1_i32 = (const int32_t *) src1_d; + + switch (src0->type) { + case GGML_TYPE_F16: + get_rows_cuda_float(src0, src1, dst, (const half *)src0_d, src1_i32, dst_d, stream); + break; + case GGML_TYPE_F32: + get_rows_cuda_float(src0, src1, dst, src0_d, src1_i32, dst_d, stream); + break; + case GGML_TYPE_Q4_0: + get_rows_cuda(src0, src1, dst, src0_d, src1_i32, dst_d, stream); + break; + case GGML_TYPE_Q4_1: + get_rows_cuda(src0, src1, dst, src0_d, src1_i32, dst_d, stream); + break; + case GGML_TYPE_Q5_0: + get_rows_cuda(src0, src1, dst, src0_d, src1_i32, dst_d, stream); + break; + case GGML_TYPE_Q5_1: + get_rows_cuda(src0, src1, dst, src0_d, src1_i32, dst_d, stream); + break; + case GGML_TYPE_Q8_0: + get_rows_cuda(src0, src1, dst, src0_d, src1_i32, dst_d, stream); + break; + default: + // TODO: k-quants + fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type)); + GGML_ASSERT(false); + break; + } +} diff --git a/llama/ggml-cuda/getrows.cuh b/llama/ggml-cuda/getrows.cuh index 04e1c187..bbf13023 100644 --- a/llama/ggml-cuda/getrows.cuh +++ b/llama/ggml-cuda/getrows.cuh @@ -1,5 +1,5 @@ -#include "common.cuh" - -#define CUDA_GET_ROWS_BLOCK_SIZE 256 - -void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst); +#include "common.cuh" + +#define CUDA_GET_ROWS_BLOCK_SIZE 256 + +void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/llama/ggml-cuda/im2col.cu b/llama/ggml-cuda/im2col.cu index 5510b43c..3d0d8d4e 100644 --- a/llama/ggml-cuda/im2col.cu +++ b/llama/ggml-cuda/im2col.cu @@ -1,104 +1,104 @@ -#include "im2col.cuh" - -template -static __global__ void im2col_kernel( - const float * x, T * dst, int64_t batch_offset, - int64_t offset_delta, int64_t IC, int64_t IW, int64_t IH, int64_t OH, int64_t OW, int64_t KW, int64_t KH, int64_t pelements, int64_t CHW, - int s0, int s1, int p0, int p1, int d0, int d1) { - const int64_t i = threadIdx.x + blockIdx.x * blockDim.x; - if (i >= pelements) { - return; - } - - const int64_t ksize = OW * (KH > 1 ? KW : 1); - const int64_t kx = i / ksize; - const int64_t kd = kx * ksize; - const int64_t ky = (i - kd) / OW; - const int64_t ix = i % OW; - - const int64_t oh = blockIdx.y; - const int64_t batch = blockIdx.z / IC; - const int64_t ic = blockIdx.z % IC; - - const int64_t iiw = ix * s0 + kx * d0 - p0; - const int64_t iih = oh * s1 + ky * d1 - p1; - - const int64_t offset_dst = - ((batch * OH + oh) * OW + ix) * CHW + - (ic * (KW * KH) + ky * KW + kx); - - if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) { - dst[offset_dst] = 0.0f; - } else { - const int64_t offset_src = ic * offset_delta + batch * batch_offset; - dst[offset_dst] = x[offset_src + iih * IW + iiw]; - } -} - -template -static void im2col_cuda(const float * x, T* dst, - int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC, - int64_t batch, int64_t batch_offset, int64_t offset_delta, - int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) { - const int parallel_elements = OW * KW * KH; - const int num_blocks = (parallel_elements + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE; - dim3 block_nums(num_blocks, OH, batch * IC); - im2col_kernel<<>>(x, dst, batch_offset, offset_delta, IC, IW, IH, OH, OW, KW, KH, parallel_elements, (IC * KH * KW), s0, s1, p0, p1, d0, d1); -} - -static void im2col_cuda_f16(const float * x, half * dst, - int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC, - int64_t batch, int64_t batch_offset, int64_t offset_delta, - int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) { - - im2col_cuda(x, dst, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, offset_delta, s0, s1, p0, p1, d0, d1, stream); -} - -static void im2col_cuda_f32(const float * x, float * dst, - int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC, - int64_t batch, int64_t batch_offset, int64_t offset_delta, - int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) { - - im2col_cuda(x, dst, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, offset_delta, s0, s1, p0, p1, d0, d1, stream); -} - -void ggml_cuda_op_im2col(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const ggml_tensor * src1 = dst->src[1]; - const float * src1_d = (const float *)src1->data; - float * dst_d = (float *)dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(src0->type == GGML_TYPE_F16); - GGML_ASSERT(src1->type == GGML_TYPE_F32); - GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32); - - const int32_t s0 = ((const int32_t*)(dst->op_params))[0]; - const int32_t s1 = ((const int32_t*)(dst->op_params))[1]; - const int32_t p0 = ((const int32_t*)(dst->op_params))[2]; - const int32_t p1 = ((const int32_t*)(dst->op_params))[3]; - const int32_t d0 = ((const int32_t*)(dst->op_params))[4]; - const int32_t d1 = ((const int32_t*)(dst->op_params))[5]; - - const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1; - - const int64_t IC = src1->ne[is_2D ? 2 : 1]; - const int64_t IH = is_2D ? src1->ne[1] : 1; - const int64_t IW = src1->ne[0]; - - const int64_t KH = is_2D ? src0->ne[1] : 1; - const int64_t KW = src0->ne[0]; - - const int64_t OH = is_2D ? dst->ne[2] : 1; - const int64_t OW = dst->ne[1]; - - const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32 - const int64_t batch = src1->ne[3]; - const size_t batch_offset = src1->nb[3] / 4; // nb is byte offset, src is type float32 - - if(dst->type == GGML_TYPE_F16) { - im2col_cuda_f16(src1_d, (half *) dst_d, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, stream); - } else { - im2col_cuda_f32(src1_d, (float *) dst_d, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, stream); - } -} +#include "im2col.cuh" + +template +static __global__ void im2col_kernel( + const float * x, T * dst, int64_t batch_offset, + int64_t offset_delta, int64_t IC, int64_t IW, int64_t IH, int64_t OH, int64_t OW, int64_t KW, int64_t KH, int64_t pelements, int64_t CHW, + int s0, int s1, int p0, int p1, int d0, int d1) { + const int64_t i = threadIdx.x + blockIdx.x * blockDim.x; + if (i >= pelements) { + return; + } + + const int64_t ksize = OW * (KH > 1 ? KW : 1); + const int64_t kx = i / ksize; + const int64_t kd = kx * ksize; + const int64_t ky = (i - kd) / OW; + const int64_t ix = i % OW; + + const int64_t oh = blockIdx.y; + const int64_t batch = blockIdx.z / IC; + const int64_t ic = blockIdx.z % IC; + + const int64_t iiw = ix * s0 + kx * d0 - p0; + const int64_t iih = oh * s1 + ky * d1 - p1; + + const int64_t offset_dst = + ((batch * OH + oh) * OW + ix) * CHW + + (ic * (KW * KH) + ky * KW + kx); + + if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) { + dst[offset_dst] = 0.0f; + } else { + const int64_t offset_src = ic * offset_delta + batch * batch_offset; + dst[offset_dst] = x[offset_src + iih * IW + iiw]; + } +} + +template +static void im2col_cuda(const float * x, T* dst, + int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC, + int64_t batch, int64_t batch_offset, int64_t offset_delta, + int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) { + const int parallel_elements = OW * KW * KH; + const int num_blocks = (parallel_elements + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE; + dim3 block_nums(num_blocks, OH, batch * IC); + im2col_kernel<<>>(x, dst, batch_offset, offset_delta, IC, IW, IH, OH, OW, KW, KH, parallel_elements, (IC * KH * KW), s0, s1, p0, p1, d0, d1); +} + +static void im2col_cuda_f16(const float * x, half * dst, + int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC, + int64_t batch, int64_t batch_offset, int64_t offset_delta, + int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) { + + im2col_cuda(x, dst, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, offset_delta, s0, s1, p0, p1, d0, d1, stream); +} + +static void im2col_cuda_f32(const float * x, float * dst, + int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC, + int64_t batch, int64_t batch_offset, int64_t offset_delta, + int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) { + + im2col_cuda(x, dst, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, offset_delta, s0, s1, p0, p1, d0, d1, stream); +} + +void ggml_cuda_op_im2col(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * src0 = dst->src[0]; + const ggml_tensor * src1 = dst->src[1]; + const float * src1_d = (const float *)src1->data; + float * dst_d = (float *)dst->data; + cudaStream_t stream = ctx.stream(); + + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32); + + const int32_t s0 = ((const int32_t*)(dst->op_params))[0]; + const int32_t s1 = ((const int32_t*)(dst->op_params))[1]; + const int32_t p0 = ((const int32_t*)(dst->op_params))[2]; + const int32_t p1 = ((const int32_t*)(dst->op_params))[3]; + const int32_t d0 = ((const int32_t*)(dst->op_params))[4]; + const int32_t d1 = ((const int32_t*)(dst->op_params))[5]; + + const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1; + + const int64_t IC = src1->ne[is_2D ? 2 : 1]; + const int64_t IH = is_2D ? src1->ne[1] : 1; + const int64_t IW = src1->ne[0]; + + const int64_t KH = is_2D ? src0->ne[1] : 1; + const int64_t KW = src0->ne[0]; + + const int64_t OH = is_2D ? dst->ne[2] : 1; + const int64_t OW = dst->ne[1]; + + const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32 + const int64_t batch = src1->ne[3]; + const size_t batch_offset = src1->nb[3] / 4; // nb is byte offset, src is type float32 + + if(dst->type == GGML_TYPE_F16) { + im2col_cuda_f16(src1_d, (half *) dst_d, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, stream); + } else { + im2col_cuda_f32(src1_d, (float *) dst_d, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, stream); + } +} diff --git a/llama/ggml-cuda/im2col.cuh b/llama/ggml-cuda/im2col.cuh index 55c898bf..1ce8fae4 100644 --- a/llama/ggml-cuda/im2col.cuh +++ b/llama/ggml-cuda/im2col.cuh @@ -1,5 +1,5 @@ -#include "common.cuh" - -#define CUDA_IM2COL_BLOCK_SIZE 256 - -void ggml_cuda_op_im2col(ggml_backend_cuda_context & ctx, ggml_tensor * dst); +#include "common.cuh" + +#define CUDA_IM2COL_BLOCK_SIZE 256 + +void ggml_cuda_op_im2col(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/llama/ggml-cuda/mmq.cuh b/llama/ggml-cuda/mmq.cuh index ed09ea7e..807817c4 100644 --- a/llama/ggml-cuda/mmq.cuh +++ b/llama/ggml-cuda/mmq.cuh @@ -1,9 +1,9 @@ -#include "common.cuh" - -void ggml_cuda_op_mul_mat_q( - ggml_backend_cuda_context & ctx, - const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, - const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, - const int64_t src1_padded_row_size, cudaStream_t stream); - -bool ggml_cuda_supports_mmq(enum ggml_type type); +#include "common.cuh" + +void ggml_cuda_op_mul_mat_q( + ggml_backend_cuda_context & ctx, + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, + const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, + const int64_t src1_padded_row_size, cudaStream_t stream); + +bool ggml_cuda_supports_mmq(enum ggml_type type); diff --git a/llama/ggml-cuda/mmvq.cuh b/llama/ggml-cuda/mmvq.cuh index 46785d5a..88c42c4b 100644 --- a/llama/ggml-cuda/mmvq.cuh +++ b/llama/ggml-cuda/mmvq.cuh @@ -1,7 +1,7 @@ -#include "common.cuh" - -void ggml_cuda_op_mul_mat_vec_q( - ggml_backend_cuda_context & ctx, - const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, - const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, - const int64_t src1_padded_row_size, cudaStream_t stream); +#include "common.cuh" + +void ggml_cuda_op_mul_mat_vec_q( + ggml_backend_cuda_context & ctx, + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, + const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, + const int64_t src1_padded_row_size, cudaStream_t stream); diff --git a/llama/ggml-cuda/norm.cu b/llama/ggml-cuda/norm.cu index 70863463..86f77453 100644 --- a/llama/ggml-cuda/norm.cu +++ b/llama/ggml-cuda/norm.cu @@ -1,215 +1,215 @@ -#include "norm.cuh" - -template -static __global__ void norm_f32(const float * x, float * dst, const int ncols, const float eps) { - const int row = blockIdx.x*blockDim.y + threadIdx.y; - const int tid = threadIdx.x; - - float2 mean_var = make_float2(0.f, 0.f); - - for (int col = tid; col < ncols; col += block_size) { - const float xi = x[row*ncols + col]; - mean_var.x += xi; - mean_var.y += xi * xi; - } - - // sum up partial sums - mean_var = warp_reduce_sum(mean_var); - if (block_size > WARP_SIZE) { - __shared__ float2 s_sum[32]; - int warp_id = threadIdx.x / WARP_SIZE; - int lane_id = threadIdx.x % WARP_SIZE; - if (lane_id == 0) { - s_sum[warp_id] = mean_var; - } - __syncthreads(); - mean_var = s_sum[lane_id]; - mean_var = warp_reduce_sum(mean_var); - } - - const float mean = mean_var.x / ncols; - const float var = mean_var.y / ncols - mean * mean; - const float inv_std = rsqrtf(var + eps); - - for (int col = tid; col < ncols; col += block_size) { - dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std; - } -} - -template -static __global__ void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps) { - // blockIdx.x: num_groups idx - // threadIdx.x: block_size idx - int start = blockIdx.x * group_size; - int end = start + group_size; - - start += threadIdx.x; - - if (end >= ne_elements) { - end = ne_elements; - } - - float tmp = 0.0f; // partial sum for thread in warp - - for (int j = start; j < end; j += block_size) { - tmp += x[j]; - } - - tmp = warp_reduce_sum(tmp); - if (block_size > WARP_SIZE) { - __shared__ float s_sum[32]; - int warp_id = threadIdx.x / WARP_SIZE; - int lane_id = threadIdx.x % WARP_SIZE; - if (lane_id == 0) { - s_sum[warp_id] = tmp; - } - __syncthreads(); - tmp = s_sum[lane_id]; - tmp = warp_reduce_sum(tmp); - } - - float mean = tmp / group_size; - tmp = 0.0f; - - for (int j = start; j < end; j += block_size) { - float xi = x[j] - mean; - dst[j] = xi; - tmp += xi * xi; - } - - tmp = warp_reduce_sum(tmp); - if (block_size > WARP_SIZE) { - __shared__ float s_sum[32]; - int warp_id = threadIdx.x / WARP_SIZE; - int lane_id = threadIdx.x % WARP_SIZE; - if (lane_id == 0) { - s_sum[warp_id] = tmp; - } - __syncthreads(); - tmp = s_sum[lane_id]; - tmp = warp_reduce_sum(tmp); - } - - float variance = tmp / group_size; - float scale = rsqrtf(variance + eps); - for (int j = start; j < end; j += block_size) { - dst[j] *= scale; - } -} - -template -static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) { - const int row = blockIdx.x*blockDim.y + threadIdx.y; - const int tid = threadIdx.x; - - float tmp = 0.0f; // partial sum for thread in warp - - for (int col = tid; col < ncols; col += block_size) { - const float xi = x[row*ncols + col]; - tmp += xi * xi; - } - - // sum up partial sums - tmp = warp_reduce_sum(tmp); - if (block_size > WARP_SIZE) { - __shared__ float s_sum[32]; - int warp_id = threadIdx.x / WARP_SIZE; - int lane_id = threadIdx.x % WARP_SIZE; - if (lane_id == 0) { - s_sum[warp_id] = tmp; - } - __syncthreads(); - tmp = s_sum[lane_id]; - tmp = warp_reduce_sum(tmp); - } - - const float mean = tmp / ncols; - const float scale = rsqrtf(mean + eps); - - for (int col = tid; col < ncols; col += block_size) { - dst[row*ncols + col] = scale * x[row*ncols + col]; - } -} - -static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) { - GGML_ASSERT(ncols % WARP_SIZE == 0); - if (ncols < 1024) { - const dim3 block_dims(WARP_SIZE, 1, 1); - norm_f32<<>>(x, dst, ncols, eps); - } else { - const dim3 block_dims(1024, 1, 1); - norm_f32<1024><<>>(x, dst, ncols, eps); - } -} - -static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const int group_size, const int ne_elements, cudaStream_t stream) { - static const float eps = 1e-6f; - if (group_size < 1024) { - const dim3 block_dims(WARP_SIZE, 1, 1); - group_norm_f32<<>>(x, dst, group_size, ne_elements, eps); - } else { - const dim3 block_dims(1024, 1, 1); - group_norm_f32<1024><<>>(x, dst, group_size, ne_elements, eps); - } -} - -static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) { - GGML_ASSERT(ncols % WARP_SIZE == 0); - if (ncols < 1024) { - const dim3 block_dims(WARP_SIZE, 1, 1); - rms_norm_f32<<>>(x, dst, ncols, eps); - } else { - const dim3 block_dims(1024, 1, 1); - rms_norm_f32<1024><<>>(x, dst, ncols, eps); - } -} - -void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const float * src0_d = (const float *)src0->data; - float * dst_d = (float *)dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(src0->type == GGML_TYPE_F32); - GGML_ASSERT( dst->type == GGML_TYPE_F32); - - const int64_t ne00 = src0->ne[0]; - const int64_t nrows = ggml_nrows(src0); - - float eps; - memcpy(&eps, dst->op_params, sizeof(float)); - - norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream); -} - -void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const float * src0_d = (const float *)src0->data; - float * dst_d = (float *)dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(src0->type == GGML_TYPE_F32); - GGML_ASSERT( dst->type == GGML_TYPE_F32); - - int num_groups = dst->op_params[0]; - int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups); - group_norm_f32_cuda(src0_d, dst_d, num_groups * src0->ne[3], group_size, ggml_nelements(src0), stream); -} - -void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const float * src0_d = (const float *)src0->data; - float * dst_d = (float *)dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(src0->type == GGML_TYPE_F32); - GGML_ASSERT( dst->type == GGML_TYPE_F32); - - const int64_t ne00 = src0->ne[0]; - const int64_t nrows = ggml_nrows(src0); - - float eps; - memcpy(&eps, dst->op_params, sizeof(float)); - - rms_norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream); -} +#include "norm.cuh" + +template +static __global__ void norm_f32(const float * x, float * dst, const int ncols, const float eps) { + const int row = blockIdx.x*blockDim.y + threadIdx.y; + const int tid = threadIdx.x; + + float2 mean_var = make_float2(0.f, 0.f); + + for (int col = tid; col < ncols; col += block_size) { + const float xi = x[row*ncols + col]; + mean_var.x += xi; + mean_var.y += xi * xi; + } + + // sum up partial sums + mean_var = warp_reduce_sum(mean_var); + if (block_size > WARP_SIZE) { + __shared__ float2 s_sum[32]; + int warp_id = threadIdx.x / WARP_SIZE; + int lane_id = threadIdx.x % WARP_SIZE; + if (lane_id == 0) { + s_sum[warp_id] = mean_var; + } + __syncthreads(); + mean_var = s_sum[lane_id]; + mean_var = warp_reduce_sum(mean_var); + } + + const float mean = mean_var.x / ncols; + const float var = mean_var.y / ncols - mean * mean; + const float inv_std = rsqrtf(var + eps); + + for (int col = tid; col < ncols; col += block_size) { + dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std; + } +} + +template +static __global__ void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps) { + // blockIdx.x: num_groups idx + // threadIdx.x: block_size idx + int start = blockIdx.x * group_size; + int end = start + group_size; + + start += threadIdx.x; + + if (end >= ne_elements) { + end = ne_elements; + } + + float tmp = 0.0f; // partial sum for thread in warp + + for (int j = start; j < end; j += block_size) { + tmp += x[j]; + } + + tmp = warp_reduce_sum(tmp); + if (block_size > WARP_SIZE) { + __shared__ float s_sum[32]; + int warp_id = threadIdx.x / WARP_SIZE; + int lane_id = threadIdx.x % WARP_SIZE; + if (lane_id == 0) { + s_sum[warp_id] = tmp; + } + __syncthreads(); + tmp = s_sum[lane_id]; + tmp = warp_reduce_sum(tmp); + } + + float mean = tmp / group_size; + tmp = 0.0f; + + for (int j = start; j < end; j += block_size) { + float xi = x[j] - mean; + dst[j] = xi; + tmp += xi * xi; + } + + tmp = warp_reduce_sum(tmp); + if (block_size > WARP_SIZE) { + __shared__ float s_sum[32]; + int warp_id = threadIdx.x / WARP_SIZE; + int lane_id = threadIdx.x % WARP_SIZE; + if (lane_id == 0) { + s_sum[warp_id] = tmp; + } + __syncthreads(); + tmp = s_sum[lane_id]; + tmp = warp_reduce_sum(tmp); + } + + float variance = tmp / group_size; + float scale = rsqrtf(variance + eps); + for (int j = start; j < end; j += block_size) { + dst[j] *= scale; + } +} + +template +static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) { + const int row = blockIdx.x*blockDim.y + threadIdx.y; + const int tid = threadIdx.x; + + float tmp = 0.0f; // partial sum for thread in warp + + for (int col = tid; col < ncols; col += block_size) { + const float xi = x[row*ncols + col]; + tmp += xi * xi; + } + + // sum up partial sums + tmp = warp_reduce_sum(tmp); + if (block_size > WARP_SIZE) { + __shared__ float s_sum[32]; + int warp_id = threadIdx.x / WARP_SIZE; + int lane_id = threadIdx.x % WARP_SIZE; + if (lane_id == 0) { + s_sum[warp_id] = tmp; + } + __syncthreads(); + tmp = s_sum[lane_id]; + tmp = warp_reduce_sum(tmp); + } + + const float mean = tmp / ncols; + const float scale = rsqrtf(mean + eps); + + for (int col = tid; col < ncols; col += block_size) { + dst[row*ncols + col] = scale * x[row*ncols + col]; + } +} + +static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) { + GGML_ASSERT(ncols % WARP_SIZE == 0); + if (ncols < 1024) { + const dim3 block_dims(WARP_SIZE, 1, 1); + norm_f32<<>>(x, dst, ncols, eps); + } else { + const dim3 block_dims(1024, 1, 1); + norm_f32<1024><<>>(x, dst, ncols, eps); + } +} + +static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const int group_size, const int ne_elements, cudaStream_t stream) { + static const float eps = 1e-6f; + if (group_size < 1024) { + const dim3 block_dims(WARP_SIZE, 1, 1); + group_norm_f32<<>>(x, dst, group_size, ne_elements, eps); + } else { + const dim3 block_dims(1024, 1, 1); + group_norm_f32<1024><<>>(x, dst, group_size, ne_elements, eps); + } +} + +static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) { + GGML_ASSERT(ncols % WARP_SIZE == 0); + if (ncols < 1024) { + const dim3 block_dims(WARP_SIZE, 1, 1); + rms_norm_f32<<>>(x, dst, ncols, eps); + } else { + const dim3 block_dims(1024, 1, 1); + rms_norm_f32<1024><<>>(x, dst, ncols, eps); + } +} + +void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * src0 = dst->src[0]; + const float * src0_d = (const float *)src0->data; + float * dst_d = (float *)dst->data; + cudaStream_t stream = ctx.stream(); + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + const int64_t ne00 = src0->ne[0]; + const int64_t nrows = ggml_nrows(src0); + + float eps; + memcpy(&eps, dst->op_params, sizeof(float)); + + norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream); +} + +void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * src0 = dst->src[0]; + const float * src0_d = (const float *)src0->data; + float * dst_d = (float *)dst->data; + cudaStream_t stream = ctx.stream(); + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + int num_groups = dst->op_params[0]; + int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups); + group_norm_f32_cuda(src0_d, dst_d, num_groups * src0->ne[3], group_size, ggml_nelements(src0), stream); +} + +void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * src0 = dst->src[0]; + const float * src0_d = (const float *)src0->data; + float * dst_d = (float *)dst->data; + cudaStream_t stream = ctx.stream(); + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + const int64_t ne00 = src0->ne[0]; + const int64_t nrows = ggml_nrows(src0); + + float eps; + memcpy(&eps, dst->op_params, sizeof(float)); + + rms_norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream); +} diff --git a/llama/ggml-cuda/norm.cuh b/llama/ggml-cuda/norm.cuh index 61f880b0..431a8f74 100644 --- a/llama/ggml-cuda/norm.cuh +++ b/llama/ggml-cuda/norm.cuh @@ -1,7 +1,7 @@ -#include "common.cuh" - -void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst); - -void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst); - -void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst); +#include "common.cuh" + +void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst); + +void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst); + +void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/llama/ggml-cuda/pad.cu b/llama/ggml-cuda/pad.cu index a033a8d0..aba539e8 100644 --- a/llama/ggml-cuda/pad.cu +++ b/llama/ggml-cuda/pad.cu @@ -1,49 +1,49 @@ -#include "pad.cuh" - -static __global__ void pad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) { - // blockIdx.z: idx of ne2*ne3, aka ne02*ne03 - // blockIdx.y: idx of ne1 - // blockIDx.x: idx of ne0 / BLOCK_SIZE - int nidx = threadIdx.x + blockIdx.x * blockDim.x; - if (nidx >= ne0) { - return; - } - - // operation - int offset_dst = - nidx + - blockIdx.y * ne0 + - blockIdx.z * ne0 * gridDim.y; - if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) { - int offset_src = - nidx + - blockIdx.y * ne00 + - blockIdx.z * ne00 * ne01; - dst[offset_dst] = x[offset_src]; - } else { - dst[offset_dst] = 0.0f; - } -} - -static void pad_f32_cuda(const float * x, float * dst, - const int ne00, const int ne01, const int ne02, const int ne03, - const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) { - int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE; - dim3 gridDim(num_blocks, ne1, ne2*ne3); - pad_f32<<>>(x, dst, ne0, ne00, ne01, ne02, ne03); -} - -void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const float * src0_d = (const float *)src0->data; - float * dst_d = (float *)dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(src0->type == GGML_TYPE_F32); - GGML_ASSERT(dst->type == GGML_TYPE_F32); - GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors - - pad_f32_cuda(src0_d, dst_d, - src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], - dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream); -} +#include "pad.cuh" + +static __global__ void pad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) { + // blockIdx.z: idx of ne2*ne3, aka ne02*ne03 + // blockIdx.y: idx of ne1 + // blockIDx.x: idx of ne0 / BLOCK_SIZE + int nidx = threadIdx.x + blockIdx.x * blockDim.x; + if (nidx >= ne0) { + return; + } + + // operation + int offset_dst = + nidx + + blockIdx.y * ne0 + + blockIdx.z * ne0 * gridDim.y; + if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) { + int offset_src = + nidx + + blockIdx.y * ne00 + + blockIdx.z * ne00 * ne01; + dst[offset_dst] = x[offset_src]; + } else { + dst[offset_dst] = 0.0f; + } +} + +static void pad_f32_cuda(const float * x, float * dst, + const int ne00, const int ne01, const int ne02, const int ne03, + const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) { + int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE; + dim3 gridDim(num_blocks, ne1, ne2*ne3); + pad_f32<<>>(x, dst, ne0, ne00, ne01, ne02, ne03); +} + +void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * src0 = dst->src[0]; + const float * src0_d = (const float *)src0->data; + float * dst_d = (float *)dst->data; + cudaStream_t stream = ctx.stream(); + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT(dst->type == GGML_TYPE_F32); + GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors + + pad_f32_cuda(src0_d, dst_d, + src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], + dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream); +} diff --git a/llama/ggml-cuda/pad.cuh b/llama/ggml-cuda/pad.cuh index b8ebc809..8fd386b0 100644 --- a/llama/ggml-cuda/pad.cuh +++ b/llama/ggml-cuda/pad.cuh @@ -1,5 +1,5 @@ -#include "common.cuh" - -#define CUDA_PAD_BLOCK_SIZE 256 - -void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst); +#include "common.cuh" + +#define CUDA_PAD_BLOCK_SIZE 256 + +void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/llama/ggml-cuda/pool2d.cu b/llama/ggml-cuda/pool2d.cu index 2b098207..c6d51e4d 100644 --- a/llama/ggml-cuda/pool2d.cu +++ b/llama/ggml-cuda/pool2d.cu @@ -1,94 +1,94 @@ -#include "pool2d.cuh" - -template -static __global__ void pool2d_nchw_kernel( - const int ih, const int iw, const int oh, const int ow, - const int kh, const int kw, const int sh, const int sw, - const int ph, const int pw, const int parallel_elements, - const Ti* src, To* dst, const enum ggml_op_pool op) { - int idx = threadIdx.x + blockIdx.x * blockDim.x; - if (idx >= parallel_elements) { - return; - } - - const int I_HW = ih * iw; - const int O_HW = oh * ow; - const int nc = idx / O_HW; - const int cur_oh = idx % O_HW / ow; - const int cur_ow = idx % O_HW % ow; - const Ti* i_ptr = src + nc * I_HW; - To* o_ptr = dst + nc * O_HW; - const int start_h = cur_oh * sh - ph; - const int bh = max(0, start_h); - const int eh = min(ih, start_h + kh); - const int start_w = cur_ow * sw - pw; - const int bw = max(0, start_w); - const int ew = min(iw, start_w + kw); - const To scale = 1. / (kh * kw); - To res = 0; - - switch (op) { - case GGML_OP_POOL_AVG: res = 0; break; - case GGML_OP_POOL_MAX: res = -FLT_MAX; break; - default: assert(false); - } - - for (int i = bh; i < eh; i += 1) { - for (int j = bw; j < ew; j += 1) { -#if __CUDA_ARCH__ >= 350 - Ti cur = __ldg(i_ptr + i * iw + j); -#else - Ti cur = i_ptr[i * iw + j]; -#endif - switch (op) { - case GGML_OP_POOL_AVG: res += cur * scale; break; - case GGML_OP_POOL_MAX: res = max(res, (To)cur); break; - default: assert(false); - } - } - } - o_ptr[cur_oh * ow + cur_ow] = res; -} - -static void pool2d_nchw_kernel_f32_f32_cuda( - const int ih, const int iw, const int oh, const int ow, - const int kh, const int kw, const int sh, const int sw, - const int ph, const int pw, const int parallel_elements, - const float * src, float * dst, const enum ggml_op_pool op, - cudaStream_t stream) { - - const int num_blocks = (parallel_elements + CUDA_POOL2D_BLOCK_SIZE - 1) / CUDA_POOL2D_BLOCK_SIZE; - dim3 block_nums(num_blocks); - pool2d_nchw_kernel<<>>(ih, iw, oh, ow, kh, kw, sh, sw, ph, pw, parallel_elements, src, dst, op); -} - -void ggml_cuda_op_pool2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const float * src0_d = (const float *)src0->data; - float * dst_d = (float *)dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(src0->type == GGML_TYPE_F32); - GGML_ASSERT( dst->type == GGML_TYPE_F32); - - const int32_t * opts = (const int32_t *)dst->op_params; - enum ggml_op_pool op = static_cast(opts[0]); - const int k0 = opts[1]; - const int k1 = opts[2]; - const int s0 = opts[3]; - const int s1 = opts[4]; - const int p0 = opts[5]; - const int p1 = opts[6]; - - const int64_t IH = src0->ne[1]; - const int64_t IW = src0->ne[0]; - - const int64_t N = dst->ne[3]; - const int64_t OC = dst->ne[2]; - const int64_t OH = dst->ne[1]; - const int64_t OW = dst->ne[0]; - - const int parallel_elements = N * OC * OH * OW; - - pool2d_nchw_kernel_f32_f32_cuda(IH, IW, OH, OW, k1, k0, s1, s0, p1, p0, parallel_elements, src0_d, dst_d, op, stream); -} +#include "pool2d.cuh" + +template +static __global__ void pool2d_nchw_kernel( + const int ih, const int iw, const int oh, const int ow, + const int kh, const int kw, const int sh, const int sw, + const int ph, const int pw, const int parallel_elements, + const Ti* src, To* dst, const enum ggml_op_pool op) { + int idx = threadIdx.x + blockIdx.x * blockDim.x; + if (idx >= parallel_elements) { + return; + } + + const int I_HW = ih * iw; + const int O_HW = oh * ow; + const int nc = idx / O_HW; + const int cur_oh = idx % O_HW / ow; + const int cur_ow = idx % O_HW % ow; + const Ti* i_ptr = src + nc * I_HW; + To* o_ptr = dst + nc * O_HW; + const int start_h = cur_oh * sh - ph; + const int bh = max(0, start_h); + const int eh = min(ih, start_h + kh); + const int start_w = cur_ow * sw - pw; + const int bw = max(0, start_w); + const int ew = min(iw, start_w + kw); + const To scale = 1. / (kh * kw); + To res = 0; + + switch (op) { + case GGML_OP_POOL_AVG: res = 0; break; + case GGML_OP_POOL_MAX: res = -FLT_MAX; break; + default: assert(false); + } + + for (int i = bh; i < eh; i += 1) { + for (int j = bw; j < ew; j += 1) { +#if __CUDA_ARCH__ >= 350 + Ti cur = __ldg(i_ptr + i * iw + j); +#else + Ti cur = i_ptr[i * iw + j]; +#endif + switch (op) { + case GGML_OP_POOL_AVG: res += cur * scale; break; + case GGML_OP_POOL_MAX: res = max(res, (To)cur); break; + default: assert(false); + } + } + } + o_ptr[cur_oh * ow + cur_ow] = res; +} + +static void pool2d_nchw_kernel_f32_f32_cuda( + const int ih, const int iw, const int oh, const int ow, + const int kh, const int kw, const int sh, const int sw, + const int ph, const int pw, const int parallel_elements, + const float * src, float * dst, const enum ggml_op_pool op, + cudaStream_t stream) { + + const int num_blocks = (parallel_elements + CUDA_POOL2D_BLOCK_SIZE - 1) / CUDA_POOL2D_BLOCK_SIZE; + dim3 block_nums(num_blocks); + pool2d_nchw_kernel<<>>(ih, iw, oh, ow, kh, kw, sh, sw, ph, pw, parallel_elements, src, dst, op); +} + +void ggml_cuda_op_pool2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * src0 = dst->src[0]; + const float * src0_d = (const float *)src0->data; + float * dst_d = (float *)dst->data; + cudaStream_t stream = ctx.stream(); + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + const int32_t * opts = (const int32_t *)dst->op_params; + enum ggml_op_pool op = static_cast(opts[0]); + const int k0 = opts[1]; + const int k1 = opts[2]; + const int s0 = opts[3]; + const int s1 = opts[4]; + const int p0 = opts[5]; + const int p1 = opts[6]; + + const int64_t IH = src0->ne[1]; + const int64_t IW = src0->ne[0]; + + const int64_t N = dst->ne[3]; + const int64_t OC = dst->ne[2]; + const int64_t OH = dst->ne[1]; + const int64_t OW = dst->ne[0]; + + const int parallel_elements = N * OC * OH * OW; + + pool2d_nchw_kernel_f32_f32_cuda(IH, IW, OH, OW, k1, k0, s1, s0, p1, p0, parallel_elements, src0_d, dst_d, op, stream); +} diff --git a/llama/ggml-cuda/pool2d.cuh b/llama/ggml-cuda/pool2d.cuh index de65151b..7841292b 100644 --- a/llama/ggml-cuda/pool2d.cuh +++ b/llama/ggml-cuda/pool2d.cuh @@ -1,5 +1,5 @@ -#include "common.cuh" - -#define CUDA_POOL2D_BLOCK_SIZE 256 - -void ggml_cuda_op_pool2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst); +#include "common.cuh" + +#define CUDA_POOL2D_BLOCK_SIZE 256 + +void ggml_cuda_op_pool2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/llama/ggml-cuda/quantize.cu b/llama/ggml-cuda/quantize.cu index 77fc86d3..7578c4b6 100644 --- a/llama/ggml-cuda/quantize.cu +++ b/llama/ggml-cuda/quantize.cu @@ -1,45 +1,45 @@ -#include "quantize.cuh" - -static __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int64_t kx, const int64_t kx_padded) { - const int64_t ix = (int64_t)blockDim.x*blockIdx.x + threadIdx.x; - - if (ix >= kx_padded) { - return; - } - - const int64_t iy = (int64_t)blockDim.y*blockIdx.y + threadIdx.y; - - const int64_t i_padded = (int64_t)iy*kx_padded + ix; - - block_q8_1 * y = (block_q8_1 *) vy; - - const int64_t ib = i_padded / QK8_1; // block index - const int64_t iqs = i_padded % QK8_1; // quant index - - const float xi = ix < kx ? x[iy*kx + ix] : 0.0f; - float amax = fabsf(xi); - float sum = xi; - - amax = warp_reduce_max(amax); - sum = warp_reduce_sum(sum); - - const float d = amax / 127; - const int8_t q = amax == 0.0f ? 0 : roundf(xi / d); - - y[ib].qs[iqs] = q; - - if (iqs > 0) { - return; - } - - reinterpret_cast(y[ib].ds.x) = d; - reinterpret_cast(y[ib].ds.y) = sum; -} - -void quantize_row_q8_1_cuda(const float * x, void * vy, const int64_t kx, const int64_t ky, const int64_t kx_padded, cudaStream_t stream) { - const int64_t block_num_x = (kx_padded + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE; - const dim3 num_blocks(block_num_x, ky, 1); - const dim3 block_size(CUDA_QUANTIZE_BLOCK_SIZE, 1, 1); - quantize_q8_1<<>>(x, vy, kx, kx_padded); -} - +#include "quantize.cuh" + +static __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int64_t kx, const int64_t kx_padded) { + const int64_t ix = (int64_t)blockDim.x*blockIdx.x + threadIdx.x; + + if (ix >= kx_padded) { + return; + } + + const int64_t iy = (int64_t)blockDim.y*blockIdx.y + threadIdx.y; + + const int64_t i_padded = (int64_t)iy*kx_padded + ix; + + block_q8_1 * y = (block_q8_1 *) vy; + + const int64_t ib = i_padded / QK8_1; // block index + const int64_t iqs = i_padded % QK8_1; // quant index + + const float xi = ix < kx ? x[iy*kx + ix] : 0.0f; + float amax = fabsf(xi); + float sum = xi; + + amax = warp_reduce_max(amax); + sum = warp_reduce_sum(sum); + + const float d = amax / 127; + const int8_t q = amax == 0.0f ? 0 : roundf(xi / d); + + y[ib].qs[iqs] = q; + + if (iqs > 0) { + return; + } + + reinterpret_cast(y[ib].ds.x) = d; + reinterpret_cast(y[ib].ds.y) = sum; +} + +void quantize_row_q8_1_cuda(const float * x, void * vy, const int64_t kx, const int64_t ky, const int64_t kx_padded, cudaStream_t stream) { + const int64_t block_num_x = (kx_padded + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE; + const dim3 num_blocks(block_num_x, ky, 1); + const dim3 block_size(CUDA_QUANTIZE_BLOCK_SIZE, 1, 1); + quantize_q8_1<<>>(x, vy, kx, kx_padded); +} + diff --git a/llama/ggml-cuda/quantize.cuh b/llama/ggml-cuda/quantize.cuh index 5df5e6cc..b37a4752 100644 --- a/llama/ggml-cuda/quantize.cuh +++ b/llama/ggml-cuda/quantize.cuh @@ -1,5 +1,5 @@ -#include "common.cuh" - -#define CUDA_QUANTIZE_BLOCK_SIZE 256 - -void quantize_row_q8_1_cuda(const float * x, void * vy, const int64_t kx, const int64_t ky, const int64_t kx_padded, cudaStream_t stream); +#include "common.cuh" + +#define CUDA_QUANTIZE_BLOCK_SIZE 256 + +void quantize_row_q8_1_cuda(const float * x, void * vy, const int64_t kx, const int64_t ky, const int64_t kx_padded, cudaStream_t stream); diff --git a/llama/ggml-cuda/rope.cu b/llama/ggml-cuda/rope.cu index 63ddb517..4b0d2e5a 100644 --- a/llama/ggml-cuda/rope.cu +++ b/llama/ggml-cuda/rope.cu @@ -1,308 +1,308 @@ -#include "rope.cuh" - -struct rope_corr_dims { - float v[4]; -}; - -static __device__ float rope_yarn_ramp(const float low, const float high, const int i0) { - const float y = (i0 / 2 - low) / max(0.001f, high - low); - return 1.0f - min(1.0f, max(0.0f, y)); -} - -// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn -// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng. -static __device__ void rope_yarn( - float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale, - float * cos_theta, float * sin_theta -) { - // Get n-d rotational scaling corrected for extrapolation - float theta_interp = freq_scale * theta_extrap; - float theta = theta_interp; - if (ext_factor != 0.0f) { - float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor; - theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix; - - // Get n-d magnitude scaling corrected for interpolation - mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale); - } - *cos_theta = cosf(theta) * mscale; - *sin_theta = sinf(theta) * mscale; -} - -// rope == RoPE == rotary positional embedding -template -static __global__ void rope( - const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base, - float ext_factor, float attn_factor, rope_corr_dims corr_dims -) { - const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y); - - if (col >= ncols) { - return; - } - - const int row = blockDim.x*blockIdx.x + threadIdx.x; - const int i = row*ncols + col; - const int i2 = row/p_delta_rows; - - const int p = has_pos ? pos[i2] : 0; - const float theta_base = p*powf(freq_base, -float(col)/ncols); - - float cos_theta, sin_theta; - rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta); - - const float x0 = x[i + 0]; - const float x1 = x[i + 1]; - - dst[i + 0] = x0*cos_theta - x1*sin_theta; - dst[i + 1] = x0*sin_theta + x1*cos_theta; -} - -template -static __global__ void rope_neox( - const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows, - float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims -) { - const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y); - - if (col >= ncols) { - return; - } - - const int row = blockDim.x*blockIdx.x + threadIdx.x; - const int ib = col / n_dims; - const int ic = col % n_dims; - - if (ib > 0) { - const int i = row*ncols + ib*n_dims + ic; - - dst[i + 0] = x[i + 0]; - dst[i + 1] = x[i + 1]; - - return; - } - - const int i = row*ncols + ib*n_dims + ic/2; - const int i2 = row/p_delta_rows; - - float cur_rot = inv_ndims * ic - ib; - - const int p = has_pos ? pos[i2] : 0; - const float theta_base = p*freq_scale*powf(theta_scale, col/2.0f); - - float cos_theta, sin_theta; - rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta); - - const float x0 = x[i + 0]; - const float x1 = x[i + n_dims/2]; - - dst[i + 0] = x0*cos_theta - x1*sin_theta; - dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta; -} - -static __global__ void rope_glm_f32( - const float * x, float * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base, - int n_ctx -) { - const int col = blockDim.x*blockIdx.x + threadIdx.x; - const int half_n_dims = ncols/4; - - if (col >= half_n_dims) { - return; - } - - const int row = blockDim.y*blockIdx.y + threadIdx.y; - const int i = row*ncols + col; - const int i2 = row/p_delta_rows; - - const float col_theta_scale = powf(freq_base, -2.0f*col/ncols); - // FIXME: this is likely wrong - const int p = pos != nullptr ? pos[i2] : 0; - - const float theta = min(p, n_ctx - 2)*freq_scale*col_theta_scale; - const float sin_theta = sinf(theta); - const float cos_theta = cosf(theta); - - const float x0 = x[i + 0]; - const float x1 = x[i + half_n_dims]; - - dst[i + 0] = x0*cos_theta - x1*sin_theta; - dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta; - - const float block_theta = ((float)max(p - n_ctx - 2, 0))*col_theta_scale; - const float sin_block_theta = sinf(block_theta); - const float cos_block_theta = cosf(block_theta); - - const float x2 = x[i + half_n_dims * 2]; - const float x3 = x[i + half_n_dims * 3]; - - dst[i + half_n_dims * 2] = x2*cos_block_theta - x3*sin_block_theta; - dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta; -} - - -template -static void rope_cuda( - const T * x, T * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows, - float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream -) { - GGML_ASSERT(ncols % 2 == 0); - const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1); - const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE); - const dim3 block_nums(nrows, num_blocks_x, 1); - if (pos == nullptr) { - rope<<>>( - x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims - ); - } else { - rope<<>>( - x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims - ); - } -} - -template -static void rope_neox_cuda( - const T * x, T * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows, - float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream -) { - GGML_ASSERT(ncols % 2 == 0); - const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1); - const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE); - const dim3 block_nums(nrows, num_blocks_x, 1); - - const float theta_scale = powf(freq_base, -2.0f/n_dims); - const float inv_ndims = -1.0f / n_dims; - - if (pos == nullptr) { - rope_neox<<>>( - x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims, - theta_scale, inv_ndims - ); - } else { - rope_neox<<>>( - x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims, - theta_scale, inv_ndims - ); - } -} - -static void rope_glm_f32_cuda( - const float * x, float * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows, - float freq_base, int n_ctx, cudaStream_t stream -) { - GGML_ASSERT(ncols % 4 == 0); - const dim3 block_dims(CUDA_ROPE_BLOCK_SIZE/4, 1, 1); - const int num_blocks_x = (ncols + CUDA_ROPE_BLOCK_SIZE - 1) / CUDA_ROPE_BLOCK_SIZE; - const dim3 block_nums(num_blocks_x, nrows, 1); - rope_glm_f32<<>>(x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, n_ctx); -} - -static void rope_cuda_f16( - const half * x, half * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows, - float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream) { - - rope_cuda(x, dst, ncols, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream); -} - -static void rope_cuda_f32( - const float * x, float * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows, - float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream) { - - rope_cuda(x, dst, ncols, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream); -} - -static void rope_neox_cuda_f16( - const half * x, half * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows, - float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream) { - - rope_neox_cuda(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream); -} - -static void rope_neox_cuda_f32( - const float * x, float * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows, - float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream -) { - - rope_neox_cuda(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream); -} - -void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const ggml_tensor * src1 = dst->src[1]; - const float * src0_d = (const float *)src0->data; - const float * src1_d = (const float *)src1->data; - float * dst_d = (float *)dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); - GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); - GGML_ASSERT(src0->type == dst->type); - - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t nrows = ggml_nrows(src0); - - //const int n_past = ((int32_t *) dst->op_params)[0]; - const int n_dims = ((int32_t *) dst->op_params)[1]; - const int mode = ((int32_t *) dst->op_params)[2]; - const int n_ctx = ((int32_t *) dst->op_params)[3]; - const int n_orig_ctx = ((int32_t *) dst->op_params)[4]; - - // RoPE alteration for extended context - float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; - memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); - memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float)); - memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float)); - memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); - memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); - memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); - - const int32_t * pos = nullptr; - if ((mode & 1) == 0) { - GGML_ASSERT(src1->type == GGML_TYPE_I32); - GGML_ASSERT(src1->ne[0] == ne2); - pos = (const int32_t *) src1_d; - } - - const bool is_neox = mode & 2; - const bool is_glm = mode & 4; - - rope_corr_dims corr_dims; - ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v); - - // compute - if (is_glm) { - GGML_ASSERT(false); - rope_glm_f32_cuda(src0_d, dst_d, ne00, nrows, pos, freq_scale, ne01, freq_base, n_ctx, stream); - } else if (is_neox) { - if (src0->type == GGML_TYPE_F32) { - rope_neox_cuda_f32( - (const float *)src0_d, (float *)dst_d, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor, - attn_factor, corr_dims, stream - ); - } else if (src0->type == GGML_TYPE_F16) { - rope_neox_cuda_f16( - (const half *)src0_d, (half *)dst_d, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor, - attn_factor, corr_dims, stream - ); - } else { - GGML_ASSERT(false); - } - } else { - if (src0->type == GGML_TYPE_F32) { - rope_cuda_f32( - (const float *)src0_d, (float *)dst_d, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor, - attn_factor, corr_dims, stream - ); - } else if (src0->type == GGML_TYPE_F16) { - rope_cuda_f16( - (const half *)src0_d, (half *)dst_d, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor, - attn_factor, corr_dims, stream - ); - } else { - GGML_ASSERT(false); - } - } -} +#include "rope.cuh" + +struct rope_corr_dims { + float v[4]; +}; + +static __device__ float rope_yarn_ramp(const float low, const float high, const int i0) { + const float y = (i0 / 2 - low) / max(0.001f, high - low); + return 1.0f - min(1.0f, max(0.0f, y)); +} + +// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn +// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng. +static __device__ void rope_yarn( + float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale, + float * cos_theta, float * sin_theta +) { + // Get n-d rotational scaling corrected for extrapolation + float theta_interp = freq_scale * theta_extrap; + float theta = theta_interp; + if (ext_factor != 0.0f) { + float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor; + theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix; + + // Get n-d magnitude scaling corrected for interpolation + mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale); + } + *cos_theta = cosf(theta) * mscale; + *sin_theta = sinf(theta) * mscale; +} + +// rope == RoPE == rotary positional embedding +template +static __global__ void rope( + const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base, + float ext_factor, float attn_factor, rope_corr_dims corr_dims +) { + const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y); + + if (col >= ncols) { + return; + } + + const int row = blockDim.x*blockIdx.x + threadIdx.x; + const int i = row*ncols + col; + const int i2 = row/p_delta_rows; + + const int p = has_pos ? pos[i2] : 0; + const float theta_base = p*powf(freq_base, -float(col)/ncols); + + float cos_theta, sin_theta; + rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta); + + const float x0 = x[i + 0]; + const float x1 = x[i + 1]; + + dst[i + 0] = x0*cos_theta - x1*sin_theta; + dst[i + 1] = x0*sin_theta + x1*cos_theta; +} + +template +static __global__ void rope_neox( + const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows, + float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims +) { + const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y); + + if (col >= ncols) { + return; + } + + const int row = blockDim.x*blockIdx.x + threadIdx.x; + const int ib = col / n_dims; + const int ic = col % n_dims; + + if (ib > 0) { + const int i = row*ncols + ib*n_dims + ic; + + dst[i + 0] = x[i + 0]; + dst[i + 1] = x[i + 1]; + + return; + } + + const int i = row*ncols + ib*n_dims + ic/2; + const int i2 = row/p_delta_rows; + + float cur_rot = inv_ndims * ic - ib; + + const int p = has_pos ? pos[i2] : 0; + const float theta_base = p*freq_scale*powf(theta_scale, col/2.0f); + + float cos_theta, sin_theta; + rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta); + + const float x0 = x[i + 0]; + const float x1 = x[i + n_dims/2]; + + dst[i + 0] = x0*cos_theta - x1*sin_theta; + dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta; +} + +static __global__ void rope_glm_f32( + const float * x, float * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base, + int n_ctx +) { + const int col = blockDim.x*blockIdx.x + threadIdx.x; + const int half_n_dims = ncols/4; + + if (col >= half_n_dims) { + return; + } + + const int row = blockDim.y*blockIdx.y + threadIdx.y; + const int i = row*ncols + col; + const int i2 = row/p_delta_rows; + + const float col_theta_scale = powf(freq_base, -2.0f*col/ncols); + // FIXME: this is likely wrong + const int p = pos != nullptr ? pos[i2] : 0; + + const float theta = min(p, n_ctx - 2)*freq_scale*col_theta_scale; + const float sin_theta = sinf(theta); + const float cos_theta = cosf(theta); + + const float x0 = x[i + 0]; + const float x1 = x[i + half_n_dims]; + + dst[i + 0] = x0*cos_theta - x1*sin_theta; + dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta; + + const float block_theta = ((float)max(p - n_ctx - 2, 0))*col_theta_scale; + const float sin_block_theta = sinf(block_theta); + const float cos_block_theta = cosf(block_theta); + + const float x2 = x[i + half_n_dims * 2]; + const float x3 = x[i + half_n_dims * 3]; + + dst[i + half_n_dims * 2] = x2*cos_block_theta - x3*sin_block_theta; + dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta; +} + + +template +static void rope_cuda( + const T * x, T * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows, + float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream +) { + GGML_ASSERT(ncols % 2 == 0); + const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1); + const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE); + const dim3 block_nums(nrows, num_blocks_x, 1); + if (pos == nullptr) { + rope<<>>( + x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims + ); + } else { + rope<<>>( + x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims + ); + } +} + +template +static void rope_neox_cuda( + const T * x, T * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows, + float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream +) { + GGML_ASSERT(ncols % 2 == 0); + const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1); + const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE); + const dim3 block_nums(nrows, num_blocks_x, 1); + + const float theta_scale = powf(freq_base, -2.0f/n_dims); + const float inv_ndims = -1.0f / n_dims; + + if (pos == nullptr) { + rope_neox<<>>( + x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims, + theta_scale, inv_ndims + ); + } else { + rope_neox<<>>( + x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims, + theta_scale, inv_ndims + ); + } +} + +static void rope_glm_f32_cuda( + const float * x, float * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows, + float freq_base, int n_ctx, cudaStream_t stream +) { + GGML_ASSERT(ncols % 4 == 0); + const dim3 block_dims(CUDA_ROPE_BLOCK_SIZE/4, 1, 1); + const int num_blocks_x = (ncols + CUDA_ROPE_BLOCK_SIZE - 1) / CUDA_ROPE_BLOCK_SIZE; + const dim3 block_nums(num_blocks_x, nrows, 1); + rope_glm_f32<<>>(x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, n_ctx); +} + +static void rope_cuda_f16( + const half * x, half * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows, + float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream) { + + rope_cuda(x, dst, ncols, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream); +} + +static void rope_cuda_f32( + const float * x, float * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows, + float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream) { + + rope_cuda(x, dst, ncols, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream); +} + +static void rope_neox_cuda_f16( + const half * x, half * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows, + float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream) { + + rope_neox_cuda(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream); +} + +static void rope_neox_cuda_f32( + const float * x, float * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows, + float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream +) { + + rope_neox_cuda(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream); +} + +void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * src0 = dst->src[0]; + const ggml_tensor * src1 = dst->src[1]; + const float * src0_d = (const float *)src0->data; + const float * src1_d = (const float *)src1->data; + float * dst_d = (float *)dst->data; + cudaStream_t stream = ctx.stream(); + + GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); + GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); + GGML_ASSERT(src0->type == dst->type); + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne2 = dst->ne[2]; + const int64_t nrows = ggml_nrows(src0); + + //const int n_past = ((int32_t *) dst->op_params)[0]; + const int n_dims = ((int32_t *) dst->op_params)[1]; + const int mode = ((int32_t *) dst->op_params)[2]; + const int n_ctx = ((int32_t *) dst->op_params)[3]; + const int n_orig_ctx = ((int32_t *) dst->op_params)[4]; + + // RoPE alteration for extended context + float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; + memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); + memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float)); + memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float)); + memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); + memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); + memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); + + const int32_t * pos = nullptr; + if ((mode & 1) == 0) { + GGML_ASSERT(src1->type == GGML_TYPE_I32); + GGML_ASSERT(src1->ne[0] == ne2); + pos = (const int32_t *) src1_d; + } + + const bool is_neox = mode & 2; + const bool is_glm = mode & 4; + + rope_corr_dims corr_dims; + ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v); + + // compute + if (is_glm) { + GGML_ASSERT(false); + rope_glm_f32_cuda(src0_d, dst_d, ne00, nrows, pos, freq_scale, ne01, freq_base, n_ctx, stream); + } else if (is_neox) { + if (src0->type == GGML_TYPE_F32) { + rope_neox_cuda_f32( + (const float *)src0_d, (float *)dst_d, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor, + attn_factor, corr_dims, stream + ); + } else if (src0->type == GGML_TYPE_F16) { + rope_neox_cuda_f16( + (const half *)src0_d, (half *)dst_d, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor, + attn_factor, corr_dims, stream + ); + } else { + GGML_ASSERT(false); + } + } else { + if (src0->type == GGML_TYPE_F32) { + rope_cuda_f32( + (const float *)src0_d, (float *)dst_d, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor, + attn_factor, corr_dims, stream + ); + } else if (src0->type == GGML_TYPE_F16) { + rope_cuda_f16( + (const half *)src0_d, (half *)dst_d, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor, + attn_factor, corr_dims, stream + ); + } else { + GGML_ASSERT(false); + } + } +} diff --git a/llama/ggml-cuda/rope.cuh b/llama/ggml-cuda/rope.cuh index c2b29a7d..0f787a0b 100644 --- a/llama/ggml-cuda/rope.cuh +++ b/llama/ggml-cuda/rope.cuh @@ -1,5 +1,5 @@ -#include "common.cuh" - -#define CUDA_ROPE_BLOCK_SIZE 256 - -void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst); +#include "common.cuh" + +#define CUDA_ROPE_BLOCK_SIZE 256 + +void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/llama/ggml-cuda/scale.cuh b/llama/ggml-cuda/scale.cuh index f35503f7..8ff75c82 100644 --- a/llama/ggml-cuda/scale.cuh +++ b/llama/ggml-cuda/scale.cuh @@ -1,5 +1,5 @@ -#include "common.cuh" - -#define CUDA_SCALE_BLOCK_SIZE 256 - -void ggml_cuda_op_scale(ggml_backend_cuda_context & ctx, ggml_tensor * dst); +#include "common.cuh" + +#define CUDA_SCALE_BLOCK_SIZE 256 + +void ggml_cuda_op_scale(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/llama/ggml-cuda/softmax.cuh b/llama/ggml-cuda/softmax.cuh index 5f6564af..4ef4ff86 100644 --- a/llama/ggml-cuda/softmax.cuh +++ b/llama/ggml-cuda/softmax.cuh @@ -1,5 +1,5 @@ -#include "common.cuh" - -#define CUDA_SOFT_MAX_BLOCK_SIZE 1024 - -void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst); +#include "common.cuh" + +#define CUDA_SOFT_MAX_BLOCK_SIZE 1024 + +void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/llama/ggml-cuda/sumrows.cu b/llama/ggml-cuda/sumrows.cu index 0422821d..82e8e875 100644 --- a/llama/ggml-cuda/sumrows.cu +++ b/llama/ggml-cuda/sumrows.cu @@ -1,40 +1,40 @@ -#include "sumrows.cuh" - -static __global__ void k_sum_rows_f32(const float * x, float * dst, const int ncols) { - const int row = blockIdx.x; - const int col = threadIdx.x; - - float sum = 0.0f; - for (int i = col; i < ncols; i += blockDim.x) { - sum += x[row * ncols + i]; - } - - sum = warp_reduce_sum(sum); - - if (col == 0) { - dst[row] = sum; - } -} - -static void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) { - const dim3 block_dims(WARP_SIZE, 1, 1); - const dim3 block_nums(nrows, 1, 1); - k_sum_rows_f32<<>>(x, dst, ncols); -} - -void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const float * src0_d = (const float *)src0->data; - float * dst_d = (float *)dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(src0->type == GGML_TYPE_F32); - GGML_ASSERT( dst->type == GGML_TYPE_F32); - GGML_ASSERT(ggml_is_contiguous(src0)); - - - const int64_t ncols = src0->ne[0]; - const int64_t nrows = ggml_nrows(src0); - - sum_rows_f32_cuda(src0_d, dst_d, ncols, nrows, stream); -} +#include "sumrows.cuh" + +static __global__ void k_sum_rows_f32(const float * x, float * dst, const int ncols) { + const int row = blockIdx.x; + const int col = threadIdx.x; + + float sum = 0.0f; + for (int i = col; i < ncols; i += blockDim.x) { + sum += x[row * ncols + i]; + } + + sum = warp_reduce_sum(sum); + + if (col == 0) { + dst[row] = sum; + } +} + +static void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) { + const dim3 block_dims(WARP_SIZE, 1, 1); + const dim3 block_nums(nrows, 1, 1); + k_sum_rows_f32<<>>(x, dst, ncols); +} + +void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * src0 = dst->src[0]; + const float * src0_d = (const float *)src0->data; + float * dst_d = (float *)dst->data; + cudaStream_t stream = ctx.stream(); + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + GGML_ASSERT(ggml_is_contiguous(src0)); + + + const int64_t ncols = src0->ne[0]; + const int64_t nrows = ggml_nrows(src0); + + sum_rows_f32_cuda(src0_d, dst_d, ncols, nrows, stream); +} diff --git a/llama/ggml-cuda/sumrows.cuh b/llama/ggml-cuda/sumrows.cuh index 7558b493..e7545f83 100644 --- a/llama/ggml-cuda/sumrows.cuh +++ b/llama/ggml-cuda/sumrows.cuh @@ -1,3 +1,3 @@ -#include "common.cuh" - -void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst); +#include "common.cuh" + +void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/llama/ggml-cuda/tsembd.cu b/llama/ggml-cuda/tsembd.cu index 3fca3327..153ddbcd 100644 --- a/llama/ggml-cuda/tsembd.cu +++ b/llama/ggml-cuda/tsembd.cu @@ -1,47 +1,47 @@ -#include "tsembd.cuh" - -static __global__ void timestep_embedding_f32(const float * timesteps, float * dst, const int nb1, const int dim, const int max_period) { - // blockIDx.y: idx of timesteps->ne[0] - // blockIDx.x: idx of ((dim + 1) / 2) / BLOCK_SIZE - int i = blockIdx.y; - int j = threadIdx.x + blockIdx.x * blockDim.x; - float * embed_data = (float *)((char *)dst + i*nb1); - - if (dim % 2 != 0 && j == ((dim + 1) / 2)) { - embed_data[dim] = 0.f; - } - - int half = dim / 2; - if (j >= half) { - return; - } - - float timestep = timesteps[i]; - float freq = (float)expf(-logf(max_period) * j / half); - float arg = timestep * freq; - embed_data[j] = cosf(arg); - embed_data[j + half] = sinf(arg); -} - -static void timestep_embedding_f32_cuda(const float * x, float * dst, const int ne00, const int nb1, - const int dim, const int max_period, cudaStream_t stream) { - int half_ceil = (dim + 1) / 2; - int num_blocks = (half_ceil + CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE - 1) / CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE; - dim3 gridDim(num_blocks, ne00, 1); - timestep_embedding_f32<<>>(x, dst, nb1, dim, max_period); -} - -void ggml_cuda_op_timestep_embedding(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const float * src0_d = (const float *)src0->data; - float * dst_d = (float *)dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(src0->type == GGML_TYPE_F32); - GGML_ASSERT(dst->type == GGML_TYPE_F32); - - const int dim = dst->op_params[0]; - const int max_period = dst->op_params[1]; - - timestep_embedding_f32_cuda(src0_d, dst_d, src0->ne[0], dst->nb[1], dim, max_period, stream); -} +#include "tsembd.cuh" + +static __global__ void timestep_embedding_f32(const float * timesteps, float * dst, const int nb1, const int dim, const int max_period) { + // blockIDx.y: idx of timesteps->ne[0] + // blockIDx.x: idx of ((dim + 1) / 2) / BLOCK_SIZE + int i = blockIdx.y; + int j = threadIdx.x + blockIdx.x * blockDim.x; + float * embed_data = (float *)((char *)dst + i*nb1); + + if (dim % 2 != 0 && j == ((dim + 1) / 2)) { + embed_data[dim] = 0.f; + } + + int half = dim / 2; + if (j >= half) { + return; + } + + float timestep = timesteps[i]; + float freq = (float)expf(-logf(max_period) * j / half); + float arg = timestep * freq; + embed_data[j] = cosf(arg); + embed_data[j + half] = sinf(arg); +} + +static void timestep_embedding_f32_cuda(const float * x, float * dst, const int ne00, const int nb1, + const int dim, const int max_period, cudaStream_t stream) { + int half_ceil = (dim + 1) / 2; + int num_blocks = (half_ceil + CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE - 1) / CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE; + dim3 gridDim(num_blocks, ne00, 1); + timestep_embedding_f32<<>>(x, dst, nb1, dim, max_period); +} + +void ggml_cuda_op_timestep_embedding(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * src0 = dst->src[0]; + const float * src0_d = (const float *)src0->data; + float * dst_d = (float *)dst->data; + cudaStream_t stream = ctx.stream(); + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT(dst->type == GGML_TYPE_F32); + + const int dim = dst->op_params[0]; + const int max_period = dst->op_params[1]; + + timestep_embedding_f32_cuda(src0_d, dst_d, src0->ne[0], dst->nb[1], dim, max_period, stream); +} diff --git a/llama/ggml-cuda/tsembd.cuh b/llama/ggml-cuda/tsembd.cuh index 2313b21b..84340e3d 100644 --- a/llama/ggml-cuda/tsembd.cuh +++ b/llama/ggml-cuda/tsembd.cuh @@ -1,5 +1,5 @@ -#include "common.cuh" - -#define CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE 256 - -void ggml_cuda_op_timestep_embedding(ggml_backend_cuda_context & ctx, ggml_tensor * dst); +#include "common.cuh" + +#define CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE 256 + +void ggml_cuda_op_timestep_embedding(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/llama/ggml-cuda/upscale.cuh b/llama/ggml-cuda/upscale.cuh index 651031dc..d4d76523 100644 --- a/llama/ggml-cuda/upscale.cuh +++ b/llama/ggml-cuda/upscale.cuh @@ -1,5 +1,5 @@ -#include "common.cuh" - -#define CUDA_UPSCALE_BLOCK_SIZE 256 - -void ggml_cuda_op_upscale(ggml_backend_cuda_context & ctx, ggml_tensor * dst); +#include "common.cuh" + +#define CUDA_UPSCALE_BLOCK_SIZE 256 + +void ggml_cuda_op_upscale(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/llama/ggml-cuda/vecdotq.cuh b/llama/ggml-cuda/vecdotq.cuh index c18cccdd..86b87fa9 100644 --- a/llama/ggml-cuda/vecdotq.cuh +++ b/llama/ggml-cuda/vecdotq.cuh @@ -1,1280 +1,1280 @@ -#include "common.cuh" - -static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const int & i32) { - const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment - - int x32 = 0; - x32 |= x16[0] << 0; - x32 |= x16[1] << 16; - - return x32; -} - -static __device__ __forceinline__ int get_int_from_uint8(const uint8_t * x8, const int & i32) { - const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment - - int x32 = 0; - x32 |= x16[0] << 0; - x32 |= x16[1] << 16; - - return x32; -} - -static __device__ __forceinline__ int get_int_from_int8_aligned(const int8_t * x8, const int & i32) { - return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment -} - -static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t * x8, const int & i32) { - return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment -} - - -// VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called -// MMVQ = mul_mat_vec_q, MMQ = mul_mat_q - -#define VDR_Q4_0_Q8_1_MMVQ 2 -#define VDR_Q4_0_Q8_1_MMQ 4 - -template static __device__ __forceinline__ float vec_dot_q4_0_q8_1_impl( - const int * v, const int * u, const float & d4, const half2 & ds8) { - -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - int sumi = 0; - -#pragma unroll - for (int i = 0; i < vdr; ++i) { - const int vi0 = (v[i] >> 0) & 0x0F0F0F0F; - const int vi1 = (v[i] >> 4) & 0x0F0F0F0F; - - // SIMD dot product of quantized values - sumi = __dp4a(vi0, u[2*i+0], sumi); - sumi = __dp4a(vi1, u[2*i+1], sumi); - } - - const float2 ds8f = __half22float2(ds8); - - // second part effectively subtracts 8 from each quant value - return d4 * (sumi * ds8f.x - (8*vdr/QI4_0) * ds8f.y); -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A -} - -#define VDR_Q4_1_Q8_1_MMVQ 2 -#define VDR_Q4_1_Q8_1_MMQ 4 - -template static __device__ __forceinline__ float vec_dot_q4_1_q8_1_impl( - const int * v, const int * u, const half2 & dm4, const half2 & ds8) { - -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - int sumi = 0; - -#pragma unroll - for (int i = 0; i < vdr; ++i) { - const int vi0 = (v[i] >> 0) & 0x0F0F0F0F; - const int vi1 = (v[i] >> 4) & 0x0F0F0F0F; - - // SIMD dot product of quantized values - sumi = __dp4a(vi0, u[2*i+0], sumi); - sumi = __dp4a(vi1, u[2*i+1], sumi); - } - -#ifdef GGML_CUDA_F16 - const float2 tmp = __half22float2(__hmul2(dm4, ds8)); - const float d4d8 = tmp.x; - const float m4s8 = tmp.y; -#else - const float2 dm4f = __half22float2(dm4); - const float2 ds8f = __half22float2(ds8); - const float d4d8 = dm4f.x * ds8f.x; - const float m4s8 = dm4f.y * ds8f.y; -#endif // GGML_CUDA_F16 - - // scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it - return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1)); -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A -} - -#define VDR_Q5_0_Q8_1_MMVQ 2 -#define VDR_Q5_0_Q8_1_MMQ 4 - -template static __device__ __forceinline__ float vec_dot_q5_0_q8_1_impl( - const int * vl, const int * vh, const int * u, const float & d5, const half2 & ds8) { - -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - int sumi = 0; - -#pragma unroll - for (int i = 0; i < vdr; ++i) { - int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits - vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4 - vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12 - vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20 - vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28 - sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values - - int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits - vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4 - vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12 - vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20 - vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28 - sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values - } - - const float2 ds8f = __half22float2(ds8); - - // second part effectively subtracts 16 from each quant value - return d5 * (sumi * ds8f.x - (16*vdr/QI5_0) * ds8f.y); -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A -} - -#define VDR_Q5_1_Q8_1_MMVQ 2 -#define VDR_Q5_1_Q8_1_MMQ 4 - -template static __device__ __forceinline__ float vec_dot_q5_1_q8_1_impl( - const int * vl, const int * vh, const int * u, const half2 & dm5, const half2 & ds8) { - -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - int sumi = 0; - -#pragma unroll - for (int i = 0; i < vdr; ++i) { - int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits - vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4 - vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12 - vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20 - vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28 - sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values - - int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits - vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4 - vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12 - vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20 - vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28 - sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values - } - -#ifdef GGML_CUDA_F16 - const float2 tmp = __half22float2(__hmul2(dm5, ds8)); - const float d5d8 = tmp.x; - const float m5s8 = tmp.y; -#else - const float2 dm5f = __half22float2(dm5); - const float2 ds8f = __half22float2(ds8); - const float d5d8 = dm5f.x * ds8f.x; - const float m5s8 = dm5f.y * ds8f.y; -#endif // GGML_CUDA_F16 - - // scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it - return sumi*d5d8 + m5s8 / (QI5_1 / vdr); - -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A -} - -#define VDR_Q8_0_Q8_1_MMVQ 2 -#define VDR_Q8_0_Q8_1_MMQ 8 - -template static __device__ __forceinline__ float vec_dot_q8_0_q8_1_impl( - const int * v, const int * u, const float & d8_0, const float & d8_1) { - -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - int sumi = 0; - -#pragma unroll - for (int i = 0; i < vdr; ++i) { - // SIMD dot product of quantized values - sumi = __dp4a(v[i], u[i], sumi); - } - - return d8_0*d8_1 * sumi; -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A -} - -template static __device__ __forceinline__ float vec_dot_q8_1_q8_1_impl( - const int * v, const int * u, const half2 & dm8, const half2 & ds8) { - -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - int sumi = 0; - -#pragma unroll - for (int i = 0; i < vdr; ++i) { - // SIMD dot product of quantized values - sumi = __dp4a(v[i], u[i], sumi); - } - -#ifdef GGML_CUDA_F16 - const float2 tmp = __half22float2(__hmul2(dm8, ds8)); - const float d8d8 = tmp.x; - const float m8s8 = tmp.y; -#else - const float2 dm8f = __half22float2(dm8); - const float2 ds8f = __half22float2(ds8); - const float d8d8 = dm8f.x * ds8f.x; - const float m8s8 = dm8f.y * ds8f.y; -#endif // GGML_CUDA_F16 - - // scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it - return sumi*d8d8 + m8s8 / (QI8_1 / vdr); -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A -} - -#define VDR_Q2_K_Q8_1_MMVQ 1 -#define VDR_Q2_K_Q8_1_MMQ 2 - -// contiguous v/x values -static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq( - const int & v, const int * __restrict__ u, const uint8_t * __restrict__ scales, - const half2 & dm2, const float * __restrict__ d8) { - -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - float sumf_d = 0.0f; - float sumf_m = 0.0f; - -#pragma unroll - for (int i = 0; i < QR2_K; ++i) { - const int sc = scales[2*i]; - - const int vi = (v >> (2*i)) & 0x03030303; - - sumf_d += d8[i] * (__dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product - - // fill int with 4x m - int m = sc >> 4; - m |= m << 8; - m |= m << 16; - sumf_m += d8[i] * __dp4a(m, u[i], 0); // multiply constant q2_K part with sum of q8_1 values - } - - const float2 dm2f = __half22float2(dm2); - - return dm2f.x*sumf_d - dm2f.y*sumf_m; -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A -} - -// contiguous u/y values -static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq( - const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ scales, - const half2 & dm2, const float & d8) { - -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - int sumi_d = 0; - int sumi_m = 0; - -#pragma unroll - for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) { - int sumi_d_sc = 0; - - const int sc = scales[i0 / (QI8_1/2)]; - - // fill int with 4x m - int m = sc >> 4; - m |= m << 8; - m |= m << 16; - -#pragma unroll - for (int i = i0; i < i0 + QI8_1/2; ++i) { - sumi_d_sc = __dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product - sumi_m = __dp4a(m, u[i], sumi_m); // multiply sum of q8_1 values with m - } - - sumi_d += sumi_d_sc * (sc & 0xF); - } - - const float2 dm2f = __half22float2(dm2); - - return d8 * (dm2f.x*sumi_d - dm2f.y*sumi_m); -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A -} - -#define VDR_Q3_K_Q8_1_MMVQ 1 -#define VDR_Q3_K_Q8_1_MMQ 2 - -// contiguous v/x values -static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq( - const int & vl, const int & vh, const int * __restrict__ u, const uint8_t * __restrict__ scales, - const int & scale_offset, const float & d3, const float * __restrict__ d8) { - -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - float sumf = 0.0f; - -#pragma unroll - for (int i = 0; i < QR3_K; ++i) { - const int isc = scale_offset + 2*i; - - const int isc_low = isc % (QK_K/32); - const int sc_shift_low = 4 * (isc / (QK_K/32)); - const int sc_low = (scales[isc_low] >> sc_shift_low) & 0xF; - - const int isc_high = isc % (QK_K/64); - const int sc_shift_high = 2 * (isc / (QK_K/64)); - const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4; - - const int sc = (sc_low | sc_high) - 32; - - const int vil = (vl >> (2*i)) & 0x03030303; - - const int vih = ((vh >> i) << 2) & 0x04040404; - - const int vi = __vsubss4(vil, vih); - - sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product - } - - return d3 * sumf; -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A -} - -// contiguous u/y values -static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq( - const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ scales, - const float & d3, const float & d8) { - -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - int sumi = 0; - -#pragma unroll - for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) { - int sumi_sc = 0; - - for (int i = i0; i < i0 + QI8_1/2; ++i) { - sumi_sc = __dp4a(v[i], u[i], sumi_sc); // SIMD dot product - } - - sumi += sumi_sc * scales[i0 / (QI8_1/2)]; - } - - return d3*d8 * sumi; -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A -} - -#define VDR_Q4_K_Q8_1_MMVQ 2 -#define VDR_Q4_K_Q8_1_MMQ 8 - -// contiguous v/x values -static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq( - const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc, - const uint8_t * __restrict__ m, const half2 & dm4, const float * __restrict__ d8) { - -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - float sumf_d = 0.0f; - float sumf_m = 0.0f; - -#pragma unroll - for (int i = 0; i < QR4_K; ++i) { - const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F; - const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F; - - const int dot1 = __dp4a(v1i, u[2*i+1], __dp4a(v0i, u[2*i+0], 0)); // SIMD dot product - const int dot2 = __dp4a(0x01010101, u[2*i+1], __dp4a(0x01010101, u[2*i+0], 0)); // sum of u - - sumf_d += d8[i] * (dot1 * sc[i]); - sumf_m += d8[i] * (dot2 * m[i]); // multiply constant part of q4_K with sum of q8_1 values - } - - const float2 dm4f = __half22float2(dm4); - - return dm4f.x*sumf_d - dm4f.y*sumf_m; - -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A -} - -// contiguous u/y values -static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq( - const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc, - const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) { - -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - float sumf_d = 0.0f; - float sumf_m = 0.0f; - -#pragma unroll - for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) { - int sumi_d = 0; - -#pragma unroll - for (int j = 0; j < QI8_1; ++j) { - sumi_d = __dp4a((v[j] >> (4*i)) & 0x0F0F0F0F, u[i*QI8_1 + j], sumi_d); // SIMD dot product - } - - const float2 ds8f = __half22float2(ds8[i]); - - sumf_d += ds8f.x * (sc[i] * sumi_d); - sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val - } - - const float2 dm4f = __half22float2(dm4); - - return dm4f.x*sumf_d - dm4f.y*sumf_m; - -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A -} - -#define VDR_Q5_K_Q8_1_MMVQ 2 -#define VDR_Q5_K_Q8_1_MMQ 8 - -// contiguous v/x values -static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq( - const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc, - const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) { - -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - float sumf_d = 0.0f; - float sumf_m = 0.0f; - -#pragma unroll - for (int i = 0; i < QR5_K; ++i) { - const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F; - const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F; - - const int vh0i = ((vh[0] >> i) << 4) & 0x10101010; - const int vh1i = ((vh[1] >> i) << 4) & 0x10101010; - - const int v0i = vl0i | vh0i; - const int v1i = vl1i | vh1i; - - const int dot1 = __dp4a(v0i, u[2*i+0], __dp4a(v1i, u[2*i+1], 0)); // SIMD dot product - const int dot2 = __dp4a(0x01010101, u[2*i+0], __dp4a(0x01010101, u[2*i+1], 0)); // sum of u - - sumf_d += d8[i] * (dot1 * sc[i]); - sumf_m += d8[i] * (dot2 * m[i]); - - } - - const float2 dm5f = __half22float2(dm5); - - return dm5f.x*sumf_d - dm5f.y*sumf_m; - -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A -} - -// contiguous u/y values -static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq( - const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc, - const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) { - -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - float sumf_d = 0.0f; - float sumf_m = 0.0f; - -#pragma unroll - for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) { - int sumi_d = 0; - -#pragma unroll - for (int j = 0; j < QI8_1; ++j) { - sumi_d = __dp4a(v[i*QI8_1 + j], u[i*QI8_1 + j], sumi_d); // SIMD dot product - } - - const float2 ds8f = __half22float2(ds8[i]); - - sumf_d += ds8f.x * (sc[i] * sumi_d); - sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val - } - - const float2 dm4f = __half22float2(dm4); - - return dm4f.x*sumf_d - dm4f.y*sumf_m; - -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A -} - -#define VDR_Q6_K_Q8_1_MMVQ 1 -#define VDR_Q6_K_Q8_1_MMQ 8 - -// contiguous v/x values -static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq( - const int & vl, const int & vh, const int * __restrict__ u, const int8_t * __restrict__ scales, - const float & d, const float * __restrict__ d8) { - -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - float sumf = 0.0f; - -#pragma unroll - for (int i = 0; i < QR6_K; ++i) { - const int sc = scales[4*i]; - - const int vil = (vl >> (4*i)) & 0x0F0F0F0F; - - const int vih = ((vh >> (4*i)) << 4) & 0x30303030; - - const int vi = __vsubss4((vil | vih), 0x20202020); // vi = (vil | vih) - 32 - - sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product - } - - return d*sumf; -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A -} - -// contiguous u/y values -static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq( - const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ sc, - const float & d6, const float * __restrict__ d8) { - -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - float sumf_d = 0.0f; - -#pragma unroll - for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) { - int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale - -#pragma unroll - for (int i = i0; i < i0 + 2; ++i) { - sumi_d.x = __dp4a(v[2*i+0], u[2*i+0], sumi_d.x); // SIMD dot product - sumi_d.x = __dp4a(v[2*i+1], u[2*i+1], sumi_d.x); // SIMD dot product - - sumi_d.y = __dp4a(v[2*i+4], u[2*i+4], sumi_d.y); // SIMD dot product - sumi_d.y = __dp4a(v[2*i+5], u[2*i+5], sumi_d.y); // SIMD dot product - } - - sumf_d += d8[i0/4] * (sc[i0/2+0]*sumi_d.x + sc[i0/2+1]*sumi_d.y); - } - - return d6 * sumf_d; - -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A -} - -static __device__ __forceinline__ float vec_dot_q4_0_q8_1( - const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { - - const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq; - - int v[VDR_Q4_0_Q8_1_MMVQ]; - int u[2*VDR_Q4_0_Q8_1_MMVQ]; - -#pragma unroll - for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) { - v[i] = get_int_from_uint8(bq4_0->qs, iqs + i); - u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i); - u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_0); - } - - return vec_dot_q4_0_q8_1_impl(v, u, bq4_0->d, bq8_1->ds); -} - - -static __device__ __forceinline__ float vec_dot_q4_1_q8_1( - const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { - - const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq; - - int v[VDR_Q4_1_Q8_1_MMVQ]; - int u[2*VDR_Q4_1_Q8_1_MMVQ]; - -#pragma unroll - for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) { - v[i] = get_int_from_uint8_aligned(bq4_1->qs, iqs + i); - u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i); - u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_1); - } - - return vec_dot_q4_1_q8_1_impl(v, u, bq4_1->dm, bq8_1->ds); -} - -static __device__ __forceinline__ float vec_dot_q5_0_q8_1( - const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { - - const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq; - - int vl[VDR_Q5_0_Q8_1_MMVQ]; - int vh[VDR_Q5_0_Q8_1_MMVQ]; - int u[2*VDR_Q5_0_Q8_1_MMVQ]; - -#pragma unroll - for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) { - vl[i] = get_int_from_uint8(bq5_0->qs, iqs + i); - vh[i] = get_int_from_uint8(bq5_0->qh, 0) >> (4 * (iqs + i)); - u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i); - u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_0); - } - - return vec_dot_q5_0_q8_1_impl(vl, vh, u, bq5_0->d, bq8_1->ds); -} - -static __device__ __forceinline__ float vec_dot_q5_1_q8_1( - const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { - - const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq; - - int vl[VDR_Q5_1_Q8_1_MMVQ]; - int vh[VDR_Q5_1_Q8_1_MMVQ]; - int u[2*VDR_Q5_1_Q8_1_MMVQ]; - -#pragma unroll - for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) { - vl[i] = get_int_from_uint8_aligned(bq5_1->qs, iqs + i); - vh[i] = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * (iqs + i)); - u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i); - u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_1); - } - - return vec_dot_q5_1_q8_1_impl(vl, vh, u, bq5_1->dm, bq8_1->ds); -} - -static __device__ __forceinline__ float vec_dot_q8_0_q8_1( - const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { - - const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq; - - int v[VDR_Q8_0_Q8_1_MMVQ]; - int u[VDR_Q8_0_Q8_1_MMVQ]; - -#pragma unroll - for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) { - v[i] = get_int_from_int8(bq8_0->qs, iqs + i); - u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i); - } - - return vec_dot_q8_0_q8_1_impl(v, u, bq8_0->d, __low2half(bq8_1->ds)); -} - -static __device__ __forceinline__ float vec_dot_q2_K_q8_1( - const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { - - const block_q2_K * bq2_K = (const block_q2_K *) vbq; - - const int bq8_offset = QR2_K * (iqs / QI8_1); - const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2); - - const uint8_t * scales = bq2_K->scales + scale_offset; - - const int v = get_int_from_uint8_aligned(bq2_K->qs, iqs); - int u[QR2_K]; - float d8[QR2_K]; - -#pragma unroll - for (int i = 0; i < QR2_K; ++ i) { - u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1); - d8[i] = __low2float(bq8_1[bq8_offset + i].ds); - } - - return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8); -} - -static __device__ __forceinline__ float vec_dot_q3_K_q8_1( - const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { - - const block_q3_K * bq3_K = (const block_q3_K *) vbq; - - const int bq8_offset = QR3_K * (iqs / (QI3_K/2)); - const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2); - - const float d = bq3_K->d; - - const int vl = get_int_from_uint8(bq3_K->qs, iqs); - - // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted - const int vh = ~get_int_from_uint8(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset; - - int u[QR3_K]; - float d8[QR3_K]; - -#pragma unroll - for (int i = 0; i < QR3_K; ++i) { - u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1); - d8[i] = __low2float(bq8_1[bq8_offset + i].ds); - } - - return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8); -} - -static __device__ __forceinline__ float vec_dot_q4_K_q8_1( - const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { - -#ifndef GGML_QKK_64 - const block_q4_K * bq4_K = (const block_q4_K *) vbq; - - int v[2]; - int u[2*QR4_K]; - float d8[QR4_K]; - - // iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6 - const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2)); - - // iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12 - // iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44 - // iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76 - // iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108 - - const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4)); - v[0] = q4[0]; - v[1] = q4[4]; - - const uint16_t * scales = (const uint16_t *)bq4_K->scales; - uint16_t aux[2]; - const int j = bq8_offset/2; - if (j < 2) { - aux[0] = scales[j+0] & 0x3f3f; - aux[1] = scales[j+2] & 0x3f3f; - } else { - aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2); - aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2); - } - const uint8_t * sc = (const uint8_t *)aux; - const uint8_t * m = sc + 2; - - for (int i = 0; i < QR4_K; ++i) { - const block_q8_1 * bq8i = bq8_1 + bq8_offset + i; - d8[i] = __low2float(bq8i->ds); - - const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4); - u[2*i+0] = q8[0]; - u[2*i+1] = q8[4]; - } - - return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8); - -#else - -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - const block_q4_K * bq4_K = (const block_q4_K *) vbq; - - float sumf_d = 0.0f; - float sumf_m = 0.0f; - - uint16_t aux16[2]; - const uint8_t * s = (const uint8_t *)aux16; - - const uint16_t * a = (const uint16_t *)bq4_K->scales; - aux16[0] = a[0] & 0x0f0f; - aux16[1] = (a[0] >> 4) & 0x0f0f; - - const float dall = bq4_K->dm[0]; - const float dmin = bq4_K->dm[1]; - - const float d8_1 = __low2float(bq8_1[0].ds); - const float d8_2 = __low2float(bq8_1[1].ds); - - const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2)); - const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4); - const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2)); - const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4); - - const int * q4 = (const int *)bq4_K->qs + (iqs/2); - const int v1 = q4[0]; - const int v2 = q4[4]; - - const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0)); - const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0)); - const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0)); - const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0)); - - sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]); - sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]); - - return dall * sumf_d - dmin * sumf_m; - -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A - -#endif -} - -static __device__ __forceinline__ float vec_dot_q5_K_q8_1( - const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { - -#ifndef GGML_QKK_64 - const block_q5_K * bq5_K = (const block_q5_K *) vbq; - - int vl[2]; - int vh[2]; - int u[2*QR5_K]; - float d8[QR5_K]; - - const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2)); - const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4)); - const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4)); - - vl[0] = ql[0]; - vl[1] = ql[4]; - - vh[0] = qh[0] >> bq8_offset; - vh[1] = qh[4] >> bq8_offset; - - const uint16_t * scales = (const uint16_t *)bq5_K->scales; - uint16_t aux[2]; - const int j = bq8_offset/2; - if (j < 2) { - aux[0] = scales[j+0] & 0x3f3f; - aux[1] = scales[j+2] & 0x3f3f; - } else { - aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2); - aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2); - } - const uint8_t * sc = (const uint8_t *)aux; - const uint8_t * m = sc + 2; - -#pragma unroll - for (int i = 0; i < QR5_K; ++i) { - const block_q8_1 * bq8i = bq8_1 + bq8_offset + i; - d8[i] = __low2float(bq8i->ds); - - const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4); - u[2*i+0] = q8[0]; - u[2*i+1] = q8[4]; - } - - return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8); - -#else - -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - const block_q5_K * bq5_K = (const block_q5_K *) vbq; - - const int8_t * s = bq5_K->scales; - - const float d = bq5_K->d; - - const float d8_1 = __low2half(bq8_1[0].ds); - const float d8_2 = __low2half(bq8_1[1].ds); - - const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2)); - const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4); - const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2)); - const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4); - - const int * ql = (const int *)bq5_K->qs + (iqs/2); - const int vl1 = ql[0]; - const int vl2 = ql[4]; - - const int step = 4 * (iqs/2); // 0, 4, 8, 12 - const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6 - const int in = step%8; // 0, 4, 0, 4 - const int vh = (*((const int *)(bq5_K->qh + in))) >> im; - - const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f); - const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f); - const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f); - const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f); - - const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1]) - + d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]); - - return d * sumf_d; - -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A - -#endif -} - -static __device__ __forceinline__ float vec_dot_q6_K_q8_1( - const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { - - const block_q6_K * bq6_K = (const block_q6_K *) vbq; - - const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4); - const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8); - const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4)); - - const int vl = get_int_from_uint8(bq6_K->ql, iqs); - const int vh = get_int_from_uint8(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift; - - const int8_t * scales = bq6_K->scales + scale_offset; - - int u[QR6_K]; - float d8[QR6_K]; - -#pragma unroll - for (int i = 0; i < QR6_K; ++i) { - u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1); - d8[i] = __low2float(bq8_1[bq8_offset + 2*i].ds); - } - - return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8); -} - -static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1( - const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { -#if QK_K == 256 - const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq; - -#if QR2_XXS == 8 - const int ib32 = iqs; - const uint16_t * q2 = bq2->qs + 4*ib32; - const uint8_t * aux8 = (const uint8_t *)q2; - const int8_t * q8 = bq8_1[ib32].qs; - uint32_t aux32 = q2[2] | (q2[3] << 16); - int sumi = 0; - for (int l = 0; l < 4; ++l) { - const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]); - const uint8_t signs = ksigns_iq2xs[aux32 & 127]; - for (int j = 0; j < 8; ++j) { - sumi += q8[j] * grid[j] * (signs & kmask_iq2xs[j] ? -1 : 1); - } - q8 += 8; - aux32 >>= 7; - } - const float d = (float)bq2->d * (0.5f + aux32) * __low2float(bq8_1[ib32].ds) * 0.25f; - return d * sumi; -#else - // iqs is 0...15 - const int ib32 = iqs/2; - const int il = iqs%2; - const uint16_t * q2 = bq2->qs + 4*ib32; - const uint8_t * aux8 = (const uint8_t *)q2; - const uint8_t * grid1 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+0]); - const uint8_t * grid2 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+1]); - const uint32_t aux32 = q2[2] | (q2[3] << 16); - const float d = (float)bq2->d * (0.5f + (aux32 >> 28)) * __low2float(bq8_1[ib32].ds) * 0.25f; - const uint8_t signs1 = ksigns_iq2xs[(aux32 >> 14*il) & 127]; - const uint8_t signs2 = ksigns_iq2xs[(aux32 >> (14*il + 7)) & 127]; - const int8_t * q8 = bq8_1[ib32].qs + 16*il; - int sumi1 = 0, sumi2 = 0; - for (int j = 0; j < 8; ++j) { - sumi1 += q8[j+0] * grid1[j] * (signs1 & kmask_iq2xs[j] ? -1 : 1); - sumi2 += q8[j+8] * grid2[j] * (signs2 & kmask_iq2xs[j] ? -1 : 1); - } - return d * (sumi1 + sumi2); -#endif -#else - NO_DEVICE_CODE; -#endif -} - -static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1( - const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics -#if QK_K == 256 - const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq; - - const int ib32 = iqs; - const uint16_t * q2 = bq2->qs + 4*ib32; - const int8_t * q8 = bq8_1[ib32].qs; - const uint8_t ls1 = bq2->scales[ib32] & 0xf; - const uint8_t ls2 = bq2->scales[ib32] >> 4; - int sumi1 = 0; - for (int l = 0; l < 2; ++l) { - const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511)); - const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9)); - const int grid_l = __vsub4(grid[0] ^ signs[0], signs[0]); - const int grid_h = __vsub4(grid[1] ^ signs[1], signs[1]); - sumi1 = __dp4a(grid_l, *((const int *)q8 + 0), sumi1); - sumi1 = __dp4a(grid_h, *((const int *)q8 + 1), sumi1); - q8 += 8; - } - int sumi2 = 0; - for (int l = 2; l < 4; ++l) { - const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511)); - const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9)); - const int grid_l = __vsub4(grid[0] ^ signs[0], signs[0]); - const int grid_h = __vsub4(grid[1] ^ signs[1], signs[1]); - sumi2 = __dp4a(grid_l, *((const int *)q8 + 0), sumi2); - sumi2 = __dp4a(grid_h, *((const int *)q8 + 1), sumi2); - q8 += 8; - } - const float d = (float)bq2->d * __low2float(bq8_1[ib32].ds) * 0.25f; - return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2); -#else - GGML_UNUSED(ksigns64); - NO_DEVICE_CODE; -#endif -#else - GGML_UNUSED(ksigns64); - NO_DEVICE_CODE; -#endif -} - -// TODO -static __device__ __forceinline__ float vec_dot_iq2_s_q8_1( - const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics -#if QK_K == 256 - const block_iq2_s * bq2 = (const block_iq2_s *) vbq; - - const int ib32 = iqs; - const int8_t * q8 = bq8_1[ib32].qs; - const uint8_t * signs = bq2->qs + QK_K/8 + 4*ib32; - const uint8_t ls1 = bq2->scales[ib32] & 0xf; - const uint8_t ls2 = bq2->scales[ib32] >> 4; - int sumi1 = 0; - for (int l = 0; l < 2; ++l) { - const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300))); - const uint32_t signs0 = __vcmpeq4(((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201); - const uint32_t signs1 = __vcmpeq4(((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201); - const int grid_l = __vsub4(grid[0] ^ signs0, signs0); - const int grid_h = __vsub4(grid[1] ^ signs1, signs1); - sumi1 = __dp4a(grid_l, *((const int *)q8 + 0), sumi1); - sumi1 = __dp4a(grid_h, *((const int *)q8 + 1), sumi1); - q8 += 8; - } - int sumi2 = 0; - for (int l = 2; l < 4; ++l) { - const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300))); - const uint32_t signs0 = __vcmpeq4(((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201); - const uint32_t signs1 = __vcmpeq4(((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201); - const int grid_l = __vsub4(grid[0] ^ signs0, signs0); - const int grid_h = __vsub4(grid[1] ^ signs1, signs1); - sumi2 = __dp4a(grid_l, *((const int *)q8 + 0), sumi2); - sumi2 = __dp4a(grid_h, *((const int *)q8 + 1), sumi2); - q8 += 8; - } - const float d = (float)bq2->d * __low2float(bq8_1[ib32].ds) * 0.25f; - return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2); -#else - GGML_UNUSED(ksigns64); - NO_DEVICE_CODE; -#endif -#else - GGML_UNUSED(ksigns64); - NO_DEVICE_CODE; -#endif -} - -static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1( - const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics -#if QK_K == 256 - const block_iq3_xxs * bq2 = (const block_iq3_xxs *) vbq; - - const int ib32 = iqs; - const uint8_t * q3 = bq2->qs + 8*ib32; - const uint16_t * gas = (const uint16_t *)(bq2->qs + QK_K/4) + 2*ib32; - const int8_t * q8 = bq8_1[ib32].qs; - uint32_t aux32 = gas[0] | (gas[1] << 16); - int sumi = 0; - for (int l = 0; l < 4; ++l) { - const uint32_t * grid1 = iq3xxs_grid + q3[2*l+0]; - const uint32_t * grid2 = iq3xxs_grid + q3[2*l+1]; - const uint32_t * signs = (const uint32_t *)(ksigns64 + (aux32 & 127)); - const int grid_l = __vsub4(grid1[0] ^ signs[0], signs[0]); - const int grid_h = __vsub4(grid2[0] ^ signs[1], signs[1]); - sumi = __dp4a(grid_l, *((int *)q8+0), sumi); - sumi = __dp4a(grid_h, *((int *)q8+1), sumi); - q8 += 8; - aux32 >>= 7; - } - const float d = (float)bq2->d * (0.5f + aux32) * __low2float(bq8_1[ib32].ds) * 0.5f; - return d * sumi; -#else - NO_DEVICE_CODE; -#endif -#else - NO_DEVICE_CODE; -#endif -} - -// TODO: don't use lookup table for signs -static __device__ __forceinline__ float vec_dot_iq3_s_q8_1( - const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics -#if QK_K == 256 - const block_iq3_s * bq2 = (const block_iq3_s *) vbq; - - const int ib32 = iqs; - const uint8_t * qs = bq2->qs + 8*ib32; - const int8_t * q8 = bq8_1[ib32].qs; - int sumi = 0; - for (int l = 0; l < 4; ++l) { - const uint32_t * grid1 = iq3s_grid + (qs[2*l+0] | ((bq2->qh[ib32] << (8 - 2*l)) & 256)); - const uint32_t * grid2 = iq3s_grid + (qs[2*l+1] | ((bq2->qh[ib32] << (7 - 2*l)) & 256)); - uint32_t signs0 = __vcmpeq4(((bq2->signs[4*ib32+l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201); - uint32_t signs1 = __vcmpeq4(((bq2->signs[4*ib32+l] >> 4) * 0x01010101) & 0x08040201, 0x08040201); - const int grid_l = __vsub4(grid1[0] ^ signs0, signs0); - const int grid_h = __vsub4(grid2[0] ^ signs1, signs1); - sumi = __dp4a(grid_l, *((int *)q8+0), sumi); - sumi = __dp4a(grid_h, *((int *)q8+1), sumi); - q8 += 8; - } - const float d = (float)bq2->d * (1 + 2*((bq2->scales[ib32/2] >> 4*(ib32%2)) & 0xf)) * __low2float(bq8_1[ib32].ds); - return d * sumi; -#else - NO_DEVICE_CODE; -#endif -#else - NO_DEVICE_CODE; -#endif -} - -static __device__ __forceinline__ float vec_dot_iq1_s_q8_1( - const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { -#if QK_K == 256 - const block_iq1_s * bq1 = (const block_iq1_s *) vbq; - - const int ib32 = iqs; - int sumi = 0; -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - const int * q8 = (const int *)bq8_1[ib32].qs; - for (int l = 0; l < 4; ++l) { - const int * grid = (const int *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8))); - int grid0 = grid[0] & 0x0f0f0f0f; - int grid1 = (grid[0] >> 4) & 0x0f0f0f0f; - sumi = __dp4a(q8[2*l+1], grid1, __dp4a(q8[2*l+0], grid0, sumi)); - } -#else - const int8_t * q8 = bq8_1[ib32].qs; - for (int l = 0; l < 4; ++l) { - const uint8_t * grid = (const uint8_t *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8))); - for (int j = 0; j < 4; ++j) { - sumi += q8[j] * (grid[j] & 0xf) + q8[j+4] * (grid[j] >> 4); - } - q8 += 8; - } -#endif - const float delta = bq1->qh[ib32] & 0x8000 ? -1-IQ1S_DELTA : -1+IQ1S_DELTA; - const float d1q = (float)bq1->d * (2*((bq1->qh[ib32] >> 12) & 7) + 1); - const float d = d1q * __low2float (bq8_1[ib32].ds); - const float m = d1q * __high2float(bq8_1[ib32].ds); - return d * sumi + m * delta; -#else - NO_DEVICE_CODE; -#endif -} - -static __device__ __forceinline__ float vec_dot_iq1_m_q8_1( - const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { -#if QK_K == 256 - const block_iq1_m * bq1 = (const block_iq1_m *) vbq; - - const int ib32 = iqs; - int sumi[2] = {0, 0}; - float sumf[2] = {0.f, 0.f}; -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - const int * q8 = (const int *)bq8_1[ib32].qs; - for (int l = 0; l < 4; ++l) { - const int * grid = (const int *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 7) << 8))); - int grid0 = grid[0] & 0x0f0f0f0f; - int grid1 = (grid[0] >> 4) & 0x0f0f0f0f; - sumi[l/2] = __dp4a(q8[2*l+1], grid1, __dp4a(q8[2*l+0], grid0, sumi[l/2])); - const float delta = (bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 0x08 ? -1-IQ1M_DELTA : -1+IQ1M_DELTA; - const int sumy = __dp4a(q8[2*l+1], 0x01010101, __dp4a(q8[2*l+0], 0x01010101, 0)); - sumf[l/2] += delta*sumy; - } -#else - const int8_t * q8 = bq8_1[ib32].qs; - for (int l = 0; l < 4; ++l) { - const uint8_t * grid = (const uint8_t *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8))); - int sumy = 0; - for (int j = 0; j < 4; ++j) { - sumi[l/2] += q8[j] * (grid[j] & 0xf) + q8[j+4] * (grid[j] >> 4); - sumy += q8[j] + q8[j+4]; - } - const float delta = (bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 0x08 ? -1-IQ1M_DELTA : -1+IQ1M_DELTA; - sumf[l/2] += delta*sumy; - q8 += 8; - } -#endif - iq1m_scale_t scale; - const uint16_t * sc = (const uint16_t *)bq1->scales; - scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); - const float d = (float)scale.f16 * __low2float (bq8_1[ib32].ds); - return d * ((sumi[0] + sumf[0]) * (2*((sc[ib32/2] >> 6*(ib32%2)) & 0x7) + 1) + (sumi[1] + sumf[1]) * (2*((sc[ib32/2] >> (6*(ib32%2)+3)) & 0x7) + 1)); -#else - NO_DEVICE_CODE; -#endif -} - -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics -static __device__ __forceinline__ void get_int_from_table_16(const uint32_t & q4, const uint8_t * values, - int & val1, int & val2) { - - uint32_t aux32; const uint8_t * q8 = (const uint8_t *)&aux32; - aux32 = q4 & 0x0f0f0f0f; - uint16_t v1 = values[q8[0]] | (values[q8[1]] << 8); - uint16_t v2 = values[q8[2]] | (values[q8[3]] << 8); - val1 = v1 | (v2 << 16); - aux32 = (q4 >> 4) & 0x0f0f0f0f; - v1 = values[q8[0]] | (values[q8[1]] << 8); - v2 = values[q8[2]] | (values[q8[3]] << 8); - val2 = v1 | (v2 << 16); -} -#endif - -static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1( - const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { - - const block_iq4_nl * bq = (const block_iq4_nl *) vbq; - -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - const uint16_t * q4 = (const uint16_t *)bq->qs + 2*iqs; - const int32_t * q8 = (const int32_t *)bq8_1->qs + iqs; - - const uint8_t * values = (const uint8_t *)kvalues_iq4nl; - - int v1, v2; - int sumi1 = 0, sumi2 = 0; - for (int l = 0; l < VDR_Q4_0_Q8_1_MMVQ; ++l) { - const uint32_t aux = q4[2*l] | (q4[2*l+1] << 16); - get_int_from_table_16(aux, values, v1, v2); - sumi1 = __dp4a(v1, q8[l+0], sumi1); - sumi2 = __dp4a(v2, q8[l+4], sumi2); - } - -#else - const uint8_t * q4 = bq->qs + 4*iqs; - const int8_t * q8 = bq8_1->qs + 4*iqs; - - int sumi1 = 0, sumi2 = 0; - for (int l = 0; l < 4*VDR_Q4_0_Q8_1_MMVQ; ++l) { - sumi1 += q8[l+ 0] * kvalues_iq4nl[q4[l] & 0xf]; - sumi2 += q8[l+16] * kvalues_iq4nl[q4[l] >> 4]; - } -#endif - const float d = (float)bq->d * __low2float(bq8_1->ds); - return d * (sumi1 + sumi2); -} - -static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1( - const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { - -#if QK_K == 256 -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - - const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq; - const uint8_t * values = (const uint8_t *)kvalues_iq4nl; - - // iqs is 0...7 - const int ib32 = iqs; - const int32_t * q8 = (const int *)bq8_1[ib32].qs; - const uint32_t * q4 = (const uint32_t *)bq4->qs + 4*ib32; - const int8_t ls = ((bq4->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((bq4->scales_h >> 2*ib32) & 3) << 4); - const float d = (float)bq4->d * (ls - 32) * __low2float(bq8_1[ib32].ds); - int v1, v2; - int sumi1 = 0, sumi2 = 0; - for (int j = 0; j < 4; ++j) { - get_int_from_table_16(q4[j], values, v1, v2); - sumi1 = __dp4a(v1, q8[j+0], sumi1); - sumi2 = __dp4a(v2, q8[j+4], sumi2); - } - return d * (sumi1 + sumi2); - -#else - NO_DEVICE_CODE; -#endif -#else - return vec_dot_iq4_xs_q8_1(vbq, bq8_1, iqs); -#endif -} +#include "common.cuh" + +static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const int & i32) { + const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment + + int x32 = 0; + x32 |= x16[0] << 0; + x32 |= x16[1] << 16; + + return x32; +} + +static __device__ __forceinline__ int get_int_from_uint8(const uint8_t * x8, const int & i32) { + const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment + + int x32 = 0; + x32 |= x16[0] << 0; + x32 |= x16[1] << 16; + + return x32; +} + +static __device__ __forceinline__ int get_int_from_int8_aligned(const int8_t * x8, const int & i32) { + return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment +} + +static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t * x8, const int & i32) { + return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment +} + + +// VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called +// MMVQ = mul_mat_vec_q, MMQ = mul_mat_q + +#define VDR_Q4_0_Q8_1_MMVQ 2 +#define VDR_Q4_0_Q8_1_MMQ 4 + +template static __device__ __forceinline__ float vec_dot_q4_0_q8_1_impl( + const int * v, const int * u, const float & d4, const half2 & ds8) { + +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + int sumi = 0; + +#pragma unroll + for (int i = 0; i < vdr; ++i) { + const int vi0 = (v[i] >> 0) & 0x0F0F0F0F; + const int vi1 = (v[i] >> 4) & 0x0F0F0F0F; + + // SIMD dot product of quantized values + sumi = __dp4a(vi0, u[2*i+0], sumi); + sumi = __dp4a(vi1, u[2*i+1], sumi); + } + + const float2 ds8f = __half22float2(ds8); + + // second part effectively subtracts 8 from each quant value + return d4 * (sumi * ds8f.x - (8*vdr/QI4_0) * ds8f.y); +#else + NO_DEVICE_CODE; +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A +} + +#define VDR_Q4_1_Q8_1_MMVQ 2 +#define VDR_Q4_1_Q8_1_MMQ 4 + +template static __device__ __forceinline__ float vec_dot_q4_1_q8_1_impl( + const int * v, const int * u, const half2 & dm4, const half2 & ds8) { + +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + int sumi = 0; + +#pragma unroll + for (int i = 0; i < vdr; ++i) { + const int vi0 = (v[i] >> 0) & 0x0F0F0F0F; + const int vi1 = (v[i] >> 4) & 0x0F0F0F0F; + + // SIMD dot product of quantized values + sumi = __dp4a(vi0, u[2*i+0], sumi); + sumi = __dp4a(vi1, u[2*i+1], sumi); + } + +#ifdef GGML_CUDA_F16 + const float2 tmp = __half22float2(__hmul2(dm4, ds8)); + const float d4d8 = tmp.x; + const float m4s8 = tmp.y; +#else + const float2 dm4f = __half22float2(dm4); + const float2 ds8f = __half22float2(ds8); + const float d4d8 = dm4f.x * ds8f.x; + const float m4s8 = dm4f.y * ds8f.y; +#endif // GGML_CUDA_F16 + + // scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it + return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1)); +#else + NO_DEVICE_CODE; +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A +} + +#define VDR_Q5_0_Q8_1_MMVQ 2 +#define VDR_Q5_0_Q8_1_MMQ 4 + +template static __device__ __forceinline__ float vec_dot_q5_0_q8_1_impl( + const int * vl, const int * vh, const int * u, const float & d5, const half2 & ds8) { + +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + int sumi = 0; + +#pragma unroll + for (int i = 0; i < vdr; ++i) { + int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits + vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4 + vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12 + vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20 + vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28 + sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values + + int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits + vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4 + vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12 + vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20 + vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28 + sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values + } + + const float2 ds8f = __half22float2(ds8); + + // second part effectively subtracts 16 from each quant value + return d5 * (sumi * ds8f.x - (16*vdr/QI5_0) * ds8f.y); +#else + NO_DEVICE_CODE; +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A +} + +#define VDR_Q5_1_Q8_1_MMVQ 2 +#define VDR_Q5_1_Q8_1_MMQ 4 + +template static __device__ __forceinline__ float vec_dot_q5_1_q8_1_impl( + const int * vl, const int * vh, const int * u, const half2 & dm5, const half2 & ds8) { + +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + int sumi = 0; + +#pragma unroll + for (int i = 0; i < vdr; ++i) { + int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits + vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4 + vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12 + vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20 + vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28 + sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values + + int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits + vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4 + vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12 + vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20 + vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28 + sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values + } + +#ifdef GGML_CUDA_F16 + const float2 tmp = __half22float2(__hmul2(dm5, ds8)); + const float d5d8 = tmp.x; + const float m5s8 = tmp.y; +#else + const float2 dm5f = __half22float2(dm5); + const float2 ds8f = __half22float2(ds8); + const float d5d8 = dm5f.x * ds8f.x; + const float m5s8 = dm5f.y * ds8f.y; +#endif // GGML_CUDA_F16 + + // scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it + return sumi*d5d8 + m5s8 / (QI5_1 / vdr); + +#else + NO_DEVICE_CODE; +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A +} + +#define VDR_Q8_0_Q8_1_MMVQ 2 +#define VDR_Q8_0_Q8_1_MMQ 8 + +template static __device__ __forceinline__ float vec_dot_q8_0_q8_1_impl( + const int * v, const int * u, const float & d8_0, const float & d8_1) { + +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + int sumi = 0; + +#pragma unroll + for (int i = 0; i < vdr; ++i) { + // SIMD dot product of quantized values + sumi = __dp4a(v[i], u[i], sumi); + } + + return d8_0*d8_1 * sumi; +#else + NO_DEVICE_CODE; +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A +} + +template static __device__ __forceinline__ float vec_dot_q8_1_q8_1_impl( + const int * v, const int * u, const half2 & dm8, const half2 & ds8) { + +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + int sumi = 0; + +#pragma unroll + for (int i = 0; i < vdr; ++i) { + // SIMD dot product of quantized values + sumi = __dp4a(v[i], u[i], sumi); + } + +#ifdef GGML_CUDA_F16 + const float2 tmp = __half22float2(__hmul2(dm8, ds8)); + const float d8d8 = tmp.x; + const float m8s8 = tmp.y; +#else + const float2 dm8f = __half22float2(dm8); + const float2 ds8f = __half22float2(ds8); + const float d8d8 = dm8f.x * ds8f.x; + const float m8s8 = dm8f.y * ds8f.y; +#endif // GGML_CUDA_F16 + + // scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it + return sumi*d8d8 + m8s8 / (QI8_1 / vdr); +#else + NO_DEVICE_CODE; +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A +} + +#define VDR_Q2_K_Q8_1_MMVQ 1 +#define VDR_Q2_K_Q8_1_MMQ 2 + +// contiguous v/x values +static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq( + const int & v, const int * __restrict__ u, const uint8_t * __restrict__ scales, + const half2 & dm2, const float * __restrict__ d8) { + +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + float sumf_d = 0.0f; + float sumf_m = 0.0f; + +#pragma unroll + for (int i = 0; i < QR2_K; ++i) { + const int sc = scales[2*i]; + + const int vi = (v >> (2*i)) & 0x03030303; + + sumf_d += d8[i] * (__dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product + + // fill int with 4x m + int m = sc >> 4; + m |= m << 8; + m |= m << 16; + sumf_m += d8[i] * __dp4a(m, u[i], 0); // multiply constant q2_K part with sum of q8_1 values + } + + const float2 dm2f = __half22float2(dm2); + + return dm2f.x*sumf_d - dm2f.y*sumf_m; +#else + NO_DEVICE_CODE; +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A +} + +// contiguous u/y values +static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq( + const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ scales, + const half2 & dm2, const float & d8) { + +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + int sumi_d = 0; + int sumi_m = 0; + +#pragma unroll + for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) { + int sumi_d_sc = 0; + + const int sc = scales[i0 / (QI8_1/2)]; + + // fill int with 4x m + int m = sc >> 4; + m |= m << 8; + m |= m << 16; + +#pragma unroll + for (int i = i0; i < i0 + QI8_1/2; ++i) { + sumi_d_sc = __dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product + sumi_m = __dp4a(m, u[i], sumi_m); // multiply sum of q8_1 values with m + } + + sumi_d += sumi_d_sc * (sc & 0xF); + } + + const float2 dm2f = __half22float2(dm2); + + return d8 * (dm2f.x*sumi_d - dm2f.y*sumi_m); +#else + NO_DEVICE_CODE; +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A +} + +#define VDR_Q3_K_Q8_1_MMVQ 1 +#define VDR_Q3_K_Q8_1_MMQ 2 + +// contiguous v/x values +static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq( + const int & vl, const int & vh, const int * __restrict__ u, const uint8_t * __restrict__ scales, + const int & scale_offset, const float & d3, const float * __restrict__ d8) { + +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + float sumf = 0.0f; + +#pragma unroll + for (int i = 0; i < QR3_K; ++i) { + const int isc = scale_offset + 2*i; + + const int isc_low = isc % (QK_K/32); + const int sc_shift_low = 4 * (isc / (QK_K/32)); + const int sc_low = (scales[isc_low] >> sc_shift_low) & 0xF; + + const int isc_high = isc % (QK_K/64); + const int sc_shift_high = 2 * (isc / (QK_K/64)); + const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4; + + const int sc = (sc_low | sc_high) - 32; + + const int vil = (vl >> (2*i)) & 0x03030303; + + const int vih = ((vh >> i) << 2) & 0x04040404; + + const int vi = __vsubss4(vil, vih); + + sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product + } + + return d3 * sumf; +#else + NO_DEVICE_CODE; +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A +} + +// contiguous u/y values +static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq( + const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ scales, + const float & d3, const float & d8) { + +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + int sumi = 0; + +#pragma unroll + for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) { + int sumi_sc = 0; + + for (int i = i0; i < i0 + QI8_1/2; ++i) { + sumi_sc = __dp4a(v[i], u[i], sumi_sc); // SIMD dot product + } + + sumi += sumi_sc * scales[i0 / (QI8_1/2)]; + } + + return d3*d8 * sumi; +#else + NO_DEVICE_CODE; +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A +} + +#define VDR_Q4_K_Q8_1_MMVQ 2 +#define VDR_Q4_K_Q8_1_MMQ 8 + +// contiguous v/x values +static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq( + const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc, + const uint8_t * __restrict__ m, const half2 & dm4, const float * __restrict__ d8) { + +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + float sumf_d = 0.0f; + float sumf_m = 0.0f; + +#pragma unroll + for (int i = 0; i < QR4_K; ++i) { + const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F; + const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F; + + const int dot1 = __dp4a(v1i, u[2*i+1], __dp4a(v0i, u[2*i+0], 0)); // SIMD dot product + const int dot2 = __dp4a(0x01010101, u[2*i+1], __dp4a(0x01010101, u[2*i+0], 0)); // sum of u + + sumf_d += d8[i] * (dot1 * sc[i]); + sumf_m += d8[i] * (dot2 * m[i]); // multiply constant part of q4_K with sum of q8_1 values + } + + const float2 dm4f = __half22float2(dm4); + + return dm4f.x*sumf_d - dm4f.y*sumf_m; + +#else + NO_DEVICE_CODE; +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A +} + +// contiguous u/y values +static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq( + const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc, + const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) { + +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + float sumf_d = 0.0f; + float sumf_m = 0.0f; + +#pragma unroll + for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) { + int sumi_d = 0; + +#pragma unroll + for (int j = 0; j < QI8_1; ++j) { + sumi_d = __dp4a((v[j] >> (4*i)) & 0x0F0F0F0F, u[i*QI8_1 + j], sumi_d); // SIMD dot product + } + + const float2 ds8f = __half22float2(ds8[i]); + + sumf_d += ds8f.x * (sc[i] * sumi_d); + sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val + } + + const float2 dm4f = __half22float2(dm4); + + return dm4f.x*sumf_d - dm4f.y*sumf_m; + +#else + NO_DEVICE_CODE; +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A +} + +#define VDR_Q5_K_Q8_1_MMVQ 2 +#define VDR_Q5_K_Q8_1_MMQ 8 + +// contiguous v/x values +static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq( + const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc, + const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) { + +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + float sumf_d = 0.0f; + float sumf_m = 0.0f; + +#pragma unroll + for (int i = 0; i < QR5_K; ++i) { + const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F; + const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F; + + const int vh0i = ((vh[0] >> i) << 4) & 0x10101010; + const int vh1i = ((vh[1] >> i) << 4) & 0x10101010; + + const int v0i = vl0i | vh0i; + const int v1i = vl1i | vh1i; + + const int dot1 = __dp4a(v0i, u[2*i+0], __dp4a(v1i, u[2*i+1], 0)); // SIMD dot product + const int dot2 = __dp4a(0x01010101, u[2*i+0], __dp4a(0x01010101, u[2*i+1], 0)); // sum of u + + sumf_d += d8[i] * (dot1 * sc[i]); + sumf_m += d8[i] * (dot2 * m[i]); + + } + + const float2 dm5f = __half22float2(dm5); + + return dm5f.x*sumf_d - dm5f.y*sumf_m; + +#else + NO_DEVICE_CODE; +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A +} + +// contiguous u/y values +static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq( + const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc, + const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) { + +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + float sumf_d = 0.0f; + float sumf_m = 0.0f; + +#pragma unroll + for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) { + int sumi_d = 0; + +#pragma unroll + for (int j = 0; j < QI8_1; ++j) { + sumi_d = __dp4a(v[i*QI8_1 + j], u[i*QI8_1 + j], sumi_d); // SIMD dot product + } + + const float2 ds8f = __half22float2(ds8[i]); + + sumf_d += ds8f.x * (sc[i] * sumi_d); + sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val + } + + const float2 dm4f = __half22float2(dm4); + + return dm4f.x*sumf_d - dm4f.y*sumf_m; + +#else + NO_DEVICE_CODE; +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A +} + +#define VDR_Q6_K_Q8_1_MMVQ 1 +#define VDR_Q6_K_Q8_1_MMQ 8 + +// contiguous v/x values +static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq( + const int & vl, const int & vh, const int * __restrict__ u, const int8_t * __restrict__ scales, + const float & d, const float * __restrict__ d8) { + +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + float sumf = 0.0f; + +#pragma unroll + for (int i = 0; i < QR6_K; ++i) { + const int sc = scales[4*i]; + + const int vil = (vl >> (4*i)) & 0x0F0F0F0F; + + const int vih = ((vh >> (4*i)) << 4) & 0x30303030; + + const int vi = __vsubss4((vil | vih), 0x20202020); // vi = (vil | vih) - 32 + + sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product + } + + return d*sumf; +#else + NO_DEVICE_CODE; +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A +} + +// contiguous u/y values +static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq( + const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ sc, + const float & d6, const float * __restrict__ d8) { + +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + float sumf_d = 0.0f; + +#pragma unroll + for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) { + int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale + +#pragma unroll + for (int i = i0; i < i0 + 2; ++i) { + sumi_d.x = __dp4a(v[2*i+0], u[2*i+0], sumi_d.x); // SIMD dot product + sumi_d.x = __dp4a(v[2*i+1], u[2*i+1], sumi_d.x); // SIMD dot product + + sumi_d.y = __dp4a(v[2*i+4], u[2*i+4], sumi_d.y); // SIMD dot product + sumi_d.y = __dp4a(v[2*i+5], u[2*i+5], sumi_d.y); // SIMD dot product + } + + sumf_d += d8[i0/4] * (sc[i0/2+0]*sumi_d.x + sc[i0/2+1]*sumi_d.y); + } + + return d6 * sumf_d; + +#else + NO_DEVICE_CODE; +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A +} + +static __device__ __forceinline__ float vec_dot_q4_0_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { + + const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq; + + int v[VDR_Q4_0_Q8_1_MMVQ]; + int u[2*VDR_Q4_0_Q8_1_MMVQ]; + +#pragma unroll + for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) { + v[i] = get_int_from_uint8(bq4_0->qs, iqs + i); + u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i); + u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_0); + } + + return vec_dot_q4_0_q8_1_impl(v, u, bq4_0->d, bq8_1->ds); +} + + +static __device__ __forceinline__ float vec_dot_q4_1_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { + + const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq; + + int v[VDR_Q4_1_Q8_1_MMVQ]; + int u[2*VDR_Q4_1_Q8_1_MMVQ]; + +#pragma unroll + for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) { + v[i] = get_int_from_uint8_aligned(bq4_1->qs, iqs + i); + u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i); + u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_1); + } + + return vec_dot_q4_1_q8_1_impl(v, u, bq4_1->dm, bq8_1->ds); +} + +static __device__ __forceinline__ float vec_dot_q5_0_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { + + const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq; + + int vl[VDR_Q5_0_Q8_1_MMVQ]; + int vh[VDR_Q5_0_Q8_1_MMVQ]; + int u[2*VDR_Q5_0_Q8_1_MMVQ]; + +#pragma unroll + for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) { + vl[i] = get_int_from_uint8(bq5_0->qs, iqs + i); + vh[i] = get_int_from_uint8(bq5_0->qh, 0) >> (4 * (iqs + i)); + u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i); + u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_0); + } + + return vec_dot_q5_0_q8_1_impl(vl, vh, u, bq5_0->d, bq8_1->ds); +} + +static __device__ __forceinline__ float vec_dot_q5_1_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { + + const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq; + + int vl[VDR_Q5_1_Q8_1_MMVQ]; + int vh[VDR_Q5_1_Q8_1_MMVQ]; + int u[2*VDR_Q5_1_Q8_1_MMVQ]; + +#pragma unroll + for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) { + vl[i] = get_int_from_uint8_aligned(bq5_1->qs, iqs + i); + vh[i] = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * (iqs + i)); + u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i); + u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_1); + } + + return vec_dot_q5_1_q8_1_impl(vl, vh, u, bq5_1->dm, bq8_1->ds); +} + +static __device__ __forceinline__ float vec_dot_q8_0_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { + + const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq; + + int v[VDR_Q8_0_Q8_1_MMVQ]; + int u[VDR_Q8_0_Q8_1_MMVQ]; + +#pragma unroll + for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) { + v[i] = get_int_from_int8(bq8_0->qs, iqs + i); + u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i); + } + + return vec_dot_q8_0_q8_1_impl(v, u, bq8_0->d, __low2half(bq8_1->ds)); +} + +static __device__ __forceinline__ float vec_dot_q2_K_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { + + const block_q2_K * bq2_K = (const block_q2_K *) vbq; + + const int bq8_offset = QR2_K * (iqs / QI8_1); + const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2); + + const uint8_t * scales = bq2_K->scales + scale_offset; + + const int v = get_int_from_uint8_aligned(bq2_K->qs, iqs); + int u[QR2_K]; + float d8[QR2_K]; + +#pragma unroll + for (int i = 0; i < QR2_K; ++ i) { + u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1); + d8[i] = __low2float(bq8_1[bq8_offset + i].ds); + } + + return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8); +} + +static __device__ __forceinline__ float vec_dot_q3_K_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { + + const block_q3_K * bq3_K = (const block_q3_K *) vbq; + + const int bq8_offset = QR3_K * (iqs / (QI3_K/2)); + const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2); + + const float d = bq3_K->d; + + const int vl = get_int_from_uint8(bq3_K->qs, iqs); + + // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted + const int vh = ~get_int_from_uint8(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset; + + int u[QR3_K]; + float d8[QR3_K]; + +#pragma unroll + for (int i = 0; i < QR3_K; ++i) { + u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1); + d8[i] = __low2float(bq8_1[bq8_offset + i].ds); + } + + return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8); +} + +static __device__ __forceinline__ float vec_dot_q4_K_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { + +#ifndef GGML_QKK_64 + const block_q4_K * bq4_K = (const block_q4_K *) vbq; + + int v[2]; + int u[2*QR4_K]; + float d8[QR4_K]; + + // iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6 + const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2)); + + // iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12 + // iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44 + // iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76 + // iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108 + + const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4)); + v[0] = q4[0]; + v[1] = q4[4]; + + const uint16_t * scales = (const uint16_t *)bq4_K->scales; + uint16_t aux[2]; + const int j = bq8_offset/2; + if (j < 2) { + aux[0] = scales[j+0] & 0x3f3f; + aux[1] = scales[j+2] & 0x3f3f; + } else { + aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2); + aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2); + } + const uint8_t * sc = (const uint8_t *)aux; + const uint8_t * m = sc + 2; + + for (int i = 0; i < QR4_K; ++i) { + const block_q8_1 * bq8i = bq8_1 + bq8_offset + i; + d8[i] = __low2float(bq8i->ds); + + const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4); + u[2*i+0] = q8[0]; + u[2*i+1] = q8[4]; + } + + return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8); + +#else + +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + const block_q4_K * bq4_K = (const block_q4_K *) vbq; + + float sumf_d = 0.0f; + float sumf_m = 0.0f; + + uint16_t aux16[2]; + const uint8_t * s = (const uint8_t *)aux16; + + const uint16_t * a = (const uint16_t *)bq4_K->scales; + aux16[0] = a[0] & 0x0f0f; + aux16[1] = (a[0] >> 4) & 0x0f0f; + + const float dall = bq4_K->dm[0]; + const float dmin = bq4_K->dm[1]; + + const float d8_1 = __low2float(bq8_1[0].ds); + const float d8_2 = __low2float(bq8_1[1].ds); + + const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2)); + const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4); + const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2)); + const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4); + + const int * q4 = (const int *)bq4_K->qs + (iqs/2); + const int v1 = q4[0]; + const int v2 = q4[4]; + + const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0)); + const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0)); + const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0)); + const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0)); + + sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]); + sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]); + + return dall * sumf_d - dmin * sumf_m; + +#else + NO_DEVICE_CODE; +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A + +#endif +} + +static __device__ __forceinline__ float vec_dot_q5_K_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { + +#ifndef GGML_QKK_64 + const block_q5_K * bq5_K = (const block_q5_K *) vbq; + + int vl[2]; + int vh[2]; + int u[2*QR5_K]; + float d8[QR5_K]; + + const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2)); + const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4)); + const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4)); + + vl[0] = ql[0]; + vl[1] = ql[4]; + + vh[0] = qh[0] >> bq8_offset; + vh[1] = qh[4] >> bq8_offset; + + const uint16_t * scales = (const uint16_t *)bq5_K->scales; + uint16_t aux[2]; + const int j = bq8_offset/2; + if (j < 2) { + aux[0] = scales[j+0] & 0x3f3f; + aux[1] = scales[j+2] & 0x3f3f; + } else { + aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2); + aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2); + } + const uint8_t * sc = (const uint8_t *)aux; + const uint8_t * m = sc + 2; + +#pragma unroll + for (int i = 0; i < QR5_K; ++i) { + const block_q8_1 * bq8i = bq8_1 + bq8_offset + i; + d8[i] = __low2float(bq8i->ds); + + const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4); + u[2*i+0] = q8[0]; + u[2*i+1] = q8[4]; + } + + return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8); + +#else + +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + const block_q5_K * bq5_K = (const block_q5_K *) vbq; + + const int8_t * s = bq5_K->scales; + + const float d = bq5_K->d; + + const float d8_1 = __low2half(bq8_1[0].ds); + const float d8_2 = __low2half(bq8_1[1].ds); + + const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2)); + const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4); + const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2)); + const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4); + + const int * ql = (const int *)bq5_K->qs + (iqs/2); + const int vl1 = ql[0]; + const int vl2 = ql[4]; + + const int step = 4 * (iqs/2); // 0, 4, 8, 12 + const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6 + const int in = step%8; // 0, 4, 0, 4 + const int vh = (*((const int *)(bq5_K->qh + in))) >> im; + + const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f); + const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f); + const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f); + const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f); + + const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1]) + + d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]); + + return d * sumf_d; + +#else + NO_DEVICE_CODE; +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A + +#endif +} + +static __device__ __forceinline__ float vec_dot_q6_K_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { + + const block_q6_K * bq6_K = (const block_q6_K *) vbq; + + const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4); + const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8); + const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4)); + + const int vl = get_int_from_uint8(bq6_K->ql, iqs); + const int vh = get_int_from_uint8(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift; + + const int8_t * scales = bq6_K->scales + scale_offset; + + int u[QR6_K]; + float d8[QR6_K]; + +#pragma unroll + for (int i = 0; i < QR6_K; ++i) { + u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1); + d8[i] = __low2float(bq8_1[bq8_offset + 2*i].ds); + } + + return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8); +} + +static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { +#if QK_K == 256 + const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq; + +#if QR2_XXS == 8 + const int ib32 = iqs; + const uint16_t * q2 = bq2->qs + 4*ib32; + const uint8_t * aux8 = (const uint8_t *)q2; + const int8_t * q8 = bq8_1[ib32].qs; + uint32_t aux32 = q2[2] | (q2[3] << 16); + int sumi = 0; + for (int l = 0; l < 4; ++l) { + const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]); + const uint8_t signs = ksigns_iq2xs[aux32 & 127]; + for (int j = 0; j < 8; ++j) { + sumi += q8[j] * grid[j] * (signs & kmask_iq2xs[j] ? -1 : 1); + } + q8 += 8; + aux32 >>= 7; + } + const float d = (float)bq2->d * (0.5f + aux32) * __low2float(bq8_1[ib32].ds) * 0.25f; + return d * sumi; +#else + // iqs is 0...15 + const int ib32 = iqs/2; + const int il = iqs%2; + const uint16_t * q2 = bq2->qs + 4*ib32; + const uint8_t * aux8 = (const uint8_t *)q2; + const uint8_t * grid1 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+0]); + const uint8_t * grid2 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+1]); + const uint32_t aux32 = q2[2] | (q2[3] << 16); + const float d = (float)bq2->d * (0.5f + (aux32 >> 28)) * __low2float(bq8_1[ib32].ds) * 0.25f; + const uint8_t signs1 = ksigns_iq2xs[(aux32 >> 14*il) & 127]; + const uint8_t signs2 = ksigns_iq2xs[(aux32 >> (14*il + 7)) & 127]; + const int8_t * q8 = bq8_1[ib32].qs + 16*il; + int sumi1 = 0, sumi2 = 0; + for (int j = 0; j < 8; ++j) { + sumi1 += q8[j+0] * grid1[j] * (signs1 & kmask_iq2xs[j] ? -1 : 1); + sumi2 += q8[j+8] * grid2[j] * (signs2 & kmask_iq2xs[j] ? -1 : 1); + } + return d * (sumi1 + sumi2); +#endif +#else + NO_DEVICE_CODE; +#endif +} + +static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics +#if QK_K == 256 + const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq; + + const int ib32 = iqs; + const uint16_t * q2 = bq2->qs + 4*ib32; + const int8_t * q8 = bq8_1[ib32].qs; + const uint8_t ls1 = bq2->scales[ib32] & 0xf; + const uint8_t ls2 = bq2->scales[ib32] >> 4; + int sumi1 = 0; + for (int l = 0; l < 2; ++l) { + const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511)); + const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9)); + const int grid_l = __vsub4(grid[0] ^ signs[0], signs[0]); + const int grid_h = __vsub4(grid[1] ^ signs[1], signs[1]); + sumi1 = __dp4a(grid_l, *((const int *)q8 + 0), sumi1); + sumi1 = __dp4a(grid_h, *((const int *)q8 + 1), sumi1); + q8 += 8; + } + int sumi2 = 0; + for (int l = 2; l < 4; ++l) { + const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511)); + const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9)); + const int grid_l = __vsub4(grid[0] ^ signs[0], signs[0]); + const int grid_h = __vsub4(grid[1] ^ signs[1], signs[1]); + sumi2 = __dp4a(grid_l, *((const int *)q8 + 0), sumi2); + sumi2 = __dp4a(grid_h, *((const int *)q8 + 1), sumi2); + q8 += 8; + } + const float d = (float)bq2->d * __low2float(bq8_1[ib32].ds) * 0.25f; + return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2); +#else + GGML_UNUSED(ksigns64); + NO_DEVICE_CODE; +#endif +#else + GGML_UNUSED(ksigns64); + NO_DEVICE_CODE; +#endif +} + +// TODO +static __device__ __forceinline__ float vec_dot_iq2_s_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics +#if QK_K == 256 + const block_iq2_s * bq2 = (const block_iq2_s *) vbq; + + const int ib32 = iqs; + const int8_t * q8 = bq8_1[ib32].qs; + const uint8_t * signs = bq2->qs + QK_K/8 + 4*ib32; + const uint8_t ls1 = bq2->scales[ib32] & 0xf; + const uint8_t ls2 = bq2->scales[ib32] >> 4; + int sumi1 = 0; + for (int l = 0; l < 2; ++l) { + const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300))); + const uint32_t signs0 = __vcmpeq4(((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201); + const uint32_t signs1 = __vcmpeq4(((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201); + const int grid_l = __vsub4(grid[0] ^ signs0, signs0); + const int grid_h = __vsub4(grid[1] ^ signs1, signs1); + sumi1 = __dp4a(grid_l, *((const int *)q8 + 0), sumi1); + sumi1 = __dp4a(grid_h, *((const int *)q8 + 1), sumi1); + q8 += 8; + } + int sumi2 = 0; + for (int l = 2; l < 4; ++l) { + const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300))); + const uint32_t signs0 = __vcmpeq4(((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201); + const uint32_t signs1 = __vcmpeq4(((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201); + const int grid_l = __vsub4(grid[0] ^ signs0, signs0); + const int grid_h = __vsub4(grid[1] ^ signs1, signs1); + sumi2 = __dp4a(grid_l, *((const int *)q8 + 0), sumi2); + sumi2 = __dp4a(grid_h, *((const int *)q8 + 1), sumi2); + q8 += 8; + } + const float d = (float)bq2->d * __low2float(bq8_1[ib32].ds) * 0.25f; + return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2); +#else + GGML_UNUSED(ksigns64); + NO_DEVICE_CODE; +#endif +#else + GGML_UNUSED(ksigns64); + NO_DEVICE_CODE; +#endif +} + +static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics +#if QK_K == 256 + const block_iq3_xxs * bq2 = (const block_iq3_xxs *) vbq; + + const int ib32 = iqs; + const uint8_t * q3 = bq2->qs + 8*ib32; + const uint16_t * gas = (const uint16_t *)(bq2->qs + QK_K/4) + 2*ib32; + const int8_t * q8 = bq8_1[ib32].qs; + uint32_t aux32 = gas[0] | (gas[1] << 16); + int sumi = 0; + for (int l = 0; l < 4; ++l) { + const uint32_t * grid1 = iq3xxs_grid + q3[2*l+0]; + const uint32_t * grid2 = iq3xxs_grid + q3[2*l+1]; + const uint32_t * signs = (const uint32_t *)(ksigns64 + (aux32 & 127)); + const int grid_l = __vsub4(grid1[0] ^ signs[0], signs[0]); + const int grid_h = __vsub4(grid2[0] ^ signs[1], signs[1]); + sumi = __dp4a(grid_l, *((int *)q8+0), sumi); + sumi = __dp4a(grid_h, *((int *)q8+1), sumi); + q8 += 8; + aux32 >>= 7; + } + const float d = (float)bq2->d * (0.5f + aux32) * __low2float(bq8_1[ib32].ds) * 0.5f; + return d * sumi; +#else + NO_DEVICE_CODE; +#endif +#else + NO_DEVICE_CODE; +#endif +} + +// TODO: don't use lookup table for signs +static __device__ __forceinline__ float vec_dot_iq3_s_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics +#if QK_K == 256 + const block_iq3_s * bq2 = (const block_iq3_s *) vbq; + + const int ib32 = iqs; + const uint8_t * qs = bq2->qs + 8*ib32; + const int8_t * q8 = bq8_1[ib32].qs; + int sumi = 0; + for (int l = 0; l < 4; ++l) { + const uint32_t * grid1 = iq3s_grid + (qs[2*l+0] | ((bq2->qh[ib32] << (8 - 2*l)) & 256)); + const uint32_t * grid2 = iq3s_grid + (qs[2*l+1] | ((bq2->qh[ib32] << (7 - 2*l)) & 256)); + uint32_t signs0 = __vcmpeq4(((bq2->signs[4*ib32+l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201); + uint32_t signs1 = __vcmpeq4(((bq2->signs[4*ib32+l] >> 4) * 0x01010101) & 0x08040201, 0x08040201); + const int grid_l = __vsub4(grid1[0] ^ signs0, signs0); + const int grid_h = __vsub4(grid2[0] ^ signs1, signs1); + sumi = __dp4a(grid_l, *((int *)q8+0), sumi); + sumi = __dp4a(grid_h, *((int *)q8+1), sumi); + q8 += 8; + } + const float d = (float)bq2->d * (1 + 2*((bq2->scales[ib32/2] >> 4*(ib32%2)) & 0xf)) * __low2float(bq8_1[ib32].ds); + return d * sumi; +#else + NO_DEVICE_CODE; +#endif +#else + NO_DEVICE_CODE; +#endif +} + +static __device__ __forceinline__ float vec_dot_iq1_s_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { +#if QK_K == 256 + const block_iq1_s * bq1 = (const block_iq1_s *) vbq; + + const int ib32 = iqs; + int sumi = 0; +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + const int * q8 = (const int *)bq8_1[ib32].qs; + for (int l = 0; l < 4; ++l) { + const int * grid = (const int *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8))); + int grid0 = grid[0] & 0x0f0f0f0f; + int grid1 = (grid[0] >> 4) & 0x0f0f0f0f; + sumi = __dp4a(q8[2*l+1], grid1, __dp4a(q8[2*l+0], grid0, sumi)); + } +#else + const int8_t * q8 = bq8_1[ib32].qs; + for (int l = 0; l < 4; ++l) { + const uint8_t * grid = (const uint8_t *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8))); + for (int j = 0; j < 4; ++j) { + sumi += q8[j] * (grid[j] & 0xf) + q8[j+4] * (grid[j] >> 4); + } + q8 += 8; + } +#endif + const float delta = bq1->qh[ib32] & 0x8000 ? -1-IQ1S_DELTA : -1+IQ1S_DELTA; + const float d1q = (float)bq1->d * (2*((bq1->qh[ib32] >> 12) & 7) + 1); + const float d = d1q * __low2float (bq8_1[ib32].ds); + const float m = d1q * __high2float(bq8_1[ib32].ds); + return d * sumi + m * delta; +#else + NO_DEVICE_CODE; +#endif +} + +static __device__ __forceinline__ float vec_dot_iq1_m_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { +#if QK_K == 256 + const block_iq1_m * bq1 = (const block_iq1_m *) vbq; + + const int ib32 = iqs; + int sumi[2] = {0, 0}; + float sumf[2] = {0.f, 0.f}; +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + const int * q8 = (const int *)bq8_1[ib32].qs; + for (int l = 0; l < 4; ++l) { + const int * grid = (const int *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 7) << 8))); + int grid0 = grid[0] & 0x0f0f0f0f; + int grid1 = (grid[0] >> 4) & 0x0f0f0f0f; + sumi[l/2] = __dp4a(q8[2*l+1], grid1, __dp4a(q8[2*l+0], grid0, sumi[l/2])); + const float delta = (bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 0x08 ? -1-IQ1M_DELTA : -1+IQ1M_DELTA; + const int sumy = __dp4a(q8[2*l+1], 0x01010101, __dp4a(q8[2*l+0], 0x01010101, 0)); + sumf[l/2] += delta*sumy; + } +#else + const int8_t * q8 = bq8_1[ib32].qs; + for (int l = 0; l < 4; ++l) { + const uint8_t * grid = (const uint8_t *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8))); + int sumy = 0; + for (int j = 0; j < 4; ++j) { + sumi[l/2] += q8[j] * (grid[j] & 0xf) + q8[j+4] * (grid[j] >> 4); + sumy += q8[j] + q8[j+4]; + } + const float delta = (bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 0x08 ? -1-IQ1M_DELTA : -1+IQ1M_DELTA; + sumf[l/2] += delta*sumy; + q8 += 8; + } +#endif + iq1m_scale_t scale; + const uint16_t * sc = (const uint16_t *)bq1->scales; + scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); + const float d = (float)scale.f16 * __low2float (bq8_1[ib32].ds); + return d * ((sumi[0] + sumf[0]) * (2*((sc[ib32/2] >> 6*(ib32%2)) & 0x7) + 1) + (sumi[1] + sumf[1]) * (2*((sc[ib32/2] >> (6*(ib32%2)+3)) & 0x7) + 1)); +#else + NO_DEVICE_CODE; +#endif +} + +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics +static __device__ __forceinline__ void get_int_from_table_16(const uint32_t & q4, const uint8_t * values, + int & val1, int & val2) { + + uint32_t aux32; const uint8_t * q8 = (const uint8_t *)&aux32; + aux32 = q4 & 0x0f0f0f0f; + uint16_t v1 = values[q8[0]] | (values[q8[1]] << 8); + uint16_t v2 = values[q8[2]] | (values[q8[3]] << 8); + val1 = v1 | (v2 << 16); + aux32 = (q4 >> 4) & 0x0f0f0f0f; + v1 = values[q8[0]] | (values[q8[1]] << 8); + v2 = values[q8[2]] | (values[q8[3]] << 8); + val2 = v1 | (v2 << 16); +} +#endif + +static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { + + const block_iq4_nl * bq = (const block_iq4_nl *) vbq; + +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + const uint16_t * q4 = (const uint16_t *)bq->qs + 2*iqs; + const int32_t * q8 = (const int32_t *)bq8_1->qs + iqs; + + const uint8_t * values = (const uint8_t *)kvalues_iq4nl; + + int v1, v2; + int sumi1 = 0, sumi2 = 0; + for (int l = 0; l < VDR_Q4_0_Q8_1_MMVQ; ++l) { + const uint32_t aux = q4[2*l] | (q4[2*l+1] << 16); + get_int_from_table_16(aux, values, v1, v2); + sumi1 = __dp4a(v1, q8[l+0], sumi1); + sumi2 = __dp4a(v2, q8[l+4], sumi2); + } + +#else + const uint8_t * q4 = bq->qs + 4*iqs; + const int8_t * q8 = bq8_1->qs + 4*iqs; + + int sumi1 = 0, sumi2 = 0; + for (int l = 0; l < 4*VDR_Q4_0_Q8_1_MMVQ; ++l) { + sumi1 += q8[l+ 0] * kvalues_iq4nl[q4[l] & 0xf]; + sumi2 += q8[l+16] * kvalues_iq4nl[q4[l] >> 4]; + } +#endif + const float d = (float)bq->d * __low2float(bq8_1->ds); + return d * (sumi1 + sumi2); +} + +static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { + +#if QK_K == 256 +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + + const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq; + const uint8_t * values = (const uint8_t *)kvalues_iq4nl; + + // iqs is 0...7 + const int ib32 = iqs; + const int32_t * q8 = (const int *)bq8_1[ib32].qs; + const uint32_t * q4 = (const uint32_t *)bq4->qs + 4*ib32; + const int8_t ls = ((bq4->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((bq4->scales_h >> 2*ib32) & 3) << 4); + const float d = (float)bq4->d * (ls - 32) * __low2float(bq8_1[ib32].ds); + int v1, v2; + int sumi1 = 0, sumi2 = 0; + for (int j = 0; j < 4; ++j) { + get_int_from_table_16(q4[j], values, v1, v2); + sumi1 = __dp4a(v1, q8[j+0], sumi1); + sumi2 = __dp4a(v2, q8[j+4], sumi2); + } + return d * (sumi1 + sumi2); + +#else + NO_DEVICE_CODE; +#endif +#else + return vec_dot_iq4_xs_q8_1(vbq, bq8_1, iqs); +#endif +} diff --git a/llama/ggml-metal.h b/llama/ggml-metal.h index efd6e0e9..a5c54218 100644 --- a/llama/ggml-metal.h +++ b/llama/ggml-metal.h @@ -1,66 +1,66 @@ -// An interface allowing to compute ggml_cgraph with Metal -// -// This is a fully functional interface that extends ggml with GPU support for Apple devices. -// A similar interface can be created for other GPU backends (e.g. Vulkan, CUDA, OpenCL, etc.) -// -// How it works? -// -// As long as your program can create and evaluate a ggml_cgraph on the CPU, you can use this -// interface to evaluate the same graph on the GPU. Instead of using ggml_graph_compute(), you -// use ggml_metal_graph_compute() (or ggml_vulkan_graph_compute(), etc.) -// -// You only need to make sure that all memory buffers that you used during the graph creation -// are mapped to the device memory with the ggml_metal_add_buffer() function. This mapping is -// used during the graph evaluation to determine the arguments of the compute kernels. -// -// Synchronization between device and host memory (for example for input and output tensors) -// is done with the ggml_metal_set_tensor() and ggml_metal_get_tensor() functions. -// - -#pragma once - -#include "ggml.h" -#include "ggml-backend.h" - -#include -#include - -// max memory buffers that can be mapped to the device -#define GGML_METAL_MAX_BUFFERS 64 - -struct ggml_tensor; -struct ggml_cgraph; - -#ifdef __cplusplus -extern "C" { -#endif - -// -// backend API -// user-code should use only these functions -// - -GGML_API void ggml_backend_metal_log_set_callback(ggml_log_callback log_callback, void * user_data); - -GGML_API ggml_backend_t ggml_backend_metal_init(void); - -GGML_API bool ggml_backend_is_metal(ggml_backend_t backend); - -GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size); - -GGML_API void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb); - -GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void); - -// helper to check if the device supports a specific family -// ideally, the user code should be doing these checks -// ref: https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf -GGML_API bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family); - -// capture all command buffers committed the next time `ggml_backend_graph_compute` is called -GGML_API void ggml_backend_metal_capture_next_compute(ggml_backend_t backend); - -#ifdef __cplusplus -} -#endif - +// An interface allowing to compute ggml_cgraph with Metal +// +// This is a fully functional interface that extends ggml with GPU support for Apple devices. +// A similar interface can be created for other GPU backends (e.g. Vulkan, CUDA, OpenCL, etc.) +// +// How it works? +// +// As long as your program can create and evaluate a ggml_cgraph on the CPU, you can use this +// interface to evaluate the same graph on the GPU. Instead of using ggml_graph_compute(), you +// use ggml_metal_graph_compute() (or ggml_vulkan_graph_compute(), etc.) +// +// You only need to make sure that all memory buffers that you used during the graph creation +// are mapped to the device memory with the ggml_metal_add_buffer() function. This mapping is +// used during the graph evaluation to determine the arguments of the compute kernels. +// +// Synchronization between device and host memory (for example for input and output tensors) +// is done with the ggml_metal_set_tensor() and ggml_metal_get_tensor() functions. +// + +#pragma once + +#include "ggml.h" +#include "ggml-backend.h" + +#include +#include + +// max memory buffers that can be mapped to the device +#define GGML_METAL_MAX_BUFFERS 64 + +struct ggml_tensor; +struct ggml_cgraph; + +#ifdef __cplusplus +extern "C" { +#endif + +// +// backend API +// user-code should use only these functions +// + +GGML_API void ggml_backend_metal_log_set_callback(ggml_log_callback log_callback, void * user_data); + +GGML_API ggml_backend_t ggml_backend_metal_init(void); + +GGML_API bool ggml_backend_is_metal(ggml_backend_t backend); + +GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size); + +GGML_API void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb); + +GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void); + +// helper to check if the device supports a specific family +// ideally, the user code should be doing these checks +// ref: https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf +GGML_API bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family); + +// capture all command buffers committed the next time `ggml_backend_graph_compute` is called +GGML_API void ggml_backend_metal_capture_next_compute(ggml_backend_t backend); + +#ifdef __cplusplus +} +#endif + diff --git a/llama/ggml-metal-darwin_arm64.m b/llama/ggml-metal.m similarity index 100% rename from llama/ggml-metal-darwin_arm64.m rename to llama/ggml-metal.m diff --git a/llama/ggml-metal.metal b/llama/ggml-metal.metal new file mode 100644 index 00000000..386e9195 --- /dev/null +++ b/llama/ggml-metal.metal @@ -0,0 +1,6859 @@ +#define GGML_COMMON_DECL_METAL +#define GGML_COMMON_IMPL_METAL +#include "ggml-common.h" + +#include + +using namespace metal; + +#define MAX(x, y) ((x) > (y) ? (x) : (y)) +#define MIN(x, y) ((x) < (y) ? (x) : (y)) +#define SWAP(x, y) { auto tmp = (x); (x) = (y); (y) = tmp; } + +#define N_SIMDWIDTH 32 // assuming SIMD group size is 32 + +enum ggml_sort_order { + GGML_SORT_ORDER_ASC, + GGML_SORT_ORDER_DESC, +}; + +// general-purpose kernel for addition, multiplication and division of two tensors +// pros: works for non-contiguous tensors, supports broadcast across all dims +// cons: not very efficient +kernel void kernel_add( + device const char * src0, + device const char * src1, + device char * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant int64_t & ne13, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant uint64_t & nb13, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + constant int64_t & offs, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig.z; + const int64_t i02 = tgpig.y; + const int64_t i01 = tgpig.x; + + const int64_t i13 = i03 % ne13; + const int64_t i12 = i02 % ne12; + const int64_t i11 = i01 % ne11; + + device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + offs; + device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11; + device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + offs; + + for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) { + const int i10 = i0 % ne10; + *((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) + *((device float *)(src1_ptr + i10*nb10)); + } +} + +kernel void kernel_mul( + device const char * src0, + device const char * src1, + device char * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant int64_t & ne13, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant uint64_t & nb13, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig.z; + const int64_t i02 = tgpig.y; + const int64_t i01 = tgpig.x; + + const int64_t i13 = i03 % ne13; + const int64_t i12 = i02 % ne12; + const int64_t i11 = i01 % ne11; + + device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01; + device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11; + device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1; + + for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) { + const int i10 = i0 % ne10; + *((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) * *((device float *)(src1_ptr + i10*nb10)); + } +} + +kernel void kernel_div( + device const char * src0, + device const char * src1, + device char * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant int64_t & ne13, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant uint64_t & nb13, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig.z; + const int64_t i02 = tgpig.y; + const int64_t i01 = tgpig.x; + + const int64_t i13 = i03 % ne13; + const int64_t i12 = i02 % ne12; + const int64_t i11 = i01 % ne11; + + device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01; + device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11; + device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1; + + for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) { + const int i10 = i0 % ne10; + *((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) / *((device float *)(src1_ptr + i10*nb10)); + } +} + +// assumption: src1 is a row +// broadcast src1 into src0 +kernel void kernel_add_row( + device const float4 * src0, + device const float4 * src1, + device float4 * dst, + constant uint64_t & nb [[buffer(28)]], + uint tpig[[thread_position_in_grid]]) { + dst[tpig] = src0[tpig] + src1[tpig % nb]; +} + +kernel void kernel_mul_row( + device const float4 * src0, + device const float4 * src1, + device float4 * dst, + constant uint64_t & nb [[buffer(28)]], + uint tpig[[thread_position_in_grid]]) { + dst[tpig] = src0[tpig] * src1[tpig % nb]; +} + +kernel void kernel_div_row( + device const float4 * src0, + device const float4 * src1, + device float4 * dst, + constant uint64_t & nb [[buffer(28)]], + uint tpig[[thread_position_in_grid]]) { + dst[tpig] = src0[tpig] / src1[tpig % nb]; +} + +kernel void kernel_scale( + device const float * src0, + device float * dst, + constant float & scale, + uint tpig[[thread_position_in_grid]]) { + dst[tpig] = src0[tpig] * scale; +} + +kernel void kernel_scale_4( + device const float4 * src0, + device float4 * dst, + constant float & scale, + uint tpig[[thread_position_in_grid]]) { + dst[tpig] = src0[tpig] * scale; +} + +kernel void kernel_clamp( + device const float * src0, + device float * dst, + constant float & min, + constant float & max, + uint tpig[[thread_position_in_grid]]) { + dst[tpig] = src0[tpig] < min ? min : (src0[tpig] > max ? max : src0[tpig]); +} + +kernel void kernel_relu( + device const float * src0, + device float * dst, + uint tpig[[thread_position_in_grid]]) { + dst[tpig] = max(0.0f, src0[tpig]); +} + +kernel void kernel_sigmoid( + device const float * src0, + device float * dst, + uint tpig[[thread_position_in_grid]]) { + dst[tpig] = 1.0f / (1.0f + exp(-src0[tpig])); +} + +kernel void kernel_tanh( + device const float * src0, + device float * dst, + uint tpig[[thread_position_in_grid]]) { + device const float & x = src0[tpig]; + dst[tpig] = precise::tanh(x); +} + +constant float GELU_COEF_A = 0.044715f; +constant float GELU_QUICK_COEF = -1.702f; +constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f; + +kernel void kernel_gelu( + device const float * src0, + device float * dst, + uint tpig[[thread_position_in_grid]]) { + device const float & x = src0[tpig]; + + dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x))); +} + +kernel void kernel_gelu_4( + device const float4 * src0, + device float4 * dst, + uint tpig[[thread_position_in_grid]]) { + device const float4 & x = src0[tpig]; + + // BEWARE !!! + // Simply using "tanh" instead of "precise::tanh" will sometimes results in NaNs! + // This was observed with Falcon 7B and 40B models + // + dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x))); +} + +kernel void kernel_gelu_quick( + device const float * src0, + device float * dst, + uint tpig[[thread_position_in_grid]]) { + device const float & x = src0[tpig]; + + dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x))); +} + +kernel void kernel_gelu_quick_4( + device const float4 * src0, + device float4 * dst, + uint tpig[[thread_position_in_grid]]) { + device const float4 & x = src0[tpig]; + + dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x))); +} + +kernel void kernel_silu( + device const float * src0, + device float * dst, + uint tpig[[thread_position_in_grid]]) { + device const float & x = src0[tpig]; + dst[tpig] = x / (1.0f + exp(-x)); +} + +kernel void kernel_silu_4( + device const float4 * src0, + device float4 * dst, + uint tpig[[thread_position_in_grid]]) { + device const float4 & x = src0[tpig]; + dst[tpig] = x / (1.0f + exp(-x)); +} + +kernel void kernel_sqr( + device const float * src0, + device float * dst, + uint tpig[[thread_position_in_grid]]) { + dst[tpig] = src0[tpig] * src0[tpig]; +} + +kernel void kernel_sum_rows( + device const float * src0, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant int64_t & ne13, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant uint64_t & nb13, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tpig[[thread_position_in_grid]]) { + int64_t i3 = tpig.z; + int64_t i2 = tpig.y; + int64_t i1 = tpig.x; + + if (i3 >= ne03 || i2 >= ne02 || i1 >= ne01) { + return; + } + + device const float * src_row = (device const float *) ((device const char *) src0 + i1*nb01 + i2*nb02 + i3*nb03); + device float * dst_row = (device float *) ((device char *) dst + i1*nb1 + i2*nb2 + i3*nb3); + + float row_sum = 0; + + for (int64_t i0 = 0; i0 < ne00; i0++) { + row_sum += src_row[i0]; + } + + dst_row[0] = row_sum; +} + +template +kernel void kernel_soft_max( + device const char * src0, + device const char * src1, + device char * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant float & scale, + constant float & max_bias, + constant float & m0, + constant float & m1, + constant uint32_t & n_head_log2, + threadgroup float * buf [[threadgroup(0)]], + uint tgpig[[threadgroup_position_in_grid]], + uint tpitg[[thread_position_in_threadgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]], + uint tiisg[[thread_index_in_simdgroup]], + uint ntg[[threads_per_threadgroup]]) { + const int64_t i03 = (tgpig) / (ne02*ne01); + const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01; + const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01); + + device const float * psrc0 = (device const float *) src0 + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00); + device const T * pmask = src1 != src0 ? (device const T *) src1 + i01*ne00 : nullptr; + device float * pdst = (device float *) dst + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00); + + float slope = 1.0f; + + // ALiBi + if (max_bias > 0.0f) { + const int64_t h = i02; + + const float base = h < n_head_log2 ? m0 : m1; + const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; + + slope = pow(base, exp); + } + + // parallel max + float lmax = -INFINITY; + + for (int i00 = tpitg; i00 < ne00; i00 += ntg) { + lmax = MAX(lmax, psrc0[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f)); + } + + // find the max value in the block + float max_val = simd_max(lmax); + if (ntg > N_SIMDWIDTH) { + if (sgitg == 0) { + buf[tiisg] = -INFINITY; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + if (tiisg == 0) { + buf[sgitg] = max_val; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + max_val = buf[tiisg]; + max_val = simd_max(max_val); + } + + // parallel sum + float lsum = 0.0f; + for (int i00 = tpitg; i00 < ne00; i00 += ntg) { + const float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f)) - max_val); + lsum += exp_psrc0; + pdst[i00] = exp_psrc0; + } + + // This barrier fixes a failing test + // ref: https://github.com/ggerganov/ggml/pull/621#discussion_r1425156335 + threadgroup_barrier(mem_flags::mem_none); + + float sum = simd_sum(lsum); + + if (ntg > N_SIMDWIDTH) { + if (sgitg == 0) { + buf[tiisg] = 0.0f; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + if (tiisg == 0) { + buf[sgitg] = sum; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + sum = buf[tiisg]; + sum = simd_sum(sum); + } + + const float inv_sum = 1.0f/sum; + + for (int i00 = tpitg; i00 < ne00; i00 += ntg) { + pdst[i00] *= inv_sum; + } +} + +template +kernel void kernel_soft_max_4( + device const char * src0, + device const char * src1, + device char * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant float & scale, + constant float & max_bias, + constant float & m0, + constant float & m1, + constant uint32_t & n_head_log2, + threadgroup float * buf [[threadgroup(0)]], + uint tgpig[[threadgroup_position_in_grid]], + uint tpitg[[thread_position_in_threadgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]], + uint tiisg[[thread_index_in_simdgroup]], + uint ntg[[threads_per_threadgroup]]) { + const int64_t i03 = (tgpig) / (ne02*ne01); + const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01; + const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01); + + device const float4 * psrc4 = (device const float4 *) src0 + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00)/4; + device const T * pmask = src1 != src0 ? (device const T *) src1 + i01*ne00/4 : nullptr; + device float4 * pdst4 = (device float4 *) dst + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00)/4; + + float slope = 1.0f; + + if (max_bias > 0.0f) { + const int64_t h = i02; + + const float base = h < n_head_log2 ? m0 : m1; + const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; + + slope = pow(base, exp); + } + + // parallel max + float4 lmax4 = -INFINITY; + + for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { + lmax4 = fmax(lmax4, psrc4[i00]*scale + (float4)((pmask ? slope*pmask[i00] : 0.0f))); + } + + const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3])); + + float max_val = simd_max(lmax); + if (ntg > N_SIMDWIDTH) { + if (sgitg == 0) { + buf[tiisg] = -INFINITY; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + if (tiisg == 0) { + buf[sgitg] = max_val; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + max_val = buf[tiisg]; + max_val = simd_max(max_val); + } + + // parallel sum + float4 lsum4 = 0.0f; + for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { + const float4 exp_psrc4 = exp((psrc4[i00]*scale + (float4)((pmask ? slope*pmask[i00] : 0.0f))) - max_val); + lsum4 += exp_psrc4; + pdst4[i00] = exp_psrc4; + } + + const float lsum = lsum4[0] + lsum4[1] + lsum4[2] + lsum4[3]; + + // This barrier fixes a failing test + // ref: https://github.com/ggerganov/ggml/pull/621#discussion_r1425156335 + threadgroup_barrier(mem_flags::mem_none); + + float sum = simd_sum(lsum); + + if (ntg > N_SIMDWIDTH) { + if (sgitg == 0) { + buf[tiisg] = 0.0f; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + if (tiisg == 0) { + buf[sgitg] = sum; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + sum = buf[tiisg]; + sum = simd_sum(sum); + } + + const float inv_sum = 1.0f/sum; + + for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { + pdst4[i00] *= inv_sum; + } +} + +typedef decltype(kernel_soft_max) kernel_soft_max_t; +typedef decltype(kernel_soft_max_4) kernel_soft_max_4_t; + +template [[host_name("kernel_soft_max_f16")]] kernel kernel_soft_max_t kernel_soft_max; +template [[host_name("kernel_soft_max_f32")]] kernel kernel_soft_max_t kernel_soft_max; +template [[host_name("kernel_soft_max_f16_4")]] kernel kernel_soft_max_4_t kernel_soft_max_4; +template [[host_name("kernel_soft_max_f32_4")]] kernel kernel_soft_max_4_t kernel_soft_max_4; + +kernel void kernel_diag_mask_inf( + device const float * src0, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int & n_past, + uint3 tpig[[thread_position_in_grid]]) { + const int64_t i02 = tpig[2]; + const int64_t i01 = tpig[1]; + const int64_t i00 = tpig[0]; + + if (i00 > n_past + i01) { + dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY; + } else { + dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00]; + } +} + +kernel void kernel_diag_mask_inf_8( + device const float4 * src0, + device float4 * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int & n_past, + uint3 tpig[[thread_position_in_grid]]) { + + const int64_t i = 2*tpig[0]; + + dst[i+0] = src0[i+0]; + dst[i+1] = src0[i+1]; + int64_t i4 = 4*i; + const int64_t i02 = i4/(ne00*ne01); i4 -= i02*ne00*ne01; + const int64_t i01 = i4/(ne00); i4 -= i01*ne00; + const int64_t i00 = i4; + for (int k = 3; k >= 0; --k) { + if (i00 + 4 + k <= n_past + i01) { + break; + } + dst[i+1][k] = -INFINITY; + if (i00 + k > n_past + i01) { + dst[i][k] = -INFINITY; + } + } +} + +kernel void kernel_norm( + device const void * src0, + device float * dst, + constant int64_t & ne00, + constant uint64_t & nb01, + constant float & eps, + threadgroup float * sum [[threadgroup(0)]], + uint tgpig[[threadgroup_position_in_grid]], + uint tpitg[[thread_position_in_threadgroup]], + uint ntg[[threads_per_threadgroup]]) { + device const float * x = (device const float *) ((device const char *) src0 + tgpig*nb01); + // MEAN + // parallel sum + sum[tpitg] = 0.0f; + for (int i00 = tpitg; i00 < ne00; i00 += ntg) { + sum[tpitg] += x[i00]; + } + // reduce + threadgroup_barrier(mem_flags::mem_threadgroup); + for (uint i = ntg/2; i > 0; i /= 2) { + if (tpitg < i) { + sum[tpitg] += sum[tpitg + i]; + } + threadgroup_barrier(mem_flags::mem_threadgroup); + } + const float mean = sum[0] / ne00; + + // recenter and VARIANCE + threadgroup_barrier(mem_flags::mem_threadgroup); + device float * y = dst + tgpig*ne00; + sum[tpitg] = 0.0f; + for (int i00 = tpitg; i00 < ne00; i00 += ntg) { + y[i00] = x[i00] - mean; + sum[tpitg] += y[i00] * y[i00]; + } + + // reduce + threadgroup_barrier(mem_flags::mem_threadgroup); + for (uint i = ntg/2; i > 0; i /= 2) { + if (tpitg < i) { + sum[tpitg] += sum[tpitg + i]; + } + threadgroup_barrier(mem_flags::mem_threadgroup); + } + const float variance = sum[0] / ne00; + + const float scale = 1.0f/sqrt(variance + eps); + for (int i00 = tpitg; i00 < ne00; i00 += ntg) { + y[i00] = y[i00] * scale; + } +} + +kernel void kernel_rms_norm( + device const void * src0, + device float * dst, + constant int64_t & ne00, + constant uint64_t & nb01, + constant float & eps, + threadgroup float * buf [[threadgroup(0)]], + uint tgpig[[threadgroup_position_in_grid]], + uint tpitg[[thread_position_in_threadgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]], + uint tiisg[[thread_index_in_simdgroup]], + uint ntg[[threads_per_threadgroup]]) { + device const float4 * x = (device const float4 *) ((device const char *) src0 + tgpig*nb01); + + float4 sumf = 0; + float all_sum = 0; + + // parallel sum + for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { + sumf += x[i00] * x[i00]; + } + all_sum = sumf[0] + sumf[1] + sumf[2] + sumf[3]; + all_sum = simd_sum(all_sum); + if (ntg > N_SIMDWIDTH) { + if (sgitg == 0) { + buf[tiisg] = 0.0f; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + if (tiisg == 0) { + buf[sgitg] = all_sum; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + all_sum = buf[tiisg]; + all_sum = simd_sum(all_sum); + } + + const float mean = all_sum/ne00; + const float scale = 1.0f/sqrt(mean + eps); + + device float4 * y = (device float4 *) (dst + tgpig*ne00); + for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { + y[i00] = x[i00] * scale; + } +} + +kernel void kernel_group_norm( + device const float * src0, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int32_t & n_groups, + constant float & eps, + threadgroup float * buf [[threadgroup(0)]], + uint tgpig[[threadgroup_position_in_grid]], + uint tpitg[[thread_position_in_threadgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]], + uint tiisg[[thread_index_in_simdgroup]], + uint ntg[[threads_per_threadgroup]]) { + const int64_t ne = ne00*ne01*ne02; + const int64_t gs = ne00*ne01*((ne02 + n_groups - 1) / n_groups); + + int start = tgpig * gs; + int end = start + gs; + + start += tpitg; + + if (end >= ne) { + end = ne; + } + + float tmp = 0.0f; // partial sum for thread in warp + + for (int j = start; j < end; j += ntg) { + tmp += src0[j]; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + tmp = simd_sum(tmp); + if (ntg > N_SIMDWIDTH) { + if (sgitg == 0) { + buf[tiisg] = 0.0f; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + if (tiisg == 0) { + buf[sgitg] = tmp; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + tmp = buf[tiisg]; + tmp = simd_sum(tmp); + } + + const float mean = tmp / gs; + tmp = 0.0f; + + for (int j = start; j < end; j += ntg) { + float xi = src0[j] - mean; + dst[j] = xi; + tmp += xi * xi; + } + + tmp = simd_sum(tmp); + if (ntg > N_SIMDWIDTH) { + if (sgitg == 0) { + buf[tiisg] = 0.0f; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + if (tiisg == 0) { + buf[sgitg] = tmp; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + tmp = buf[tiisg]; + tmp = simd_sum(tmp); + } + + const float variance = tmp / gs; + const float scale = 1.0f/sqrt(variance + eps); + for (int j = start; j < end; j += ntg) { + dst[j] *= scale; + } +} + +// function for calculate inner product between half a q4_0 block and 16 floats (yl), sumy is SUM(yl[i]) +// il indicates where the q4 quants begin (0 or QK4_0/4) +// we assume that the yl's have been multiplied with the appropriate scale factor +// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096) +inline float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl, int il) { + float d = qb_curr->d; + + float2 acc = 0.f; + + device const uint16_t * qs = ((device const uint16_t *)qb_curr + 1 + il/2); + + for (int i = 0; i < 8; i+=2) { + acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F) + + yl[i + 1] * (qs[i / 2] & 0x0F00); + acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0) + + yl[i + 9] * (qs[i / 2] & 0xF000); + } + return d * (sumy * -8.f + acc[0] + acc[1]); +} + +// function for calculate inner product between half a q4_1 block and 16 floats (yl), sumy is SUM(yl[i]) +// il indicates where the q4 quants begin (0 or QK4_0/4) +// we assume that the yl's have been multiplied with the appropriate scale factor +// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096) +inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl, int il) { + float d = qb_curr->d; + float m = qb_curr->m; + + float2 acc = 0.f; + + device const uint16_t * qs = ((device const uint16_t *)qb_curr + 2 + il/2); + + for (int i = 0; i < 8; i+=2) { + acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F) + + yl[i + 1] * (qs[i / 2] & 0x0F00); + acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0) + + yl[i + 9] * (qs[i / 2] & 0xF000); + } + return d * (acc[0] + acc[1]) + sumy * m; +} + +// function for calculate inner product between half a q5_0 block and 16 floats (yl), sumy is SUM(yl[i]) +// il indicates where the q5 quants begin (0 or QK5_0/4) +// we assume that the yl's have been multiplied with the appropriate scale factor +// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096) +inline float block_q_n_dot_y(device const block_q5_0 * qb_curr, float sumy, thread float * yl, int il) { + float d = qb_curr->d; + + float2 acc = 0.f; + + device const uint16_t * qs = ((device const uint16_t *)qb_curr + 3 + il/2); + const uint32_t qh = *((device const uint32_t *)qb_curr->qh); + + for (int i = 0; i < 8; i+=2) { + acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010)) + + yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000)); + acc[1] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100)) + + yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000)); + } + return d * (sumy * -16.f + acc[0] + acc[1]); +} + +// function for calculate inner product between half a q5_1 block and 16 floats (yl), sumy is SUM(yl[i]) +// il indicates where the q5 quants begin (0 or QK5_1/4) +// we assume that the yl's have been multiplied with the appropriate scale factor +// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096) +inline float block_q_n_dot_y(device const block_q5_1 * qb_curr, float sumy, thread float * yl, int il) { + float d = qb_curr->d; + float m = qb_curr->m; + + float2 acc = 0.f; + + device const uint16_t * qs = ((device const uint16_t *)qb_curr + 4 + il/2); + const uint32_t qh = *((device const uint32_t *)qb_curr->qh); + + for (int i = 0; i < 8; i+=2) { + acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010)) + + yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000)); + acc[1] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100)) + + yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000)); + } + return d * (acc[0] + acc[1]) + sumy * m; +} + +// putting them in the kernel cause a significant performance penalty +#define N_DST 4 // each SIMD group works on 4 rows +#define N_SIMDGROUP 2 // number of SIMD groups in a thread group +//Note: This is a template, but strictly speaking it only applies to +// quantizations where the block size is 32. It also does not +// guard against the number of rows not being divisible by +// N_DST, so this is another explicit assumption of the implementation. +template +void mul_vec_q_n_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, uint tiisg, uint sgitg) { + const int nb = ne00/QK4_0; + + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + + const int first_row = (r0 * nsg + sgitg) * nr; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_q_type * x = (device const block_q_type *) src0 + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[16]; // src1 vector cache + float sumf[nr] = {0.f}; + + const int ix = (tiisg/2); + const int il = (tiisg%2)*8; + + device const float * yb = y + ix * QK4_0 + il; + + // each thread in a SIMD group deals with half a block. + for (int ib = ix; ib < nb; ib += nw/2) { + float sumy = 0; + for (int i = 0; i < 8; i += 2) { + sumy += yb[i] + yb[i+1]; + yl[i+0] = yb[i+ 0]; + yl[i+1] = yb[i+ 1]/256.f; + + sumy += yb[i+16] + yb[i+17]; + yl[i+8] = yb[i+16]/16.f; + yl[i+9] = yb[i+17]/4096.f; + } + + for (int row = 0; row < nr; row++) { + sumf[row] += block_q_n_dot_y(x+ib+row*nb, sumy, yl, il); + } + + yb += QK4_0 * 16; + } + + for (int row = 0; row < nr; ++row) { + const float tot = simd_sum(sumf[row]); + if (tiisg == 0 && first_row + row < ne01) { + dst[im*ne0*ne1 + r1*ne0 + first_row + row] = tot; + } + } +} + +kernel void kernel_mul_mv_q4_0_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + mul_vec_q_n_f32_impl(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,nullptr,tgpig,tiisg,sgitg); +} + +kernel void kernel_mul_mv_q4_1_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + mul_vec_q_n_f32_impl(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,nullptr,tgpig,tiisg,sgitg); +} + +kernel void kernel_mul_mv_q5_0_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + mul_vec_q_n_f32_impl(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,nullptr,tgpig,tiisg,sgitg); +} + +kernel void kernel_mul_mv_q5_1_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + mul_vec_q_n_f32_impl(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,nullptr,tgpig,tiisg,sgitg); +} + + +#define NB_Q8_0 8 + +void kernel_mul_mv_q8_0_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiisg, + uint sgitg) { + const int nr = N_DST; + const int nsg = N_SIMDGROUP; + const int nw = N_SIMDWIDTH; + + const int nb = ne00/QK8_0; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + + const int first_row = (r0 * nsg + sgitg) * nr; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_q8_0 * x = (device const block_q8_0 *) src0 + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[NB_Q8_0]; + float sumf[nr]={0.f}; + + const int ix = tiisg/4; + const int il = tiisg%4; + + device const float * yb = y + ix * QK8_0 + NB_Q8_0*il; + + // each thread in a SIMD group deals with NB_Q8_0 quants at a time + for (int ib = ix; ib < nb; ib += nw/4) { + for (int i = 0; i < NB_Q8_0; ++i) { + yl[i] = yb[i]; + } + + for (int row = 0; row < nr; row++) { + device const int8_t * qs = x[ib+row*nb].qs + NB_Q8_0*il; + float sumq = 0.f; + for (int iq = 0; iq < NB_Q8_0; ++iq) { + sumq += qs[iq] * yl[iq]; + } + sumf[row] += sumq*x[ib+row*nb].d; + } + + yb += NB_Q8_0 * nw; + } + + for (int row = 0; row < nr; ++row) { + const float tot = simd_sum(sumf[row]); + if (tiisg == 0 && first_row + row < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot; + } + } +} + +[[host_name("kernel_mul_mv_q8_0_f32")]] +kernel void kernel_mul_mv_q8_0_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + kernel_mul_mv_q8_0_f32_impl(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,nullptr,tgpig,tiisg,sgitg); +} + +#define N_F32_F32 4 + +void kernel_mul_mv_f32_f32_impl( + device const char * src0, + device const char * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + uint64_t nb00, + uint64_t nb01, + uint64_t nb02, + int64_t ne10, + int64_t ne11, + int64_t ne12, + uint64_t nb10, + uint64_t nb11, + uint64_t nb12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + uint3 tgpig, + uint tiisg) { + + const int64_t r0 = tgpig.x; + const int64_t rb = tgpig.y*N_F32_F32; + const int64_t im = tgpig.z; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02; + + device const float * x = (device const float *) (src0 + offset0); + + if (ne00 < 128) { + for (int row = 0; row < N_F32_F32; ++row) { + int r1 = rb + row; + if (r1 >= ne11) { + break; + } + + device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12); + + float sumf = 0; + for (int i = tiisg; i < ne00; i += 32) { + sumf += (float) x[i] * (float) y[i]; + } + + float all_sum = simd_sum(sumf); + if (tiisg == 0) { + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } + } else { + device const float4 * x4 = (device const float4 *)x; + for (int row = 0; row < N_F32_F32; ++row) { + int r1 = rb + row; + if (r1 >= ne11) { + break; + } + + device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12); + device const float4 * y4 = (device const float4 *) y; + + float sumf = 0; + for (int i = tiisg; i < ne00/4; i += 32) { + for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k]; + } + + float all_sum = simd_sum(sumf); + if (tiisg == 0) { + for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i]; + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } + } +} + +[[host_name("kernel_mul_mv_f32_f32")]] +kernel void kernel_mul_mv_f32_f32( + device const char * src0, + device const char * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]]) { + kernel_mul_mv_f32_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, nb10, nb11, nb12, ne0, ne1, r2, r3, tgpig, tiisg); +} + +#define N_F16_F16 4 + +kernel void kernel_mul_mv_f16_f16( + device const char * src0, + device const char * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]]) { + + const int64_t r0 = tgpig.x; + const int64_t rb = tgpig.y*N_F16_F16; + const int64_t im = tgpig.z; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02; + + device const half * x = (device const half *) (src0 + offset0); + + if (ne00 < 128) { + for (int row = 0; row < N_F16_F16; ++row) { + int r1 = rb + row; + if (r1 >= ne11) { + break; + } + + device const half * y = (device const half *) (src1 + r1*nb11 + im*nb12); + + float sumf = 0; + for (int i = tiisg; i < ne00; i += 32) { + sumf += (half) x[i] * (half) y[i]; + } + + float all_sum = simd_sum(sumf); + if (tiisg == 0) { + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } + } else { + device const half4 * x4 = (device const half4 *)x; + for (int row = 0; row < N_F16_F16; ++row) { + int r1 = rb + row; + if (r1 >= ne11) { + break; + } + + device const half * y = (device const half *) (src1 + r1*nb11 + im*nb12); + device const half4 * y4 = (device const half4 *) y; + + float sumf = 0; + for (int i = tiisg; i < ne00/4; i += 32) { + for (int k = 0; k < 4; ++k) sumf += (half) x4[i][k] * y4[i][k]; + } + + float all_sum = simd_sum(sumf); + if (tiisg == 0) { + for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (half) x[i] * y[i]; + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } + } +} + +void kernel_mul_mv_f16_f32_1row_impl( + device const char * src0, + device const char * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]]) { + + const int64_t r0 = tgpig.x; + const int64_t r1 = tgpig.y; + const int64_t im = tgpig.z; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02; + + device const half * x = (device const half *) (src0 + offset0); + device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12); + + float sumf = 0; + if (ne00 < 128) { + for (int i = tiisg; i < ne00; i += 32) { + sumf += (float) x[i] * (float) y[i]; + } + float all_sum = simd_sum(sumf); + if (tiisg == 0) { + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } else { + device const half4 * x4 = (device const half4 *) x; + device const float4 * y4 = (device const float4 *) y; + for (int i = tiisg; i < ne00/4; i += 32) { + for (int k = 0; k < 4; ++k) sumf += (float)x4[i][k] * y4[i][k]; + } + float all_sum = simd_sum(sumf); + if (tiisg == 0) { + for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i]; + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } +} + +[[host_name("kernel_mul_mv_f16_f32_1row")]] +kernel void kernel_mul_mv_f16_f32_1row( + device const char * src0, + device const char * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]]) { + kernel_mul_mv_f16_f32_1row_impl(src0, src1, dst, ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, nb10, nb11, nb12, ne0, ne1, r2, r3, tgpig, tiisg); +} + +#define N_F16_F32 4 + +void kernel_mul_mv_f16_f32_impl( + device const char * src0, + device const char * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + uint64_t nb00, + uint64_t nb01, + uint64_t nb02, + int64_t ne10, + int64_t ne11, + int64_t ne12, + uint64_t nb10, + uint64_t nb11, + uint64_t nb12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + uint3 tgpig, + uint tiisg) { + + const int64_t r0 = tgpig.x; + const int64_t rb = tgpig.y*N_F16_F32; + const int64_t im = tgpig.z; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02; + + device const half * x = (device const half *) (src0 + offset0); + + if (ne00 < 128) { + for (int row = 0; row < N_F16_F32; ++row) { + int r1 = rb + row; + if (r1 >= ne11) { + break; + } + + device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12); + + float sumf = 0; + for (int i = tiisg; i < ne00; i += 32) { + sumf += (float) x[i] * (float) y[i]; + } + + float all_sum = simd_sum(sumf); + if (tiisg == 0) { + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } + } else { + device const half4 * x4 = (device const half4 *)x; + for (int row = 0; row < N_F16_F32; ++row) { + int r1 = rb + row; + if (r1 >= ne11) { + break; + } + + device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12); + device const float4 * y4 = (device const float4 *) y; + + float sumf = 0; + for (int i = tiisg; i < ne00/4; i += 32) { + for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k]; + } + + float all_sum = simd_sum(sumf); + if (tiisg == 0) { + for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i]; + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } + } +} + +[[host_name("kernel_mul_mv_f16_f32")]] +kernel void kernel_mul_mv_f16_f32( + device const char * src0, + device const char * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]]) { + kernel_mul_mv_f16_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, nb10, nb11, nb12, ne0, ne1, r2, r3, tgpig, tiisg); +} + +// Assumes row size (ne00) is a multiple of 4 +kernel void kernel_mul_mv_f16_f32_l4( + device const char * src0, + device const char * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]]) { + + const int nrows = ne11; + const int64_t r0 = tgpig.x; + const int64_t im = tgpig.z; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02; + + device const half4 * x4 = (device const half4 *) (src0 + offset0); + + for (int r1 = 0; r1 < nrows; ++r1) { + device const float4 * y4 = (device const float4 *) (src1 + r1*nb11 + im*nb12); + + float sumf = 0; + for (int i = tiisg; i < ne00/4; i += 32) { + for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k]; + } + + float all_sum = simd_sum(sumf); + if (tiisg == 0) { + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } +} + +static float rope_yarn_ramp(const float low, const float high, const int i0) { + const float y = (i0 / 2 - low) / max(0.001f, high - low); + return 1.0f - min(1.0f, max(0.0f, y)); +} + +// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn +// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng. +static void rope_yarn( + float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale, + thread float * cos_theta, thread float * sin_theta +) { + // Get n-d rotational scaling corrected for extrapolation + float theta_interp = freq_scale * theta_extrap; + float theta = theta_interp; + if (ext_factor != 0.0f) { + float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor; + theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix; + + // Get n-d magnitude scaling corrected for interpolation + mscale *= 1.0f + 0.1f * log(1.0f / freq_scale); + } + *cos_theta = cos(theta) * mscale; + *sin_theta = sin(theta) * mscale; +} + +// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get +// `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))` +static float rope_yarn_corr_factor(int n_dims, int n_orig_ctx, float n_rot, float base) { + return n_dims * log(n_orig_ctx / (n_rot * 2 * M_PI_F)) / (2 * log(base)); +} + +static void rope_yarn_corr_dims( + int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2] +) { + // start and end correction dims + dims[0] = max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_fast, freq_base))); + dims[1] = min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_slow, freq_base))); +} + +typedef void (rope_t)( + device const void * src0, + device const int32_t * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + constant int & n_past, + constant int & n_dims, + constant int & mode, + constant int & n_orig_ctx, + constant float & freq_base, + constant float & freq_scale, + constant float & ext_factor, + constant float & attn_factor, + constant float & beta_fast, + constant float & beta_slow, + uint tiitg[[thread_index_in_threadgroup]], + uint3 tptg[[threads_per_threadgroup]], + uint3 tgpig[[threadgroup_position_in_grid]]); + +template +kernel void kernel_rope( + device const void * src0, + device const int32_t * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + constant int & n_past, + constant int & n_dims, + constant int & mode, + constant int & n_orig_ctx, + constant float & freq_base, + constant float & freq_scale, + constant float & ext_factor, + constant float & attn_factor, + constant float & beta_fast, + constant float & beta_slow, + uint tiitg[[thread_index_in_threadgroup]], + uint3 tptg[[threads_per_threadgroup]], + uint3 tgpig[[threadgroup_position_in_grid]]) { + const int64_t i3 = tgpig[2]; + const int64_t i2 = tgpig[1]; + const int64_t i1 = tgpig[0]; + + const bool is_neox = mode & 2; + + float corr_dims[2]; + rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims); + + device const int32_t * pos = src1; + + const int64_t p = pos[i2]; + + const float theta_0 = (float)p; + const float inv_ndims = -1.f/n_dims; + + if (!is_neox) { + for (int64_t i0 = 2*tiitg; i0 < ne0; i0 += 2*tptg.x) { + + const float theta = theta_0 * pow(freq_base, inv_ndims*i0); + float cos_theta, sin_theta; + rope_yarn(theta, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta); + + device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + const T x0 = src[0]; + const T x1 = src[1]; + + dst_data[0] = x0*cos_theta - x1*sin_theta; + dst_data[1] = x0*sin_theta + x1*cos_theta; + } + } else { + for (int64_t ic = 2*tiitg; ic < ne0; ic += 2*tptg.x) { + if (ic < n_dims) { + const int64_t ib = 0; + + // simplified from `(ib * n_dims + ic) * inv_ndims` + const float cur_rot = inv_ndims*ic - ib; + + const float theta = theta_0 * pow(freq_base, cur_rot); + float cos_theta, sin_theta; + rope_yarn(theta, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta); + + const int64_t i0 = ib*n_dims + ic/2; + + device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + const float x0 = src[0]; + const float x1 = src[n_dims/2]; + + dst_data[0] = x0*cos_theta - x1*sin_theta; + dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta; + } else { + const int64_t i0 = ic; + + device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + dst_data[0] = src[0]; + dst_data[1] = src[1]; + } + } + } +} + +template [[host_name("kernel_rope_f32")]] kernel rope_t kernel_rope; +template [[host_name("kernel_rope_f16")]] kernel rope_t kernel_rope; + +typedef void (im2col_t)( + device const float * x, + device char * dst, + constant int32_t & ofs0, + constant int32_t & ofs1, + constant int32_t & IW, + constant int32_t & IH, + constant int32_t & CHW, + constant int32_t & s0, + constant int32_t & s1, + constant int32_t & p0, + constant int32_t & p1, + constant int32_t & d0, + constant int32_t & d1, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tgpg[[threadgroups_per_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]); + +template +kernel void kernel_im2col( + device const float * x, + device char * dst, + constant int32_t & ofs0, + constant int32_t & ofs1, + constant int32_t & IW, + constant int32_t & IH, + constant int32_t & CHW, + constant int32_t & s0, + constant int32_t & s1, + constant int32_t & p0, + constant int32_t & p1, + constant int32_t & d0, + constant int32_t & d1, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tgpg[[threadgroups_per_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int32_t iiw = tgpig[2] * s0 + tpitg[2] * d0 - p0; + const int32_t iih = tgpig[1] * s1 + tpitg[1] * d1 - p1; + + const int32_t offset_dst = + (tpitg[0] * tgpg[1] * tgpg[2] + tgpig[1] * tgpg[2] + tgpig[2]) * CHW + + (tgpig[0] * (ntg[1] * ntg[2]) + tpitg[1] * ntg[2] + tpitg[2]); + + device T * pdst = (device T *) (dst); + + if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) { + pdst[offset_dst] = 0.0f; + } else { + const int32_t offset_src = tpitg[0] * ofs0 + tgpig[0] * ofs1; + pdst[offset_dst] = x[offset_src + iih * IW + iiw]; + } +} + +template [[host_name("kernel_im2col_f32")]] kernel im2col_t kernel_im2col; +template [[host_name("kernel_im2col_f16")]] kernel im2col_t kernel_im2col; + +kernel void kernel_upscale_f32( + device const char * src0, + device char * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + constant float & sf0, + constant float & sf1, + constant float & sf2, + constant float & sf3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + + const int64_t i3 = tgpig.z; + const int64_t i2 = tgpig.y; + const int64_t i1 = tgpig.x; + + const int64_t i03 = i3/sf3; + const int64_t i02 = i2/sf2; + const int64_t i01 = i1/sf1; + + for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) { + const int64_t i00 = i0/sf0; + + device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); + device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + dst_ptr[0] = src0_ptr[0]; + } +} + +kernel void kernel_pad_f32( + device const char * src0, + device char * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + + const int64_t i3 = tgpig.z; + const int64_t i2 = tgpig.y; + const int64_t i1 = tgpig.x; + + const int64_t i03 = i3; + const int64_t i02 = i2; + const int64_t i01 = i1; + + device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01); + device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1); + + if (i1 < ne01 && i2 < ne02 && i3 < ne03) { + for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) { + if (i0 < ne00) { + dst_ptr[i0] = src0_ptr[i0]; + } else { + dst_ptr[i0] = 0.0f; + } + } + + return; + } + + for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) { + dst_ptr[i0] = 0.0f; + } +} + +kernel void kernel_arange_f32( + device char * dst, + constant int64_t & ne0, + constant float & start, + constant float & step, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + + device float * dst_ptr = (device float *) dst; + + for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) { + dst_ptr[i0] = start + step * i0; + } +} + +kernel void kernel_timestep_embedding_f32( + device const char * src0, + device char * dst, + constant uint64_t & nb1, + constant int & dim, + constant int & max_period, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + + int i = tgpig.x; + device float * embed_data = (device float *)(dst + i*nb1); + + int half_ = dim / 2; + for (int j = tpitg.x; j < half_; j += ntg.x) { + float timestep = ((device float *)src0)[i]; + float freq = (float)exp(-log((float)max_period) * j / half_); + float arg = timestep * freq; + embed_data[j ] = cos(arg); + embed_data[j + half_] = sin(arg); + } + + if (dim % 2 != 0 && tpitg.x == 0) { + embed_data[dim] = 0.f; + } +} + +// bitonic sort implementation following the CUDA kernels as reference +typedef void (argsort_t)( + device const float * x, + device int32_t * dst, + constant int64_t & ncols, + constant int64_t & ncols_pad, + threadgroup int32_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]]); + +template +kernel void kernel_argsort_f32_i32( + device const float * x, + device int32_t * dst, + constant int64_t & ncols, + constant int64_t & ncols_pad, + threadgroup int32_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]]) { + // bitonic sort + int col = tpitg[0]; + int row = tgpig[1]; + + if (col >= ncols_pad) return; + + device const float * x_row = x + row * ncols; + threadgroup int32_t * dst_row = shared_values; + + // initialize indices + dst_row[col] = col; + + threadgroup_barrier(mem_flags::mem_threadgroup); + + for (int k = 2; k <= ncols_pad; k *= 2) { + for (int j = k / 2; j > 0; j /= 2) { + int ixj = col ^ j; + if (ixj > col) { + if ((col & k) == 0) { + if (dst_row[col] >= ncols || + (dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ? + x_row[dst_row[col]] > x_row[dst_row[ixj]] : + x_row[dst_row[col]] < x_row[dst_row[ixj]])) + ) { + SWAP(dst_row[col], dst_row[ixj]); + } + } else { + if (dst_row[ixj] >= ncols || + (dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ? + x_row[dst_row[col]] < x_row[dst_row[ixj]] : + x_row[dst_row[col]] > x_row[dst_row[ixj]])) + ) { + SWAP(dst_row[col], dst_row[ixj]); + } + } + } + threadgroup_barrier(mem_flags::mem_threadgroup); + } + } + + // copy the result to dst without the padding + if (col < ncols) { + dst[row * ncols + col] = dst_row[col]; + } +} + +template [[host_name("kernel_argsort_f32_i32_asc")]] kernel argsort_t kernel_argsort_f32_i32; +template [[host_name("kernel_argsort_f32_i32_desc")]] kernel argsort_t kernel_argsort_f32_i32; + +kernel void kernel_leaky_relu_f32( + device const float * src0, + device float * dst, + constant float & slope, + uint tpig[[thread_position_in_grid]]) { + dst[tpig] = src0[tpig] > 0.0f ? src0[tpig] : src0[tpig] * slope; +} + +typedef void (flash_attn_ext_f16_t)( + device const char * q, + device const char * k, + device const char * v, + device const char * mask, + device float * dst, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne11, + constant int64_t & ne12, + constant int64_t & ne13, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant uint64_t & nb13, + constant uint64_t & nb21, + constant uint64_t & nb22, + constant uint64_t & nb23, + constant uint64_t & nb31, + constant int64_t & ne1, + constant int64_t & ne2, + constant float & scale, + constant float & max_bias, + constant float & m0, + constant float & m1, + constant uint32_t & n_head_log2, + threadgroup half * shared, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]], + ushort tiisg[[thread_index_in_simdgroup]], + ushort sgitg[[simdgroup_index_in_threadgroup]]); + +// ref: https://arxiv.org/pdf/2307.08691.pdf +template // head size, queries per threadgroup, cache items per threadgroup +kernel void kernel_flash_attn_ext_f16( + device const char * q, + device const char * k, + device const char * v, + device const char * mask, + device float * dst, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne11, + constant int64_t & ne12, + constant int64_t & ne13, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant uint64_t & nb13, + constant uint64_t & nb21, + constant uint64_t & nb22, + constant uint64_t & nb23, + constant uint64_t & nb31, + constant int64_t & ne1, + constant int64_t & ne2, + constant float & scale, + constant float & max_bias, + constant float & m0, + constant float & m1, + constant uint32_t & n_head_log2, + threadgroup half * shared [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]], + ushort tiisg[[thread_index_in_simdgroup]], + ushort sgitg[[simdgroup_index_in_threadgroup]]) { + const short nsg = ntg.y; // number of simdgroups + + const short iq3 = tgpig[2]; + const short iq2 = tgpig[1]; + const short iq1 = tgpig[0]*Q; + + const short D4 = D/4; + const short D8 = D/8; + //const short Q8 = Q/8; + const short NW = N_SIMDWIDTH; + const short SH = (C + Q); // shared memory per simdgroup in (half) + + const short T = D + 2*nsg*SH; // shared memory size per query in (half) + const short TF = T/2; // shared memory size per query in (float) + const short T4 = T/4; // shared memory size per query in (half4) + + threadgroup half * sq = (threadgroup half *) (shared + 0*D); // holds the query data + threadgroup half4 * sq4 = (threadgroup half4 *) (shared + 0*D); // same as above but in half4 + threadgroup float * ss = (threadgroup float *) (shared + 2*sgitg*SH + 1*D); // scratch buffer for attention and diagonal matrix + + // store the result for all queries in local memory in 8x8 matrices (the O matrix from the paper) + simdgroup_half8x8 lo[D8]; + + // load heads from Q to shared memory + for (short j = sgitg; j < Q; j += nsg) { + device const float4 * q4 = (device const float4 *) ((device const char *) q + ((iq1 + j)*nb01 + iq2*nb02 + iq3*nb03)); + + for (short i = tiisg; i < D4; i += NW) { + if (iq1 + j < ne01) { + sq4[j*T4 + i] = (half4) q4[i]; + } else { + sq4[j*T4 + i] = 0.0h; + } + } + } + + // zero out lo + for (short i = 0; i < D8; ++i) { + lo[i] = make_filled_simdgroup_matrix(0.0h); + } + + // zero out shared memory SH + for (short j = 0; j < Q; ++j) { + for (short i = tiisg; i < SH; i += NW) { + ss[j*TF + i] = 0.0f; + } + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + { + float S[Q] = { [0 ... Q-1] = 0.0h }; + float M[Q] = { [0 ... Q-1] = -FLT_MAX/2 }; + + // assume K and V are same shape + const short ne22 = ne12; + const short ne23 = ne13; + + // broadcast + const short rk2 = ne02/ne12; + const short rk3 = ne03/ne13; + + const short rv2 = ne02/ne22; + const short rv3 = ne03/ne23; + + // k indices + const short ik2 = iq2/rk2; + const short ik3 = iq3/rk3; + + // v indices + const short iv2 = iq2/rv2; + const short iv3 = iq3/rv3; + + // load the queries from shared memory into local memory + simdgroup_half8x8 mq[D8]; + + for (short i = 0; i < D8; ++i) { + simdgroup_load(mq[i], sq + i*8, T); + } + + // pointer to the mask + device const half * mp = (device const half *) (mask + iq1*nb31); + + // prepare diagonal scale matrix + simdgroup_float8x8 mscale(scale); + + // prepare diagonal slope matrix + simdgroup_float8x8 mslope(1.0f); + + // ALiBi + if (max_bias > 0.0f) { + const uint32_t h = iq2; + + const float base = h < n_head_log2 ? m0 : m1; + const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; + + mslope = simdgroup_float8x8(pow(base, exph)); + } + + // loop over the KV cache + // each simdgroup handles blocks of Q rows and C columns + for (int ic0 = 0; ic0 < ne11; ic0 += C*nsg) { + const int ic = ic0 + C*sgitg; + if (ic >= ne11) { + break; + } + + // Q*K^T + { + for (short cc = 0; cc < C/8; ++cc) { + simdgroup_float8x8 mqk = make_filled_simdgroup_matrix(0.h); + + device const half * pk = (device const half *) ((device const char *) k + ((ic + 8*cc)*nb11 + ik2*nb12 + ik3*nb13)); + + for (short i = 0; i < D8; ++i) { + simdgroup_half8x8 mk; + simdgroup_load(mk, pk + i*8, nb11/sizeof(half), 0, true); // transpose + + simdgroup_multiply_accumulate(mqk, mq[i], mk, mqk); + } + + if (mask != q) { + // mqk = mqk*scale + mask*slope + simdgroup_half8x8 mm; + simdgroup_load(mm, mp + ic + 8*cc, nb31/sizeof(half), 0, false); + simdgroup_multiply(mm, mslope, mm); + simdgroup_multiply_accumulate(mqk, mqk, mscale, mm); + } else { + // mqk = mqk*scale + simdgroup_multiply(mqk, mscale, mqk); + } + + simdgroup_store(mqk, ss + 8*cc, TF, 0, false); + } + } + + // used to detect blocks full of -INF + float smax = -INFINITY; + + // online softmax + { + float ms[Q]; + + for (short j = 0; j < Q; ++j) { + const short p = tiisg; + + const float m = M[j]; + const float s = ss[j*TF + p]; + + smax = simd_max(max(smax, s)); + M[j] = simd_max(max(M[j], s)); + + ms[j] = exp(m - M[j]); + const float vs = exp(s - M[j]); + + S[j] = S[j]*ms[j] + simd_sum(vs); + + // the P matrix from the paper (Q rows, C columns) + ss[j*TF + p] = vs; + } + + // create a QxQ diagonal matrix for rescaling the output + if (tiisg < Q) { + ss[tiisg*TF + C + tiisg] = ms[tiisg]; + } + } + + // skip -INF blocks + if (smax == -INFINITY) { + continue; + } + + // O = diag(ms)*O + { + simdgroup_float8x8 mm; + simdgroup_load(mm, ss + C, TF, 0, false); + + for (short i = 0; i < D8; ++i) { + simdgroup_multiply(lo[i], mm, lo[i]); + } + } + + // O = O + (Q*K^T)*V + { + for (short cc = 0; cc < C/8; ++cc) { + device const half * pv = (device const half *) ((device const char *) v + ((ic + 8*cc)*nb21 + iv2*nb22 + iv3*nb23)); + + for (short i = 0; i < D8; ++i) { + simdgroup_half8x8 mk; + simdgroup_load(mk, pv + i*8, nb21/sizeof(half), 0, false); + + simdgroup_float8x8 mv; + simdgroup_load(mv, ss + 8*cc, TF, 0, false); + + simdgroup_multiply_accumulate(lo[i], mv, mk, lo[i]); + } + } + } + } + + // these are needed for reducing the results from the simdgroups (reuse the ss buffer) + for (short j = 0; j < Q; ++j) { + if (tiisg == 0) { + ss[j*TF + 0] = S[j]; + ss[j*TF + 1] = M[j]; + } + } + } + + // reduce the warps sequentially + for (short sg = 1; sg < nsg; ++sg) { + float S = { 0.0h }; + float M = { -FLT_MAX/2 }; + + threadgroup_barrier(mem_flags::mem_threadgroup); + + // each simdgroup stores its output to shared memory, reusing sq + if (sgitg == sg) { + for (short i = 0; i < D8; ++i) { + simdgroup_store(lo[i], sq + i*8, T, 0, false); + } + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + // the first simdgroup accumulates the results from the other simdgroups + if (sgitg == 0) { + for (short j = 0; j < Q; ++j) { + const float S0 = ss[j*TF + 0]; + const float S1 = ss[j*TF + sg*SH + 0]; + + const float M0 = ss[j*TF + 1]; + const float M1 = ss[j*TF + sg*SH + 1]; + + M = max(M0, M1); + + const float ms0 = exp(M0 - M); + const float ms1 = exp(M1 - M); + + S = S0*ms0 + S1*ms1; + + if (tiisg == 0) { + ss[j*TF + 0] = S; + ss[j*TF + 1] = M; + + ss[j*TF + C + j ] = ms0; + ss[j*TF + C + j + sg*SH] = ms1; + } + } + + // O_0 = diag(ms0)*O_0 + diag(ms1)*O_1 + { + simdgroup_half8x8 t; + simdgroup_float8x8 ms0; + simdgroup_float8x8 ms1; + + simdgroup_load(ms0, ss + C, TF, 0, false); + simdgroup_load(ms1, ss + C + sg*SH, TF, 0, false); + + for (short i = 0; i < D8; ++i) { + simdgroup_load (t, sq + i*8, T, 0, false); + simdgroup_multiply(t, ms1, t); + + simdgroup_multiply_accumulate(lo[i], ms0, lo[i], t); + } + } + } + } + + // store result to shared memory (reuse sq) + if (sgitg == 0) { + for (short i = 0; i < D8; ++i) { + simdgroup_store(lo[i], sq + i*8, T, 0, false); + } + } + + device float4 * dst4 = (device float4 *) dst; + + // final rescale with 1/S and store to global memory + if (sgitg == 0) { + for (short j = 0; j < Q && iq1 + j < ne01; ++j) { + const float S = ss[j*TF + 0]; + + for (short i = tiisg; i < D4; i += NW) { + dst4[(iq3*ne2*ne1 + iq2 + (iq1 + j)*ne1)*D4 + i] = (float4) sq4[j*T4 + i]/S; + } + } + } +} + +template [[host_name("kernel_flash_attn_ext_f16_h64" )]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<64>; +template [[host_name("kernel_flash_attn_ext_f16_h80" )]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<80>; +template [[host_name("kernel_flash_attn_ext_f16_h96" )]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<96>; +template [[host_name("kernel_flash_attn_ext_f16_h112")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<112>; +template [[host_name("kernel_flash_attn_ext_f16_h128")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<128>; +template [[host_name("kernel_flash_attn_ext_f16_h256")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<256>; + +template // head size, queries per threadgroup, cache items per threadgroup +kernel void kernel_flash_attn_ext_vec_f16( + device const char * q, + device const char * k, + device const char * v, + device const char * mask, + device float * dst, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne11, + constant int64_t & ne12, + constant int64_t & ne13, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant uint64_t & nb13, + constant uint64_t & nb21, + constant uint64_t & nb22, + constant uint64_t & nb23, + constant uint64_t & nb31, + constant int64_t & ne1, + constant int64_t & ne2, + constant float & scale, + constant float & max_bias, + constant float & m0, + constant float & m1, + constant uint32_t & n_head_log2, + threadgroup half * shared [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]], + ushort tiisg[[thread_index_in_simdgroup]], + ushort sgitg[[simdgroup_index_in_threadgroup]]) { + const short nsg = ntg.y; // number of simdgroups + + const short iq3 = tgpig[2]; + const short iq2 = tgpig[1]; + const short iq1 = tgpig[0]; + + const short D4 = D/4; + const short NW = N_SIMDWIDTH; + const short SH = (C + Q); // shared memory per simdgroup in (half) + + const short T = D + 2*nsg*SH; // shared memory size per query in (half) + + float slope = 1.0f; + + // ALiBi + if (max_bias > 0.0f) { + const uint32_t h = iq2; + + const float base = h < n_head_log2 ? m0 : m1; + const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; + + slope = pow(base, exp); + } + + //threadgroup half * sq = (threadgroup half *) (shared + 0*D); // holds the query data + threadgroup half4 * sq4 = (threadgroup half4 *) (shared + 0*D); // same as above but in half4 + threadgroup float * ss = (threadgroup float *) (shared + 2*sgitg*SH + 1*D); // scratch buffer for attention and diagonal matrix + threadgroup float4 * ss4 = (threadgroup float4 *) (shared + 2*sgitg*SH + 1*D); // same as above but in half4 + threadgroup half4 * sr4 = (threadgroup half4 *) (shared + sgitg*D + 1*T); // scratch buffer for the results + + // store the result for all queries in local memory in 8x8 matrices (the O matrix from the paper) + half4 lo[D4/NW]; + + // load heads from Q to shared memory + device const float4 * q4 = (device const float4 *) ((device const char *) q + (iq1*nb01 + iq2*nb02 + iq3*nb03)); + + for (short i = tiisg; i < D4; i += NW) { + if (iq1 < ne01) { + sq4[i] = (half4) q4[i]; + } else { + sq4[i] = 0.0h; + } + } + + // zero out lo + for (short i = tiisg; i < D4; i += NW) { + lo[i/NW] = 0.0h; + } + + // zero out shared memory SH + for (short i = tiisg; i < SH/4; i += NW) { + ss4[i] = 0.0h; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + { + float S = { 0.0h }; + float M = { -FLT_MAX/2 }; + + // assume K and V are same shape + const short ne22 = ne12; + const short ne23 = ne13; + + // broadcast + const short rk2 = ne02/ne12; + const short rk3 = ne03/ne13; + + const short rv2 = ne02/ne22; + const short rv3 = ne03/ne23; + + // k indices + const short ik2 = iq2 / rk2; + const short ik3 = iq3 / rk3; + + // v indices + const short iv2 = iq2 / rv2; + const short iv3 = iq3 / rv3; + + // load the queries from shared memory into local memory + half4 mq[D4]; + + for (short ii = 0; ii < D4; ii += NW) { + short i = ii + tiisg; + mq[i] = sq4[i]; + } + + // pointer to the mask + device const half4 * mp4 = (device const half4 *) (mask + iq1*nb31); + + // loop over the KV cache + // each simdgroup handles blocks of Q rows and C columns + for (int ic0 = 0; ic0 < ne11; ic0 += C*nsg) { + const int ic = ic0 + C*sgitg; + if (ic >= ne11) { + break; + } + + // Q*K^T + { +#pragma unroll + for (short cc = 0; cc < C/4; ++cc) { + float4 mqk = { 0.0h }; + + device const half4 * pk4 = (device const half4 *) ((device const char *) k + ((ic + 4*cc)*nb11 + ik2*nb12 + ik3*nb13)); + +#pragma unroll + for (short ii = 0; ii < D4; ii += NW) { + const short i = ii + tiisg; + + half4x4 mk; + mk[0] = pk4[i + 0*(nb11/8)]; + mk[1] = pk4[i + 1*(nb11/8)]; + mk[2] = pk4[i + 2*(nb11/8)]; + mk[3] = pk4[i + 3*(nb11/8)]; + + mqk += (float4) (mq[i] * mk); + } + + // reduce the results from the threads in the simdgroup + mqk += simd_shuffle_down(mqk, 16); + mqk += simd_shuffle_down(mqk, 8); + mqk += simd_shuffle_down(mqk, 4); + mqk += simd_shuffle_down(mqk, 2); + mqk += simd_shuffle_down(mqk, 1); + + // mqk = mqk*scale + mask*slope + if (tiisg == 0) { + mqk = mqk*scale + ((mask != q) ? ((float4) mp4[ic/4 + cc])*slope : (float4) 0.0f); + + ss4[cc] = mqk; + } + } + } + + // online softmax + { + const short p = tiisg; + + const float m = M; + const float s = ss[p]; + + M = simd_max(max(M, s)); + + const float ms = exp(m - M); + const float vs = exp(s - M); + + S = S*ms + simd_sum(vs); + + // the P matrix from the paper (Q rows, C columns) + ss[p] = vs; + + // O = diag(ms)*O +#pragma unroll + for (short ii = 0; ii < D4; ii += NW) { + const short i = ii + tiisg; + lo[i/NW] *= ms; + } + } + + // O = O + (Q*K^T)*V + { +#pragma unroll + for (short cc = 0; cc < C/4; ++cc) { + device const half4 * pv4 = (device const half4 *) ((device const char *) v + ((ic + 4*cc)*nb21 + iv2*nb22 + iv3*nb23)); + +#pragma unroll + for (short ii = 0; ii < D4; ii += NW) { + const short i = ii + tiisg; + + lo[i/NW] += pv4[i + 0*(nb21/8)] * ss[4*cc + 0]; + lo[i/NW] += pv4[i + 1*(nb21/8)] * ss[4*cc + 1]; + lo[i/NW] += pv4[i + 2*(nb21/8)] * ss[4*cc + 2]; + lo[i/NW] += pv4[i + 3*(nb21/8)] * ss[4*cc + 3]; + } + } + } + + } + + // these are needed for reducing the results from the simdgroups (reuse the ss buffer) + if (tiisg == 0) { + ss[0] = S; + ss[1] = M; + } + } + + // store results to shared memory + for (short ii = 0; ii < D4; ii += NW) { + short i = ii + tiisg; + sr4[i] = lo[ii/NW]; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + // parallel reduce + for (short r = nsg/2; r > 0; r >>= 1) { + if (sgitg < r) { + const float S0 = ss[ 0]; + const float S1 = ss[r*SH + 0]; + + const float M0 = ss[ 1]; + const float M1 = ss[r*SH + 1]; + + const float M = max(M0, M1); + + const float ms0 = exp(M0 - M); + const float ms1 = exp(M1 - M); + + const float S = S0*ms0 + S1*ms1; + + if (tiisg == 0) { + ss[0] = S; + ss[1] = M; + } + + // O_0 = diag(ms0)*O_0 + diag(ms1)*O_1 + for (short ii = 0; ii < D4; ii += NW) { + short i = ii + tiisg; + sr4[i] = sr4[i]*ms0 + sr4[i + r*D4]*ms1; + } + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + } + + device float4 * dst4 = (device float4 *) dst; + + // final rescale with 1/S and store to global memory + if (sgitg == 0) { + const float S = ss[0]; + + for (short ii = 0; ii < D4; ii += NW) { + short i = ii + tiisg; + dst4[(iq3*ne2*ne1 + iq2 + (iq1)*ne1)*D4 + i] = (float4) sr4[i]/S; + } + } +} + +template [[host_name("kernel_flash_attn_ext_vec_f16_h128")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_vec_f16<128>; +template [[host_name("kernel_flash_attn_ext_vec_f16_h256")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_vec_f16<256>; + +kernel void kernel_cpy_f16_f16( + device const half * src0, + device half * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig[2]; + const int64_t i02 = tgpig[1]; + const int64_t i01 = tgpig[0]; + + const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + const int64_t i3 = n / (ne2*ne1*ne0); + const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); + const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; + const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0); + + device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) { + device const half * src = (device half *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); + dst_data[i00] = src[0]; + } +} + +kernel void kernel_cpy_f16_f32( + device const half * src0, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig[2]; + const int64_t i02 = tgpig[1]; + const int64_t i01 = tgpig[0]; + + const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + const int64_t i3 = n / (ne2*ne1*ne0); + const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); + const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; + const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0); + + device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) { + device const half * src = (device half *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); + dst_data[i00] = src[0]; + } +} + +kernel void kernel_cpy_f32_f16( + device const float * src0, + device half * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig[2]; + const int64_t i02 = tgpig[1]; + const int64_t i01 = tgpig[0]; + + const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + const int64_t i3 = n / (ne2*ne1*ne0); + const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); + const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; + const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0); + + device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) { + device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); + + // TODO: is there a better way to handle -INFINITY? + dst_data[i00] = src[0] == -INFINITY ? -MAXHALF : src[0]; + } +} + +kernel void kernel_cpy_f32_f32( + device const float * src0, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig[2]; + const int64_t i02 = tgpig[1]; + const int64_t i01 = tgpig[0]; + + const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + const int64_t i3 = n / (ne2*ne1*ne0); + const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); + const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; + const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0); + + device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) { + device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); + + dst_data[i00] = src[0]; + } +} + +kernel void kernel_cpy_f32_q8_0( + device const float * src0, + device void * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig[2]; + const int64_t i02 = tgpig[1]; + const int64_t i01 = tgpig[0]; + + const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + const int64_t i3 = n / (ne2*ne1*ne0); + const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); + const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; + const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK8_0; + + device block_q8_0 * dst_data = (device block_q8_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + for (int64_t i00 = tpitg.x*QK8_0; i00 < ne00; i00 += ntg.x*QK8_0) { + device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); + + float amax = 0.0f; // absolute max + + for (int j = 0; j < QK8_0; j++) { + const float v = src[j]; + amax = MAX(amax, fabs(v)); + } + + const float d = amax / ((1 << 7) - 1); + const float id = d ? 1.0f/d : 0.0f; + + dst_data[i00/QK8_0].d = d; + + for (int j = 0; j < QK8_0; ++j) { + const float x0 = src[j]*id; + + dst_data[i00/QK8_0].qs[j] = round(x0); + } + } +} + +kernel void kernel_cpy_f32_q4_0( + device const float * src0, + device void * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig[2]; + const int64_t i02 = tgpig[1]; + const int64_t i01 = tgpig[0]; + + const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + const int64_t i3 = n / (ne2*ne1*ne0); + const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); + const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; + const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_0; + + device block_q4_0 * dst_data = (device block_q4_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + for (int64_t i00 = tpitg.x*QK4_0; i00 < ne00; i00 += ntg.x*QK4_0) { + device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); + + float amax = 0.0f; // absolute max + float max = 0.0f; + + for (int j = 0; j < QK4_0; j++) { + const float v = src[j]; + if (amax < fabs(v)) { + amax = fabs(v); + max = v; + } + } + + const float d = max / -8; + const float id = d ? 1.0f/d : 0.0f; + + dst_data[i00/QK4_0].d = d; + + for (int j = 0; j < QK4_0/2; ++j) { + const float x0 = src[0 + j]*id; + const float x1 = src[QK4_0/2 + j]*id; + + const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f)); + const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f)); + + dst_data[i00/QK4_0].qs[j] = xi0; + dst_data[i00/QK4_0].qs[j] |= xi1 << 4; + } + } +} + +kernel void kernel_cpy_f32_q4_1( + device const float * src0, + device void * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig[2]; + const int64_t i02 = tgpig[1]; + const int64_t i01 = tgpig[0]; + + const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + const int64_t i3 = n / (ne2*ne1*ne0); + const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); + const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; + const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_1; + + device block_q4_1 * dst_data = (device block_q4_1 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + for (int64_t i00 = tpitg.x*QK4_1; i00 < ne00; i00 += ntg.x*QK4_1) { + device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); + + float min = FLT_MAX; + float max = -FLT_MAX; + + for (int j = 0; j < QK4_1; j++) { + const float v = src[j]; + if (min > v) min = v; + if (max < v) max = v; + } + + const float d = (max - min) / ((1 << 4) - 1); + const float id = d ? 1.0f/d : 0.0f; + + dst_data[i00/QK4_1].d = d; + dst_data[i00/QK4_1].m = min; + + for (int j = 0; j < QK4_1/2; ++j) { + const float x0 = (src[0 + j] - min)*id; + const float x1 = (src[QK4_1/2 + j] - min)*id; + + const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f)); + const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f)); + + dst_data[i00/QK4_1].qs[j] = xi0; + dst_data[i00/QK4_1].qs[j] |= xi1 << 4; + } + } +} + +kernel void kernel_cpy_f32_q5_0( + device const float * src0, + device void * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig[2]; + const int64_t i02 = tgpig[1]; + const int64_t i01 = tgpig[0]; + + const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + const int64_t i3 = n / (ne2*ne1*ne0); + const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); + const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; + const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK5_0; + + device block_q5_0 * dst_data = (device block_q5_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + for (int64_t i00 = tpitg.x*QK5_0; i00 < ne00; i00 += ntg.x*QK5_0) { + device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); + + float amax = 0.0f; // absolute max + float max = 0.0f; + + for (int j = 0; j < QK5_0; j++) { + const float v = src[j]; + if (amax < fabs(v)) { + amax = fabs(v); + max = v; + } + } + + const float d = max / -16; + const float id = d ? 1.0f/d : 0.0f; + + dst_data[i00/QK5_0].d = d; + + uint32_t qh = 0; + for (int j = 0; j < QK5_0/2; ++j) { + const float x0 = src[0 + j]*id; + const float x1 = src[QK5_0/2 + j]*id; + + const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f)); + const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f)); + + dst_data[i00/QK5_0].qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4); + qh |= ((xi0 & 0x10u) >> 4) << (j + 0); + qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2); + } + thread const uint8_t * qh8 = (thread const uint8_t *)&qh; + for (int j = 0; j < 4; ++j) { + dst_data[i00/QK5_0].qh[j] = qh8[j]; + } + } +} + +kernel void kernel_cpy_f32_q5_1( + device const float * src0, + device void * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig[2]; + const int64_t i02 = tgpig[1]; + const int64_t i01 = tgpig[0]; + + const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + const int64_t i3 = n / (ne2*ne1*ne0); + const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); + const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; + const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK5_1; + + device block_q5_1 * dst_data = (device block_q5_1 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + for (int64_t i00 = tpitg.x*QK5_1; i00 < ne00; i00 += ntg.x*QK5_1) { + device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); + + float max = src[0]; + float min = src[0]; + + for (int j = 1; j < QK5_1; j++) { + const float v = src[j]; + min = v < min ? v : min; + max = v > max ? v : max; + } + + const float d = (max - min) / 31; + const float id = d ? 1.0f/d : 0.0f; + + dst_data[i00/QK5_1].d = d; + dst_data[i00/QK5_1].m = min; + + uint32_t qh = 0; + for (int j = 0; j < QK5_1/2; ++j) { + const float x0 = (src[0 + j] - min)*id; + const float x1 = (src[QK5_1/2 + j] - min)*id; + + const uint8_t xi0 = (uint8_t)(x0 + 0.5f); + const uint8_t xi1 = (uint8_t)(x1 + 0.5f); + + dst_data[i00/QK5_1].qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4); + qh |= ((xi0 & 0x10u) >> 4) << (j + 0); + qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_1/2); + } + thread const uint8_t * qh8 = (thread const uint8_t *)&qh; + for (int j = 0; j < 4; ++j) { + dst_data[i00/QK5_1].qh[j] = qh8[j]; + } + } +} + +static inline int best_index_int8(int n, constant float * val, float x) { + if (x <= val[0]) return 0; + if (x >= val[n-1]) return n-1; + int ml = 0, mu = n-1; + while (mu-ml > 1) { + int mav = (ml+mu)/2; + if (x < val[mav]) mu = mav; else ml = mav; + } + return x - val[mu-1] < val[mu] - x ? mu-1 : mu; +} + +constexpr constant static float kvalues_iq4nl_f[16] = { + -127.f, -104.f, -83.f, -65.f, -49.f, -35.f, -22.f, -10.f, 1.f, 13.f, 25.f, 38.f, 53.f, 69.f, 89.f, 113.f +}; + +kernel void kernel_cpy_f32_iq4_nl( + device const float * src0, + device void * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig[2]; + const int64_t i02 = tgpig[1]; + const int64_t i01 = tgpig[0]; + + const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + const int64_t i3 = n / (ne2*ne1*ne0); + const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); + const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; + const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_NL; + + device block_iq4_nl * dst_data = (device block_iq4_nl *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + for (int64_t i00 = tpitg.x*QK4_NL; i00 < ne00; i00 += ntg.x*QK4_NL) { + device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); + + float amax = 0.0f; // absolute max + float max = 0.0f; + + for (int j = 0; j < QK4_0; j++) { + const float v = src[j]; + if (amax < fabs(v)) { + amax = fabs(v); + max = v; + } + } + + const float d = max / kvalues_iq4nl_f[0]; + const float id = d ? 1.0f/d : 0.0f; + + float sumqx = 0, sumq2 = 0; + for (int j = 0; j < QK4_NL/2; ++j) { + const float x0 = src[0 + j]*id; + const float x1 = src[QK4_NL/2 + j]*id; + + const uint8_t xi0 = best_index_int8(16, kvalues_iq4nl_f, x0); + const uint8_t xi1 = best_index_int8(16, kvalues_iq4nl_f, x1); + + dst_data[i00/QK4_NL].qs[j] = xi0 | (xi1 << 4); + + const float v0 = kvalues_iq4nl_f[xi0]; + const float v1 = kvalues_iq4nl_f[xi1]; + const float w0 = src[0 + j]*src[0 + j]; + const float w1 = src[QK4_NL/2 + j]*src[QK4_NL/2 + j]; + sumqx += w0*v0*src[j] + w1*v1*src[QK4_NL/2 + j]; + sumq2 += w0*v0*v0 + w1*v1*v1; + + } + + dst_data[i00/QK4_NL].d = sumq2 > 0 ? sumqx/sumq2 : d; + + } +} + +kernel void kernel_concat( + device const char * src0, + device const char * src1, + device char * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant int64_t & ne13, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant uint64_t & nb13, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + + const int64_t i03 = tgpig.z; + const int64_t i02 = tgpig.y; + const int64_t i01 = tgpig.x; + + const int64_t i13 = i03 % ne13; + const int64_t i12 = i02 % ne12; + const int64_t i11 = i01 % ne11; + + device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + tpitg.x*nb00; + device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11 + tpitg.x*nb10; + device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + tpitg.x*nb0; + + for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) { + if (i02 < ne02) { + ((device float *)dst_ptr)[0] = ((device float *)src0_ptr)[0]; + src0_ptr += ntg.x*nb00; + } else { + ((device float *)dst_ptr)[0] = ((device float *)src1_ptr)[0]; + src1_ptr += ntg.x*nb10; + } + dst_ptr += ntg.x*nb0; + } +} + +void kernel_mul_mv_q2_K_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + const int nb = ne00/QK_K; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + + const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; + const int ib_row = first_row * nb; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_q2_K * x = (device const block_q2_K *) src0 + ib_row + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[32]; + float sumf[N_DST]={0.f}, all_sum; + + const int step = sizeof(block_q2_K) * nb; + +#if QK_K == 256 + const int ix = tiisg/8; // 0...3 + const int it = tiisg%8; // 0...7 + const int iq = it/4; // 0 or 1 + const int ir = it%4; // 0...3 + const int is = (8*ir)/16;// 0 or 1 + + device const float * y4 = y + ix * QK_K + 128 * iq + 8 * ir; + + for (int ib = ix; ib < nb; ib += 4) { + + float4 sumy = {0.f, 0.f, 0.f, 0.f}; + for (int i = 0; i < 8; ++i) { + yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0]; + yl[i+ 8] = y4[i+32]; sumy[1] += yl[i+ 8]; + yl[i+16] = y4[i+64]; sumy[2] += yl[i+16]; + yl[i+24] = y4[i+96]; sumy[3] += yl[i+24]; + } + + device const uint8_t * sc = (device const uint8_t *)x[ib].scales + 8*iq + is; + device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 16 * iq + 4 * ir; + device const half * dh = &x[ib].d; + + for (int row = 0; row < N_DST; row++) { + + float4 acc1 = {0.f, 0.f, 0.f, 0.f}; + float4 acc2 = {0.f, 0.f, 0.f, 0.f}; + for (int i = 0; i < 8; i += 2) { + acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003); + acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300); + acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c); + acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00); + acc1[2] += yl[i+16] * (qs[i/2] & 0x0030); + acc2[2] += yl[i+17] * (qs[i/2] & 0x3000); + acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0); + acc2[3] += yl[i+25] * (qs[i/2] & 0xc000); + } + float dall = dh[0]; + float dmin = dh[1] * 1.f/16.f; + sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f + + (acc1[1] + 1.f/256.f * acc2[1]) * (sc[2] & 0xF) * 1.f/ 4.f + + (acc1[2] + 1.f/256.f * acc2[2]) * (sc[4] & 0xF) * 1.f/16.f + + (acc1[3] + 1.f/256.f * acc2[3]) * (sc[6] & 0xF) * 1.f/64.f) - + dmin * (sumy[0] * (sc[0] & 0xF0) + sumy[1] * (sc[2] & 0xF0) + sumy[2] * (sc[4] & 0xF0) + sumy[3] * (sc[6] & 0xF0)); + + qs += step/2; + sc += step; + dh += step/2; + } + + y4 += 4 * QK_K; + } +#else + const int ix = tiisg/2; // 0...15 + const int it = tiisg%2; // 0...1 + + device const float * y4 = y + ix * QK_K + 8 * it; + + for (int ib = ix; ib < nb; ib += 16) { + + float4 sumy = {0.f, 0.f, 0.f, 0.f}; + for (int i = 0; i < 8; ++i) { + yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0]; + yl[i+ 8] = y4[i+16]; sumy[1] += yl[i+ 8]; + yl[i+16] = y4[i+32]; sumy[2] += yl[i+16]; + yl[i+24] = y4[i+48]; sumy[3] += yl[i+24]; + } + + device const uint8_t * sc = (device const uint8_t *)x[ib].scales; + device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it; + device const half * dh = &x[ib].d; + + for (int row = 0; row < N_DST; row++) { + + float4 acc1 = {0.f, 0.f, 0.f, 0.f}; + float4 acc2 = {0.f, 0.f, 0.f, 0.f}; + for (int i = 0; i < 8; i += 2) { + acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003); + acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300); + acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c); + acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00); + acc1[2] += yl[i+16] * (qs[i/2] & 0x0030); + acc2[2] += yl[i+17] * (qs[i/2] & 0x3000); + acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0); + acc2[3] += yl[i+25] * (qs[i/2] & 0xc000); + } + + float dall = dh[0]; + float dmin = dh[1]; + sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f + + (acc1[1] + 1.f/256.f * acc2[1]) * (sc[1] & 0xF) * 1.f/ 4.f + + (acc1[2] + 1.f/256.f * acc2[2]) * (sc[2] & 0xF) * 1.f/16.f + + (acc1[3] + 1.f/256.f * acc2[3]) * (sc[3] & 0xF) * 1.f/64.f) - + dmin * (sumy[0] * (sc[0] >> 4) + sumy[1] * (sc[1] >> 4) + sumy[2] * (sc[2] >> 4) + sumy[3] * (sc[3] >> 4)); + + qs += step/2; + sc += step; + dh += step/2; + } + + y4 += 16 * QK_K; + } +#endif + + for (int row = 0; row < N_DST; ++row) { + all_sum = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum; + } + } +} + +[[host_name("kernel_mul_mv_q2_K_f32")]] +kernel void kernel_mul_mv_q2_K_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_q2_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg); +} + +#if QK_K == 256 +void kernel_mul_mv_q3_K_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + const int nb = ne00/QK_K; + + const int64_t r0 = tgpig.x; + const int64_t r1 = tgpig.y; + const int64_t im = tgpig.z; + + const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_q3_K * x = (device const block_q3_K *) src0 + first_row*nb + offset0; + device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[32]; + + //const uint16_t kmask1 = 0x3030; + //const uint16_t kmask2 = 0x0f0f; + + const int tid = tiisg/4; + const int ix = tiisg%4; + const int ip = tid/4; // 0 or 1 + const int il = 2*((tid%4)/2); // 0 or 2 + const int ir = tid%2; + const int n = 8; + const int l0 = n*ir; + + // One would think that the Metal compiler would figure out that ip and il can only have + // 4 possible states, and optimize accordingly. Well, no. It needs help, and we do it + // with these two tales. + // + // Possible masks for the high bit + const ushort4 mm[4] = {{0x0001, 0x0100, 0x0002, 0x0200}, // ip = 0, il = 0 + {0x0004, 0x0400, 0x0008, 0x0800}, // ip = 0, il = 2 + {0x0010, 0x1000, 0x0020, 0x2000}, // ip = 1, il = 0 + {0x0040, 0x4000, 0x0080, 0x8000}}; // ip = 1, il = 2 + + // Possible masks for the low 2 bits + const int4 qm[2] = {{0x0003, 0x0300, 0x000c, 0x0c00}, {0x0030, 0x3000, 0x00c0, 0xc000}}; + + const ushort4 hm = mm[2*ip + il/2]; + + const int shift = 2*il; + const float v1 = il == 0 ? 4.f : 64.f; + const float v2 = 4.f * v1; + + const uint16_t s_shift1 = 4*ip; + const uint16_t s_shift2 = s_shift1 + il; + + const int q_offset = 32*ip + l0; + const int y_offset = 128*ip + 32*il + l0; + + const int step = sizeof(block_q3_K) * nb / 2; + + device const float * y1 = yy + ix*QK_K + y_offset; + + uint32_t scales32, aux32; + thread uint16_t * scales16 = (thread uint16_t *)&scales32; + thread const int8_t * scales = (thread const int8_t *)&scales32; + + float sumf1[2] = {0.f}; + float sumf2[2] = {0.f}; + for (int i = ix; i < nb; i += 4) { + + for (int l = 0; l < 8; ++l) { + yl[l+ 0] = y1[l+ 0]; + yl[l+ 8] = y1[l+16]; + yl[l+16] = y1[l+32]; + yl[l+24] = y1[l+48]; + } + + device const uint16_t * q = (device const uint16_t *)(x[i].qs + q_offset); + device const uint16_t * h = (device const uint16_t *)(x[i].hmask + l0); + device const uint16_t * a = (device const uint16_t *)(x[i].scales); + device const half * dh = &x[i].d; + + for (int row = 0; row < 2; ++row) { + + const float d_all = (float)dh[0]; + + scales16[0] = a[4]; + scales16[1] = a[5]; + aux32 = ((scales32 >> s_shift2) << 4) & 0x30303030; + scales16[0] = a[il+0]; + scales16[1] = a[il+1]; + scales32 = ((scales32 >> s_shift1) & 0x0f0f0f0f) | aux32; + + float s1 = 0, s2 = 0, s3 = 0, s4 = 0, s5 = 0, s6 = 0; + for (int l = 0; l < n; l += 2) { + const int32_t qs = q[l/2]; + s1 += yl[l+0] * (qs & qm[il/2][0]); + s2 += yl[l+1] * (qs & qm[il/2][1]); + s3 += ((h[l/2] & hm[0]) ? 0.f : yl[l+0]) + ((h[l/2] & hm[1]) ? 0.f : yl[l+1]); + s4 += yl[l+16] * (qs & qm[il/2][2]); + s5 += yl[l+17] * (qs & qm[il/2][3]); + s6 += ((h[l/2] & hm[2]) ? 0.f : yl[l+16]) + ((h[l/2] & hm[3]) ? 0.f : yl[l+17]); + } + float d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1); + float d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2); + sumf1[row] += d1 * (scales[0] - 32); + sumf2[row] += d2 * (scales[2] - 32); + + s1 = s2 = s3 = s4 = s5 = s6 = 0; + for (int l = 0; l < n; l += 2) { + const int32_t qs = q[l/2+8]; + s1 += yl[l+8] * (qs & qm[il/2][0]); + s2 += yl[l+9] * (qs & qm[il/2][1]); + s3 += ((h[l/2+8] & hm[0]) ? 0.f : yl[l+8]) + ((h[l/2+8] & hm[1]) ? 0.f : yl[l+9]); + s4 += yl[l+24] * (qs & qm[il/2][2]); + s5 += yl[l+25] * (qs & qm[il/2][3]); + s6 += ((h[l/2+8] & hm[2]) ? 0.f : yl[l+24]) + ((h[l/2+8] & hm[3]) ? 0.f : yl[l+25]); + } + d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1); + d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2); + sumf1[row] += d1 * (scales[1] - 32); + sumf2[row] += d2 * (scales[3] - 32); + + q += step; + h += step; + a += step; + dh += step; + + } + + y1 += 4 * QK_K; + + } + + for (int row = 0; row < 2; ++row) { + const float sumf = (sumf1[row] + 0.25f * sumf2[row]) / (1 << shift); + sumf1[row] = simd_sum(sumf); + } + if (tiisg == 0) { + for (int row = 0; row < 2; ++row) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = sumf1[row]; + } + } +} +#else +void kernel_mul_mv_q3_K_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne10, + constant int64_t & ne12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + const int nb = ne00/QK_K; + + const int64_t r0 = tgpig.x; + const int64_t r1 = tgpig.y; + const int64_t im = tgpig.z; + + const int row = 2 * r0 + sgitg; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_q3_K * x = (device const block_q3_K *) src0 + row*nb + offset0; + device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + const int ix = tiisg/4; + const int il = 4 * (tiisg%4);// 0, 4, 8, 12 + const int iq = il/8; // 0, 0, 1, 1 + const int in = il%8; // 0, 4, 0, 4 + + float2 sum = {0.f, 0.f}; + + for (int i = ix; i < nb; i += 8) { + + const float d_all = (float)(x[i].d); + + device const uint16_t * q = (device const uint16_t *)(x[i].qs + il); + device const uint16_t * h = (device const uint16_t *)(x[i].hmask + in); + device const uint16_t * s = (device const uint16_t *)(x[i].scales); + device const float * y = yy + i * QK_K + il; + + const float d1 = d_all * ((int32_t)(s[0] & 0x000F) - 8); + const float d2 = d_all * ((int32_t)(s[0] & 0x00F0) - 128) * 1.f/64.f; + const float d3 = d_all * ((int32_t)(s[0] & 0x0F00) - 2048) * 1.f/4096.f; + const float d4 = d_all * ((int32_t)(s[0] & 0xF000) - 32768) * 1.f/262144.f; + + for (int l = 0; l < 4; l += 2) { + const uint16_t hm = h[l/2] >> iq; + sum[0] += y[l+ 0] * d1 * ((int32_t)(q[l/2] & 0x0003) - ((hm & 0x0001) ? 0 : 4)) + + y[l+16] * d2 * ((int32_t)(q[l/2] & 0x000c) - ((hm & 0x0004) ? 0 : 16)) + + y[l+32] * d3 * ((int32_t)(q[l/2] & 0x0030) - ((hm & 0x0010) ? 0 : 64)) + + y[l+48] * d4 * ((int32_t)(q[l/2] & 0x00c0) - ((hm & 0x0040) ? 0 : 256)); + sum[1] += y[l+ 1] * d1 * ((int32_t)(q[l/2] & 0x0300) - ((hm & 0x0100) ? 0 : 1024)) + + y[l+17] * d2 * ((int32_t)(q[l/2] & 0x0c00) - ((hm & 0x0400) ? 0 : 4096)) + + y[l+33] * d3 * ((int32_t)(q[l/2] & 0x3000) - ((hm & 0x1000) ? 0 : 16384)) + + y[l+49] * d4 * ((int32_t)(q[l/2] & 0xc000) - ((hm & 0x4000) ? 0 : 65536)); + } + + } + const float sumf = sum[0] + sum[1] * 1.f/256.f; + + const float tot = simd_sum(sumf); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + row] = tot; + } + +} +#endif + +[[host_name("kernel_mul_mv_q3_K_f32")]] +kernel void kernel_mul_mv_q3_K_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_q3_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg); +} + +#if QK_K == 256 +void kernel_mul_mv_q4_K_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + const uint16_t kmask1 = 0x3f3f; + const uint16_t kmask2 = 0x0f0f; + const uint16_t kmask3 = 0xc0c0; + + const int ix = tiisg/8; // 0...3 + const int it = tiisg%8; // 0...7 + const int iq = it/4; // 0 or 1 + const int ir = it%4; // 0...3 + + const int nb = ne00/QK_K; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + //const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; + const int first_row = r0 * N_DST; + const int ib_row = first_row * nb; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[16]; + float yh[16]; + float sumf[N_DST]={0.f}, all_sum; + + const int step = sizeof(block_q4_K) * nb / 2; + + device const float * y4 = y + ix * QK_K + 64 * iq + 8 * ir; + + uint16_t sc16[4]; + thread const uint8_t * sc8 = (thread const uint8_t *)sc16; + + for (int ib = ix; ib < nb; ib += 4) { + + float4 sumy = {0.f, 0.f, 0.f, 0.f}; + for (int i = 0; i < 8; ++i) { + yl[i+0] = y4[i+ 0]; sumy[0] += yl[i+0]; + yl[i+8] = y4[i+ 32]; sumy[1] += yl[i+8]; + yh[i+0] = y4[i+128]; sumy[2] += yh[i+0]; + yh[i+8] = y4[i+160]; sumy[3] += yh[i+8]; + } + + device const uint16_t * sc = (device const uint16_t *)x[ib].scales + iq; + device const uint16_t * q1 = (device const uint16_t *)x[ib].qs + 16 * iq + 4 * ir; + device const half * dh = &x[ib].d; + + for (int row = 0; row < N_DST; row++) { + + sc16[0] = sc[0] & kmask1; + sc16[1] = sc[2] & kmask1; + sc16[2] = ((sc[4] >> 0) & kmask2) | ((sc[0] & kmask3) >> 2); + sc16[3] = ((sc[4] >> 4) & kmask2) | ((sc[2] & kmask3) >> 2); + + device const uint16_t * q2 = q1 + 32; + + float4 acc1 = {0.f, 0.f, 0.f, 0.f}; + float4 acc2 = {0.f, 0.f, 0.f, 0.f}; + for (int i = 0; i < 8; i += 2) { + acc1[0] += yl[i+0] * (q1[i/2] & 0x000F); + acc1[1] += yl[i+1] * (q1[i/2] & 0x0F00); + acc1[2] += yl[i+8] * (q1[i/2] & 0x00F0); + acc1[3] += yl[i+9] * (q1[i/2] & 0xF000); + acc2[0] += yh[i+0] * (q2[i/2] & 0x000F); + acc2[1] += yh[i+1] * (q2[i/2] & 0x0F00); + acc2[2] += yh[i+8] * (q2[i/2] & 0x00F0); + acc2[3] += yh[i+9] * (q2[i/2] & 0xF000); + } + + float dall = dh[0]; + float dmin = dh[1]; + sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc8[0] + + (acc1[2] + 1.f/256.f * acc1[3]) * sc8[1] * 1.f/16.f + + (acc2[0] + 1.f/256.f * acc2[1]) * sc8[4] + + (acc2[2] + 1.f/256.f * acc2[3]) * sc8[5] * 1.f/16.f) - + dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]); + + q1 += step; + sc += step; + dh += step; + } + + y4 += 4 * QK_K; + } + + for (int row = 0; row < N_DST; ++row) { + all_sum = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum; + } + } +} +#else +void kernel_mul_mv_q4_K_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne10, + constant int64_t & ne12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + const int ix = tiisg/4; // 0...7 + const int it = tiisg%4; // 0...3 + + const int nb = ne00/QK_K; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + const int first_row = r0 * N_DST; + const int ib_row = first_row * nb; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[8]; + float yh[8]; + float sumf[N_DST]={0.f}, all_sum; + + const int step = sizeof(block_q4_K) * nb / 2; + + device const float * y4 = y + ix * QK_K + 8 * it; + + uint16_t sc16[4]; + + for (int ib = ix; ib < nb; ib += 8) { + + float2 sumy = {0.f, 0.f}; + for (int i = 0; i < 8; ++i) { + yl[i] = y4[i+ 0]; sumy[0] += yl[i]; + yh[i] = y4[i+32]; sumy[1] += yh[i]; + } + + device const uint16_t * sc = (device const uint16_t *)x[ib].scales; + device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it; + device const half * dh = x[ib].d; + + for (int row = 0; row < N_DST; row++) { + + sc16[0] = sc[0] & 0x000f; + sc16[1] = sc[0] & 0x0f00; + sc16[2] = sc[0] & 0x00f0; + sc16[3] = sc[0] & 0xf000; + + float2 acc1 = {0.f, 0.f}; + float2 acc2 = {0.f, 0.f}; + for (int i = 0; i < 8; i += 2) { + acc1[0] += yl[i+0] * (qs[i/2] & 0x000F); + acc1[1] += yl[i+1] * (qs[i/2] & 0x0F00); + acc2[0] += yh[i+0] * (qs[i/2] & 0x00F0); + acc2[1] += yh[i+1] * (qs[i/2] & 0xF000); + } + + float dall = dh[0]; + float dmin = dh[1]; + sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc16[0] + + (acc2[0] + 1.f/256.f * acc2[1]) * sc16[1] * 1.f/4096.f) - + dmin * 1.f/16.f * (sumy[0] * sc16[2] + sumy[1] * sc16[3] * 1.f/256.f); + + qs += step; + sc += step; + dh += step; + } + + y4 += 8 * QK_K; + } + + for (int row = 0; row < N_DST; ++row) { + all_sum = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum; + } + } +} +#endif + +[[host_name("kernel_mul_mv_q4_K_f32")]] +kernel void kernel_mul_mv_q4_K_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_q4_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg); +} + +void kernel_mul_mv_q5_K_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + const int nb = ne00/QK_K; + + const int64_t r0 = tgpig.x; + const int64_t r1 = tgpig.y; + const int im = tgpig.z; + + const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_q5_K * x = (device const block_q5_K *) src0 + first_row*nb + offset0; + device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float sumf[2]={0.f}; + + const int step = sizeof(block_q5_K) * nb; + +#if QK_K == 256 +# + float yl[16], yh[16]; + + const uint16_t kmask1 = 0x3f3f; + const uint16_t kmask2 = 0x0f0f; + const uint16_t kmask3 = 0xc0c0; + + const int tid = tiisg/4; + const int ix = tiisg%4; + const int iq = tid/4; + const int ir = tid%4; + const int n = 8; + + const int l0 = n*ir; + const int q_offset = 32*iq + l0; + const int y_offset = 64*iq + l0; + + const uint8_t hm1 = 1u << (2*iq); + const uint8_t hm2 = hm1 << 1; + const uint8_t hm3 = hm1 << 4; + const uint8_t hm4 = hm2 << 4; + + uint16_t sc16[4]; + thread const uint8_t * sc8 = (thread const uint8_t *)sc16; + + device const float * y1 = yy + ix*QK_K + y_offset; + + for (int i = ix; i < nb; i += 4) { + + device const uint8_t * q1 = x[i].qs + q_offset; + device const uint8_t * qh = x[i].qh + l0; + device const half * dh = &x[i].d; + device const uint16_t * a = (device const uint16_t *)x[i].scales + iq; + + device const float * y2 = y1 + 128; + float4 sumy = {0.f, 0.f, 0.f, 0.f}; + for (int l = 0; l < 8; ++l) { + yl[l+0] = y1[l+ 0]; sumy[0] += yl[l+0]; + yl[l+8] = y1[l+32]; sumy[1] += yl[l+8]; + yh[l+0] = y2[l+ 0]; sumy[2] += yh[l+0]; + yh[l+8] = y2[l+32]; sumy[3] += yh[l+8]; + } + + for (int row = 0; row < 2; ++row) { + + device const uint8_t * q2 = q1 + 64; + + sc16[0] = a[0] & kmask1; + sc16[1] = a[2] & kmask1; + sc16[2] = ((a[4] >> 0) & kmask2) | ((a[0] & kmask3) >> 2); + sc16[3] = ((a[4] >> 4) & kmask2) | ((a[2] & kmask3) >> 2); + + float4 acc1 = {0.f}; + float4 acc2 = {0.f}; + for (int l = 0; l < n; ++l) { + uint8_t h = qh[l]; + acc1[0] += yl[l+0] * (q1[l] & 0x0F); + acc1[1] += yl[l+8] * (q1[l] & 0xF0); + acc1[2] += yh[l+0] * (q2[l] & 0x0F); + acc1[3] += yh[l+8] * (q2[l] & 0xF0); + acc2[0] += h & hm1 ? yl[l+0] : 0.f; + acc2[1] += h & hm2 ? yl[l+8] : 0.f; + acc2[2] += h & hm3 ? yh[l+0] : 0.f; + acc2[3] += h & hm4 ? yh[l+8] : 0.f; + } + const float dall = dh[0]; + const float dmin = dh[1]; + sumf[row] += dall * (sc8[0] * (acc1[0] + 16.f*acc2[0]) + + sc8[1] * (acc1[1]/16.f + 16.f*acc2[1]) + + sc8[4] * (acc1[2] + 16.f*acc2[2]) + + sc8[5] * (acc1[3]/16.f + 16.f*acc2[3])) - + dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]); + + q1 += step; + qh += step; + dh += step/2; + a += step/2; + + } + + y1 += 4 * QK_K; + + } +#else + float yl[8], yh[8]; + + const int il = 4 * (tiisg/8); // 0, 4, 8, 12 + const int ix = tiisg%8; + const int iq = il/8; // 0, 0, 1, 1 + const int in = il%8; // 0, 4, 0, 4 + + device const float * y = yy + ix*QK_K + il; + + for (int i = ix; i < nb; i += 8) { + + for (int l = 0; l < 4; ++l) { + yl[l+0] = y[l+ 0]; + yl[l+4] = y[l+16]; + yh[l+0] = y[l+32]; + yh[l+4] = y[l+48]; + } + + device const half * dh = &x[i].d; + device const uint8_t * q = x[i].qs + il; + device const uint8_t * h = x[i].qh + in; + device const int8_t * s = x[i].scales; + + for (int row = 0; row < 2; ++row) { + + const float d = dh[0]; + + float2 acc = {0.f, 0.f}; + for (int l = 0; l < 4; ++l) { + const uint8_t hl = h[l] >> iq; + acc[0] += yl[l+0] * s[0] * ((int16_t)(q[l+ 0] & 0x0F) - (hl & 0x01 ? 0 : 16)) + + yl[l+4] * s[1] * ((int16_t)(q[l+16] & 0x0F) - (hl & 0x04 ? 0 : 16)); + acc[1] += yh[l+0] * s[2] * ((int16_t)(q[l+ 0] & 0xF0) - (hl & 0x10 ? 0 : 256)) + + yh[l+4] * s[3] * ((int16_t)(q[l+16] & 0xF0) - (hl & 0x40 ? 0 : 256)); + } + sumf[row] += d * (acc[0] + 1.f/16.f * acc[1]); + + q += step; + h += step; + s += step; + dh += step/2; + + } + + y += 8 * QK_K; + } +#endif + + for (int row = 0; row < 2; ++row) { + const float tot = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot; + } + } +} + +[[host_name("kernel_mul_mv_q5_K_f32")]] +kernel void kernel_mul_mv_q5_K_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_q5_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg); +} + +void kernel_mul_mv_q6_K_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + const uint8_t kmask1 = 0x03; + const uint8_t kmask2 = 0x0C; + const uint8_t kmask3 = 0x30; + const uint8_t kmask4 = 0xC0; + + const int nb = ne00/QK_K; + + const int64_t r0 = tgpig.x; + const int64_t r1 = tgpig.y; + const int im = tgpig.z; + + const int row = 2 * r0 + sgitg; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_q6_K * x = (device const block_q6_K *) src0 + row * nb + offset0; + device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float sumf = 0; + +#if QK_K == 256 + const int tid = tiisg/2; + const int ix = tiisg%2; + const int ip = tid/8; // 0 or 1 + const int il = tid%8; + const int n = 4; + const int l0 = n*il; + const int is = 8*ip + l0/16; + + const int y_offset = 128*ip + l0; + const int q_offset_l = 64*ip + l0; + const int q_offset_h = 32*ip + l0; + + for (int i = ix; i < nb; i += 2) { + + device const uint8_t * q1 = x[i].ql + q_offset_l; + device const uint8_t * q2 = q1 + 32; + device const uint8_t * qh = x[i].qh + q_offset_h; + device const int8_t * sc = x[i].scales + is; + + device const float * y = yy + i * QK_K + y_offset; + + const float dall = x[i].d; + + float4 sums = {0.f, 0.f, 0.f, 0.f}; + for (int l = 0; l < n; ++l) { + sums[0] += y[l+ 0] * ((int8_t)((q1[l] & 0xF) | ((qh[l] & kmask1) << 4)) - 32); + sums[1] += y[l+32] * ((int8_t)((q2[l] & 0xF) | ((qh[l] & kmask2) << 2)) - 32); + sums[2] += y[l+64] * ((int8_t)((q1[l] >> 4) | ((qh[l] & kmask3) << 0)) - 32); + sums[3] += y[l+96] * ((int8_t)((q2[l] >> 4) | ((qh[l] & kmask4) >> 2)) - 32); + } + + sumf += dall * (sums[0] * sc[0] + sums[1] * sc[2] + sums[2] * sc[4] + sums[3] * sc[6]); + + } + +#else + const int ix = tiisg/4; + const int il = 4*(tiisg%4); + + for (int i = ix; i < nb; i += 8) { + device const float * y = yy + i * QK_K + il; + device const uint8_t * ql = x[i].ql + il; + device const uint8_t * qh = x[i].qh + il; + device const int8_t * s = x[i].scales; + + const float d = x[i].d; + + float4 sums = {0.f, 0.f, 0.f, 0.f}; + for (int l = 0; l < 4; ++l) { + sums[0] += y[l+ 0] * ((int8_t)((ql[l+ 0] & 0xF) | ((qh[l] & kmask1) << 4)) - 32); + sums[1] += y[l+16] * ((int8_t)((ql[l+16] & 0xF) | ((qh[l] & kmask2) << 2)) - 32); + sums[2] += y[l+32] * ((int8_t)((ql[l+ 0] >> 4) | ((qh[l] & kmask3) >> 0)) - 32); + sums[3] += y[l+48] * ((int8_t)((ql[l+16] >> 4) | ((qh[l] & kmask4) >> 2)) - 32); + } + sumf += d * (sums[0] * s[0] + sums[1] * s[1] + sums[2] * s[2] + sums[3] * s[3]); + } + +#endif + + const float tot = simd_sum(sumf); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + row] = tot; + } +} + +[[host_name("kernel_mul_mv_q6_K_f32")]] +kernel void kernel_mul_mv_q6_K_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_q6_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg); +} + +// ======================= "True" 2-bit + +void kernel_mul_mv_iq2_xxs_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + const int nb = ne00/QK_K; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + + const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; + const int ib_row = first_row * nb; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_iq2_xxs * x = (device const block_iq2_xxs *) src0 + ib_row + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[32]; + float sumf[N_DST]={0.f}, all_sum; + + const int nb32 = nb * (QK_K / 32); + + threadgroup uint64_t * values = (threadgroup uint64_t *)shared_values; + threadgroup uint8_t * shared_signs = (threadgroup uint8_t *)(values + 256); + { + int nval = 4; + int pos = (32*sgitg + tiisg)*nval; + for (int i = 0; i < nval; ++i) values[pos + i] = iq2xxs_grid[pos + i]; + nval = 2; + pos = (32*sgitg + tiisg)*nval; + for (int i = 0; i < nval; ++i) shared_signs[pos+i] = ksigns_iq2xs[pos+i]; + threadgroup_barrier(mem_flags::mem_threadgroup); + } + + const int ix = tiisg; + + device const float * y4 = y + 32 * ix; + + for (int ib32 = ix; ib32 < nb32; ib32 += 32) { + + for (int i = 0; i < 32; ++i) { + yl[i] = y4[i]; + } + + const int ibl = ib32 / (QK_K / 32); + const int ib = ib32 % (QK_K / 32); + + device const block_iq2_xxs * xr = x + ibl; + device const uint16_t * q2 = xr->qs + 4 * ib; + device const half * dh = &xr->d; + + for (int row = 0; row < N_DST; row++) { + + const float db = dh[0]; + device const uint8_t * aux8 = (device const uint8_t *)q2; + const uint32_t aux32 = q2[2] | (q2[3] << 16); + const float d = db * (0.5f + (aux32 >> 28)); + + float sum = 0; + for (int l = 0; l < 4; ++l) { + const threadgroup uint8_t * grid = (const threadgroup uint8_t *)(values + aux8[l]); + const uint8_t signs = shared_signs[(aux32 >> 7*l) & 127]; + for (int j = 0; j < 8; ++j) { + sum += yl[8*l + j] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f); + } + } + sumf[row] += d * sum; + + dh += nb*sizeof(block_iq2_xxs)/2; + q2 += nb*sizeof(block_iq2_xxs)/2; + } + + y4 += 32 * 32; + } + + for (int row = 0; row < N_DST; ++row) { + all_sum = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum * 0.25f; + } + } +} + +[[host_name("kernel_mul_mv_iq2_xxs_f32")]] +kernel void kernel_mul_mv_iq2_xxs_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_iq2_xxs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); +} + +void kernel_mul_mv_iq2_xs_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + const int nb = ne00/QK_K; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + + const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; + const int ib_row = first_row * nb; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_iq2_xs * x = (device const block_iq2_xs *) src0 + ib_row + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[32]; + float sumf[N_DST]={0.f}, all_sum; + + const int nb32 = nb * (QK_K / 32); + + threadgroup uint64_t * values = (threadgroup uint64_t *)shared_values; + threadgroup uint8_t * shared_signs = (threadgroup uint8_t *)(values + 512); + { + int nval = 8; + int pos = (32*sgitg + tiisg)*nval; + for (int i = 0; i < nval; ++i) values[pos + i] = iq2xs_grid[pos + i]; + nval = 2; + pos = (32*sgitg + tiisg)*nval; + for (int i = 0; i < nval; ++i) shared_signs[pos+i] = ksigns_iq2xs[pos+i]; + threadgroup_barrier(mem_flags::mem_threadgroup); + } + + const int ix = tiisg; + + device const float * y4 = y + 32 * ix; + + for (int ib32 = ix; ib32 < nb32; ib32 += 32) { + + for (int i = 0; i < 32; ++i) { + yl[i] = y4[i]; + } + + const int ibl = ib32 / (QK_K / 32); + const int ib = ib32 % (QK_K / 32); + + device const block_iq2_xs * xr = x + ibl; + device const uint16_t * q2 = xr->qs + 4 * ib; + device const uint8_t * sc = xr->scales + ib; + device const half * dh = &xr->d; + + for (int row = 0; row < N_DST; row++) { + + const float db = dh[0]; + const uint8_t ls1 = sc[0] & 0xf; + const uint8_t ls2 = sc[0] >> 4; + const float d1 = db * (0.5f + ls1); + const float d2 = db * (0.5f + ls2); + + float sum1 = 0, sum2 = 0; + for (int l = 0; l < 2; ++l) { + const threadgroup uint8_t * grid = (const threadgroup uint8_t *)(values + (q2[l] & 511)); + const uint8_t signs = shared_signs[(q2[l] >> 9)]; + for (int j = 0; j < 8; ++j) { + sum1 += yl[8*l + j] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f); + } + } + for (int l = 2; l < 4; ++l) { + const threadgroup uint8_t * grid = (const threadgroup uint8_t *)(values + (q2[l] & 511)); + const uint8_t signs = shared_signs[(q2[l] >> 9)]; + for (int j = 0; j < 8; ++j) { + sum2 += yl[8*l + j] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f); + } + } + sumf[row] += d1 * sum1 + d2 * sum2; + + dh += nb*sizeof(block_iq2_xs)/2; + q2 += nb*sizeof(block_iq2_xs)/2; + sc += nb*sizeof(block_iq2_xs); + } + + y4 += 32 * 32; + } + + for (int row = 0; row < N_DST; ++row) { + all_sum = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum * 0.25f; + } + } +} + +[[host_name("kernel_mul_mv_iq2_xs_f32")]] +kernel void kernel_mul_mv_iq2_xs_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_iq2_xs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); +} + +void kernel_mul_mv_iq3_xxs_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + const int nb = ne00/QK_K; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + + const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; + const int ib_row = first_row * nb; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_iq3_xxs * x = (device const block_iq3_xxs *) src0 + ib_row + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[32]; + float sumf[N_DST]={0.f}, all_sum; + + const int nb32 = nb * (QK_K / 32); + + threadgroup uint32_t * values = (threadgroup uint32_t *)shared_values; + threadgroup uint8_t * shared_signs = (threadgroup uint8_t *)(values + 256); + { + int nval = 4; + int pos = (32*sgitg + tiisg)*nval; + for (int i = 0; i < nval; ++i) values[pos + i] = iq3xxs_grid[pos + i]; + nval = 2; + pos = (32*sgitg + tiisg)*nval; + for (int i = 0; i < nval; ++i) shared_signs[pos+i] = ksigns_iq2xs[pos+i]; + threadgroup_barrier(mem_flags::mem_threadgroup); + } + + const int ix = tiisg; + + device const float * y4 = y + 32 * ix; + + for (int ib32 = ix; ib32 < nb32; ib32 += 32) { + + for (int i = 0; i < 32; ++i) { + yl[i] = y4[i]; + } + + const int ibl = ib32 / (QK_K / 32); + const int ib = ib32 % (QK_K / 32); + + device const block_iq3_xxs * xr = x + ibl; + device const uint8_t * q3 = xr->qs + 8 * ib; + device const uint16_t * gas = (device const uint16_t *)(xr->qs + QK_K/4) + 2 * ib; + device const half * dh = &xr->d; + + for (int row = 0; row < N_DST; row++) { + + const float db = dh[0]; + const uint32_t aux32 = gas[0] | (gas[1] << 16); + const float d = db * (0.5f + (aux32 >> 28)); + + float2 sum = {0}; + for (int l = 0; l < 4; ++l) { + const threadgroup uint8_t * grid1 = (const threadgroup uint8_t *)(values + q3[2*l+0]); + const threadgroup uint8_t * grid2 = (const threadgroup uint8_t *)(values + q3[2*l+1]); + const uint8_t signs = shared_signs[(aux32 >> 7*l) & 127]; + for (int j = 0; j < 4; ++j) { + sum[0] += yl[8*l + j + 0] * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f); + sum[1] += yl[8*l + j + 4] * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f); + } + } + sumf[row] += d * (sum[0] + sum[1]); + + dh += nb*sizeof(block_iq3_xxs)/2; + q3 += nb*sizeof(block_iq3_xxs); + gas += nb*sizeof(block_iq3_xxs)/2; + } + + y4 += 32 * 32; + } + + for (int row = 0; row < N_DST; ++row) { + all_sum = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum * 0.5f; + } + } +} + +[[host_name("kernel_mul_mv_iq3_xxs_f32")]] +kernel void kernel_mul_mv_iq3_xxs_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_iq3_xxs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); +} + +void kernel_mul_mv_iq3_s_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + const int nb = ne00/QK_K; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + + const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; + const int ib_row = first_row * nb; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_iq3_s * x = (device const block_iq3_s *) src0 + ib_row + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[32]; + float sumf[N_DST]={0.f}, all_sum; + + const int nb32 = nb * (QK_K / 32); + + threadgroup uint32_t * values = (threadgroup uint32_t *)shared_values; + { + int nval = 8; + int pos = (32*sgitg + tiisg)*nval; + for (int i = 0; i < nval; ++i) values[pos + i] = iq3s_grid[pos + i]; + threadgroup_barrier(mem_flags::mem_threadgroup); + } + + const int ix = tiisg; + + device const float * y4 = y + 32 * ix; + + for (int ib32 = ix; ib32 < nb32; ib32 += 32) { + + for (int i = 0; i < 32; ++i) { + yl[i] = y4[i]; + } + + const int ibl = ib32 / (QK_K / 32); + const int ib = ib32 % (QK_K / 32); + + device const block_iq3_s * xr = x + ibl; + device const uint8_t * qs = xr->qs + 8 * ib; + device const uint8_t * qh = xr->qh + ib; + device const uint8_t * sc = xr->scales + (ib/2); + device const uint8_t * signs = xr->signs + 4 * ib; + device const half * dh = &xr->d; + + for (int row = 0; row < N_DST; row++) { + + const float db = dh[0]; + const float d = db * (1 + 2*((sc[0] >> 4*(ib%2)) & 0xf)); + + float2 sum = {0}; + for (int l = 0; l < 4; ++l) { + const threadgroup uint32_t * table1 = qh[0] & kmask_iq2xs[2*l+0] ? values + 256 : values; + const threadgroup uint32_t * table2 = qh[0] & kmask_iq2xs[2*l+1] ? values + 256 : values; + const threadgroup uint8_t * grid1 = (const threadgroup uint8_t *)(table1 + qs[2*l+0]); + const threadgroup uint8_t * grid2 = (const threadgroup uint8_t *)(table2 + qs[2*l+1]); + for (int j = 0; j < 4; ++j) { + sum[0] += yl[8*l + j + 0] * grid1[j] * select(1, -1, signs[l] & kmask_iq2xs[j+0]); + sum[1] += yl[8*l + j + 4] * grid2[j] * select(1, -1, signs[l] & kmask_iq2xs[j+4]); + } + } + sumf[row] += d * (sum[0] + sum[1]); + + dh += nb*sizeof(block_iq3_s)/2; + qs += nb*sizeof(block_iq3_s); + qh += nb*sizeof(block_iq3_s); + sc += nb*sizeof(block_iq3_s); + signs += nb*sizeof(block_iq3_s); + } + + y4 += 32 * 32; + } + + for (int row = 0; row < N_DST; ++row) { + all_sum = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum; + } + } +} + +[[host_name("kernel_mul_mv_iq3_s_f32")]] +kernel void kernel_mul_mv_iq3_s_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_iq3_s_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); +} + +void kernel_mul_mv_iq2_s_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + const int nb = ne00/QK_K; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + + const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; + const int ib_row = first_row * nb; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_iq2_s * x = (device const block_iq2_s *) src0 + ib_row + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[32]; + float sumf[N_DST]={0.f}, all_sum; + + const int nb32 = nb * (QK_K / 32); + + //threadgroup uint64_t * values = (threadgroup uint64_t *)shared_values; + //{ + // int nval = 32; + // int pos = (32*sgitg + tiisg)*nval; + // for (int i = 0; i < nval; ++i) values[pos + i] = iq2s_grid[pos + i]; + // threadgroup_barrier(mem_flags::mem_threadgroup); + //} + + const int ix = tiisg; + + device const float * y4 = y + 32 * ix; + + for (int ib32 = ix; ib32 < nb32; ib32 += 32) { + + for (int i = 0; i < 32; ++i) { + yl[i] = y4[i]; + } + + const int ibl = ib32 / (QK_K / 32); + const int ib = ib32 % (QK_K / 32); + + device const block_iq2_s * xr = x + ibl; + device const uint8_t * qs = xr->qs + 4 * ib; + device const uint8_t * qh = xr->qh + ib; + device const uint8_t * sc = xr->scales + ib; + device const uint8_t * signs = qs + QK_K/8; + device const half * dh = &xr->d; + + for (int row = 0; row < N_DST; row++) { + + const float db = dh[0]; + const float d1 = db * (0.5f + (sc[0] & 0xf)); + const float d2 = db * (0.5f + (sc[0] >> 4)); + + float2 sum = {0}; + for (int l = 0; l < 2; ++l) { + //const threadgroup uint8_t * grid1 = (const threadgroup uint8_t *)(values + (qs[l+0] | ((qh[0] << (8-2*l)) & 0x300))); + //const threadgroup uint8_t * grid2 = (const threadgroup uint8_t *)(values + (qs[l+2] | ((qh[0] << (4-2*l)) & 0x300))); + constant uint8_t * grid1 = (constant uint8_t *)(iq2s_grid + (qs[l+0] | ((qh[0] << (8-2*l)) & 0x300))); + constant uint8_t * grid2 = (constant uint8_t *)(iq2s_grid + (qs[l+2] | ((qh[0] << (4-2*l)) & 0x300))); + for (int j = 0; j < 8; ++j) { + sum[0] += yl[8*l + j + 0] * grid1[j] * select(1, -1, signs[l+0] & kmask_iq2xs[j]); + sum[1] += yl[8*l + j + 16] * grid2[j] * select(1, -1, signs[l+2] & kmask_iq2xs[j]); + } + } + sumf[row] += d1 * sum[0] + d2 * sum[1]; + + dh += nb*sizeof(block_iq2_s)/2; + qs += nb*sizeof(block_iq2_s); + qh += nb*sizeof(block_iq2_s); + sc += nb*sizeof(block_iq2_s); + signs += nb*sizeof(block_iq2_s); + } + + y4 += 32 * 32; + } + + for (int row = 0; row < N_DST; ++row) { + all_sum = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum * 0.25f; + } + } +} + +[[host_name("kernel_mul_mv_iq2_s_f32")]] +kernel void kernel_mul_mv_iq2_s_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_iq2_s_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); +} + +void kernel_mul_mv_iq1_s_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_value, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + const int nb = ne00/QK_K; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + + const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; + const int ib_row = first_row * nb; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + device const block_iq1_s * x = (device const block_iq1_s *) src0 + ib_row + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[32]; + float sumf[N_DST]={0.f}, all_sum; + + const int nb32 = nb * (QK_K / 32); + + const int ix = tiisg; + + device const float * y4 = y + 32 * ix; + + for (int ib32 = ix; ib32 < nb32; ib32 += 32) { + + float sumy = 0; + for (int i = 0; i < 32; ++i) { + yl[i] = y4[i]; + sumy += yl[i]; + } + + const int ibl = ib32 / (QK_K / 32); + const int ib = ib32 % (QK_K / 32); + + device const block_iq1_s * xr = x + ibl; + device const uint8_t * qs = xr->qs + 4 * ib; + device const uint16_t * qh = xr->qh + ib; + device const half * dh = &xr->d; + + for (int row = 0; row < N_DST; row++) { + + constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700))); + constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 5) & 0x700))); + constant uint8_t * grid3 = (constant uint8_t *)(iq1s_grid_gpu + (qs[2] | ((qh[0] << 2) & 0x700))); + constant uint8_t * grid4 = (constant uint8_t *)(iq1s_grid_gpu + (qs[3] | ((qh[0] >> 1) & 0x700))); + + float sum = 0; + for (int j = 0; j < 4; ++j) { + sum += yl[j+ 0] * (grid1[j] & 0xf) + yl[j+ 4] * (grid1[j] >> 4) + + yl[j+ 8] * (grid2[j] & 0xf) + yl[j+12] * (grid2[j] >> 4) + + yl[j+16] * (grid3[j] & 0xf) + yl[j+20] * (grid3[j] >> 4) + + yl[j+24] * (grid4[j] & 0xf) + yl[j+28] * (grid4[j] >> 4); + } + sumf[row] += (float)dh[0] * (sum + sumy * (qh[0] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA)) * (2*((qh[0] >> 12) & 7) + 1); + + dh += nb*sizeof(block_iq1_s)/2; + qs += nb*sizeof(block_iq1_s); + qh += nb*sizeof(block_iq1_s)/2; + } + + y4 += 32 * 32; + } + + for (int row = 0; row < N_DST; ++row) { + all_sum = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum; + } + } +} + +void kernel_mul_mv_iq1_m_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_value, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + const int nb = ne00/QK_K; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + + const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; + const int ib_row = first_row * nb; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + device const block_iq1_m * x = (device const block_iq1_m *) src0 + ib_row + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[32]; + float sumf[N_DST]={0.f}, all_sum; + + const int nb32 = nb * (QK_K / 32); + + const int ix = tiisg; + + device const float * y4 = y + 32 * ix; + +#if QK_K != 64 + iq1m_scale_t scale; +#endif + + for (int ib32 = ix; ib32 < nb32; ib32 += 32) { + + float4 sumy = {0.f}; + for (int i = 0; i < 8; ++i) { + yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0]; + yl[i+ 8] = y4[i+ 8]; sumy[1] += yl[i+ 8]; + yl[i+16] = y4[i+16]; sumy[2] += yl[i+16]; + yl[i+24] = y4[i+24]; sumy[3] += yl[i+24]; + } + + const int ibl = ib32 / (QK_K / 32); + const int ib = ib32 % (QK_K / 32); + + device const block_iq1_m * xr = x + ibl; + device const uint8_t * qs = xr->qs + 4 * ib; + device const uint8_t * qh = xr->qh + 2 * ib; + device const uint16_t * sc = (device const uint16_t *)xr->scales; + + for (int row = 0; row < N_DST; row++) { + +#if QK_K != 64 + scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); +#endif + + constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700))); + constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 4) & 0x700))); + constant uint8_t * grid3 = (constant uint8_t *)(iq1s_grid_gpu + (qs[2] | ((qh[1] << 8) & 0x700))); + constant uint8_t * grid4 = (constant uint8_t *)(iq1s_grid_gpu + (qs[3] | ((qh[1] << 4) & 0x700))); + + float2 sum = {0.f}; + for (int j = 0; j < 4; ++j) { + sum[0] += yl[j+ 0] * (grid1[j] & 0xf) + yl[j+ 4] * (grid1[j] >> 4) + + yl[j+ 8] * (grid2[j] & 0xf) + yl[j+12] * (grid2[j] >> 4); + sum[1] += yl[j+16] * (grid3[j] & 0xf) + yl[j+20] * (grid3[j] >> 4) + + yl[j+24] * (grid4[j] & 0xf) + yl[j+28] * (grid4[j] >> 4); + } + const float delta1 = sumy[0] * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA) + sumy[1] * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA); + const float delta2 = sumy[2] * (qh[1] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA) + sumy[3] * (qh[1] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA); +#if QK_K == 64 + const float d = (float) *((device const half *)(sc - 1)); + sumf[row] += d * ((sum[0] + delta1) * (2*((sc[0] >> (8*(ib%2)+0)) & 0xf) + 1) + + (sum[1] + delta2) * (2*((sc[0] >> (8*(ib%2)+4)) & 0xf) + 1)); +#else + sumf[row] += (float)scale.f16 * ((sum[0] + delta1) * (2*((sc[ib/2] >> (6*(ib%2)+0)) & 7) + 1) + + (sum[1] + delta2) * (2*((sc[ib/2] >> (6*(ib%2)+3)) & 7) + 1)); +#endif + + sc += nb*sizeof(block_iq1_m)/2; + qs += nb*sizeof(block_iq1_m); + qh += nb*sizeof(block_iq1_m); + } + + y4 += 32 * 32; + } + + for (int row = 0; row < N_DST; ++row) { + all_sum = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum; + } + } +} + +void kernel_mul_mv_iq4_nl_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values_i8, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + threadgroup float * shared_values = (threadgroup float *)shared_values_i8; + const int nb = ne00/QK4_NL; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + const int first_row = (r0 * 2 + sgitg) * 2; + const int ib_row = first_row * nb; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + device const block_iq4_nl * x = (device const block_iq4_nl *) src0 + ib_row + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + const int ix = tiisg/2; // 0...15 + const int it = tiisg%2; // 0 or 1 + + shared_values[tiisg] = kvalues_iq4nl_f[tiisg%16]; + threadgroup_barrier(mem_flags::mem_threadgroup); + + float4 yl[4]; + float sumf[2]={0.f}, all_sum; + + device const float * yb = y + ix * QK4_NL + it * 8; + + uint32_t aux32[2]; + thread const uint8_t * q8 = (thread const uint8_t *)aux32; + + float4 qf1, qf2; + + for (int ib = ix; ib < nb; ib += 16) { + + device const float4 * y4 = (device const float4 *)yb; + yl[0] = y4[0]; yl[1] = y4[4]; yl[2] = y4[1]; yl[3] = y4[5]; + + for (int row = 0; row < 2; ++row) { + + device const block_iq4_nl & xb = x[row*nb + ib]; + device const uint16_t * q4 = (device const uint16_t *)(xb.qs + 8*it); + + float4 acc1 = {0.f}, acc2 = {0.f}; + + aux32[0] = q4[0] | (q4[1] << 16); + aux32[1] = (aux32[0] >> 4) & 0x0f0f0f0f; + aux32[0] &= 0x0f0f0f0f; + qf1 = {shared_values[q8[0]], shared_values[q8[1]], shared_values[q8[2]], shared_values[q8[3]]}; + qf2 = {shared_values[q8[4]], shared_values[q8[5]], shared_values[q8[6]], shared_values[q8[7]]}; + acc1 += yl[0] * qf1; + acc2 += yl[1] * qf2; + + aux32[0] = q4[2] | (q4[3] << 16); + aux32[1] = (aux32[0] >> 4) & 0x0f0f0f0f; + aux32[0] &= 0x0f0f0f0f; + qf1 = {shared_values[q8[0]], shared_values[q8[1]], shared_values[q8[2]], shared_values[q8[3]]}; + qf2 = {shared_values[q8[4]], shared_values[q8[5]], shared_values[q8[6]], shared_values[q8[7]]}; + acc1 += yl[2] * qf1; + acc2 += yl[3] * qf2; + + acc1 += acc2; + + sumf[row] += (float)xb.d * (acc1[0] + acc1[1] + acc1[2] + acc1[3]); + + } + + yb += 16 * QK4_NL; + } + + for (int row = 0; row < 2; ++row) { + all_sum = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum; + } + } +} + +#if QK_K != 64 +void kernel_mul_mv_iq4_xs_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values_i8, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + threadgroup float * shared_values = (threadgroup float *)shared_values_i8; + const int nb = ne00/QK_K; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + const int first_row = (r0 * 2 + sgitg) * 2; + const int ib_row = first_row * nb; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + device const block_iq4_xs * x = (device const block_iq4_xs *) src0 + ib_row + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + const int ix = tiisg/16; // 0 or 1 + const int it = tiisg%16; // 0...15 + const int ib = it/2; + const int il = it%2; + + shared_values[tiisg] = kvalues_iq4nl_f[tiisg%16]; + threadgroup_barrier(mem_flags::mem_threadgroup); + + float4 yl[4]; + float sumf[2]={0.f}, all_sum; + + device const float * yb = y + ix * QK_K + ib * 32 + il * 8; + + uint32_t aux32[2]; + thread const uint8_t * q8 = (thread const uint8_t *)aux32; + + float4 qf1, qf2; + + for (int ibl = ix; ibl < nb; ibl += 2) { + + device const float4 * y4 = (device const float4 *)yb; + yl[0] = y4[0]; yl[1] = y4[4]; yl[2] = y4[1]; yl[3] = y4[5]; + + for (int row = 0; row < 2; ++row) { + + device const block_iq4_xs & xb = x[row*nb + ibl]; + device const uint32_t * q4 = (device const uint32_t *)(xb.qs + 16*ib + 8*il); + + float4 acc1 = {0.f}, acc2 = {0.f}; + + aux32[0] = q4[0] & 0x0f0f0f0f; + aux32[1] = (q4[0] >> 4) & 0x0f0f0f0f; + qf1 = {shared_values[q8[0]], shared_values[q8[1]], shared_values[q8[2]], shared_values[q8[3]]}; + qf2 = {shared_values[q8[4]], shared_values[q8[5]], shared_values[q8[6]], shared_values[q8[7]]}; + acc1 += yl[0] * qf1; + acc2 += yl[1] * qf2; + + aux32[0] = q4[1] & 0x0f0f0f0f; + aux32[1] = (q4[1] >> 4) & 0x0f0f0f0f; + qf1 = {shared_values[q8[0]], shared_values[q8[1]], shared_values[q8[2]], shared_values[q8[3]]}; + qf2 = {shared_values[q8[4]], shared_values[q8[5]], shared_values[q8[6]], shared_values[q8[7]]}; + acc1 += yl[2] * qf1; + acc2 += yl[3] * qf2; + + acc1 += acc2; + + const int ls = (((xb.scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((xb.scales_h >> 2*ib) & 3) << 4)) - 32; + sumf[row] += (float)xb.d * ls * (acc1[0] + acc1[1] + acc1[2] + acc1[3]); + + } + + yb += 2 * QK_K; + } + + for (int row = 0; row < 2; ++row) { + all_sum = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum; + } + } +} +#endif + +[[host_name("kernel_mul_mv_iq1_s_f32")]] +kernel void kernel_mul_mv_iq1_s_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_iq1_s_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg); +} + +[[host_name("kernel_mul_mv_iq1_m_f32")]] +kernel void kernel_mul_mv_iq1_m_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_iq1_m_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg); +} + +[[host_name("kernel_mul_mv_iq4_nl_f32")]] +kernel void kernel_mul_mv_iq4_nl_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_iq4_nl_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); +} + +[[host_name("kernel_mul_mv_iq4_xs_f32")]] +kernel void kernel_mul_mv_iq4_xs_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + +#if QK_K == 64 + kernel_mul_mv_iq4_nl_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); +#else + kernel_mul_mv_iq4_xs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); +#endif +} + +//============================= templates and their specializations ============================= + +// NOTE: this is not dequantizing - we are simply fitting the template +template +void dequantize_f32(device const float4x4 * src, short il, thread type4x4 & reg) { + float4x4 temp = *(((device float4x4 *)src)); + for (int i = 0; i < 16; i++){ + reg[i/4][i%4] = temp[i/4][i%4]; + } +} + +template +void dequantize_f16(device const half4x4 * src, short il, thread type4x4 & reg) { + half4x4 temp = *(((device half4x4 *)src)); + for (int i = 0; i < 16; i++){ + reg[i/4][i%4] = temp[i/4][i%4]; + } +} + +template +void dequantize_q4_0(device const block_q4_0 *xb, short il, thread type4x4 & reg) { + device const uint16_t * qs = ((device const uint16_t *)xb + 1); + const float d1 = il ? (xb->d / 16.h) : xb->d; + const float d2 = d1 / 256.f; + const float md = -8.h * xb->d; + const ushort mask0 = il ? 0x00F0 : 0x000F; + const ushort mask1 = mask0 << 8; + + for (int i=0;i<8;i++) { + reg[i/2][2*(i%2)+0] = d1 * (qs[i] & mask0) + md; + reg[i/2][2*(i%2)+1] = d2 * (qs[i] & mask1) + md; + } +} + +template +void dequantize_q4_1(device const block_q4_1 *xb, short il, thread type4x4 & reg) { + device const uint16_t * qs = ((device const uint16_t *)xb + 2); + const float d1 = il ? (xb->d / 16.h) : xb->d; + const float d2 = d1 / 256.f; + const float m = xb->m; + const ushort mask0 = il ? 0x00F0 : 0x000F; + const ushort mask1 = mask0 << 8; + + for (int i=0;i<8;i++) { + reg[i/2][2*(i%2)+0] = ((qs[i] & mask0) * d1) + m; + reg[i/2][2*(i%2)+1] = ((qs[i] & mask1) * d2) + m; + } +} + +template +void dequantize_q5_0(device const block_q5_0 *xb, short il, thread type4x4 & reg) { + device const uint16_t * qs = ((device const uint16_t *)xb + 3); + const float d = xb->d; + const float md = -16.h * xb->d; + const ushort mask = il ? 0x00F0 : 0x000F; + + const uint32_t qh = *((device const uint32_t *)xb->qh); + + const int x_mv = il ? 4 : 0; + + const int gh_mv = il ? 12 : 0; + const int gh_bk = il ? 0 : 4; + + for (int i = 0; i < 8; i++) { + // extract the 5-th bits for x0 and x1 + const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10; + const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10; + + // combine the 4-bits from qs with the 5th bit + const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0); + const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1); + + reg[i/2][2*(i%2)+0] = d * x0 + md; + reg[i/2][2*(i%2)+1] = d * x1 + md; + } +} + +template +void dequantize_q5_1(device const block_q5_1 *xb, short il, thread type4x4 & reg) { + device const uint16_t * qs = ((device const uint16_t *)xb + 4); + const float d = xb->d; + const float m = xb->m; + const ushort mask = il ? 0x00F0 : 0x000F; + + const uint32_t qh = *((device const uint32_t *)xb->qh); + + const int x_mv = il ? 4 : 0; + + const int gh_mv = il ? 12 : 0; + const int gh_bk = il ? 0 : 4; + + for (int i = 0; i < 8; i++) { + // extract the 5-th bits for x0 and x1 + const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10; + const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10; + + // combine the 4-bits from qs with the 5th bit + const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0); + const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1); + + reg[i/2][2*(i%2)+0] = d * x0 + m; + reg[i/2][2*(i%2)+1] = d * x1 + m; + } +} + +template +void dequantize_q8_0(device const block_q8_0 *xb, short il, thread type4x4 & reg) { + device const int8_t * qs = ((device const int8_t *)xb->qs); + const half d = xb->d; + + for (int i = 0; i < 16; i++) { + reg[i/4][i%4] = (qs[i + 16*il] * d); + } +} + +template +void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg) { + const float d = xb->d; + const float min = xb->dmin; + device const uint8_t * q = (device const uint8_t *)xb->qs; + float dl, ml; + uint8_t sc = xb->scales[il]; + +#if QK_K == 256 + q = q + 32*(il/8) + 16*(il&1); + il = (il/2)%4; +#endif + half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h); + uchar mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3); + dl = d * (sc & 0xF) * coef, ml = min * (sc >> 4); + for (int i = 0; i < 16; ++i) { + reg[i/4][i%4] = dl * (q[i] & mask) - ml; + } +} + +template +void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg) { + const half d_all = xb->d; + device const uint8_t * q = (device const uint8_t *)xb->qs; + device const uint8_t * h = (device const uint8_t *)xb->hmask; + device const int8_t * scales = (device const int8_t *)xb->scales; + +#if QK_K == 256 + q = q + 32 * (il/8) + 16 * (il&1); + h = h + 16 * (il&1); + uint8_t m = 1 << (il/2); + uint16_t kmask1 = (il/4)>1 ? ((il/4)>2 ? 192 : 48) : \ + ((il/4)>0 ? 12 : 3); + uint16_t kmask2 = il/8 ? 0xF0 : 0x0F; + uint16_t scale_2 = scales[il%8], scale_1 = scales[8 + il%4]; + int16_t dl_int = (il/4)&1 ? (scale_2&kmask2) | ((scale_1&kmask1) << 2) + : (scale_2&kmask2) | ((scale_1&kmask1) << 4); + float dl = il<8 ? d_all * (dl_int - 32.f) : d_all * (dl_int / 16.f - 32.f); + const float ml = 4.f * dl; + + il = (il/2) & 3; + const half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h); + const uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3); + dl *= coef; + + for (int i = 0; i < 16; ++i) { + reg[i/4][i%4] = dl * (q[i] & mask) - (h[i] & m ? 0 : ml); + } +#else + float kcoef = il&1 ? 1.f/16.f : 1.f; + uint16_t kmask = il&1 ? 0xF0 : 0x0F; + float dl = d_all * ((scales[il/2] & kmask) * kcoef - 8); + float coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h); + uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3); + uint8_t m = 1<<(il*2); + for (int i = 0; i < 16; ++i) { + reg[i/4][i%4] = coef * dl * ((q[i] & mask) - ((h[i%8] & (m * (1 + i/8))) ? 0 : 4.f/coef)); + } +#endif +} + +static inline uchar2 get_scale_min_k4_just2(int j, int k, device const uchar * q) { + return j < 4 ? uchar2{uchar(q[j+0+k] & 63), uchar(q[j+4+k] & 63)} + : uchar2{uchar((q[j+4+k] & 0xF) | ((q[j-4+k] & 0xc0) >> 2)), uchar((q[j+4+k] >> 4) | ((q[j-0+k] & 0xc0) >> 2))}; +} + +template +void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg) { + device const uchar * q = xb->qs; + +#if QK_K == 256 + short is = (il/4) * 2; + q = q + (il/4) * 32 + 16 * (il&1); + il = il & 3; + const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales); + const float d = il < 2 ? xb->d : xb->d / 16.h; + const float min = xb->dmin; + const float dl = d * sc[0]; + const float ml = min * sc[1]; +#else + (void) get_scale_min_k4_just2; + + q = q + 16 * (il&1); + device const uint8_t * s = xb->scales; + device const half2 * dh = (device const half2 *)xb->d; + const float2 d = (float2)dh[0]; + const float dl = il<2 ? d[0] * (s[0]&0xF) : d[0] * (s[1]&0xF)/16.h; + const float ml = il<2 ? d[1] * (s[0]>>4) : d[1] * (s[1]>>4); +#endif + const ushort mask = il<2 ? 0x0F : 0xF0; + for (int i = 0; i < 16; ++i) { + reg[i/4][i%4] = dl * (q[i] & mask) - ml; + } +} + +template +void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg) { + device const uint8_t * q = xb->qs; + device const uint8_t * qh = xb->qh; + +#if QK_K == 256 + short is = (il/4) * 2; + q = q + 32 * (il/4) + 16 * (il&1); + qh = qh + 16 * (il&1); + uint8_t ul = 1 << (il/2); + il = il & 3; + const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales); + const float d = il < 2 ? xb->d : xb->d / 16.f; + const float min = xb->dmin; + const float dl = d * sc[0]; + const float ml = min * sc[1]; + + const ushort mask = il<2 ? 0x0F : 0xF0; + const float qh_val = il<2 ? 16.f : 256.f; + for (int i = 0; i < 16; ++i) { + reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml; + } +#else + q = q + 16 * (il&1); + device const int8_t * s = xb->scales; + const float dl = xb->d * s[il]; + uint8_t m = 1<<(il*2); + const float coef = il<2 ? 1.f : 1.f/16.f; + const ushort mask = il<2 ? 0x0F : 0xF0; + for (int i = 0; i < 16; ++i) { + reg[i/4][i%4] = coef * dl * ((q[i] & mask) - (qh[i%8] & (m*(1+i/8)) ? 0.f : 16.f/coef)); + } +#endif +} + +template +void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg) { + const half d_all = xb->d; + device const uint8_t * ql = (device const uint8_t *)xb->ql; + device const uint8_t * qh = (device const uint8_t *)xb->qh; + device const int8_t * scales = (device const int8_t *)xb->scales; + +#if QK_K == 256 + ql = ql + 64*(il/8) + 32*((il/2)&1) + 16*(il&1); + qh = qh + 32*(il/8) + 16*(il&1); + float sc = scales[(il%2) + 2 * ((il/2))]; + il = (il/2) & 3; +#else + ql = ql + 16 * (il&1); + float sc = scales[il]; +#endif + const uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3); + const uint16_t kmask2 = il>1 ? 0xF0 : 0x0F; + const float coef = il>1 ? 1.f/16.f : 1.f; + const float ml = d_all * sc * 32.f; + const float dl = d_all * sc * coef; + for (int i = 0; i < 16; ++i) { + const half q = il&1 ? ((ql[i] & kmask2) | ((qh[i] & kmask1) << 2)) + : ((ql[i] & kmask2) | ((qh[i] & kmask1) << 4)); + reg[i/4][i%4] = dl * q - ml; + } +} + +template +void dequantize_iq2_xxs(device const block_iq2_xxs * xb, short il, thread type4x4 & reg) { + // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 + const float d = xb->d; + const int ib32 = il/2; + il = il%2; + // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16 + // each block of 32 needs 2 uint32_t's for the quants & scale, so 4 uint16_t's. + device const uint16_t * q2 = xb->qs + 4*ib32; + const uint32_t aux32_g = q2[0] | (q2[1] << 16); + const uint32_t aux32_s = q2[2] | (q2[3] << 16); + thread const uint8_t * aux8 = (thread const uint8_t *)&aux32_g; + const float dl = d * (0.5f + (aux32_s >> 28)) * 0.25f; + constant uint8_t * grid = (constant uint8_t *)(iq2xxs_grid + aux8[2*il+0]); + uint8_t signs = ksigns_iq2xs[(aux32_s >> 14*il) & 127]; + for (int i = 0; i < 8; ++i) { + reg[i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f); + } + grid = (constant uint8_t *)(iq2xxs_grid + aux8[2*il+1]); + signs = ksigns_iq2xs[(aux32_s >> (14*il+7)) & 127]; + for (int i = 0; i < 8; ++i) { + reg[2+i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f); + } +} + +template +void dequantize_iq2_xs(device const block_iq2_xs * xb, short il, thread type4x4 & reg) { + // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 + const float d = xb->d; + const int ib32 = il/2; + il = il%2; + // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16 + device const uint16_t * q2 = xb->qs + 4*ib32; + const float dl = d * (0.5f + ((xb->scales[ib32] >> 4*il) & 0xf)) * 0.25f; + constant uint8_t * grid = (constant uint8_t *)(iq2xs_grid + (q2[2*il+0] & 511)); + uint8_t signs = ksigns_iq2xs[q2[2*il+0] >> 9]; + for (int i = 0; i < 8; ++i) { + reg[i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f); + } + grid = (constant uint8_t *)(iq2xs_grid + (q2[2*il+1] & 511)); + signs = ksigns_iq2xs[q2[2*il+1] >> 9]; + for (int i = 0; i < 8; ++i) { + reg[2+i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f); + } +} + +template +void dequantize_iq3_xxs(device const block_iq3_xxs * xb, short il, thread type4x4 & reg) { + // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 + const float d = xb->d; + const int ib32 = il/2; + il = il%2; + // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16 + device const uint8_t * q3 = xb->qs + 8*ib32; + device const uint16_t * gas = (device const uint16_t *)(xb->qs + QK_K/4) + 2*ib32; + const uint32_t aux32 = gas[0] | (gas[1] << 16); + const float dl = d * (0.5f + (aux32 >> 28)) * 0.5f; + constant uint8_t * grid1 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+0]); + constant uint8_t * grid2 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+1]); + uint8_t signs = ksigns_iq2xs[(aux32 >> 14*il) & 127]; + for (int i = 0; i < 4; ++i) { + reg[0][i] = dl * grid1[i] * (signs & kmask_iq2xs[i+0] ? -1.f : 1.f); + reg[1][i] = dl * grid2[i] * (signs & kmask_iq2xs[i+4] ? -1.f : 1.f); + } + grid1 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+2]); + grid2 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+3]); + signs = ksigns_iq2xs[(aux32 >> (14*il+7)) & 127]; + for (int i = 0; i < 4; ++i) { + reg[2][i] = dl * grid1[i] * (signs & kmask_iq2xs[i+0] ? -1.f : 1.f); + reg[3][i] = dl * grid2[i] * (signs & kmask_iq2xs[i+4] ? -1.f : 1.f); + } +} + +template +void dequantize_iq3_s(device const block_iq3_s * xb, short il, thread type4x4 & reg) { + // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 + const float d = xb->d; + const int ib32 = il/2; + il = il%2; + // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16 + device const uint8_t * qs = xb->qs + 8*ib32; + device const uint8_t * signs = xb->signs + 4*ib32 + 2*il; + const uint8_t qh = xb->qh[ib32] >> 4*il; + const float dl = d * (1 + 2*((xb->scales[ib32/2] >> 4*(ib32%2)) & 0xf)); + constant uint8_t * grid1 = (constant uint8_t *)(iq3s_grid + (qs[4*il+0] | ((qh << 8) & 256))); + constant uint8_t * grid2 = (constant uint8_t *)(iq3s_grid + (qs[4*il+1] | ((qh << 7) & 256))); + for (int i = 0; i < 4; ++i) { + reg[0][i] = dl * grid1[i] * select(1, -1, signs[0] & kmask_iq2xs[i+0]); + reg[1][i] = dl * grid2[i] * select(1, -1, signs[0] & kmask_iq2xs[i+4]); + } + grid1 = (constant uint8_t *)(iq3s_grid + (qs[4*il+2] | ((qh << 6) & 256))); + grid2 = (constant uint8_t *)(iq3s_grid + (qs[4*il+3] | ((qh << 5) & 256))); + for (int i = 0; i < 4; ++i) { + reg[2][i] = dl * grid1[i] * select(1, -1, signs[1] & kmask_iq2xs[i+0]); + reg[3][i] = dl * grid2[i] * select(1, -1, signs[1] & kmask_iq2xs[i+4]); + } +} + +template +void dequantize_iq2_s(device const block_iq2_s * xb, short il, thread type4x4 & reg) { + // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 + const float d = xb->d; + const int ib32 = il/2; + il = il%2; + // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16 + device const uint8_t * qs = xb->qs + 4*ib32 + 2*il; + device const uint8_t * signs = qs + QK_K/8; + const uint8_t qh = xb->qh[ib32] >> 4*il; + const float dl = d * (0.5f + ((xb->scales[ib32] >> 4*il) & 0xf)) * 0.25f; + constant uint8_t * grid1 = (constant uint8_t *)(iq2s_grid + (qs[0] | ((qh << 8) & 0x300))); + constant uint8_t * grid2 = (constant uint8_t *)(iq2s_grid + (qs[1] | ((qh << 6) & 0x300))); + for (int i = 0; i < 8; ++i) { + reg[i/4+0][i%4] = dl * grid1[i] * select(1, -1, signs[0] & kmask_iq2xs[i]); + reg[i/4+2][i%4] = dl * grid2[i] * select(1, -1, signs[1] & kmask_iq2xs[i]); + } +} + +template +void dequantize_iq1_s(device const block_iq1_s * xb, short il, thread type4x4 & reg) { + // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 + const int ib32 = il/2; + il = il%2; + const float d = xb->d; + device const uint8_t * qs = xb->qs + 4*ib32 + 2*il; + device const uint16_t * qh = xb->qh; + const float dl = d * (2*((qh[ib32] >> 12) & 7) + 1); + const float ml = dl * (qh[ib32] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA); + const uint16_t h = qh[ib32] >> 6*il; + constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((h << 8) & 0x700))); + constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((h << 5) & 0x700))); + for (int i = 0; i < 4; ++i) { + reg[0][i] = dl * (grid1[i] & 0xf) + ml; + reg[1][i] = dl * (grid1[i] >> 4) + ml; + reg[2][i] = dl * (grid2[i] & 0xf) + ml; + reg[3][i] = dl * (grid2[i] >> 4) + ml; + } +} + +template +void dequantize_iq1_m(device const block_iq1_m * xb, short il, thread type4x4 & reg) { + // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 + const int ib32 = il/2; + il = il%2; + device const uint16_t * sc = (device const uint16_t *)xb->scales; +#if QK_K == 64 + const float d = xb->d; +#else + iq1m_scale_t scale; + scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); + const float d = scale.f16; +#endif + device const uint8_t * qs = xb->qs + 4*ib32 + 2*il; + device const uint8_t * qh = xb->qh + 2*ib32 + il; +#if QK_K == 64 + const float dl = d * (2*((sc[ib32/2] >> (8*(ib32%2)+4*il)) & 0xf) + 1); +#else + const float dl = d * (2*((sc[ib32/2] >> (6*(ib32%2)+3*il)) & 7) + 1); +#endif + const float ml1 = dl * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA); + const float ml2 = dl * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA); + constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700))); + constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 4) & 0x700))); + for (int i = 0; i < 4; ++i) { + reg[0][i] = dl * (grid1[i] & 0xf) + ml1; + reg[1][i] = dl * (grid1[i] >> 4) + ml1; + reg[2][i] = dl * (grid2[i] & 0xf) + ml2; + reg[3][i] = dl * (grid2[i] >> 4) + ml2; + } +} + +template +void dequantize_iq4_nl(device const block_iq4_nl * xb, short il, thread type4x4 & reg) { + device const uint16_t * q4 = (device const uint16_t *)xb->qs; + const float d = xb->d; + uint32_t aux32; + thread const uint8_t * q8 = (thread const uint8_t *)&aux32; + for (int i = 0; i < 4; ++i) { + aux32 = ((q4[2*i] | (q4[2*i+1] << 16)) >> 4*il) & 0x0f0f0f0f; + reg[i][0] = d * kvalues_iq4nl_f[q8[0]]; + reg[i][1] = d * kvalues_iq4nl_f[q8[1]]; + reg[i][2] = d * kvalues_iq4nl_f[q8[2]]; + reg[i][3] = d * kvalues_iq4nl_f[q8[3]]; + } +} + +template +void dequantize_iq4_xs(device const block_iq4_xs * xb, short il, thread type4x4 & reg) { +#if QK_K == 64 + dequantize_iq4_nl(xb, il, reg); +#else + // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 + const int ib32 = il/2; + il = il%2; + // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16 + device const uint32_t * q4 = (device const uint32_t *)xb->qs + 4*ib32; + const int ls = ((xb->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((xb->scales_h >> 2*ib32) & 3) << 4); + const float d = (float)xb->d * (ls - 32); + uint32_t aux32; + thread const uint8_t * q8 = (thread const uint8_t *)&aux32; + for (int i = 0; i < 4; ++i) { + aux32 = (q4[i] >> 4*il) & 0x0f0f0f0f; + reg[i][0] = d * kvalues_iq4nl_f[q8[0]]; + reg[i][1] = d * kvalues_iq4nl_f[q8[1]]; + reg[i][2] = d * kvalues_iq4nl_f[q8[2]]; + reg[i][3] = d * kvalues_iq4nl_f[q8[3]]; + } +#endif +} + +template +kernel void kernel_get_rows( + device const void * src0, + device const char * src1, + device float * dst, + constant int64_t & ne00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb1, + constant uint64_t & nb2, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiitg[[thread_index_in_threadgroup]], + uint3 tptg [[threads_per_threadgroup]]) { + //const int64_t i = tgpig; + //const int64_t r = ((device int32_t *) src1)[i]; + + const int64_t i10 = tgpig.x; + const int64_t i11 = tgpig.y; + + const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0]; + + const int64_t i02 = i11; + + for (int64_t ind = tiitg; ind < ne00/16; ind += tptg.x) { + float4x4 temp; + dequantize_func( + ((device const block_q *) ((device char *) src0 + r*nb01 + i02*nb02)) + ind/nl, ind%nl, temp); + *(((device float4x4 *) ((device char *) dst + i11*nb2 + i10*nb1)) + ind) = temp; + } +} + +kernel void kernel_get_rows_f32( + device const void * src0, + device const char * src1, + device float * dst, + constant int64_t & ne00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb1, + constant uint64_t & nb2, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiitg[[thread_index_in_threadgroup]], + uint3 tptg [[threads_per_threadgroup]]) { + const int64_t i10 = tgpig.x; + const int64_t i11 = tgpig.y; + + const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0]; + + const int64_t i02 = i11; + + for (int ind = tiitg; ind < ne00; ind += tptg.x) { + ((device float *) ((device char *) dst + i11*nb2 + i10*nb1))[ind] = + ((device float *) ((device char *) src0 + r*nb01 + i02*nb02))[ind]; + } +} + +kernel void kernel_get_rows_f16( + device const void * src0, + device const char * src1, + device float * dst, + constant int64_t & ne00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb1, + constant uint64_t & nb2, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiitg[[thread_index_in_threadgroup]], + uint3 tptg [[threads_per_threadgroup]]) { + const int64_t i10 = tgpig.x; + const int64_t i11 = tgpig.y; + + const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0]; + + const int64_t i02 = i11; + + for (int ind = tiitg; ind < ne00; ind += tptg.x) { + ((device float *) ((device char *) dst + i11*nb2 + i10*nb1))[ind] = + ((device half *) ((device char *) src0 + r*nb01 + i02*nb02))[ind]; + } +} + +kernel void kernel_get_rows_i32( + device const void * src0, + device const char * src1, + device int32_t * dst, + constant int64_t & ne00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb1, + constant uint64_t & nb2, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiitg[[thread_index_in_threadgroup]], + uint3 tptg [[threads_per_threadgroup]]) { + const int64_t i10 = tgpig.x; + const int64_t i11 = tgpig.y; + + const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0]; + + const int64_t i02 = i11; + + for (int ind = tiitg; ind < ne00; ind += tptg.x) { + ((device int32_t *) ((device char *) dst + i11*nb2 + i10*nb1))[ind] = + ((device int32_t *) ((device char *) src0 + r*nb01 + i02*nb02))[ind]; + } +} + + +#define BLOCK_SIZE_M 64 // 8 simdgroup matrices from matrix A +#define BLOCK_SIZE_N 32 // 4 simdgroup matrices from matrix B +#define BLOCK_SIZE_K 32 +#define THREAD_MAT_M 4 // each thread take 4 simdgroup matrices from matrix A +#define THREAD_MAT_N 2 // each thread take 2 simdgroup matrices from matrix B +#define THREAD_PER_BLOCK 128 +#define THREAD_PER_ROW 2 // 2 thread for each row in matrix A to load numbers +#define THREAD_PER_COL 4 // 4 thread for each row in matrix B to load numbers +#define SG_MAT_SIZE 64 // simdgroup matrix is of shape 8x8 +#define SG_MAT_ROW 8 + +// each block_q contains 16*nl weights +template +void kernel_mul_mm_impl(device const uchar * src0, + device const uchar * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne02, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup uchar * shared_memory [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiitg[[thread_index_in_threadgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + threadgroup half * sa = (threadgroup half *)(shared_memory); + threadgroup float * sb = (threadgroup float *)(shared_memory + 4096); + + const uint r0 = tgpig.y; + const uint r1 = tgpig.x; + const uint im = tgpig.z; + + // if this block is of 64x32 shape or smaller + short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M; + short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N; + + // a thread shouldn't load data outside of the matrix + short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1; + short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1; + + simdgroup_half8x8 ma[4]; + simdgroup_float8x8 mb[2]; + simdgroup_float8x8 c_res[8]; + for (int i = 0; i < 8; i++){ + c_res[i] = make_filled_simdgroup_matrix(0.f); + } + + short il = (tiitg % THREAD_PER_ROW); + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + uint offset0 = (i12/r2)*nb02 + (i13/r3)*(nb02*ne02); + ushort offset1 = il/nl; + + device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01 + offset0) + offset1; + device const float * y = (device const float *)(src1 + + nb12 * im + + nb11 * (r1 * BLOCK_SIZE_N + thread_col) + + nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL))); + + for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) { + // load data and store to threadgroup memory + half4x4 temp_a; + dequantize_func(x, il, temp_a); + threadgroup_barrier(mem_flags::mem_threadgroup); + + #pragma unroll(16) + for (int i = 0; i < 16; i++) { + *(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \ + + (tiitg % THREAD_PER_ROW) * 16 + (i / 8) * 8) \ + + (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4]; + } + + *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y); + + il = (il + 2 < nl) ? il + 2 : il % 2; + x = (il < 2) ? x + (2+nl-1)/nl : x; + y += BLOCK_SIZE_K; + + threadgroup_barrier(mem_flags::mem_threadgroup); + + // load matrices from threadgroup memory and conduct outer products + threadgroup half * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2)); + threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2)); + + #pragma unroll(4) + for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) { + #pragma unroll(4) + for (int i = 0; i < 4; i++) { + simdgroup_load(ma[i],lsma + SG_MAT_SIZE * i); + } + simdgroup_barrier(mem_flags::mem_none); + #pragma unroll(2) + for (int i = 0; i < 2; i++) { + simdgroup_load(mb[i],lsmb + SG_MAT_SIZE * i); + } + + lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE; + lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE; + + #pragma unroll(8) + for (int i = 0; i < 8; i++){ + simdgroup_multiply_accumulate(c_res[i], mb[i/4], ma[i%4], c_res[i]); + } + } + } + + if ((r0 + 1) * BLOCK_SIZE_M <= ne0 && (r1 + 1) * BLOCK_SIZE_N <= ne1) { + device float * C = dst + (BLOCK_SIZE_M * r0 + 32 * (sgitg & 1)) \ + + (BLOCK_SIZE_N * r1 + 16 * (sgitg >> 1)) * ne0 + im*ne1*ne0; + for (int i = 0; i < 8; i++) { + simdgroup_store(c_res[i], C + 8 * (i%4) + 8 * ne0 * (i/4), ne0); + } + } else { + // block is smaller than 64x32, we should avoid writing data outside of the matrix + threadgroup_barrier(mem_flags::mem_threadgroup); + threadgroup float * temp_str = ((threadgroup float *)shared_memory) \ + + 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M; + for (int i = 0; i < 8; i++) { + simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M); + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + device float * C = dst + (BLOCK_SIZE_M * r0) + (BLOCK_SIZE_N * r1) * ne0 + im*ne1*ne0; + if (sgitg == 0) { + for (int i = 0; i < n_rows; i++) { + for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) { + *(C + i + j * ne0) = *(temp_str + i + j * BLOCK_SIZE_M); + } + } + } + } +} + +// same as kernel_mul_mm_impl, but src1 and dst are accessed via indices stored in rowids +template +void kernel_mul_mm_id_impl( + device const uchar * src0, + device const uchar * src1, + threadgroup ushort2 * rowids, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne02, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + int64_t ne1, + int64_t ne0ne1, + threadgroup uchar * shared_memory, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiitg[[thread_index_in_threadgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + threadgroup half * sa = (threadgroup half *)(shared_memory); + threadgroup float * sb = (threadgroup float *)(shared_memory + 4096); + + const uint r0 = tgpig.y; + const uint r1 = tgpig.x; + + if (r1 * BLOCK_SIZE_N >= ne1) return; + + // if this block is of 64x32 shape or smaller + short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M; + short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N; + + // a thread shouldn't load data outside of the matrix + short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1; + short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1; + + simdgroup_half8x8 ma[4]; + simdgroup_float8x8 mb[2]; + simdgroup_float8x8 c_res[8]; + for (int i = 0; i < 8; i++){ + c_res[i] = make_filled_simdgroup_matrix(0.f); + } + short il = (tiitg % THREAD_PER_ROW); + + ushort offset1 = il/nl; + + threadgroup const auto & id = rowids[r1 * BLOCK_SIZE_N + thread_col]; + + device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01) + offset1; + device const float * y = (device const float *)(src1 + + nb12 * id[1] + + nb11 * (id[0] % ne11) + + nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL))); + + for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) { + // load data and store to threadgroup memory + half4x4 temp_a; + dequantize_func(x, il, temp_a); + threadgroup_barrier(mem_flags::mem_threadgroup); + + for (int i = 0; i < 16; i++) { + *(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \ + + (tiitg % THREAD_PER_ROW) * 16 + (i / 8) * 8) \ + + (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4]; + } + + *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y); + + il = (il + 2 < nl) ? il + 2 : il % 2; + x = (il < 2) ? x + (2+nl-1)/nl : x; + y += BLOCK_SIZE_K; + + threadgroup_barrier(mem_flags::mem_threadgroup); + + // load matrices from threadgroup memory and conduct outer products + threadgroup half * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2)); + threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2)); + + for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) { + for (int i = 0; i < 4; i++) { + simdgroup_load(ma[i], lsma + SG_MAT_SIZE * i); + } + simdgroup_barrier(mem_flags::mem_none); + for (int i = 0; i < 2; i++) { + simdgroup_load(mb[i], lsmb + SG_MAT_SIZE * i); + } + + lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE; + lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE; + + for (int i = 0; i < 8; i++){ + simdgroup_multiply_accumulate(c_res[i], mb[i/4], ma[i%4], c_res[i]); + } + } + } + + { + threadgroup_barrier(mem_flags::mem_threadgroup); + threadgroup float * temp_str = ((threadgroup float *)shared_memory) \ + + 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M; + for (int i = 0; i < 8; i++) { + simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M); + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + device float * C = dst + (BLOCK_SIZE_M * r0); + if (sgitg == 0) { + for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) { + threadgroup const auto & jid = rowids[r1 * BLOCK_SIZE_N + j]; + int joff = jid[0] * ne0 + jid[1] * ne0ne1; + for (int i = 0; i < n_rows; i++) { + *(C + i + joff) = *(temp_str + i + j * BLOCK_SIZE_M); + } + } + } + } +} + +template +kernel void kernel_mul_mm(device const uchar * src0, + device const uchar * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne02, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup uchar * shared_memory [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiitg[[thread_index_in_threadgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + kernel_mul_mm_impl( + src0, + src1, + dst, + ne00, + ne02, + nb01, + nb02, + ne12, + nb10, + nb11, + nb12, + ne0, + ne1, + r2, + r3, + shared_memory, + tgpig, + tiitg, + sgitg); +} + +template +kernel void kernel_mul_mm_id( + device const uchar * src0s, + device const uchar * src1, + device float * dst, + device const uchar * ids, + constant int64_t & nei0, + constant int64_t & nei1, + constant uint64_t & nbi1, + constant int64_t & ne00, + constant int64_t & ne02, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne11, + constant int64_t & ne12, + constant int64_t & ne13, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint64_t & nb1, + threadgroup uchar * shared_memory [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiitg[[thread_index_in_threadgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + const int32_t i02 = tgpig.z; + tgpig.z = 0; + + device const uchar * src0 = src0s + i02*nb02; + + // row indices + threadgroup ushort2 * rowids = (threadgroup ushort2 *)(shared_memory + 8192); + + // TODO: parallelize this loop + int64_t _ne1 = 0; + for (ushort ii1 = 0; ii1 < nei1; ii1++) { + for (ushort ii0 = 0; ii0 < nei0; ii0++) { + int32_t id = ((device int32_t *) (ids + ii1*nbi1))[ii0]; + if (id == i02) { + //if (tiitg == 0) { + rowids[_ne1] = ushort2(ii0, ii1); + //} + _ne1++; + } + } + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + kernel_mul_mm_id_impl( + src0, + src1, + rowids, + dst, + ne00, + ne02, + nb01, + nb02, + ne11, + ne12, + nb10, + nb11, + nb12, + ne0, + _ne1, + ne0*ne1, + shared_memory, + tgpig, + tiitg, + sgitg); +} + +#if QK_K == 256 +#define QK_NL 16 +#else +#define QK_NL 4 +#endif + +// +// get rows +// + +typedef void (get_rows_t)( + device const void * src0, + device const char * src1, + device float * dst, + constant int64_t & ne00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb1, + constant uint64_t & nb2, + uint3, uint, uint3); + +//template [[host_name("kernel_get_rows_f32")]] kernel get_rows_t kernel_get_rows; +//template [[host_name("kernel_get_rows_f16")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_q4_0")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_q4_1")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_q5_0")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_q5_1")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_q8_0")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_q2_K")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_q3_K")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_q4_K")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_q5_K")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_q6_K")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_iq2_xxs")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_iq2_xs")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_iq3_xxs")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_iq3_s")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_iq2_s")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_iq1_s")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_iq1_m")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_iq4_nl")]] kernel get_rows_t kernel_get_rows; +#if QK_K == 64 +template [[host_name("kernel_get_rows_iq4_xs")]] kernel get_rows_t kernel_get_rows; +#else +template [[host_name("kernel_get_rows_iq4_xs")]] kernel get_rows_t kernel_get_rows; +#endif + +// +// matrix-matrix multiplication +// + +typedef decltype(kernel_mul_mm) mat_mm_t; + +template [[host_name("kernel_mul_mm_f32_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_q5_0_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_q5_1_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_q5_K_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_q6_K_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_iq2_xxs_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_iq2_xs_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_iq3_xxs_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_iq3_s_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_iq2_s_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_iq1_s_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_iq1_m_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_iq4_nl_f32")]] kernel mat_mm_t kernel_mul_mm; +#if QK_K == 64 +template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mat_mm_t kernel_mul_mm; +#else +template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mat_mm_t kernel_mul_mm; +#endif + +// +// indirect matrix-matrix multiplication +// + +typedef decltype(kernel_mul_mm_id) mat_mm_id_t; + +template [[host_name("kernel_mul_mm_id_f32_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_f16_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_q4_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_q4_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_q5_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_q5_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_q8_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_q2_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_q3_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_q4_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_q5_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_q6_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_iq2_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_iq2_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_iq3_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_iq3_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_iq2_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_iq1_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_iq1_m_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_iq4_nl_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +#if QK_K == 64 +template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +#else +template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +#endif + +// +// matrix-vector multiplication +// + +typedef void (kernel_mul_mv_impl_t)( + device const char * src0, + device const char * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + uint64_t nb00, + uint64_t nb01, + uint64_t nb02, + int64_t ne10, + int64_t ne11, + int64_t ne12, + uint64_t nb10, + uint64_t nb11, + uint64_t nb12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + uint3 tgpig, + uint tiisg); + +typedef void (kernel_mul_mv2_impl_t)( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiisg, + uint sgitg); + +template +void mmv_fn( + device const char * src0, + device const char * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + uint64_t nb00, + uint64_t nb01, + uint64_t nb02, + int64_t ne10, + int64_t ne11, + int64_t ne12, + int64_t ne13, + uint64_t nb10, + uint64_t nb11, + uint64_t nb12, + int64_t ne0, + int64_t ne1, + uint64_t nb1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiitg, + uint tiisg, + uint sgitg) { + impl_fn(src0,src1,dst,ne00,ne01,ne02,nb00,nb01,nb02,ne10,ne11,ne12,nb10,nb11,nb12,ne0,ne1,r2,r3,tgpig,tiisg); +} + +template +void mmv_fn( + device const char * src0, + device const char * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + uint64_t nb00, + uint64_t nb01, + uint64_t nb02, + int64_t ne10, + int64_t ne11, + int64_t ne12, + int64_t ne13, + uint64_t nb10, + uint64_t nb11, + uint64_t nb12, + int64_t ne0, + int64_t ne1, + uint64_t nb1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiitg, + uint tiisg, + uint sgitg) { + impl_fn(src0,(const device float *)src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,shared_values,tgpig,tiisg,sgitg); +} + +typedef decltype(mmv_fn) mul_mv_impl_fn_t; + +template +kernel void kernel_mul_mv_id( + device const char * src0s, + device const char * src1, + device float * dst, + device const char * ids, + constant int64_t & nei0, + constant int64_t & nei1, + constant uint64_t & nbi1, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant int64_t & ne13, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint64_t & nb1, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiitg[[thread_index_in_threadgroup]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + const int iid1 = tgpig.z/nei0; + const int idx = tgpig.z%nei0; + + tgpig.z = 0; + + const int32_t i02 = ((device const int32_t *) (ids + iid1*nbi1))[idx]; + + const int64_t i11 = idx % ne11; + const int64_t i12 = iid1; + + const int64_t i1 = idx; + const int64_t i2 = i12; + + device const char * src0_cur = src0s + i02*nb02; + device const char * src1_cur = src1 + i11*nb11 + i12*nb12; + device float * dst_cur = dst + i1*ne0 + i2*ne1*ne0; + + impl_fn( + /* src0 */ src0_cur, + /* src1 */ src1_cur, + /* dst */ dst_cur, + /* ne00 */ ne00, + /* ne01 */ ne01, + /* ne02 */ 1,//ne02, + /* nb00 */ nb00, + /* nb01 */ nb01, + /* nb02 */ nb02, + /* ne10 */ ne10, + /* ne11 */ 1,//ne11, + /* ne12 */ 1,//ne12, + /* ne13 */ 1,//ne13, + /* nb10 */ nb10, + /* nb11 */ nb11, + /* nb12 */ nb12, + /* ne0 */ ne0, + /* ne1 */ 1,//ne1, + /* nb1 */ nb1, + /* r2 */ 1, + /* r3 */ 1, + shared_values, + tgpig, + tiitg, + tiisg, + sgitg); +} + +typedef decltype(kernel_mul_mv_id>) kernel_mul_mv_id_t; + +template [[host_name("kernel_mul_mv_id_f32_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_f16_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_q8_0_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_q4_0_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>>; +template [[host_name("kernel_mul_mv_id_q4_1_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>>; +template [[host_name("kernel_mul_mv_id_q5_0_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>>; +template [[host_name("kernel_mul_mv_id_q5_1_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>>; +template [[host_name("kernel_mul_mv_id_q2_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_q3_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_q4_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_q5_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_q6_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_iq1_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_iq1_m_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_iq2_xxs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_iq2_xs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_iq3_xxs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_iq3_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_iq2_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_iq4_nl_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +#if QK_K != 64 +template [[host_name("kernel_mul_mv_id_iq4_xs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +#endif + diff --git a/llama/ggml-metal.o b/llama/ggml-metal.o new file mode 100644 index 00000000..887a0d0b Binary files /dev/null and b/llama/ggml-metal.o differ diff --git a/llama/ggml-quants.h b/llama/ggml-quants.h index 33e71d70..4d436a8f 100644 --- a/llama/ggml-quants.h +++ b/llama/ggml-quants.h @@ -1,133 +1,133 @@ -#pragma once - -#define GGML_COMMON_DECL_C -#include "ggml-common.h" - -#include "ggml.h" - -// GGML internal header - -#ifdef __cplusplus -extern "C" { -#endif - -// Quantization -void quantize_row_q4_0_reference(const float * GGML_RESTRICT x, block_q4_0 * GGML_RESTRICT y, int64_t k); -void quantize_row_q4_1_reference(const float * GGML_RESTRICT x, block_q4_1 * GGML_RESTRICT y, int64_t k); -void quantize_row_q5_0_reference(const float * GGML_RESTRICT x, block_q5_0 * GGML_RESTRICT y, int64_t k); -void quantize_row_q5_1_reference(const float * GGML_RESTRICT x, block_q5_1 * GGML_RESTRICT y, int64_t k); -void quantize_row_q8_0_reference(const float * GGML_RESTRICT x, block_q8_0 * GGML_RESTRICT y, int64_t k); -void quantize_row_q8_1_reference(const float * GGML_RESTRICT x, block_q8_1 * GGML_RESTRICT y, int64_t k); - -void quantize_row_q2_K_reference(const float * GGML_RESTRICT x, block_q2_K * GGML_RESTRICT y, int64_t k); -void quantize_row_q3_K_reference(const float * GGML_RESTRICT x, block_q3_K * GGML_RESTRICT y, int64_t k); -void quantize_row_q4_K_reference(const float * GGML_RESTRICT x, block_q4_K * GGML_RESTRICT y, int64_t k); -void quantize_row_q5_K_reference(const float * GGML_RESTRICT x, block_q5_K * GGML_RESTRICT y, int64_t k); -void quantize_row_q6_K_reference(const float * GGML_RESTRICT x, block_q6_K * GGML_RESTRICT y, int64_t k); -void quantize_row_q8_K_reference(const float * GGML_RESTRICT x, block_q8_K * GGML_RESTRICT y, int64_t k); - -void quantize_row_iq3_xxs_reference(const float * GGML_RESTRICT x, block_iq3_xxs * GGML_RESTRICT y, int64_t k); -void quantize_row_iq4_nl_reference (const float * GGML_RESTRICT x, block_iq4_nl * GGML_RESTRICT y, int64_t k); -void quantize_row_iq4_xs_reference (const float * GGML_RESTRICT x, block_iq4_xs * GGML_RESTRICT y, int64_t k); -void quantize_row_iq3_s_reference (const float * GGML_RESTRICT x, block_iq3_s * GGML_RESTRICT y, int64_t k); -void quantize_row_iq2_s_reference (const float * GGML_RESTRICT x, block_iq2_s * GGML_RESTRICT y, int64_t k); - -void quantize_row_q4_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); -void quantize_row_q4_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); -void quantize_row_q5_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); -void quantize_row_q5_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); -void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); -void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); - -void quantize_row_q2_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); -void quantize_row_q3_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); -void quantize_row_q4_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); -void quantize_row_q5_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); -void quantize_row_q6_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); -void quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); - -void quantize_row_iq3_xxs(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); -void quantize_row_iq4_nl (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); -void quantize_row_iq4_xs (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); -void quantize_row_iq3_s (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); -void quantize_row_iq2_s (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); - -// Dequantization -void dequantize_row_q4_0(const block_q4_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); -void dequantize_row_q4_1(const block_q4_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); -void dequantize_row_q5_0(const block_q5_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); -void dequantize_row_q5_1(const block_q5_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); -void dequantize_row_q8_0(const block_q8_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); -//void dequantize_row_q8_1(const block_q8_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); - -void dequantize_row_q2_K(const block_q2_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); -void dequantize_row_q3_K(const block_q3_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); -void dequantize_row_q4_K(const block_q4_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); -void dequantize_row_q5_K(const block_q5_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); -void dequantize_row_q6_K(const block_q6_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); -void dequantize_row_q8_K(const block_q8_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); - -void dequantize_row_iq2_xxs(const block_iq2_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); -void dequantize_row_iq2_xs (const block_iq2_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); -void dequantize_row_iq2_s (const block_iq2_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); -void dequantize_row_iq3_xxs(const block_iq3_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); -void dequantize_row_iq1_s (const block_iq1_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); -void dequantize_row_iq1_m (const block_iq1_m * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); -void dequantize_row_iq4_nl (const block_iq4_nl * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); -void dequantize_row_iq4_xs (const block_iq4_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); -void dequantize_row_iq3_s (const block_iq3_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); - -// Dot product -void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); -void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); -void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); -void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); -void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); - -void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); -void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); -void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); -void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); -void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); - -void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); -void ggml_vec_dot_iq2_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); -void ggml_vec_dot_iq2_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); -void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); -void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); -void ggml_vec_dot_iq1_m_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); -void ggml_vec_dot_iq4_nl_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); -void ggml_vec_dot_iq4_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); -void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); - -// Quantization utilizing an importance matrix (a.k.a. "Activation aWare Quantization") -size_t quantize_iq2_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); -size_t quantize_iq2_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); -size_t quantize_iq2_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); -size_t quantize_iq3_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); -size_t quantize_iq1_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); -size_t quantize_iq1_m (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); -size_t quantize_iq4_nl (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); -size_t quantize_iq4_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); -size_t quantize_iq3_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); - -size_t quantize_q2_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); -size_t quantize_q3_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); -size_t quantize_q4_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); -size_t quantize_q5_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); -size_t quantize_q6_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); -size_t quantize_q4_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); -size_t quantize_q4_1(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); -size_t quantize_q5_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); -size_t quantize_q5_1(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); -size_t quantize_q8_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); - -void iq2xs_init_impl(enum ggml_type type); -void iq2xs_free_impl(enum ggml_type type); -void iq3xs_init_impl(int grid_size); -void iq3xs_free_impl(int grid_size); - -#ifdef __cplusplus -} -#endif - +#pragma once + +#define GGML_COMMON_DECL_C +#include "ggml-common.h" + +#include "ggml.h" + +// GGML internal header + +#ifdef __cplusplus +extern "C" { +#endif + +// Quantization +void quantize_row_q4_0_reference(const float * GGML_RESTRICT x, block_q4_0 * GGML_RESTRICT y, int64_t k); +void quantize_row_q4_1_reference(const float * GGML_RESTRICT x, block_q4_1 * GGML_RESTRICT y, int64_t k); +void quantize_row_q5_0_reference(const float * GGML_RESTRICT x, block_q5_0 * GGML_RESTRICT y, int64_t k); +void quantize_row_q5_1_reference(const float * GGML_RESTRICT x, block_q5_1 * GGML_RESTRICT y, int64_t k); +void quantize_row_q8_0_reference(const float * GGML_RESTRICT x, block_q8_0 * GGML_RESTRICT y, int64_t k); +void quantize_row_q8_1_reference(const float * GGML_RESTRICT x, block_q8_1 * GGML_RESTRICT y, int64_t k); + +void quantize_row_q2_K_reference(const float * GGML_RESTRICT x, block_q2_K * GGML_RESTRICT y, int64_t k); +void quantize_row_q3_K_reference(const float * GGML_RESTRICT x, block_q3_K * GGML_RESTRICT y, int64_t k); +void quantize_row_q4_K_reference(const float * GGML_RESTRICT x, block_q4_K * GGML_RESTRICT y, int64_t k); +void quantize_row_q5_K_reference(const float * GGML_RESTRICT x, block_q5_K * GGML_RESTRICT y, int64_t k); +void quantize_row_q6_K_reference(const float * GGML_RESTRICT x, block_q6_K * GGML_RESTRICT y, int64_t k); +void quantize_row_q8_K_reference(const float * GGML_RESTRICT x, block_q8_K * GGML_RESTRICT y, int64_t k); + +void quantize_row_iq3_xxs_reference(const float * GGML_RESTRICT x, block_iq3_xxs * GGML_RESTRICT y, int64_t k); +void quantize_row_iq4_nl_reference (const float * GGML_RESTRICT x, block_iq4_nl * GGML_RESTRICT y, int64_t k); +void quantize_row_iq4_xs_reference (const float * GGML_RESTRICT x, block_iq4_xs * GGML_RESTRICT y, int64_t k); +void quantize_row_iq3_s_reference (const float * GGML_RESTRICT x, block_iq3_s * GGML_RESTRICT y, int64_t k); +void quantize_row_iq2_s_reference (const float * GGML_RESTRICT x, block_iq2_s * GGML_RESTRICT y, int64_t k); + +void quantize_row_q4_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_q4_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_q5_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_q5_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); + +void quantize_row_q2_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_q3_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_q4_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_q5_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_q6_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); + +void quantize_row_iq3_xxs(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_iq4_nl (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_iq4_xs (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_iq3_s (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_iq2_s (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); + +// Dequantization +void dequantize_row_q4_0(const block_q4_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_q4_1(const block_q4_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_q5_0(const block_q5_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_q5_1(const block_q5_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_q8_0(const block_q8_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +//void dequantize_row_q8_1(const block_q8_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); + +void dequantize_row_q2_K(const block_q2_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_q3_K(const block_q3_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_q4_K(const block_q4_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_q5_K(const block_q5_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_q6_K(const block_q6_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_q8_K(const block_q8_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); + +void dequantize_row_iq2_xxs(const block_iq2_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_iq2_xs (const block_iq2_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_iq2_s (const block_iq2_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_iq3_xxs(const block_iq3_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_iq1_s (const block_iq1_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_iq1_m (const block_iq1_m * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_iq4_nl (const block_iq4_nl * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_iq4_xs (const block_iq4_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_iq3_s (const block_iq3_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); + +// Dot product +void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); + +void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); + +void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_iq2_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_iq2_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_iq1_m_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_iq4_nl_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_iq4_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); + +// Quantization utilizing an importance matrix (a.k.a. "Activation aWare Quantization") +size_t quantize_iq2_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_iq2_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_iq2_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_iq3_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_iq1_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_iq1_m (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_iq4_nl (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_iq4_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_iq3_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); + +size_t quantize_q2_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_q3_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_q4_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_q5_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_q6_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_q4_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_q4_1(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_q5_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_q5_1(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_q8_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); + +void iq2xs_init_impl(enum ggml_type type); +void iq2xs_free_impl(enum ggml_type type); +void iq3xs_init_impl(int grid_size); +void iq3xs_free_impl(int grid_size); + +#ifdef __cplusplus +} +#endif + diff --git a/llama/llama.go b/llama/llama.go index 5561df75..ca78eee9 100644 --- a/llama/llama.go +++ b/llama/llama.go @@ -3,14 +3,13 @@ package llama // #cgo darwin,arm64 CFLAGS: -std=c11 -DGGML_USE_METAL -DGGML_METAL_EMBED_LIBRARY -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64 // #cgo darwin,arm64 CXXFLAGS: -std=c++11 -DGGML_USE_METAL -DGGML_METAL_EMBED_LIBRARY -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64 // #cgo darwin,amd64 CXXFLAGS: -std=c++11 -// #cgo darwin,arm64 LDFLAGS: ggml-metal.o -framework Foundation -framework Metal -framework MetalKit -framework Accelerate -// #cgo darwin,amd64 LDFLAGS: -framework Foundation -framework Accelerate +// #cgo darwin,arm64 LDFLAGS: -ld_classic ${SRCDIR}/ggml-metal.o -framework Foundation -framework Metal -framework MetalKit -framework Accelerate +// #cgo darwin,amd64 LDFLAGS: -ld_classic -framework Foundation -framework Accelerate // #cgo windows LDFLAGS: -lmsvcrt // #cgo avx CFLAGS: -mavx // #cgo avx CXXFLAGS: -mavx // #cgo avx2 CFLAGS: -mavx -mavx2 -mfma // #cgo avx2 CXXFLAGS: -mavx -mavx2 -mfma -// #cgo avx2 LDFLAGS: -lm // #cgo cuda CFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_MULTIPLATFORM -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1 // #cgo cuda CXXFLAGS: -std=c++11 -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_MULTIPLATFORM -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1 // #cgo rocm CXXFLAGS: -std=c++11 -DGGML_USE_CUDA -DGGML_USE_HIPBLAS -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_MULTIPLATFORM -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1 @@ -24,6 +23,8 @@ import ( "runtime" "strings" "unsafe" + + "github.com/ollama/ollama/llm" ) type Token int32 @@ -201,3 +202,21 @@ func (m *Model) Tokenize(text string, maxTokens int, addSpecial bool, parseSpeci return tokens, nil } + +func Quantize(infile, outfile string, ftype llm.FileType) error { + cinfile := C.CString(infile) + defer C.free(unsafe.Pointer(cinfile)) + + coutfile := C.CString(outfile) + defer C.free(unsafe.Pointer(coutfile)) + + params := C.llama_model_quantize_default_params() + params.nthread = -1 + params.ftype = ftype.Value() + + if rc := C.llama_model_quantize(cinfile, coutfile, ¶ms); rc != 0 { + return fmt.Errorf("llama_model_quantize: %d", rc) + } + + return nil +} diff --git a/llama/metal.sh b/llama/metal.sh deleted file mode 100755 index dcd70b1a..00000000 --- a/llama/metal.sh +++ /dev/null @@ -1,11 +0,0 @@ -sed -e '/#include "ggml-common.h"/r ggml-common.h' -e '/#include "ggml-common.h"/d' < ggml-metal.metal > ggml-metal-embed.metal -TEMP_ASSEMBLY=$(mktemp) -echo ".section __DATA, __ggml_metallib" > $TEMP_ASSEMBLY -echo ".globl _ggml_metallib_start" >> $TEMP_ASSEMBLY -echo "_ggml_metallib_start:" >> $TEMP_ASSEMBLY -echo ".incbin \"ggml-metal-embed.metal\"" >> $TEMP_ASSEMBLY -echo ".globl _ggml_metallib_end" >> $TEMP_ASSEMBLY -echo "_ggml_metallib_end:" >> $TEMP_ASSEMBLY -as -mmacosx-version-min=11.3 $TEMP_ASSEMBLY -o ggml-metal.o -rm -f $TEMP_ASSEMBLY -rm -rf ggml-metal-embed.metal diff --git a/llama/runner/README.md b/llama/runner/README.md index f78028d8..7695dc1b 100644 --- a/llama/runner/README.md +++ b/llama/runner/README.md @@ -5,5 +5,5 @@ ``` ``` -curl POST -H "Content-Type: application/json" -d '{"prompt": "hi"}' http://localhost:8080/ +curl -X POST -H "Content-Type: application/json" -d '{"prompt": "hi"}' http://localhost:8080/ ``` diff --git a/llama/runner/main.go b/llama/runner/runner.go similarity index 71% rename from llama/runner/main.go rename to llama/runner/runner.go index 3fc41ee5..c5d27c52 100644 --- a/llama/runner/main.go +++ b/llama/runner/runner.go @@ -23,29 +23,9 @@ type Response struct { type Server struct { model *llama.Model lc *llama.Context - batch *llama.Batch - - queue chan Sequence - seqs []*Sequence - - // mu guards seqs - mu sync.Mutex } -type Sequence struct { - prompt []llama.Token - out chan string -} - -func schedule(parallel int, queue <-chan Sequence) { - // Fill sequences from the queue - - // once a sequence finishes, remove it from and add a new one from the queue -} - -func process() { - // loop through the sequences, fill a batch, decode and sample tokens, responding to appropriate requests -} +var mu sync.Mutex func (s *Server) stream(w http.ResponseWriter, r *http.Request) { var request Request @@ -59,23 +39,15 @@ func (s *Server) stream(w http.ResponseWriter, r *http.Request) { w.Header().Set("Transfer-Encoding", "chunked") w.WriteHeader(http.StatusOK) + enc := json.NewEncoder(w) + + // main loop tokens, err := s.model.Tokenize(request.Prompt, 2048, true, true) if err != nil { panic(err) } - seq := Sequence{prompt: tokens} - s.queue <- seq - - // listen for the sequence to finish - for { - str := <-seq.out - if err := json.NewEncoder(w).Encode(&Response{Token: str}); err != nil { - log.Println("Failed to encode result:", err) - return - } - w.(http.Flusher).Flush() - } + batch := llama.NewBatch(512, 0, 1) // prompt eval for i, t := range tokens { @@ -115,7 +87,6 @@ func (s *Server) stream(w http.ResponseWriter, r *http.Request) { func main() { mp := flag.String("model", "", "Path to model binary file") - parallel := flag.Int("parallel", 1, "Number of parallel requests to handle") flag.Parse() // load the model @@ -131,8 +102,6 @@ func main() { server := &Server{ model: model, lc: lc, - queue: make(chan Sequence, 256), - seqs: make([]*Sequence, *parallel), } addr := "127.0.0.1:8080" diff --git a/llama/sync.sh b/llama/sync.sh index e18f396a..2442855b 100755 --- a/llama/sync.sh +++ b/llama/sync.sh @@ -23,7 +23,7 @@ cp $src_dir/ggml-quants.c $dst_dir/ggml-quants.c cp $src_dir/ggml-quants.h $dst_dir/ggml-quants.h cp $src_dir/ggml-metal.metal $dst_dir/ggml-metal.metal cp $src_dir/ggml-metal.h $dst_dir/ggml-metal.h -cp $src_dir/ggml-metal.m $dst_dir/ggml-metal-darwin_arm64.m +cp $src_dir/ggml-metal.m $dst_dir/ggml-metal.m cp $src_dir/ggml-impl.h $dst_dir/ggml-impl.h cp $src_dir/ggml-cuda.h $dst_dir/ggml-cuda.h cp $src_dir/ggml-cuda.cu $dst_dir/ggml-cuda.cu @@ -34,11 +34,23 @@ cp $src_dir/ggml-backend-impl.h $dst_dir/ggml-backend-impl.h cp $src_dir/ggml-alloc.h $dst_dir/ggml-alloc.h cp $src_dir/ggml-alloc.c $dst_dir/ggml-alloc.c -sed -i 's/extern "C" GGML_CALL int ggml_backend_cuda_reg_devices();/\/\/ extern "C" GGML_CALL int ggml_backend_cuda_reg_devices();/' ggml-cuda.cu -sed -i '34iGGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);' ggml-cuda.h - - # ggml-cuda mkdir -p $dst_dir/ggml-cuda cp $src_dir/ggml-cuda/*.cu $dst_dir/ggml-cuda/ -cp $src_dir/ggml-cuda/*.cuh $dst_dir/ggml-cuda/ \ No newline at end of file +cp $src_dir/ggml-cuda/*.cuh $dst_dir/ggml-cuda/ + +sed -i 's/extern "C" GGML_CALL int ggml_backend_cuda_reg_devices();/\/\/ extern "C" GGML_CALL int ggml_backend_cuda_reg_devices();/' ggml-cuda.cu +sed -i '34iGGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);' ggml-cuda.h + +# ggml-metal +sed -e '/#include "ggml-common.h"/r ggml-common.h' -e '/#include "ggml-common.h"/d' < ggml-metal.metal > temp.metal +TEMP_ASSEMBLY=$(mktemp) +echo ".section __DATA, __ggml_metallib" > $TEMP_ASSEMBLY +echo ".globl _ggml_metallib_start" >> $TEMP_ASSEMBLY +echo "_ggml_metallib_start:" >> $TEMP_ASSEMBLY +echo ".incbin \"temp.metal\"" >> $TEMP_ASSEMBLY +echo ".globl _ggml_metallib_end" >> $TEMP_ASSEMBLY +echo "_ggml_metallib_end:" >> $TEMP_ASSEMBLY +as -mmacosx-version-min=11.3 $TEMP_ASSEMBLY -o ggml-metal.o +rm -f $TEMP_ASSEMBLY +rm -rf temp.metal diff --git a/llm/filetype.go b/llm/filetype.go index 7a8e9f69..a1c2f9d7 100644 --- a/llm/filetype.go +++ b/llm/filetype.go @@ -2,10 +2,10 @@ package llm import "fmt" -type fileType uint32 +type FileType uint32 const ( - fileTypeF32 fileType = iota + fileTypeF32 FileType = iota fileTypeF16 fileTypeQ4_0 fileTypeQ4_1 @@ -41,7 +41,7 @@ const ( fileTypeUnknown ) -func ParseFileType(s string) (fileType, error) { +func ParseFileType(s string) (FileType, error) { switch s { case "F32": return fileTypeF32, nil @@ -108,7 +108,7 @@ func ParseFileType(s string) (fileType, error) { } } -func (t fileType) String() string { +func (t FileType) String() string { switch t { case fileTypeF32: return "F32" @@ -175,6 +175,6 @@ func (t fileType) String() string { } } -func (t fileType) Value() uint32 { +func (t FileType) Value() uint32 { return uint32(t) } diff --git a/llm/generate/gen_darwin.sh b/llm/generate/gen_darwin.sh index acea9c8d..0c42f9f7 100755 --- a/llm/generate/gen_darwin.sh +++ b/llm/generate/gen_darwin.sh @@ -100,4 +100,4 @@ esac cleanup wait_for_compress -echo "go generate completed. LLM runners: $(cd ${BUILD_DIR}/..; echo *)" +echo "go generate completed. LLM runners: $(cd ${BUILD_DIR}/..; echo *)" \ No newline at end of file diff --git a/llm/generate/gen_linux.sh b/llm/generate/gen_linux.sh index 1f702ca2..c8cd3567 100755 --- a/llm/generate/gen_linux.sh +++ b/llm/generate/gen_linux.sh @@ -58,19 +58,6 @@ init_vars git_module_setup apply_patches -init_vars -if [ -z "${OLLAMA_SKIP_STATIC_GENERATE}" -o "${OLLAMA_CPU_TARGET}" = "static" ]; then - # Builds by default, allows skipping, forces build if OLLAMA_CPU_TARGET="static" - # Enables optimized Dockerfile builds using a blanket skip and targeted overrides - # Static build for linking into the Go binary - init_vars - CMAKE_TARGETS="--target llama --target ggml" - CMAKE_DEFS="-DBUILD_SHARED_LIBS=off -DGGML_NATIVE=off -DGGML_AVX=off -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off -DGGML_OPENMP=off ${CMAKE_DEFS}" - BUILD_DIR="../build/linux/${ARCH}_static" - echo "Building static library" - build -fi - init_vars if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then # Users building from source can tune the exact flags we pass to cmake for configuring diff --git a/llm/generate/gen_windows.ps1 b/llm/generate/gen_windows.ps1 index 7179c1bc..d2914189 100644 --- a/llm/generate/gen_windows.ps1 +++ b/llm/generate/gen_windows.ps1 @@ -177,40 +177,6 @@ function cleanup { # -DGGML_AVX2 -- 2013 Intel Haswell & 2015 AMD Excavator / 2017 AMD Zen # -DGGML_FMA (FMA3) -- 2013 Intel Haswell & 2012 AMD Piledriver - -function build_static() { - if ((-not "${env:OLLAMA_SKIP_STATIC_GENERATE}") -and ((-not "${env:OLLAMA_CPU_TARGET}") -or ("${env:OLLAMA_CPU_TARGET}" -eq "static"))) { - # GCC build for direct linking into the Go binary - init_vars - # cmake will silently fallback to msvc compilers if mingw isn't in the path, so detect and fail fast - # as we need this to be compiled by gcc for golang to be able to link with itx - write-host "Checking for MinGW..." - # error action ensures we exit on failure - get-command gcc - get-command mingw32-make - $oldTargets = $script:cmakeTargets - $script:cmakeTargets = @("llama", "ggml") - $script:cmakeDefs = @( - "-G", "MinGW Makefiles" - "-DCMAKE_C_COMPILER=gcc.exe", - "-DCMAKE_CXX_COMPILER=g++.exe", - "-DBUILD_SHARED_LIBS=off", - "-DGGML_NATIVE=off", - "-DGGML_AVX=off", - "-DGGML_AVX2=off", - "-DGGML_AVX512=off", - "-DGGML_F16C=off", - "-DGGML_FMA=off", - "-DGGML_OPENMP=off") - $script:buildDir="../build/windows/${script:ARCH}_static" - write-host "Building static library" - build - $script:cmakeTargets = $oldTargets - } else { - write-host "Skipping CPU generation step as requested" - } -} - function build_cpu($gen_arch) { if ((-not "${env:OLLAMA_SKIP_CPU_GENERATE}" ) -and ((-not "${env:OLLAMA_CPU_TARGET}") -or ("${env:OLLAMA_CPU_TARGET}" -eq "cpu"))) { # remaining llama.cpp builds use MSVC @@ -398,7 +364,6 @@ init_vars if ($($args.count) -eq 0) { git_module_setup apply_patches - build_static if ($script:ARCH -eq "arm64") { build_cpu("ARM64") } else { # amd64 diff --git a/llm/ggml.go b/llm/ggml.go index ab436095..bec26f93 100644 --- a/llm/ggml.go +++ b/llm/ggml.go @@ -55,9 +55,9 @@ func (kv KV) ParameterCount() uint64 { return kv.u64("general.parameter_count") } -func (kv KV) FileType() fileType { +func (kv KV) FileType() FileType { if u64 := kv.u64("general.file_type"); u64 > 0 { - return fileType(uint32(u64)) + return FileType(uint32(u64)) } return fileTypeUnknown diff --git a/llm/llm.go b/llm/llm.go deleted file mode 100644 index 6bb6591d..00000000 --- a/llm/llm.go +++ /dev/null @@ -1,41 +0,0 @@ -package llm - -// #cgo CFLAGS: -Illama.cpp -Illama.cpp/include -Illama.cpp/ggml/include -// #cgo LDFLAGS: -lllama -lggml -lstdc++ -lpthread -// #cgo darwin,arm64 LDFLAGS: -L${SRCDIR}/build/darwin/arm64_static -L${SRCDIR}/build/darwin/arm64_static/src -L${SRCDIR}/build/darwin/arm64_static/ggml/src -framework Accelerate -framework Metal -// #cgo darwin,amd64 LDFLAGS: -L${SRCDIR}/build/darwin/x86_64_static -L${SRCDIR}/build/darwin/x86_64_static/src -L${SRCDIR}/build/darwin/x86_64_static/ggml/src -// #cgo windows,amd64 LDFLAGS: -static-libstdc++ -static-libgcc -static -L${SRCDIR}/build/windows/amd64_static -L${SRCDIR}/build/windows/amd64_static/src -L${SRCDIR}/build/windows/amd64_static/ggml/src -// #cgo windows,arm64 LDFLAGS: -static-libstdc++ -static-libgcc -static -L${SRCDIR}/build/windows/arm64_static -L${SRCDIR}/build/windows/arm64_static/src -L${SRCDIR}/build/windows/arm64_static/ggml/src -// #cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/linux/x86_64_static -L${SRCDIR}/build/linux/x86_64_static/src -L${SRCDIR}/build/linux/x86_64_static/ggml/src -// #cgo linux,arm64 LDFLAGS: -L${SRCDIR}/build/linux/arm64_static -L${SRCDIR}/build/linux/arm64_static/src -L${SRCDIR}/build/linux/arm64_static/ggml/src -// #include -// #include "llama.h" -import "C" - -import ( - "errors" - "unsafe" -) - -// SystemInfo is an unused example of calling llama.cpp functions using CGo -func SystemInfo() string { - return C.GoString(C.llama_print_system_info()) -} - -func Quantize(infile, outfile string, ftype fileType) error { - cinfile := C.CString(infile) - defer C.free(unsafe.Pointer(cinfile)) - - coutfile := C.CString(outfile) - defer C.free(unsafe.Pointer(coutfile)) - - params := C.llama_model_quantize_default_params() - params.nthread = -1 - params.ftype = ftype.Value() - - if rc := C.llama_model_quantize(cinfile, coutfile, ¶ms); rc != 0 { - return errors.New("failed to quantize model. This model architecture may not be supported, or you may need to upgrade Ollama to the latest version") - } - - return nil -} diff --git a/server/images.go b/server/images.go index b5bf7ad6..ede5fc00 100644 --- a/server/images.go +++ b/server/images.go @@ -26,6 +26,7 @@ import ( "github.com/ollama/ollama/auth" "github.com/ollama/ollama/envconfig" "github.com/ollama/ollama/format" + "github.com/ollama/ollama/llama" "github.com/ollama/ollama/llm" "github.com/ollama/ollama/parser" "github.com/ollama/ollama/template" @@ -453,7 +454,7 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio defer temp.Close() defer os.Remove(temp.Name()) - if err := llm.Quantize(blob, temp.Name(), want); err != nil { + if err := llama.Quantize(blob, temp.Name(), want); err != nil { return err }