This commit is contained in:
jmorganca 2024-05-24 10:09:35 -07:00
parent fbc8572859
commit ec17359a68
3 changed files with 202 additions and 148 deletions

View File

@ -1499,27 +1499,27 @@ static enum ggml_status ggml_metal_graph_compute(
// to the matrix-vector kernel
int ne11_mm_min = 1;
#if 0
// the numbers below are measured on M2 Ultra for 7B and 13B models
// these numbers do not translate to other devices or model sizes
// TODO: need to find a better approach
if ([ctx->device.name isEqualToString:@"Apple M2 Ultra"]) {
switch (src0t) {
case GGML_TYPE_F16: ne11_mm_min = 2; break;
case GGML_TYPE_Q8_0: ne11_mm_min = 7; break;
case GGML_TYPE_Q2_K: ne11_mm_min = 15; break;
case GGML_TYPE_Q3_K: ne11_mm_min = 7; break;
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1: ne11_mm_min = 15; break;
case GGML_TYPE_Q4_K: ne11_mm_min = 11; break;
case GGML_TYPE_Q5_0: // not tested yet
case GGML_TYPE_Q5_1: ne11_mm_min = 13; break; // not tested yet
case GGML_TYPE_Q5_K: ne11_mm_min = 7; break;
case GGML_TYPE_Q6_K: ne11_mm_min = 7; break;
default: ne11_mm_min = 1; break;
}
// if ([ctx->device.name isEqualToString:@"Apple M2 Ultra"]) {
switch (src0t) {
case GGML_TYPE_F16: ne11_mm_min = 2; break;
case GGML_TYPE_Q8_0: ne11_mm_min = 7; break;
case GGML_TYPE_Q2_K: ne11_mm_min = 15; break;
case GGML_TYPE_Q3_K: ne11_mm_min = 7; break;
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1: ne11_mm_min = 15; break;
case GGML_TYPE_Q4_K: ne11_mm_min = 11; break;
case GGML_TYPE_Q5_0: // not tested yet
case GGML_TYPE_Q5_1: ne11_mm_min = 13; break; // not tested yet
case GGML_TYPE_Q5_K: ne11_mm_min = 7; break;
case GGML_TYPE_Q6_K: ne11_mm_min = 7; break;
default: ne11_mm_min = 1; break;
}
#endif
// }
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel

View File

@ -38,15 +38,14 @@ import (
"github.com/ollama/ollama/llm"
)
// SystemInfo is an unused example of calling llama.cpp functions using CGo
func PrintSystemInfo() string {
return C.GoString(C.llama_print_system_info())
}
func BackendInit() {
C.llama_backend_init()
}
func PrintSystemInfo() string {
return C.GoString(C.llama_print_system_info())
}
type ContextParams struct {
c C.struct_llama_context_params
}
@ -100,7 +99,8 @@ func (c *Context) Model() *Model {
return &Model{c: C.llama_get_model(c.c)}
}
func (c *Context) SampleTokenGreedy(batch Batch) int {
// TODO: break this up
func (c *Context) SampleTokenGreedy(batch Batch, i int) int {
nv := c.Model().NumVocab()
// TODO(jmorganca): split this up into different functions
@ -108,7 +108,7 @@ func (c *Context) SampleTokenGreedy(batch Batch) int {
defer C.free(unsafe.Pointer(candidates))
// get most recent logits
logits := C.llama_get_logits_ith(c.c, C.int(batch.NumTokens()-1))
logits := C.llama_get_logits_ith(c.c, C.int(i))
for i := 0; i < int(nv); i++ {
ptr := (*C.struct_llama_token_data)(unsafe.Pointer(uintptr(unsafe.Pointer(candidates)) + uintptr(i)*unsafe.Sizeof(C.struct_llama_token_data{})))
ptr.id = C.int(i)
@ -123,6 +123,10 @@ func (c *Context) SampleTokenGreedy(batch Batch) int {
}))
}
func (c *Context) KvCacheSeqRm(seqId int, p0 int, p1 int) bool {
return bool(C.llama_kv_cache_seq_rm(c.c, C.int(seqId), C.int(p0), C.int(p1)))
}
func LoadModelFromFile(modelPath string, params ModelParams) *Model {
return &Model{c: C.llama_load_model_from_file(C.CString(modelPath), params.c)}
}

View File

@ -1,7 +1,7 @@
package main
import (
"encoding/base64"
"context"
"encoding/json"
"flag"
"fmt"
@ -9,13 +9,149 @@ import (
"log/slog"
"net"
"net/http"
"regexp"
"strconv"
"sync"
"github.com/ollama/ollama/llama"
)
type Sequence struct {
// number of tokens evaluated
nPast int
// tokens left to evaluate
tokens []int
responses chan string
}
// prompt returns true if the prompt is still being processed
func (s *Sequence) prompt() bool {
return s.nPast < len(s.tokens)-1
}
func (s *Server) NewSequence(text string, w http.ResponseWriter) *Sequence {
tokens, err := s.lc.Model().Tokenize(text, 2048, true, true)
if err != nil {
panic(err)
}
return &Sequence{
tokens: tokens,
responses: make(chan string, 1),
}
}
type Server struct {
model *llama.Model
lc *llama.Context
cc *llama.ClipContext
// parallel is the number of parallel requests to handle
parallel int
// seqs is the list of parallel sequences being evaluated
seqs []*Sequence
mu sync.Mutex
cond *sync.Cond
}
func (s *Server) allNil() bool {
for _, item := range s.seqs {
if item != nil {
return false
}
}
return true
}
func (s *Server) run(ctx context.Context) {
batch := llama.NewBatch(512, 0, s.parallel)
defer batch.Free()
for {
select {
case <-ctx.Done():
return
default:
slog.Info("Processing batch", "seqs", len(s.seqs))
s.mu.Lock()
for s.allNil() {
fmt.Println("wait")
s.cond.Wait() // Wait until an item is added
}
s.mu.Unlock()
fmt.Println("seqs", s.seqs, len(s.seqs))
// prepare the batch
ibatch := make([]int, s.parallel)
for i, seq := range s.seqs {
if seq == nil {
continue
}
for j, t := range seq.tokens {
// todo: make this n_batch
if j > 512 {
break
}
batch.Add(t, seq.nPast, []int{i}, !seq.prompt())
seq.nPast++
if seq.prompt() {
ibatch[i] = batch.NumTokens() + 1
}
}
}
err := s.lc.Decode(batch)
if err != nil {
panic("Failed to decode")
}
for i, seq := range s.seqs {
if seq == nil {
continue
}
// don't sample prompt processing
if seq.prompt() {
if len(seq.tokens) < 512 {
seq.tokens = []int{}
} else {
seq.tokens = seq.tokens[512:]
}
continue
}
// sample a token
// TODO: sample based on the sequence
fmt.Println("Sampling token", i, ibatch[i])
token := s.lc.SampleTokenGreedy(batch, ibatch[i])
// if it's an end of sequence token, break
// TODO: just end this sequence
if s.model.TokenIsEog(token) {
// TODO: end the sequence instead of quitting the pool
s.lc.KvCacheSeqRm(i, 0, -1)
close(seq.responses)
s.seqs[i] = nil
continue
}
seq.responses <- s.model.TokenToPiece(token)
seq.tokens = []int{token}
}
batch.Clear()
}
}
}
type Request struct {
Prompt string `json:"prompt"`
Images []string `json:"images"`
@ -25,124 +161,53 @@ type Response struct {
Token string `json:"token"`
}
type Server struct {
model *llama.Model
lc *llama.Context
cc *llama.ClipContext
}
var mu sync.Mutex
func (s *Server) stream(w http.ResponseWriter, r *http.Request) {
func (s *Server) handler(w http.ResponseWriter, r *http.Request) {
var request Request
if err := json.NewDecoder(r.Body).Decode(&request); err != nil {
http.Error(w, "Bad request", http.StatusBadRequest)
return
}
mu.Lock()
defer mu.Unlock()
// Set the headers to indicate streaming
w.Header().Set("Content-Type", "application/json")
w.Header().Set("Transfer-Encoding", "chunked")
w.WriteHeader(http.StatusOK)
enc := json.NewEncoder(w)
seq := s.NewSequence(request.Prompt, w)
// create embeddings for each image
var embeddings []*llama.LlavaImageEmbed
if s.cc != nil {
for _, img := range request.Images {
data, err := base64.StdEncoding.DecodeString(img)
if err != nil {
http.Error(w, "Failed to decode image", http.StatusBadRequest)
return
}
embd := llama.NewLlavaImageEmbed(s.cc, data)
embeddings = append(embeddings, embd)
}
}
var nPast int
// eval the prompt
re := regexp.MustCompile(`\[\s*img-(\d+)\s*\]`)
matches := re.FindAllStringSubmatchIndex(request.Prompt, -1)
// eval each chunk including images
pos := 0
for _, match := range matches {
part := request.Prompt[pos:match[0]]
fmt.Println("Text part:", part)
// eval text before image
err := s.evalText(part, &nPast)
if err != nil {
log.Println("Failed to eval text:", err)
return
}
// eval image
imgIndexStr := request.Prompt[match[2]:match[3]]
imgIndex, err := strconv.Atoi(imgIndexStr)
if err != nil {
slog.Warn("Failed to parse image index", "index", imgIndexStr)
continue
}
fmt.Println("Tag index:", imgIndex)
if imgIndex <= len(embeddings) {
slog.Info("evaluating image", "index", imgIndex)
llama.LlavaEvalImageEmbed(s.lc, embeddings[imgIndex], 512, &nPast)
}
pos = match[1]
}
// eval remaining text
if pos < len(request.Prompt) {
s.evalText(request.Prompt[pos:], &nPast)
}
batch := llama.NewBatch(512, 0, 1)
defer batch.Free()
// main loop
for n := nPast; n < 2048; n++ {
// sample a token
token := s.lc.SampleTokenGreedy(batch)
// if it's an end of sequence token, break
if s.model.TokenIsEog(token) {
s.mu.Lock()
for i, sq := range s.seqs {
if sq == nil {
s.seqs[i] = seq
fmt.Println("signal")
s.cond.Signal()
break
}
}
s.mu.Unlock()
// print the token
str := s.model.TokenToPiece(token)
if err := enc.Encode(&Response{Token: str}); err != nil {
for token := range seq.responses {
if err := json.NewEncoder(w).Encode(&Response{
Token: token,
}); err != nil {
log.Println("Failed to encode result:", err)
return
}
w.(http.Flusher).Flush()
batch.Clear()
batch.Add(token, n, []int{0}, true)
err := s.lc.Decode(batch)
if err != nil {
panic("Failed to decode")
flusher, ok := w.(http.Flusher)
if !ok {
http.Error(w, "Streaming not supported", http.StatusInternalServerError)
return
}
}
s.lc.KvCacheClear()
flusher.Flush()
}
}
func main() {
mpath := flag.String("model", "", "Path to model binary file")
ppath := flag.String("projector", "", "Path to projector binary file")
parallel := flag.Int("parallel", 1, "Number of sequences to handle simultaneously")
flag.Parse()
// load the model
@ -156,7 +221,7 @@ func main() {
}
var cc *llama.ClipContext
if ppath != nil {
if *ppath != "" {
cc = llama.NewClipContext(*ppath)
if cc == nil {
panic("Failed to create clip context")
@ -164,11 +229,18 @@ func main() {
}
server := &Server{
model: model,
lc: lc,
cc: cc,
model: model,
lc: lc,
cc: cc,
parallel: *parallel,
seqs: make([]*Sequence, *parallel),
}
server.cond = sync.NewCond(&server.mu)
ctx, cancel := context.WithCancel(context.Background())
go server.run(ctx)
addr := "127.0.0.1:8080"
listener, err := net.Listen("tcp", addr)
if err != nil {
@ -178,35 +250,13 @@ func main() {
defer listener.Close()
httpServer := http.Server{
Handler: http.HandlerFunc(server.stream),
Handler: http.HandlerFunc(server.handler),
}
log.Println("Server listening on", addr)
if err := httpServer.Serve(listener); err != nil {
log.Fatal("server error:", err)
}
}
func (s *Server) evalText(text string, nPast *int) error {
// eval before
batch := llama.NewBatch(512, 0, 1)
defer batch.Free()
tokens, err := s.lc.Model().Tokenize(text, 2048, true, true)
if err != nil {
return fmt.Errorf("tokenize failed: %w", err)
}
// prompt eval
for _, t := range tokens {
batch.Add(t, *nPast, []int{0}, true)
*nPast++
}
err = s.lc.Decode(batch)
if err != nil {
return fmt.Errorf("decode failed: %w", err)
}
return nil
cancel()
}