Compare commits

..

61 Commits

Author SHA1 Message Date
Blake Mizerany
67691e410d
cmd: preserve exact bytes when displaying template/system layers (#7586) 2024-11-13 23:53:30 -08:00
Jesse Gross
d7eb05b936 runner.go: Fix off-by-one for num predicted 2024-11-12 11:35:57 -08:00
Daniel Hiltgen
636a743c2b
CI: give windows lint more time (#7635)
It looks like 8 minutes isn't quite enough and we're seeing sporadic timeouts
2024-11-12 11:22:39 -08:00
Daniel Hiltgen
df011054fa
Jetpack support for Go server (#7217)
This adds support for the Jetson JetPack variants into the Go runner
2024-11-12 10:31:52 -08:00
Daniel Hiltgen
ac07160c8d
doc: capture numeric group requirement (#6941)
Docker uses the container filesystem for name resolution, so we can't guide users
to use the name of the host group.  Instead they must specify the numeric ID.
2024-11-12 09:13:23 -08:00
Daniel Hiltgen
6606e4243c
docs: Capture docker cgroup workaround (#7519)
GPU support can break on some systems after a while.  This captures a
known workaround to solve the problem.
2024-11-12 09:12:50 -08:00
Jesse Gross
65973ceb64 runner.go: Make KV entry accounting more robust
The structure of the accounting for KV cache shifting was carried
over from the old runner but it now doesn't feel natural with the new
runner. There are a number of invariants that should hold true but
are difficult to reason about. There is at least one bug report
that would imply that the invariants are not holding.

This reduces the number of implicit assumptions and is more forgiving
of unexpected situations. It also improves behavior around which input
tokens are kept when truncation occurs.

Bug #7545
2024-11-11 20:23:03 -08:00
Joey Zheng
bebef1e50d
readme: add aichat terminal app to community integrations (#7418) 2024-11-11 16:44:46 -08:00
Evan
d48c1c5a44
api: fix typos in Go Doc comments (#7620) 2024-11-11 16:21:58 -08:00
Prasad Bhalerao
36a8372b28
readme: add GoLamify to community integrations (#7521) 2024-11-10 22:38:18 -08:00
Ivo Stoykov
4e94227b5d
readme: add browser extension that enables using Ollama for interacting with web pages (#5827) 2024-11-10 22:14:22 -08:00
frances720
479d551766
docs: add mentions of Llama 3.2 (#7517) 2024-11-10 19:04:23 -08:00
Evan
76b2b723b2
api: fix typo in python ClientFromEnvironment docs (#7604) 2024-11-10 17:30:27 -08:00
Arhan Busam
b8d77cdeab
readme: add llama3.2-vision to model list (#7580) 2024-11-10 13:36:25 -08:00
Jesse Gross
c2e8cbaa14 runner.go: Check for zero length images
If we get a request with a zero length image, it will result in
an out-of-bounds error when we pass the data to the image encoder.
2024-11-08 09:39:32 -08:00
Edward J. Schwartz
771fab1dd8
docs: update langchainpy.md with proper model name (#7527) 2024-11-08 09:36:17 -08:00
Daniel Hiltgen
3a5239e6bf
Set macos min version for all architectures (#7579) 2024-11-08 09:27:04 -08:00
Daniel Hiltgen
3d25e7bf8c
win: remove preview title from installer (#7529)
This should have been in #7347 but was overlooked.
2024-11-07 14:26:47 -08:00
Daniel Hiltgen
1618700c5a
Workaround buggy P2P ROCm copy on windows (#7466)
This enables the workaround code only for windows which should help windows users with muliple AMD GPUs
2024-11-07 14:26:31 -08:00
Daniel Hiltgen
b111aa5a91
Debug logging for nvcuda init (#7532)
Some users are reporting crashes during nvcuda.dll initialization
on windows.  This should help narrow down where things are going bad.
2024-11-07 14:25:53 -08:00
Daniel Hiltgen
9e83e550e1
Align rocm compiler flags (#7467)
Bring consistency with the old generate script behavior
2024-11-07 10:20:50 -08:00
Daniel Hiltgen
fc2a0715df
Be explicit for gpu library link dir (#7560)
On linux nvcc isn't automatically linking to the same cuda version.
2024-11-07 09:20:40 -08:00
Jesse Gross
3020d2dc58 docs: OLLAMA_NEW_RUNNERS no longer exists 2024-11-06 14:39:02 -08:00
Jesse Gross
a909417602 runner.go: Remove unused arguments
Now that server.cpp is gone, we don't need to keep passing arguments
that were only ignored and only kept for compatibility.
2024-11-06 13:32:18 -08:00
Jesse Gross
6cd566872b sched: Lift parallel restriction for multimodal models except mllama
The Go runner does not have a problem with supporting parallel
requests for most multimodal models. Now that we won't be potentially
falling back to server.cpp, this restriction can be lifted.

However, the new mllama model can't support parallel requests, so we
will need to keep a restriction for that.
2024-11-06 13:32:18 -08:00
RAPID ARCHITECT
9d71bcc3e2
Update README.md (#7516)
added reddit rate below hexabot, ollama powered reddit search and analysis with streamlit for the intervace
2024-11-05 15:07:25 -08:00
Daniel Hiltgen
a4c70fe157
One corrupt manifest should not wedge model operations (#7515)
One potential failure mode is an empty file which bubbles up as an EOF error,
leading to all pulls and listing operations failing.  Instead, continue and
warn about the corrupt manifest.  This also allows re-pulling the corrupt
manifest to repair the system.
2024-11-05 14:21:45 -08:00
Jesse Gross
34a75102f7 prompt: Use a single token when estimating mllama context size
Currently we assume that images take 768 tokens of context size for
the purposes of clipping old messages that exceed the context window.
However, our mllama implementation stores the full image embedding
in a single token. As a result, there is significant waste of context
space.

Ideally, we would handle this more generically and have the
implementation report the number of tokens. However, at the moment
this would just result in a similar set of 'if' conditions in the
runner plus APIs to report it back. So for now, we just keep this
simple.
2024-11-05 10:11:50 -08:00
Med Marrouchi
4157d1f7b6
readme: add Hexabot to the list of community integrations 2024-11-05 09:06:38 -08:00
Daniel Hiltgen
4ebfa2cb91
Quiet down debug log of image payload (#7454)
Avoid excessive log spew and make consistent with chat logging
2024-11-04 13:05:16 -08:00
Daniel Hiltgen
046054fa3b
CI: Switch to v13 macos runner (#7498) 2024-11-04 13:02:07 -08:00
Daniel Hiltgen
95483f348b
CI: matrix strategy fix (#7496)
Github actions matrix strategy can't access env settings
2024-11-04 10:48:35 -08:00
Michael Yang
f247a6233e
Merge pull request #7456 from ollama/mxyng/llama3.2-vision-mem
update llama3.2 vision memory estimation
2024-11-04 09:48:43 -08:00
Daniel Hiltgen
44bd9e5994
Sign windows arm64 official binaries (#7493) 2024-11-04 09:15:14 -08:00
suncloudsmoon
18237be9b2
readme: add TextCraft to community integrations (#7377) 2024-11-03 16:53:51 -08:00
Daniel Hiltgen
29ab9fa7d7
nvidia libs have inconsistent ordering (#7473)
The runtime and management libraries may not always have
identical ordering, so use the device UUID to correlate instead of ID.
2024-11-02 16:35:41 -07:00
Daniel Hiltgen
b8d5036e33
CI: omit unused tools for faster release builds (#7432)
This leverages caching, and some reduced installer scope to try
to speed up builds. It also tidies up some windows build logic
that was only relevant for the older generate/cmake builds.
2024-11-02 13:56:54 -07:00
Jesse Gross
312d9de1d1 llama: Improve error handling
Check for NULL return values from llama.cpp in more places and
convert them into Go errors, which should make debugging easier
in the future rather than having hidden surprises in our data
structures.
2024-11-02 13:37:55 -07:00
Jesse Gross
a103dae01e runner.go: Only allocate 1 element embedding batches for mllama
Mllama has large embeddings (100 MB per image) and each embedding is
represented as 1 token when passed to llama.cpp. Batches are pre-
allocated for the size of the tokens times the batch size, so this
results in allocations of over 50 GB at the default batch size.
On some systems, these mallocs will fail.

Since an image is represented as a single token and mllama doesn't
support more than 1 image per request, we only need to allocate a
batch size of 1, which is much more reasonable. In addition, for
non-multimodal models, we don't need to allocate the embedding
batches at all.

Fixes #7464
2024-11-02 13:37:55 -07:00
Michael Yang
d07cf41a97 refactor kv estimation 2024-11-01 16:23:55 -07:00
Michael Yang
8c238e70ab mllama cross attention 2024-11-01 16:23:55 -07:00
Daniel Hiltgen
8a9bb0d000
Add basic mllama integration tests (#7455) 2024-10-31 17:25:48 -07:00
Jesse Gross
26acdcf44e runner.go: Don't set cross attention before sending embeddings
Currently if an input has embeddings at any point then we will set
cross attention to true from the beginning. This means that any
tokens before the embeddings are sent will incorrectly have cross
attention layers applied.

This only sets cross attention when we have an embedding, either
previously in this sequence or in the cache. It also makes cross
attention capable of supporting parallelism at the runner level,
though the mllama implementation doesn't support that yet.
2024-10-31 13:56:08 -07:00
Daniel Hiltgen
921779bb10
Give unicode test more time to run (#7437)
* Give unicode test more time to run

Some slower GPUs (or partial CPU/GPU loads) can take more than the default 30s to complete this test

* Give more time for concurrency test

CPU inference can be very slow under stress
2024-10-31 13:35:31 -07:00
Daniel Hiltgen
16f4eabe2d
Refine default thread selection for NUMA systems (#7322)
Until we have full NUMA support, this adjusts the default thread selection
algorithm to count up the number of performance cores across all sockets.
2024-10-30 15:05:45 -07:00
Jesse Gross
c826e57475 runner.go: Better abstract vision model integration
-Update mllama to take the cross attention state as embeddings in
a batch, more similar to how Llava handles it. This improves
integration with the input cache.
-Pass locations in a prompt for embeddings using tags similar to Llava.
-Abstract interface to vision models so the main runner accesses Clip
and Mllama similarly

Co-authored-by: Michael Yang <mxyng@pm.me>
2024-10-30 14:53:43 -07:00
Daniel Hiltgen
712e99d477
Soften windows clang requirement (#7428)
This will no longer error if built with regular gcc on windows.  To help
triage issues that may come in related to different compilers, the runner now
reports the compier used by cgo.
2024-10-30 12:28:36 -07:00
Daniel Hiltgen
b754f5a6a3
Remove submodule and shift to Go server - 0.4.0 (#7157)
* Remove llama.cpp submodule and shift new build to top

* CI: install msys and clang gcc on win

Needed for deepseek to work properly on windows
2024-10-30 10:34:28 -07:00
Daniel Hiltgen
a805e5947e
Move windows app out of preview (#7347) 2024-10-30 09:24:59 -07:00
Daniel Hiltgen
91dfbb1bba
windows: Support alt install paths, fit and finish (#6967)
* windows: Support alt install paths

Advanced users are leveraging innosetup's /DIR switch to target
an alternate location, but we get confused by things not existing in the LocalAppData dir.
This also hardens the server path lookup code for a future attempt to unify with a ./bin prefix

* Fit and finish improvements for windows app

Document alternate install location instructions for binaries and model.
Pop up progress UI for upgrades (automatic, with cancel button).
Expose non-default port in menu to disambiguate mutiple instances.
Set minimum Windows version to 10 22H2
2024-10-30 09:24:31 -07:00
Patrick Devine
db1842b9e1
add more tests for getting the optimal tiled canvas (#7411) 2024-10-29 16:28:02 -07:00
Daniel Hiltgen
c9ca386131
Switch windows to clang (#7407)
* Switch over to clang for deepseek on windows

The patch for deepseek requires clang on windows. gcc on windows
has a buggy c++ library and can't handle the unicode characters

* Fail fast with wrong compiler on windows

Avoid users mistakenly building with GCC when we need clang
2024-10-29 13:15:04 -07:00
Jesse Gross
078f666f73 tests: Add test for Unicode processing 2024-10-28 18:12:29 -07:00
Jesse Gross
de1557a0dc runner.go: Better handle return NULL values from llama.cpp
Llama.cpp sometimes returns NULL as a return value to report an
error. We should explicitly check for this and convert it to a Go
error rather than putting NULL in our data structures and waiting
for it to blow up later.
2024-10-28 18:12:29 -07:00
Patrick Devine
084929c293
add mllama image processing to the generate handler (#7384) 2024-10-28 13:51:19 -07:00
Daniel Hiltgen
abd5dfd06a
Bump to latest Go 1.22 patch (#7379) 2024-10-26 17:03:37 -07:00
Daniel Hiltgen
099f7077a1
Fix deepseek deseret regex (#7369)
On windows compiled with gcc the c++ regex library failed to handle
the characters
2024-10-26 14:58:54 -07:00
Daniel Hiltgen
d7c94e0ca6
Better support for AMD multi-GPU on linux (#7212)
* Better support for AMD multi-GPU

This resolves a number of problems related to AMD multi-GPU setups on linux.

The numeric IDs used by rocm are not the same as the numeric IDs exposed in
sysfs although the ordering is consistent.  We have to count up from the first
valid gfx (major/minor/patch with non-zero values) we find starting at zero.

There are 3 different env vars for selecting GPUs, and only ROCR_VISIBLE_DEVICES
supports UUID based identification, so we should favor that one, and try
to use UUIDs if detected to avoid potential ordering bugs with numeric IDs

* ROCR_VISIBLE_DEVICES only works on linux

Use the numeric ID only HIP_VISIBLE_DEVICES on windows
2024-10-26 14:04:14 -07:00
Daniel Hiltgen
35ec7f079f
Fix unicode output on windows with redirect to file (#7358)
If we're not writing out to a terminal, avoid setting the console mode
on windows, which corrupts the output file.
2024-10-25 13:43:16 -07:00
Daniel Hiltgen
5231ae52d9
Fix incremental build file deps (#7361)
The common src/hdr defs should be in the common definitions, not gpu specific.
2024-10-25 11:50:45 -07:00
Daniel Hiltgen
3085c47bea
Improve dependency gathering logic (#7345)
This unfies the rocm/cuda dependency logic into the makefile
and fixes a missing define which broke windows rocm
2024-10-24 09:51:53 -07:00
103 changed files with 4000 additions and 1215 deletions

View File

@ -1,5 +1,9 @@
name: release
env:
ROCM_WINDOWS_URL: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe
MSYS2_URL: https://github.com/msys2/msys2-installer/releases/download/2024-07-27/msys2-x86_64-20240727.exe
on:
push:
tags:
@ -8,7 +12,7 @@ on:
jobs:
# Full build of the Mac assets
build-darwin:
runs-on: macos-12
runs-on: macos-13
environment: release
steps:
- uses: actions/checkout@v4
@ -39,8 +43,8 @@ jobs:
APPLE_PASSWORD: ${{ secrets.APPLE_PASSWORD }}
APPLE_TEAM_ID: ${{ vars.APPLE_TEAM_ID }}
APPLE_ID: ${{ vars.APPLE_ID }}
SDKROOT: /Applications/Xcode_13.4.1.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk
DEVELOPER_DIR: /Applications/Xcode_13.4.1.app/Contents/Developer
SDKROOT: /Applications/Xcode_14.1.0.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk
DEVELOPER_DIR: /Applications/Xcode_14.1.0.app/Contents/Developer
run: |
./scripts/build_darwin.sh
@ -60,51 +64,34 @@ jobs:
KEY_CONTAINER: ${{ vars.KEY_CONTAINER }}
steps:
- uses: actions/checkout@v4
- name: Set make jobs default
run: |
echo "MAKEFLAGS=--jobs=$((Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
- name: Set Version
shell: bash
run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV
- uses: 'google-github-actions/auth@v2'
with:
project_id: 'ollama'
credentials_json: '${{ secrets.GOOGLE_SIGNING_CREDENTIALS }}'
- run: echo "${{ vars.OLLAMA_CERT }}" > ollama_inc.crt
- name: install Windows SDK 8.1 to get signtool
- name: Add msys paths
run: |
$ErrorActionPreference = "Stop"
write-host "downloading SDK"
Invoke-WebRequest -Uri "https://go.microsoft.com/fwlink/p/?LinkId=323507" -OutFile "${env:RUNNER_TEMP}\sdksetup.exe"
Start-Process "${env:RUNNER_TEMP}\sdksetup.exe" -ArgumentList @("/q") -NoNewWindow -Wait
write-host "Win SDK 8.1 installed"
gci -path 'C:\Program Files (x86)\Windows Kits\' -r -fi 'signtool.exe'
- name: install signing plugin
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install msys2 tools
run: |
$ErrorActionPreference = "Stop"
write-host "downloading plugin"
Invoke-WebRequest -Uri "https://github.com/GoogleCloudPlatform/kms-integrations/releases/download/cng-v1.0/kmscng-1.0-windows-amd64.zip" -OutFile "${env:RUNNER_TEMP}\plugin.zip"
Expand-Archive -Path "${env:RUNNER_TEMP}\plugin.zip" -DestinationPath ${env:RUNNER_TEMP}\plugin\
write-host "Installing plugin"
& "${env:RUNNER_TEMP}\plugin\*\kmscng.msi" /quiet
write-host "plugin installed"
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
cache: true
- run: go get ./...
- run: |
$gopath=(get-command go).source | split-path -parent
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
$env:PATH="$gopath;$env:PATH"
$cores = (Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores
make -j $cores
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
make
name: make
- uses: actions/upload-artifact@v4
with:
name: generate-windows-cpu
path: |
build/**/*
build/**/*.a
dist/windows-amd64/**
# ROCm generation step
@ -115,58 +102,49 @@ jobs:
KEY_CONTAINER: ${{ vars.KEY_CONTAINER }}
steps:
- uses: actions/checkout@v4
- name: Set make jobs default
run: |
echo "MAKEFLAGS=--jobs=$((Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
- name: Set Version
shell: bash
run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV
- uses: 'google-github-actions/auth@v2'
with:
project_id: 'ollama'
credentials_json: '${{ secrets.GOOGLE_SIGNING_CREDENTIALS }}'
- run: echo "${{ vars.OLLAMA_CERT }}" > ollama_inc.crt
- name: install Windows SDK 8.1 to get signtool
- name: Add msys paths
run: |
$ErrorActionPreference = "Stop"
write-host "downloading SDK"
Invoke-WebRequest -Uri "https://go.microsoft.com/fwlink/p/?LinkId=323507" -OutFile "${env:RUNNER_TEMP}\sdksetup.exe"
Start-Process "${env:RUNNER_TEMP}\sdksetup.exe" -ArgumentList @("/q") -NoNewWindow -Wait
write-host "Win SDK 8.1 installed"
gci -path 'C:\Program Files (x86)\Windows Kits\' -r -fi 'signtool.exe'
- name: install signing plugin
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install msys2 tools
run: |
$ErrorActionPreference = "Stop"
write-host "downloading plugin"
Invoke-WebRequest -Uri "https://github.com/GoogleCloudPlatform/kms-integrations/releases/download/cng-v1.0/kmscng-1.0-windows-amd64.zip" -OutFile "${env:RUNNER_TEMP}\plugin.zip"
Expand-Archive -Path "${env:RUNNER_TEMP}\plugin.zip" -DestinationPath ${env:RUNNER_TEMP}\plugin\
write-host "Installing plugin"
& "${env:RUNNER_TEMP}\plugin\*\kmscng.msi" /quiet
write-host "plugin installed"
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
cache: true
- name: 'Install ROCm'
# ROCM installation steps
- name: 'Cache ROCm installer'
id: cache-rocm
uses: actions/cache@v4
with:
path: rocm-install.exe
key: ${{ env.ROCM_WINDOWS_URL }}
- name: 'Conditionally Download ROCm'
if: steps.cache-rocm.outputs.cache-hit != 'true'
run: |
$ErrorActionPreference = "Stop"
write-host "downloading AMD HIP Installer"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
write-host "Installing AMD HIP"
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
write-host "Completed AMD HIP"
Invoke-WebRequest -Uri "${env:ROCM_WINDOWS_URL}" -OutFile "rocm-install.exe"
- name: 'Install ROCm'
run: |
Start-Process "rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
- name: 'Verify ROCm'
run: |
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
- run: go get ./...
- run: |
$gopath=(get-command go).source | split-path -parent
echo "HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path | select -first 1)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
- name: make rocm runner
run: |
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
$env:PATH="$gopath;$env:PATH"
$env:OLLAMA_SKIP_CPU_GENERATE="1"
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
$cores = (Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores
make -j $cores
name: make
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
make -C llama print-HIP_PATH print-HIP_LIB_DIR
make rocm
- uses: actions/upload-artifact@v4
with:
name: generate-windows-rocm
@ -181,71 +159,74 @@ jobs:
strategy:
matrix:
cuda:
- version: "11"
url: 'https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe'
- version: "12"
url: 'https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_551.61_windows.exe'
- version: "11.3"
url: https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe
- version: "12.4"
url: https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_551.61_windows.exe
env:
KEY_CONTAINER: ${{ vars.KEY_CONTAINER }}
steps:
- uses: actions/checkout@v4
- name: Set make jobs default
run: |
echo "MAKEFLAGS=--jobs=$((Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
- name: Set Version
shell: bash
run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV
- uses: 'google-github-actions/auth@v2'
with:
project_id: 'ollama'
credentials_json: '${{ secrets.GOOGLE_SIGNING_CREDENTIALS }}'
- run: echo "${{ vars.OLLAMA_CERT }}" > ollama_inc.crt
- name: install Windows SDK 8.1 to get signtool
- name: Install msys2
run: |
$ErrorActionPreference = "Stop"
write-host "downloading SDK"
Invoke-WebRequest -Uri "https://go.microsoft.com/fwlink/p/?LinkId=323507" -OutFile "${env:RUNNER_TEMP}\sdksetup.exe"
Start-Process "${env:RUNNER_TEMP}\sdksetup.exe" -ArgumentList @("/q") -NoNewWindow -Wait
write-host "Win SDK 8.1 installed"
gci -path 'C:\Program Files (x86)\Windows Kits\' -r -fi 'signtool.exe'
- name: install signing plugin
$msys2_url="https://github.com/msys2/msys2-installer/releases/download/2024-07-27/msys2-x86_64-20240727.exe"
write-host "Downloading msys2"
Invoke-WebRequest -Uri "${msys2_url}" -OutFile "${env:RUNNER_TEMP}\msys2.exe"
write-host "Installing msys2"
Start-Process "${env:RUNNER_TEMP}\msys2.exe" -ArgumentList @("in", "--confirm-command", "--accept-messages", "--root", "C:/msys64") -NoNewWindow -Wait
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install msys2 tools
run: |
$ErrorActionPreference = "Stop"
write-host "downloading plugin"
Invoke-WebRequest -Uri "https://github.com/GoogleCloudPlatform/kms-integrations/releases/download/cng-v1.0/kmscng-1.0-windows-amd64.zip" -OutFile "${env:RUNNER_TEMP}\plugin.zip"
Expand-Archive -Path "${env:RUNNER_TEMP}\plugin.zip" -DestinationPath ${env:RUNNER_TEMP}\plugin\
write-host "Installing plugin"
& "${env:RUNNER_TEMP}\plugin\*\kmscng.msi" /quiet
write-host "plugin installed"
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang", "make") -NoNewWindow -Wait
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: verify tools
run: |
get-command gcc
gcc --version
get-command make
make --version
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
cache: true
- name: 'Install CUDA ${{ matrix.cuda.version }}'
# CUDA installation steps
- name: 'Cache CUDA installer'
id: cache-cuda
uses: actions/cache@v4
with:
path: cuda-install.exe
key: ${{ matrix.cuda.url }}
- name: 'Conditionally Download CUDA'
if: steps.cache-cuda.outputs.cache-hit != 'true'
run: |
$ErrorActionPreference = "Stop"
write-host "downloading CUDA Installer"
Invoke-WebRequest -Uri "${{ matrix.cuda.url }}" -OutFile "${env:RUNNER_TEMP}\cuda-install.exe"
write-host "Installing CUDA"
Start-Process "${env:RUNNER_TEMP}\cuda-install.exe" -ArgumentList '-s' -NoNewWindow -Wait
write-host "Completed CUDA"
Invoke-WebRequest -Uri "${{ matrix.cuda.url }}" -OutFile "cuda-install.exe"
- name: 'Install CUDA'
run: |
$subpackages = @("cudart", "nvcc", "cublas", "cublas_dev") | foreach-object {"${_}_${{ matrix.cuda.version }}"}
Start-Process "cuda-install.exe" -ArgumentList (@("-s") + $subpackages) -NoNewWindow -Wait
- name: 'Verify CUDA'
run: |
& (resolve-path "c:\Program Files\NVIDIA*\CUDA\v*\bin\nvcc.exe")[0] --version
$cudaPath=((resolve-path "c:\Program Files\NVIDIA*\CUDA\v*\bin\nvcc.exe")[0].path | split-path | split-path)
$cudaVer=($cudaPath | split-path -leaf ) -replace 'v(\d+).(\d+)', '$1_$2'
echo "$cudaPath\bin" >> $env:GITHUB_PATH
echo "CUDA_PATH=$cudaPath" >> $env:GITHUB_ENV
echo "CUDA_PATH_V${cudaVer}=$cudaPath" >> $env:GITHUB_ENV
echo "CUDA_PATH_VX_Y=CUDA_PATH_V${cudaVer}" >> $env:GITHUB_ENV
- name: 'Verify CUDA'
run: nvcc -V
- run: go get ./...
- name: make
echo "$cudaPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CUDA_PATH=$cudaPath" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
echo "CUDA_PATH_V${cudaVer}=$cudaPath" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
echo "CUDA_PATH_VX_Y=CUDA_PATH_V${cudaVer}" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
- name: make cuda runner
run: |
$gopath=(get-command go).source | split-path -parent
$cudabin=(get-command nvcc).source | split-path
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
$env:PATH="$gopath;$cudabin;$env:PATH"
$env:OLLAMA_SKIP_CPU_GENERATE="1"
$cores = (Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores
make -j $cores
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
make cuda_v$(($env:CUDA_PATH | split-path -leaf) -replace 'v(\d+).*', '$1')
- uses: actions/upload-artifact@v4
with:
name: generate-windows-cuda-${{ matrix.cuda.version }}
@ -393,7 +374,7 @@ jobs:
$env:PATH="$gopath;$gccpath;$env:PATH"
echo $env:PATH
$env:ARCH="arm64"
.\scripts\build_windows.ps1 buildOllama buildApp gatherDependencies distZip
.\scripts\build_windows.ps1 buildOllama buildApp gatherDependencies sign distZip
name: 'Windows Build'
- uses: actions/upload-artifact@v4
with:
@ -443,6 +424,24 @@ jobs:
write-host "Installing plugin"
& "${env:RUNNER_TEMP}\plugin\*\kmscng.msi" /quiet
write-host "plugin installed"
- name: Install msys2
run: |
$msys2_url="https://github.com/msys2/msys2-installer/releases/download/2024-07-27/msys2-x86_64-20240727.exe"
write-host "Downloading msys2"
Invoke-WebRequest -Uri "${msys2_url}" -OutFile "${env:RUNNER_TEMP}\msys2.exe"
write-host "Installing msys2"
Start-Process "${env:RUNNER_TEMP}\msys2.exe" -ArgumentList @("in", "--confirm-command", "--accept-messages", "--root", "C:/msys64") -NoNewWindow -Wait
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install msys2 tools
run: |
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang", "make") -NoNewWindow -Wait
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: verify tools
run: |
get-command gcc
gcc --version
get-command make
make --version
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
@ -453,10 +452,10 @@ jobs:
name: generate-windows-cpu
- uses: actions/download-artifact@v4
with:
name: generate-windows-cuda-11
name: generate-windows-cuda-11.3
- uses: actions/download-artifact@v4
with:
name: generate-windows-cuda-12
name: generate-windows-cuda-12.4
- uses: actions/download-artifact@v4
with:
name: generate-windows-rocm
@ -466,13 +465,11 @@ jobs:
path: dist
- run: dir build
- run: |
$gopath=(get-command go).source | split-path -parent
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
$env:PATH="$gopath;$env:PATH"
$env:OLLAMA_SKIP_GENERATE="1"
$env:ARCH="amd64"
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
& .\scripts\build_windows.ps1
- uses: actions/upload-artifact@v4
with:

View File

@ -1,5 +1,11 @@
name: test
env:
ROCM_WINDOWS_URL: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe
MSYS2_URL: https://github.com/msys2/msys2-installer/releases/download/2024-07-27/msys2-x86_64-20240727.exe
CUDA_12_WINDOWS_URL: https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_551.61_windows.exe
CUDA_12_WINDOWS_VER: 12.4
concurrency:
# For PRs, later CI runs preempt previous ones. e.g. a force push on a PR
# cancels running CI jobs and starts all new ones.
@ -99,30 +105,45 @@ jobs:
with:
go-version-file: go.mod
cache: true
- name: 'Install ROCm'
- name: Set make jobs default
run: |
echo "MAKEFLAGS=--jobs=$((Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
# ROCM installation steps
- name: 'Cache ROCm installer'
id: cache-rocm
uses: actions/cache@v4
with:
path: rocm-install.exe
key: ${{ env.ROCM_WINDOWS_URL }}
- name: 'Conditionally Download ROCm'
if: steps.cache-rocm.outputs.cache-hit != 'true'
run: |
$ErrorActionPreference = "Stop"
write-host "downloading AMD HIP Installer"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
write-host "Installing AMD HIP"
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
write-host "Completed AMD HIP"
Invoke-WebRequest -Uri "${env:ROCM_WINDOWS_URL}" -OutFile "rocm-install.exe"
- name: 'Install ROCm'
run: |
Start-Process "rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
- name: 'Verify ROCm'
run: |
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
- run: go get ./...
- run: |
$gopath=(get-command go).source | split-path -parent
echo "HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path | select -first 1)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
- name: Add msys paths
run: |
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install msys2 tools
run: |
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
- name: make rocm runner
run: |
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
$env:PATH="$gopath;$env:PATH"
$env:OLLAMA_SKIP_CPU_GENERATE="1"
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
$cores = (Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores
write-host $env:HIP_PATH
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
make -C llama print-HIP_PATH print-HIP_LIB_DIR
make -j $cores rocm
name: make
make rocm
# CUDA generation step
runners-windows-cuda:
@ -135,36 +156,49 @@ jobs:
with:
go-version-file: go.mod
cache: true
- name: 'Install CUDA'
- name: Set make jobs default
run: |
echo "MAKEFLAGS=--jobs=$((Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
# CUDA installation steps
- name: 'Cache CUDA installer'
id: cache-cuda
uses: actions/cache@v4
with:
path: cuda-install.exe
key: ${{ env.CUDA_12_WINDOWS_URL }}
- name: 'Conditionally Download CUDA'
if: steps.cache-cuda.outputs.cache-hit != 'true'
run: |
$ErrorActionPreference = "Stop"
write-host "downloading CUDA Installer"
Invoke-WebRequest -Uri "https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe" -OutFile "${env:RUNNER_TEMP}\cuda-install.exe"
write-host "Installing CUDA"
Start-Process "${env:RUNNER_TEMP}\cuda-install.exe" -ArgumentList '-s' -NoNewWindow -Wait
write-host "Completed CUDA"
Invoke-WebRequest -Uri "${env:CUDA_12_WINDOWS_URL}" -OutFile "cuda-install.exe"
- name: 'Install CUDA'
run: |
$subpackages = @("cudart", "nvcc", "cublas", "cublas_dev") | foreach-object {"${_}_${{ env.CUDA_12_WINDOWS_VER }}"}
Start-Process "cuda-install.exe" -ArgumentList (@("-s") + $subpackages) -NoNewWindow -Wait
- name: 'Verify CUDA'
run: |
& (resolve-path "c:\Program Files\NVIDIA*\CUDA\v*\bin\nvcc.exe")[0] --version
$cudaPath=((resolve-path "c:\Program Files\NVIDIA*\CUDA\v*\bin\nvcc.exe")[0].path | split-path | split-path)
$cudaVer=($cudaPath | split-path -leaf ) -replace 'v(\d+).(\d+)', '$1_$2'
echo "$cudaPath\bin" >> $env:GITHUB_PATH
echo "CUDA_PATH=$cudaPath" >> $env:GITHUB_ENV
echo "CUDA_PATH_V${cudaVer}=$cudaPath" >> $env:GITHUB_ENV
echo "CUDA_PATH_VX_Y=CUDA_PATH_V${cudaVer}" >> $env:GITHUB_ENV
- name: 'Verify CUDA'
run: nvcc -V
- run: go get ./...
- name: make
echo "$cudaPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CUDA_PATH=$cudaPath" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
echo "CUDA_PATH_V${cudaVer}=$cudaPath" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
echo "CUDA_PATH_VX_Y=CUDA_PATH_V${cudaVer}" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
- name: Add msys paths
run: |
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install msys2 tools
run: |
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
- name: make cuda runner
run: |
$gopath=(get-command go).source | split-path -parent
$cudabin=(get-command nvcc).source | split-path
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
$env:PATH="$gopath;$cudabin;$env:PATH"
$env:OLLAMA_SKIP_CPU_GENERATE="1"
$cores = (Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores
make -j $cores cuda_v11
env:
OLLAMA_SKIP_CPU_GENERATE: '1'
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
make cuda_v$(($env:CUDA_PATH | split-path -leaf) -replace 'v(\d+).*', '$1')
runners-cpu:
needs: [changes]
@ -189,7 +223,15 @@ jobs:
with:
go-version-file: go.mod
cache: true
- run: go get ./...
- name: Add msys paths
if: ${{ startsWith(matrix.os, 'windows-') }}
run: |
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install msys2 tools
if: ${{ startsWith(matrix.os, 'windows-') }}
run: |
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
- name: 'Build Windows Go Runners'
if: ${{ startsWith(matrix.os, 'windows-') }}
run: |
@ -200,6 +242,7 @@ jobs:
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
$env:PATH="$gopath;$gccpath;$env:PATH"
echo $env:PATH
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
make -j 4
- name: 'Build Unix Go Runners'
if: ${{ ! startsWith(matrix.os, 'windows-') }}
@ -238,7 +281,7 @@ jobs:
shell: bash
- uses: golangci/golangci-lint-action@v6
with:
args: --timeout 8m0s -v
args: --timeout 10m0s -v
test:
strategy:
matrix:

View File

@ -1,11 +1,12 @@
# Note: once we have fully transitioned to the Go server, this will replace the old Dockerfile at the top of the tree
ARG GOLANG_VERSION=1.22.5
ARG GOLANG_VERSION=1.22.8
ARG CMAKE_VERSION=3.22.1
ARG CUDA_VERSION_11=11.3.1
ARG CUDA_V11_ARCHITECTURES="50;52;53;60;61;62;70;72;75;80;86"
ARG CUDA_VERSION_12=12.4.0
ARG CUDA_V12_ARCHITECTURES="60;61;62;70;72;75;80;86;87;89;90;90a"
ARG ROCM_VERSION=6.1.2
ARG JETPACK_6=r36.2.0
ARG JETPACK_5=r35.4.1
### To create a local image for building linux binaries on mac or windows with efficient incremental builds
#
@ -14,7 +15,7 @@ ARG ROCM_VERSION=6.1.2
#
### Then incremental builds will be much faster in this container
#
# make -C llama -j 10 && go build -trimpath -o dist/linux-amd64/ollama .
# make -j 10 && go build -trimpath -o dist/linux-amd64/ollama .
#
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete AS unified-builder-amd64
ARG CMAKE_VERSION
@ -77,9 +78,9 @@ ARG CUDA_V12_ARCHITECTURES
ARG OLLAMA_FAST_BUILD
RUN --mount=type=cache,target=/root/.ccache \
if grep "^flags" /proc/cpuinfo|grep avx>/dev/null; then \
make -C llama -j $(expr $(nproc) / 2 ) ; \
make -j $(expr $(nproc) / 2 ) ; \
else \
make -C llama -j 5 ; \
make -j 5 ; \
fi
FROM --platform=linux/arm64 unified-builder-arm64 AS runners-arm64
@ -91,7 +92,46 @@ ARG CUDA_V11_ARCHITECTURES
ARG CUDA_V12_ARCHITECTURES
ARG OLLAMA_FAST_BUILD
RUN --mount=type=cache,target=/root/.ccache \
make -C llama -j 8
make -j 5
# Jetsons need to be built in discrete stages
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK_5} AS runners-jetpack5-arm64
ARG GOLANG_VERSION
RUN apt-get update && apt-get install -y git curl ccache && \
curl -s -L https://dl.google.com/go/go${GOLANG_VERSION}.linux-arm64.tar.gz | tar xz -C /usr/local && \
ln -s /usr/local/go/bin/go /usr/local/bin/go && \
ln -s /usr/local/go/bin/gofmt /usr/local/bin/gofmt && \
apt-get clean && rm -rf /var/lib/apt/lists/*
WORKDIR /go/src/github.com/ollama/ollama/
COPY . .
ARG CGO_CFLAGS
ENV GOARCH arm64
RUN --mount=type=cache,target=/root/.ccache \
make -j 5 cuda_v11 \
CUDA_ARCHITECTURES="72;87" \
GPU_RUNNER_VARIANT=_jetpack5 \
CGO_EXTRA_LDFLAGS_LINUX=-L/usr/local/cuda/lib64/stubs \
DIST_LIB_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ollama \
DIST_GPU_RUNNER_DEPS_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ollama/cuda_jetpack5
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK_6} AS runners-jetpack6-arm64
ARG GOLANG_VERSION
RUN apt-get update && apt-get install -y git curl ccache && \
curl -s -L https://dl.google.com/go/go${GOLANG_VERSION}.linux-arm64.tar.gz | tar xz -C /usr/local && \
ln -s /usr/local/go/bin/go /usr/local/bin/go && \
ln -s /usr/local/go/bin/gofmt /usr/local/bin/gofmt && \
apt-get clean && rm -rf /var/lib/apt/lists/*
WORKDIR /go/src/github.com/ollama/ollama/
COPY . .
ARG CGO_CFLAGS
ENV GOARCH arm64
RUN --mount=type=cache,target=/root/.ccache \
make -j 5 cuda_v12 \
CUDA_ARCHITECTURES="87" \
GPU_RUNNER_VARIANT=_jetpack6 \
CGO_EXTRA_LDFLAGS_LINUX=-L/usr/local/cuda/lib64/stubs \
DIST_LIB_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ollama \
DIST_GPU_RUNNER_DEPS_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ollama/cuda_jetpack6
# Intermediate stages used for ./scripts/build_linux.sh
@ -135,12 +175,20 @@ FROM --platform=linux/arm64 builder-arm64 AS build-arm64
COPY . .
COPY --from=runners-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=runners-arm64 /go/src/github.com/ollama/ollama/build/ build/
COPY --from=runners-jetpack5-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=runners-jetpack5-arm64 /go/src/github.com/ollama/ollama/build/ build/
COPY --from=runners-jetpack6-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=runners-jetpack6-arm64 /go/src/github.com/ollama/ollama/build/ build/
ARG GOFLAGS
ARG CGO_CFLAGS
RUN --mount=type=cache,target=/root/.ccache \
go build -trimpath -o dist/linux-arm64/bin/ollama .
RUN cd dist/linux-$GOARCH && \
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH.tgz
RUN cd dist/linux-$GOARCH-jetpack5 && \
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH-jetpack5.tgz
RUN cd dist/linux-$GOARCH-jetpack6 && \
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH-jetpack6.tgz
FROM --platform=linux/amd64 scratch AS dist-amd64
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
@ -181,16 +229,23 @@ RUN rm -rf \
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-amd64
RUN apt-get update && \
apt-get install -y ca-certificates && \
rm -rf /var/lib/apt/lists/*
apt-get clean && rm -rf /var/lib/apt/lists/*
COPY --from=container-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
COPY --from=runners-cuda-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
FROM --platform=linux/arm64 ubuntu:22.04 AS runtime-arm64
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ /lib/
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ /lib/
RUN apt-get update && \
apt-get install -y ca-certificates && \
rm -rf /var/lib/apt/lists/*
apt-get clean && rm -rf /var/lib/apt/lists/*
COPY --from=container-build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/bin/ /bin/
COPY --from=runners-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
COPY --from=cpu-build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
COPY --from=cuda-11-build-runner-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
COPY --from=cuda-12-build-runner-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
COPY --from=cuda-build-jetpack5-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
COPY --from=cuda-build-jetpack6-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
# ROCm libraries larger so we keep it distinct from the CPU/CUDA image
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-rocm
@ -199,7 +254,7 @@ FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-rocm
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64-rocm/lib/ /lib/
RUN apt-get update && \
apt-get install -y ca-certificates && \
rm -rf /var/lib/apt/lists/*
apt-get clean && rm -rf /var/lib/apt/lists/*
COPY --from=container-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
COPY --from=runners-rocm-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/

View File

@ -12,7 +12,7 @@ Get up and running with large language models.
[Download](https://ollama.com/download/Ollama-darwin.zip)
### Windows preview
### Windows
[Download](https://ollama.com/download/OllamaSetup.exe)
@ -47,26 +47,28 @@ Ollama supports a list of models available on [ollama.com/library](https://ollam
Here are some example models that can be downloaded:
| Model | Parameters | Size | Download |
| ------------------ | ---------- | ----- | ------------------------------ |
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
| Llama 3.1 | 70B | 40GB | `ollama run llama3.1:70b` |
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
| Phi 3 Medium | 14B | 7.9GB | `ollama run phi3:medium` |
| Gemma 2 | 2B | 1.6GB | `ollama run gemma2:2b` |
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
| Mistral | 7B | 4.1GB | `ollama run mistral` |
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
| Starling | 7B | 4.1GB | `ollama run starling-lm` |
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
| LLaVA | 7B | 4.5GB | `ollama run llava` |
| Solar | 10.7B | 6.1GB | `ollama run solar` |
| Model | Parameters | Size | Download |
| ------------------ | ---------- | ----- | -------------------------------- |
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
| Llama 3.2 Vision | 11B | 7.9GB | `ollama run llama3.2-vision` |
| Llama 3.2 Vision | 90B | 55GB | `ollama run llama3.2-vision:90b` |
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
| Llama 3.1 | 70B | 40GB | `ollama run llama3.1:70b` |
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
| Phi 3 Medium | 14B | 7.9GB | `ollama run phi3:medium` |
| Gemma 2 | 2B | 1.6GB | `ollama run gemma2:2b` |
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
| Mistral | 7B | 4.1GB | `ollama run mistral` |
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
| Starling | 7B | 4.1GB | `ollama run starling-lm` |
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
| LLaVA | 7B | 4.5GB | `ollama run llava` |
| Solar | 10.7B | 6.1GB | `ollama run solar` |
> [!NOTE]
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
@ -331,6 +333,8 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [ARGO](https://github.com/xark-argo/argo) (Locally download and run Ollama and Huggingface models with RAG on Mac/Windows/Linux)
- [G1](https://github.com/bklieger-groq/g1) (Prototype of using prompting strategies to improve the LLM's reasoning through o1-like reasoning chains.)
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
- [Hexabot](https://github.com/hexastack/hexabot) (A conversational AI builder)
- [Reddit Rate]((https://github.com/rapidarchitect/reddit_analyzer)) (Search and Rate Reddit topics with a weighted summation)
### Terminal
@ -357,6 +361,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Ollama eBook Summary](https://github.com/cognitivetech/ollama-ebook-summary/)
- [Ollama Mixture of Experts (MOE) in 50 lines of code](https://github.com/rapidarchitect/ollama_moe)
- [vim-intelligence-bridge](https://github.com/pepo-ec/vim-intelligence-bridge) Simple interaction of "Ollama" with the Vim editor
- [aichat](https://github.com/sigoden/aichat) All-in-one LLM CLI tool featuring Shell Assistant, Chat-REPL, RAG, AI tools & agents, with access to OpenAI, Claude, Gemini, Ollama, Groq, and more.
### Apple Vision Pro
- [Enchanted](https://github.com/AugustDev/enchanted)
@ -413,6 +418,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Ollama PHP](https://github.com/ArdaGnsrn/ollama-php)
- [Agents-Flex for Java](https://github.com/agents-flex/agents-flex) with [example](https://github.com/agents-flex/agents-flex/tree/main/agents-flex-llm/agents-flex-llm-ollama/src/test/java/com/agentsflex/llm/ollama)
- [Ollama for Swift](https://github.com/mattt/ollama-swift)
- [GoLamify](https://github.com/prasad89/golamify)
### Mobile
@ -450,10 +456,12 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Discord-Ollama Chat Bot](https://github.com/kevinthedang/discord-ollama) (Generalized TypeScript Discord Bot w/ Tuning Documentation)
- [Discord AI chat/moderation bot](https://github.com/rapmd73/Companion) Chat/moderation bot written in python. Uses Ollama to create personalities.
- [Headless Ollama](https://github.com/nischalj10/headless-ollama) (Scripts to automatically install ollama client & models on any OS for apps that depends on ollama server)
- [Local AI Helper](https://github.com/ivostoykov/localAI) (Chrome and Firefox extensions that enable interactions with the active tab and customisable API endpoints. Includes secure storage for user prompts.)
- [vnc-lm](https://github.com/jk011ru/vnc-lm) (A containerized Discord bot with support for attachments and web links)
- [LSP-AI](https://github.com/SilasMarvin/lsp-ai) (Open-source language server for AI-powered functionality)
- [QodeAssist](https://github.com/Palm1r/QodeAssist) (AI-powered coding assistant plugin for Qt Creator)
- [Obsidian Quiz Generator plugin](https://github.com/ECuiDev/obsidian-quiz-generator)
- [TextCraft](https://github.com/suncloudsmoon/TextCraft) (Copilot in Word alternative using Ollama)
### Supported backends

View File

@ -55,7 +55,7 @@ func checkError(resp *http.Response, body []byte) error {
// ClientFromEnvironment creates a new [Client] using configuration from the
// environment variable OLLAMA_HOST, which points to the network host and
// port on which the ollama service is listenting. The format of this variable
// port on which the ollama service is listening. The format of this variable
// is:
//
// <scheme>://<host>:<port>

View File

@ -12,7 +12,7 @@ import (
"time"
)
// StatusError is an error with and HTTP status code.
// StatusError is an error with an HTTP status code and message.
type StatusError struct {
StatusCode int
Status string
@ -57,7 +57,7 @@ type GenerateRequest struct {
Template string `json:"template"`
// Context is the context parameter returned from a previous call to
// Generate call. It can be used to keep a short conversational memory.
// [Client.Generate]. It can be used to keep a short conversational memory.
Context []int `json:"context,omitempty"`
// Stream specifies whether the response is streaming; it is true by default.
@ -90,14 +90,14 @@ type ChatRequest struct {
// Messages is the messages of the chat - can be used to keep a chat memory.
Messages []Message `json:"messages"`
// Stream enable streaming of returned response; true by default.
// Stream enables streaming of returned responses; true by default.
Stream *bool `json:"stream,omitempty"`
// Format is the format to return the response in (e.g. "json").
Format string `json:"format"`
// KeepAlive controls how long the model will stay loaded into memory
// followin the request.
// following the request.
KeepAlive *Duration `json:"keep_alive,omitempty"`
// Tools is an optional list of tools the model has access to.
@ -203,8 +203,8 @@ type Metrics struct {
EvalDuration time.Duration `json:"eval_duration,omitempty"`
}
// Options specified in [GenerateRequest], if you add a new option here add it
// to the API docs also.
// Options specified in [GenerateRequest]. If you add a new option here, also
// add it to the API docs.
type Options struct {
Runner
@ -236,7 +236,7 @@ type Runner struct {
NumGPU int `json:"num_gpu,omitempty"`
MainGPU int `json:"main_gpu,omitempty"`
LowVRAM bool `json:"low_vram,omitempty"`
F16KV bool `json:"f16_kv,omitempty"`
F16KV bool `json:"f16_kv,omitempty"` // Deprecated: This option is ignored
LogitsAll bool `json:"logits_all,omitempty"`
VocabOnly bool `json:"vocab_only,omitempty"`
UseMMap *bool `json:"use_mmap,omitempty"`
@ -613,7 +613,6 @@ func DefaultOptions() Options {
NumGPU: -1, // -1 here indicates that NumGPU should be set dynamically
NumThread: 0, // let the runtime decide
LowVRAM: false,
F16KV: true,
UseMLock: false,
UseMMap: nil,
},

View File

@ -11,10 +11,12 @@ import (
"github.com/ollama/ollama/app/store"
"github.com/ollama/ollama/app/tray"
"github.com/ollama/ollama/envconfig"
)
func Run() {
InitLogging()
slog.Info("app config", "env", envconfig.Values())
ctx, cancel := context.WithCancel(context.Background())
var done chan int

View File

@ -36,8 +36,13 @@ func init() {
ServerLogFile = filepath.Join(AppDataDir, "server.log")
UpgradeLogFile = filepath.Join(AppDataDir, "upgrade.log")
// Executables are stored in APPDATA
AppDir = filepath.Join(localAppData, "Programs", "Ollama")
exe, err := os.Executable()
if err != nil {
slog.Warn("error discovering executable directory", "error", err)
AppDir = filepath.Join(localAppData, "Programs", "Ollama")
} else {
AppDir = filepath.Dir(exe)
}
// Make sure we have PATH set correctly for any spawned children
paths := strings.Split(os.Getenv("PATH"), ";")
@ -64,7 +69,7 @@ func init() {
}
// Make sure our logging dir exists
_, err := os.Stat(AppDataDir)
_, err = os.Stat(AppDataDir)
if errors.Is(err, os.ErrNotExist) {
if err := os.MkdirAll(AppDataDir, 0o755); err != nil {
slog.Error(fmt.Sprintf("create ollama dir %s: %v", AppDataDir, err))

View File

@ -18,11 +18,17 @@ func getCLIFullPath(command string) string {
var cmdPath string
appExe, err := os.Executable()
if err == nil {
// Check both the same location as the tray app, as well as ./bin
cmdPath = filepath.Join(filepath.Dir(appExe), command)
_, err := os.Stat(cmdPath)
if err == nil {
return cmdPath
}
cmdPath = filepath.Join(filepath.Dir(appExe), "bin", command)
_, err = os.Stat(cmdPath)
if err == nil {
return cmdPath
}
}
cmdPath, err = exec.LookPath(command)
if err == nil {

View File

@ -26,19 +26,15 @@ func DoUpgrade(cancel context.CancelFunc, done chan int) error {
slog.Info("starting upgrade with " + installerExe)
slog.Info("upgrade log file " + UpgradeLogFile)
// When running in debug mode, we'll be "verbose" and let the installer pop up and prompt
// make the upgrade show progress, but non interactive
installArgs := []string{
"/CLOSEAPPLICATIONS", // Quit the tray app if it's still running
"/LOG=" + filepath.Base(UpgradeLogFile), // Only relative seems reliable, so set pwd
"/FORCECLOSEAPPLICATIONS", // Force close the tray app - might be needed
}
// make the upgrade as quiet as possible (no GUI, no prompts)
installArgs = append(installArgs,
"/SP", // Skip the "This will install... Do you wish to continue" prompt
"/SUPPRESSMSGBOXES",
"/SP", // Skip the "This will install... Do you wish to continue" prompt
"/NOCANCEL", // Disable the ability to cancel upgrade mid-flight to avoid partially installed upgrades
"/SILENT",
"/VERYSILENT",
)
}
// Safeguard in case we have requests in flight that need to drain...
slog.Info("Waiting for server to shutdown")

View File

@ -53,8 +53,8 @@ RestartIfNeededByRun=no
; https://jrsoftware.org/ishelp/index.php?topic=setup_wizardimagefile
WizardSmallImageFile=.\assets\setup.bmp
; TODO verifty actual min windows version...
; OG Win 10
; Ollama requires Windows 10 22H2 or newer for proper unicode rendering
; TODO: consider setting this to 10.0.19045
MinVersion=10.0.10240
; First release that supports WinRT UI Composition for win32 apps
@ -136,7 +136,7 @@ Type: filesandordirs; Name: "{%TEMP}\ollama*"
Type: filesandordirs; Name: "{%LOCALAPPDATA}\Programs\Ollama"
[Messages]
WizardReady=Ollama Windows Preview
WizardReady=Ollama
ReadyLabel1=%nLet's get you up and running with your own large language models.
SetupAppRunningError=Another Ollama installer is running.%n%nPlease cancel or finish the other installer, then click OK to continue with this install, or Cancel to exit.

View File

@ -11,12 +11,13 @@ import (
)
const (
updateAvailableMenuID = 1
updateMenuID = updateAvailableMenuID + 1
separatorMenuID = updateMenuID + 1
diagLogsMenuID = separatorMenuID + 1
diagSeparatorMenuID = diagLogsMenuID + 1
quitMenuID = diagSeparatorMenuID + 1
_ = iota
updateAvailableMenuID
updateMenuID
separatorMenuID
diagLogsMenuID
diagSeparatorMenuID
quitMenuID
)
func (t *winTray) initMenus() error {

View File

@ -800,9 +800,9 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
case "parameters":
fmt.Println(resp.Parameters)
case "system":
fmt.Println(resp.System)
fmt.Print(resp.System)
case "template":
fmt.Println(resp.Template)
fmt.Print(resp.Template)
}
return nil
@ -1318,7 +1318,7 @@ func NewCLI() *cobra.Command {
log.SetFlags(log.LstdFlags | log.Lshortfile)
cobra.EnableCommandSorting = false
if runtime.GOOS == "windows" {
if runtime.GOOS == "windows" && term.IsTerminal(int(os.Stdout.Fd())) {
console.ConsoleFromFile(os.Stdin) //nolint:errcheck
}

View File

@ -9,7 +9,7 @@ import (
"log/slog"
"strings"
"github.com/ollama/ollama/fileutils"
"github.com/ollama/ollama/llm"
)
type ModelParameters struct {
@ -27,8 +27,8 @@ type AdapterParameters struct {
} `json:"lora_parameters"`
}
func (ModelParameters) KV(t *Tokenizer) fileutils.KV {
kv := fileutils.KV{
func (ModelParameters) KV(t *Tokenizer) llm.KV {
kv := llm.KV{
"general.file_type": uint32(1),
"general.quantization_version": uint32(2),
"tokenizer.ggml.pre": t.Pre,
@ -54,7 +54,7 @@ func (ModelParameters) KV(t *Tokenizer) fileutils.KV {
return kv
}
func (p AdapterParameters) KV() fileutils.KV {
func (p AdapterParameters) KV() llm.KV {
var alpha float32
if p.LoraParameters.Alpha == 0 {
alpha = float32(p.Alpha)
@ -62,7 +62,7 @@ func (p AdapterParameters) KV() fileutils.KV {
alpha = p.LoraParameters.Alpha
}
kv := fileutils.KV{
kv := llm.KV{
"adapter.lora.alpha": alpha,
"adapter.type": "lora",
"general.file_type": uint32(1),
@ -79,19 +79,19 @@ func (ModelParameters) specialTokenTypes() []string {
}
}
func (ModelParameters) writeFile(ws io.WriteSeeker, kv fileutils.KV, ts []fileutils.Tensor) error {
return fileutils.WriteGGUF(ws, kv, ts)
func (ModelParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
return llm.WriteGGUF(ws, kv, ts)
}
func (AdapterParameters) writeFile(ws io.WriteSeeker, kv fileutils.KV, ts []fileutils.Tensor) error {
return fileutils.WriteGGUF(ws, kv, ts)
func (AdapterParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
return llm.WriteGGUF(ws, kv, ts)
}
type ModelConverter interface {
// KV maps parameters to LLM key-values
KV(*Tokenizer) fileutils.KV
KV(*Tokenizer) llm.KV
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
Tensors([]Tensor) []fileutils.Tensor
Tensors([]Tensor) []llm.Tensor
// Replacements returns a list of string pairs to replace in tensor names.
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
Replacements() []string
@ -99,7 +99,7 @@ type ModelConverter interface {
// specialTokenTypes returns any special token types the model uses
specialTokenTypes() []string
// writeFile writes the model to the provided io.WriteSeeker
writeFile(io.WriteSeeker, fileutils.KV, []fileutils.Tensor) error
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
}
type moreParser interface {
@ -108,17 +108,17 @@ type moreParser interface {
type AdapterConverter interface {
// KV maps parameters to LLM key-values
KV(fileutils.KV) fileutils.KV
KV(llm.KV) llm.KV
// Tensors maps input tensors to LLM tensors. Adapter specific modifications can be done here.
Tensors([]Tensor) []fileutils.Tensor
Tensors([]Tensor) []llm.Tensor
// Replacements returns a list of string pairs to replace in tensor names.
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
Replacements() []string
writeFile(io.WriteSeeker, fileutils.KV, []fileutils.Tensor) error
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
}
func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV fileutils.KV) error {
func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV llm.KV) error {
bts, err := fs.ReadFile(fsys, "adapter_config.json")
if err != nil {
return err

View File

@ -8,7 +8,7 @@ import (
"slices"
"strings"
"github.com/ollama/ollama/fileutils"
"github.com/ollama/ollama/llm"
)
type bertModel struct {
@ -85,7 +85,7 @@ func (p *bertModel) parseMore(fsys fs.FS) error {
return nil
}
func (p *bertModel) KV(t *Tokenizer) fileutils.KV {
func (p *bertModel) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "bert"
kv["bert.attention.causal"] = false
@ -132,8 +132,8 @@ func (p *bertModel) KV(t *Tokenizer) fileutils.KV {
return kv
}
func (p *bertModel) Tensors(ts []Tensor) []fileutils.Tensor {
var out []fileutils.Tensor
func (p *bertModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
if slices.Contains([]string{
"embeddings.position_ids",
@ -143,7 +143,7 @@ func (p *bertModel) Tensors(ts []Tensor) []fileutils.Tensor {
continue
}
out = append(out, fileutils.Tensor{
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@ -6,7 +6,7 @@ import (
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fileutils"
"github.com/ollama/ollama/llm"
)
type gemmaModel struct {
@ -23,7 +23,7 @@ type gemmaModel struct {
var _ ModelConverter = (*gemmaModel)(nil)
func (p *gemmaModel) KV(t *Tokenizer) fileutils.KV {
func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "gemma"
kv["gemma.context_length"] = p.MaxPositionEmbeddings
@ -42,14 +42,14 @@ func (p *gemmaModel) KV(t *Tokenizer) fileutils.KV {
return kv
}
func (p *gemmaModel) Tensors(ts []Tensor) []fileutils.Tensor {
var out []fileutils.Tensor
func (p *gemmaModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
if strings.HasSuffix(t.Name(), "_norm.weight") {
t.SetRepacker(p.addOne)
}
out = append(out, fileutils.Tensor{
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@ -1,7 +1,7 @@
package convert
import (
"github.com/ollama/ollama/fileutils"
"github.com/ollama/ollama/llm"
)
type gemma2Model struct {
@ -11,7 +11,7 @@ type gemma2Model struct {
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
}
func (p *gemma2Model) KV(t *Tokenizer) fileutils.KV {
func (p *gemma2Model) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "gemma2"
kv["gemma2.context_length"] = p.MaxPositionEmbeddings

View File

@ -6,7 +6,7 @@ import (
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fileutils"
"github.com/ollama/ollama/llm"
)
type gemma2Adapter struct {
@ -15,14 +15,14 @@ type gemma2Adapter struct {
var _ AdapterConverter = (*gemma2Adapter)(nil)
func (p *gemma2Adapter) KV(baseKV fileutils.KV) fileutils.KV {
func (p *gemma2Adapter) KV(baseKV llm.KV) llm.KV {
kv := p.AdapterParameters.KV()
kv["general.architecture"] = "gemma2"
return kv
}
func (p *gemma2Adapter) Tensors(ts []Tensor) []fileutils.Tensor {
var out []fileutils.Tensor
func (p *gemma2Adapter) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
shape := t.Shape()
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
@ -31,7 +31,7 @@ func (p *gemma2Adapter) Tensors(ts []Tensor) []fileutils.Tensor {
t.SetRepacker(p.repack)
}
out = append(out, fileutils.Tensor{
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@ -9,7 +9,7 @@ import (
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fileutils"
"github.com/ollama/ollama/llm"
)
type llamaModel struct {
@ -46,7 +46,7 @@ type llamaModel struct {
var _ ModelConverter = (*llamaModel)(nil)
func (p *llamaModel) KV(t *Tokenizer) fileutils.KV {
func (p *llamaModel) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "llama"
kv["llama.vocab_size"] = p.VocabSize
@ -120,11 +120,11 @@ func (p *llamaModel) KV(t *Tokenizer) fileutils.KV {
return kv
}
func (p *llamaModel) Tensors(ts []Tensor) []fileutils.Tensor {
var out []fileutils.Tensor
func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
if p.RopeScaling.factors != nil {
out = append(out, fileutils.Tensor{
out = append(out, llm.Tensor{
Name: "rope_freqs.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.factors))},
@ -138,7 +138,7 @@ func (p *llamaModel) Tensors(ts []Tensor) []fileutils.Tensor {
t.SetRepacker(p.repack)
}
out = append(out, fileutils.Tensor{
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@ -7,7 +7,7 @@ import (
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fileutils"
"github.com/ollama/ollama/llm"
)
type llamaAdapter struct {
@ -18,7 +18,7 @@ type llamaAdapter struct {
var _ AdapterConverter = (*llamaAdapter)(nil)
func (p *llamaAdapter) KV(baseKV fileutils.KV) fileutils.KV {
func (p *llamaAdapter) KV(baseKV llm.KV) llm.KV {
kv := p.AdapterParameters.KV()
kv["general.architecture"] = "llama"
kv["llama.attention.head_count"] = baseKV["llama.attention.head_count"]
@ -29,8 +29,8 @@ func (p *llamaAdapter) KV(baseKV fileutils.KV) fileutils.KV {
return kv
}
func (p *llamaAdapter) Tensors(ts []Tensor) []fileutils.Tensor {
var out []fileutils.Tensor
func (p *llamaAdapter) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
shape := t.Shape()
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
@ -41,7 +41,7 @@ func (p *llamaAdapter) Tensors(ts []Tensor) []fileutils.Tensor {
t.SetRepacker(p.repack)
}
out = append(out, fileutils.Tensor{
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: shape,

View File

@ -6,7 +6,7 @@ import (
"slices"
"strings"
"github.com/ollama/ollama/fileutils"
"github.com/ollama/ollama/llm"
)
type mixtralModel struct {
@ -15,7 +15,7 @@ type mixtralModel struct {
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
}
func (p *mixtralModel) KV(t *Tokenizer) fileutils.KV {
func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
kv := p.llamaModel.KV(t)
if p.NumLocalExperts > 0 {
@ -29,7 +29,7 @@ func (p *mixtralModel) KV(t *Tokenizer) fileutils.KV {
return kv
}
func (p *mixtralModel) Tensors(ts []Tensor) []fileutils.Tensor {
func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
oldnew := []string{
"model.layers", "blk",
"w1", "ffn_gate_exps",
@ -56,10 +56,10 @@ func (p *mixtralModel) Tensors(ts []Tensor) []fileutils.Tensor {
return true
})
var out []fileutils.Tensor
var out []llm.Tensor
for n, e := range experts {
// TODO(mxyng): sanity check experts
out = append(out, fileutils.Tensor{
out = append(out, llm.Tensor{
Name: n,
Kind: e[0].Kind(),
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),

View File

@ -8,7 +8,7 @@ import (
"strings"
"sync"
"github.com/ollama/ollama/fileutils"
"github.com/ollama/ollama/llm"
)
type phi3Model struct {
@ -37,7 +37,7 @@ type phi3Model struct {
var _ ModelConverter = (*phi3Model)(nil)
func (p *phi3Model) KV(t *Tokenizer) fileutils.KV {
func (p *phi3Model) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "phi3"
kv["phi3.context_length"] = p.MaxPositionEmbeddings
@ -68,19 +68,19 @@ func (p *phi3Model) KV(t *Tokenizer) fileutils.KV {
return kv
}
func (p *phi3Model) Tensors(ts []Tensor) []fileutils.Tensor {
func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
var addRopeFactors sync.Once
out := make([]fileutils.Tensor, 0, len(ts)+2)
out := make([]llm.Tensor, 0, len(ts)+2)
for _, t := range ts {
if strings.HasPrefix(t.Name(), "blk.0.") {
addRopeFactors.Do(func() {
out = append(out, fileutils.Tensor{
out = append(out, llm.Tensor{
Name: "rope_factors_long.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.LongFactor))},
WriterTo: p.RopeScaling.LongFactor,
}, fileutils.Tensor{
}, llm.Tensor{
Name: "rope_factors_short.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.ShortFactor))},
@ -89,7 +89,7 @@ func (p *phi3Model) Tensors(ts []Tensor) []fileutils.Tensor {
})
}
out = append(out, fileutils.Tensor{
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@ -20,7 +20,7 @@ import (
"golang.org/x/exp/maps"
"github.com/ollama/ollama/fileutils"
"github.com/ollama/ollama/llm"
)
type tensorData struct {
@ -29,7 +29,7 @@ type tensorData struct {
Shape []int `json:"shape"`
}
func convertFull(t *testing.T, fsys fs.FS) (*os.File, fileutils.KV, *fileutils.Tensors) {
func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, *llm.Tensors) {
t.Helper()
f, err := os.CreateTemp(t.TempDir(), "f16")
@ -48,7 +48,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, fileutils.KV, *fileutils.T
}
t.Cleanup(func() { r.Close() })
m, _, err := fileutils.DecodeGGML(r, math.MaxInt)
m, _, err := llm.DecodeGGML(r, math.MaxInt)
if err != nil {
t.Fatal(err)
}
@ -60,7 +60,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, fileutils.KV, *fileutils.T
return r, m.KV(), m.Tensors()
}
func generateResultsJSON(t *testing.T, f *os.File, kv fileutils.KV, tensors *fileutils.Tensors) map[string]string {
func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors *llm.Tensors) map[string]string {
actual := make(map[string]string)
for k, v := range kv {
if s, ok := v.(json.Marshaler); !ok {
@ -330,7 +330,7 @@ func TestConvertAdapter(t *testing.T) {
}
defer r.Close()
m, _, err := fileutils.DecodeGGML(r, math.MaxInt)
m, _, err := llm.DecodeGGML(r, math.MaxInt)
if err != nil {
t.Fatal(err)
}

View File

@ -1,3 +0,0 @@
# `discover`
This package is responsible for discovering information about the system and the capabilities to run LLM. This includes GPU and CPU discovery so the optimal runner can be chosen for a given model. The ollama scheduler relies on up-to-date available memory information, so this package provides the ability to refresh free memory as efficiently as possible.

View File

@ -37,19 +37,6 @@ func GetSupportedGFX(libDir string) ([]string, error) {
return ret, nil
}
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "rocm" {
// TODO shouldn't happen if things are wired correctly...
slog.Debug("rocmGetVisibleDevicesEnv skipping over non-rocm device", "library", info.Library)
continue
}
ids = append(ids, info.ID)
}
return "HIP_VISIBLE_DEVICES", strings.Join(ids, ",")
}
func commonAMDValidateLibDir() (string, error) {
// Favor our bundled version

View File

@ -64,7 +64,7 @@ func NewHipLib() (*HipLib, error) {
return hl, nil
}
// The hip library only evaluates the HIP_VISIBLE_DEVICES variable at startup
// The hip library only evaluates the ROCR_VISIBLE_DEVICES variable at startup
// so we have to unload/reset the library after we do our initial discovery
// to make sure our updates to that variable are processed by llama.cpp
func (hl *HipLib) Release() {

View File

@ -64,16 +64,13 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
// Determine if the user has already pre-selected which GPUs to look at, then ignore the others
var visibleDevices []string
hipVD := envconfig.HipVisibleDevices() // zero based index only
rocrVD := envconfig.RocrVisibleDevices() // zero based index or UUID, but consumer cards seem to not support UUID
rocrVD := envconfig.RocrVisibleDevices() // zero based index or UUID
gpuDO := envconfig.GpuDeviceOrdinal() // zero based index
switch {
// TODO is this priorty order right?
case hipVD != "":
visibleDevices = strings.Split(hipVD, ",")
case rocrVD != "":
visibleDevices = strings.Split(rocrVD, ",")
// TODO - since we don't yet support UUIDs, consider detecting and reporting here
// all our test systems show GPU-XX indicating UUID is not supported
case hipVD != "":
visibleDevices = strings.Split(hipVD, ",")
case gpuDO != "":
visibleDevices = strings.Split(gpuDO, ",")
}
@ -99,7 +96,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
}
return a < b
})
cpuCount := 0
gpuCount := 0
for _, match := range matches {
slog.Debug("evaluating amdgpu node " + match)
fp, err := os.Open(match)
@ -108,11 +105,6 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
continue
}
defer fp.Close()
nodeID, err := strconv.Atoi(filepath.Base(filepath.Dir(match)))
if err != nil {
slog.Debug("failed to parse node ID", "error", err)
continue
}
scanner := bufio.NewScanner(fp)
isCPU := false
@ -186,20 +178,19 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
// do reliably report VRAM usage.
if isCPU {
cpuCount++
continue
}
// CPUs are always first in the list
gpuID := nodeID - cpuCount
// Shouldn't happen, but just in case...
if gpuID < 0 {
err := fmt.Errorf("unexpected amdgpu sysfs data resulted in negative GPU ID, please set OLLAMA_DEBUG=1 and report an issue")
slog.Error(err.Error())
return nil, err
// Skip over any GPUs that are masked
if major == 0 && minor == 0 && patch == 0 {
slog.Debug("skipping gpu with gfx000")
continue
}
// Keep track of numeric IDs based on valid GPUs
gpuID := gpuCount
gpuCount += 1
// Look up the memory for the current node
totalMemory := uint64(0)
usedMemory := uint64(0)
@ -273,6 +264,14 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
name = fmt.Sprintf("%04x:%04x", vendor, device)
}
// Favor UUIDs if available to reduce possibility of getting the numeric IDs wrong
var ID string
if uniqueID != 0 {
ID = fmt.Sprintf("GPU-%016x", uniqueID)
} else {
ID = strconv.Itoa(gpuID)
}
gpuInfo := RocmGPUInfo{
GpuInfo: GpuInfo{
Library: "rocm",
@ -280,7 +279,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
TotalMemory: totalMemory,
FreeMemory: (totalMemory - usedMemory),
},
ID: strconv.Itoa(gpuID),
ID: ID,
Name: name,
Compute: fmt.Sprintf("gfx%d%x%x", major, minor, patch),
MinimumMemory: rocmMinimumMemory,
@ -288,6 +287,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
DriverMinor: driverMinor,
},
usedFilepath: usedFile,
index: gpuID,
}
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
@ -319,7 +319,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
if len(visibleDevices) > 0 {
include := false
for _, visible := range visibleDevices {
if visible == gpuInfo.ID {
if visible == gpuInfo.ID || visible == strconv.Itoa(gpuInfo.index) {
include = true
break
}
@ -350,7 +350,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
return nil, err
}
}
gpuInfo.DependencyPath = libDir
gpuInfo.DependencyPath = []string{libDir}
if gfxOverride == "" {
// Only load supported list once
@ -516,3 +516,20 @@ func verifyKFDDriverAccess() error {
fd.Close()
return nil
}
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "rocm" {
// TODO shouldn't happen if things are wired correctly...
slog.Debug("rocmGetVisibleDevicesEnv skipping over non-rocm device", "library", info.Library)
continue
}
ids = append(ids, info.ID)
}
// There are 3 potential env vars to use to select GPUs.
// ROCR_VISIBLE_DEVICES supports UUID or numeric so is our preferred on linux
// GPU_DEVICE_ORDINAL supports numeric IDs only
// HIP_VISIBLE_DEVICES supports numeric IDs only
return "ROCR_VISIBLE_DEVICES", strings.Join(ids, ",")
}

View File

@ -43,7 +43,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
slog.Debug("error looking up amd driver version", "error", err)
}
// Note: the HIP library automatically handles subsetting to any HIP_VISIBLE_DEVICES the user specified
// Note: the HIP library automatically handles subsetting to any *_VISIBLE_DEVICES the user specified
count := hl.HipGetDeviceCount()
if count == 0 {
err := fmt.Errorf("no compatible amdgpu devices detected")
@ -111,7 +111,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
UnreliableFreeMemory: true,
ID: strconv.Itoa(i), // TODO this is probably wrong if we specify visible devices
DependencyPath: libDir,
DependencyPath: []string{libDir},
MinimumMemory: rocmMinimumMemory,
Name: name,
Compute: gfx,
@ -201,3 +201,20 @@ func (gpus RocmGPUInfoList) RefreshFreeMemory() error {
}
return nil
}
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "rocm" {
// TODO shouldn't happen if things are wired correctly...
slog.Debug("rocmGetVisibleDevicesEnv skipping over non-rocm device", "library", info.Library)
continue
}
ids = append(ids, info.ID)
}
// There are 3 potential env vars to use to select GPUs.
// ROCR_VISIBLE_DEVICES supports UUID or numeric but does not work on Windows
// HIP_VISIBLE_DEVICES supports numeric IDs only
// GPU_DEVICE_ORDINAL supports numeric IDs only
return "HIP_VISIBLE_DEVICES", strings.Join(ids, ",")
}

View File

@ -240,7 +240,7 @@ func GetGPUInfo() GpuInfoList {
Library: "cpu",
Variant: cpuCapability.String(),
ID: "0",
DependencyPath: depPath,
DependencyPath: []string{depPath},
},
CPUs: details,
},
@ -293,11 +293,11 @@ func GetGPUInfo() GpuInfoList {
gpuInfo.DriverMinor = driverMinor
variant := cudaVariant(gpuInfo)
if depPath != "" {
gpuInfo.DependencyPath = depPath
gpuInfo.DependencyPath = []string{depPath}
// Check for variant specific directory
if variant != "" {
if _, err := os.Stat(filepath.Join(depPath, "cuda_"+variant)); err == nil {
gpuInfo.DependencyPath = filepath.Join(depPath, "cuda_"+variant)
gpuInfo.DependencyPath = []string{filepath.Join(depPath, "cuda_"+variant), depPath}
}
}
}
@ -316,7 +316,9 @@ func GetGPUInfo() GpuInfoList {
// query the management library as well so we can record any skew between the two
// which represents overhead on the GPU we must set aside on subsequent updates
if cHandles.nvml != nil {
C.nvml_get_free(*cHandles.nvml, C.int(gpuInfo.index), &memInfo.free, &memInfo.total, &memInfo.used)
uuid := C.CString(gpuInfo.ID)
defer C.free(unsafe.Pointer(uuid))
C.nvml_get_free(*cHandles.nvml, uuid, &memInfo.free, &memInfo.total, &memInfo.used)
if memInfo.err != nil {
slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
@ -368,7 +370,7 @@ func GetGPUInfo() GpuInfoList {
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.DependencyPath = depPath
gpuInfo.DependencyPath = []string{depPath}
oneapiGPUs = append(oneapiGPUs, gpuInfo)
}
}
@ -417,7 +419,9 @@ func GetGPUInfo() GpuInfoList {
}
for i, gpu := range cudaGPUs {
if cHandles.nvml != nil {
C.nvml_get_free(*cHandles.nvml, C.int(gpu.index), &memInfo.free, &memInfo.total, &memInfo.used)
uuid := C.CString(gpu.ID)
defer C.free(unsafe.Pointer(uuid))
C.nvml_get_free(*cHandles.nvml, uuid, &memInfo.free, &memInfo.total, &memInfo.used)
} else if cHandles.cudart != nil {
C.cudart_bootstrap(*cHandles.cudart, C.int(gpu.index), &memInfo)
} else if cHandles.nvcuda != nil {

View File

@ -4,6 +4,7 @@
#include "gpu_info_nvcuda.h"
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
LOG(resp->ch.verbose, "initializing %s\n", nvcuda_lib_path);
CUresult ret;
resp->err = NULL;
resp->num_devices = 0;
@ -57,8 +58,10 @@ void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
resp->cudaErr = -1;
return;
}
LOG(resp->ch.verbose, "dlsym: %s - %p\n", l[i].s, *l[i].p);
}
LOG(resp->ch.verbose, "calling cuInit\n");
ret = (*resp->ch.cuInit)(0);
if (ret != CUDA_SUCCESS) {
LOG(resp->ch.verbose, "cuInit err: %d\n", ret);
@ -75,15 +78,18 @@ void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
resp->ch.driver_minor = 0;
// Report driver version if we're in verbose mode, ignore errors
LOG(resp->ch.verbose, "calling cuDriverGetVersion\n");
ret = (*resp->ch.cuDriverGetVersion)(&version);
if (ret != CUDA_SUCCESS) {
LOG(resp->ch.verbose, "cuDriverGetVersion failed: %d\n", ret);
} else {
LOG(resp->ch.verbose, "raw version 0x%x\n", version);
resp->ch.driver_major = version / 1000;
resp->ch.driver_minor = (version - (resp->ch.driver_major * 1000)) / 10;
LOG(resp->ch.verbose, "CUDA driver version: %d.%d\n", resp->ch.driver_major, resp->ch.driver_minor);
}
LOG(resp->ch.verbose, "calling cuDeviceGetCount\n");
ret = (*resp->ch.cuDeviceGetCount)(&resp->num_devices);
if (ret != CUDA_SUCCESS) {
LOG(resp->ch.verbose, "cuDeviceGetCount err: %d\n", ret);
@ -94,6 +100,7 @@ void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
resp->cudaErr = ret;
return;
}
LOG(resp->ch.verbose, "device count %d\n", resp->num_devices);
}
const int buflen = 256;

View File

@ -17,7 +17,7 @@ void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp) {
} l[] = {
{"nvmlInit_v2", (void *)&resp->ch.nvmlInit_v2},
{"nvmlShutdown", (void *)&resp->ch.nvmlShutdown},
{"nvmlDeviceGetHandleByIndex", (void *)&resp->ch.nvmlDeviceGetHandleByIndex},
{"nvmlDeviceGetHandleByUUID", (void *)&resp->ch.nvmlDeviceGetHandleByUUID},
{"nvmlDeviceGetMemoryInfo", (void *)&resp->ch.nvmlDeviceGetMemoryInfo},
{NULL, NULL},
};
@ -67,20 +67,20 @@ void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp) {
}
void nvml_get_free(nvml_handle_t h, int device_id, uint64_t *free, uint64_t *total, uint64_t *used) {
void nvml_get_free(nvml_handle_t h, char *uuid, uint64_t *free, uint64_t *total, uint64_t *used) {
nvmlDevice_t device;
nvmlMemory_t memInfo = {0};
nvmlReturn_t ret;
ret = (*h.nvmlDeviceGetHandleByIndex)(device_id, &device);
ret = (*h.nvmlDeviceGetHandleByUUID)((const char *)(uuid), &device);
if (ret != NVML_SUCCESS) {
LOG(1, "unable to get device handle %d: %d", device_id, ret);
LOG(1, "unable to get device handle %s: %d", uuid, ret);
*free = 0;
return;
}
ret = (*h.nvmlDeviceGetMemoryInfo)(device, &memInfo);
if (ret != NVML_SUCCESS) {
LOG(1, "device memory info lookup failure %d: %d", device_id, ret);
LOG(1, "device memory info lookup failure %s: %d", uuid, ret);
*free = 0;
return;
}

View File

@ -25,7 +25,7 @@ typedef struct nvml_handle {
uint16_t verbose;
nvmlReturn_t (*nvmlInit_v2)(void);
nvmlReturn_t (*nvmlShutdown)(void);
nvmlReturn_t (*nvmlDeviceGetHandleByIndex)(unsigned int, nvmlDevice_t *);
nvmlReturn_t (*nvmlDeviceGetHandleByUUID)(const char *, nvmlDevice_t *);
nvmlReturn_t (*nvmlDeviceGetMemoryInfo)(nvmlDevice_t, nvmlMemory_t *);
} nvml_handle_t;
@ -41,7 +41,7 @@ typedef struct nvml_compute_capability {
} nvml_compute_capability_t;
void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp);
void nvml_get_free(nvml_handle_t ch, int device_id, uint64_t *free, uint64_t *total, uint64_t *used);
void nvml_get_free(nvml_handle_t ch, char *uuid, uint64_t *free, uint64_t *total, uint64_t *used);
void nvml_release(nvml_handle_t ch);
#endif // __GPU_INFO_NVML_H__

View File

@ -3,9 +3,11 @@ package discover
import (
"bufio"
"fmt"
"io"
"os"
"reflect"
"regexp"
"sort"
"strings"
"github.com/ollama/ollama/format"
@ -109,6 +111,10 @@ func GetCPUDetails() ([]CPU, error) {
if err != nil {
return nil, err
}
return linuxCPUDetails(file)
}
func linuxCPUDetails(file io.Reader) ([]CPU, error) {
reColumns := regexp.MustCompile("\t+: ")
scanner := bufio.NewScanner(file)
cpuInfos := []linuxCpuInfo{}
@ -131,6 +137,9 @@ func GetCPUDetails() ([]CPU, error) {
cpu = &linuxCpuInfo{}
}
}
if cpu.ID != "" {
cpuInfos = append(cpuInfos, *cpu)
}
// Process the sockets/cores/threads
socketByID := map[string]*CPU{}
@ -177,10 +186,14 @@ func GetCPUDetails() ([]CPU, error) {
s.EfficiencyCoreCount = efficiencyCoreCount
}
}
result := []CPU{}
for _, c := range socketByID {
result = append(result, *c)
keys := make([]string, 0, len(socketByID))
result := make([]CPU, 0, len(socketByID))
for k := range socketByID {
keys = append(keys, k)
}
sort.Strings(keys)
for _, k := range keys {
result = append(result, *socketByID[k])
}
return result, nil
}

2097
discover/gpu_linux_test.go Normal file

File diff suppressed because it is too large Load Diff

View File

@ -25,7 +25,7 @@ type GpuInfo struct { // TODO better name maybe "InferenceProcessor"?
MinimumMemory uint64 `json:"-"`
// Any extra PATH/LD_LIBRARY_PATH dependencies required for the Library to operate properly
DependencyPath string `json:"lib_path,omitempty"`
DependencyPath []string `json:"lib_path,omitempty"`
// Extra environment variables specific to the GPU as list of [key,value]
EnvWorkarounds [][2]string `json:"envs,omitempty"`
@ -175,6 +175,11 @@ func (si SystemInfo) GetOptimalThreadCount() int {
if len(si.System.CPUs) == 0 {
return 0
}
// Allocate thread count matching the performance cores on a single socket
return si.System.CPUs[0].CoreCount - si.System.CPUs[0].EfficiencyCoreCount
coreCount := 0
for _, c := range si.System.CPUs {
coreCount += c.CoreCount - c.EfficiencyCoreCount
}
return coreCount
}

View File

@ -355,7 +355,6 @@ curl http://localhost:11434/api/generate -d '{
"num_gpu": 1,
"main_gpu": 0,
"low_vram": false,
"f16_kv": true,
"vocab_only": false,
"use_mmap": true,
"use_mlock": false,

View File

@ -108,7 +108,7 @@ Custom CPU settings are not currently supported in the new Go server build but w
#### Containerized Linux Build
If you have Docker available, you can build linux binaries with `OLLAMA_NEW_RUNNERS=1 ./scripts/build_linux.sh` which has the CUDA and ROCm dependencies included. The resulting binary is placed in `./dist`
If you have Docker available, you can build linux binaries with `./scripts/build_linux.sh` which has the CUDA and ROCm dependencies included. The resulting binary is placed in `./dist`
### Windows
@ -118,10 +118,13 @@ The following tools are required as a minimal development environment to build C
- https://go.dev/dl/
- Git
- https://git-scm.com/download/win
- GCC and Make. There are multiple options on how to go about installing these tools on Windows. We have verified the following, but others may work as well:
- clang with gcc compat and Make. There are multiple options on how to go about installing these tools on Windows. We have verified the following, but others may work as well:
- [MSYS2](https://www.msys2.org/)
- After installing, from an MSYS2 terminal, run `pacman -S mingw-w64-ucrt-x86_64-gcc make` to install the required tools
- Assuming you used the default install prefix for msys2 above, add `c:\msys64\ucrt64\bin` and `c:\msys64\usr\bin` to your environment variable `PATH` where you will perform the build steps below (e.g. system-wide, account-level, powershell, cmd, etc.)
- After installing, from an MSYS2 terminal, run `pacman -S mingw-w64-clang-x86_64-gcc-compat mingw-w64-clang-x86_64-clang make` to install the required tools
- Assuming you used the default install prefix for msys2 above, add `C:\msys64\clang64\bin` and `c:\msys64\usr\bin` to your environment variable `PATH` where you will perform the build steps below (e.g. system-wide, account-level, powershell, cmd, etc.)
> [!NOTE]
> Due to bugs in the GCC C++ library for unicode support, Ollama should be built with clang on windows.
Then, build the `ollama` binary:

View File

@ -74,6 +74,10 @@ would set `HSA_OVERRIDE_GFX_VERSION="10.3.0"` as an environment variable for the
server. If you have an unsupported AMD GPU you can experiment using the list of
supported types below.
If you have multiple GPUs with different GFX versions, append the numeric device
number to the environment variable to set them individually. For example,
`HSA_OVERRIDE_GFX_VERSION_0=10.3.0` and `HSA_OVERRIDE_GFX_VERSION_1=11.0.0`
At this time, the known supported GPU types on linux are the following LLVM Targets.
This table shows some example GPUs that map to these LLVM targets:
| **LLVM Target** | **An Example GPU** |
@ -99,9 +103,10 @@ Reach out on [Discord](https://discord.gg/ollama) or file an
### GPU Selection
If you have multiple AMD GPUs in your system and want to limit Ollama to use a
subset, you can set `HIP_VISIBLE_DEVICES` to a comma separated list of GPUs.
subset, you can set `ROCR_VISIBLE_DEVICES` to a comma separated list of GPUs.
You can see the list of devices with `rocminfo`. If you want to ignore the GPUs
and force CPU usage, use an invalid GPU ID (e.g., "-1")
and force CPU usage, use an invalid GPU ID (e.g., "-1"). When available, use the
`Uuid` to uniquely identify the device instead of numeric value.
### Container Permission

View File

@ -32,7 +32,7 @@ ollama run my-model
Ollama supports importing adapters based on several different model architectures including:
* Llama (including Llama 2, Llama 3, and Llama 3.1);
* Llama (including Llama 2, Llama 3, Llama 3.1, and Llama 3.2);
* Mistral (including Mistral 1, Mistral 2, and Mixtral); and
* Gemma (including Gemma 1 and Gemma 2)
@ -67,14 +67,12 @@ ollama run my-model
Ollama supports importing models for several different architectures including:
* Llama (including Llama 2, Llama 3, and Llama 3.1);
* Llama (including Llama 2, Llama 3, Llama 3.1, and Llama 3.2);
* Mistral (including Mistral 1, Mistral 2, and Mixtral);
* Gemma (including Gemma 1 and Gemma 2); and
* Phi3
This includes importing foundation models as well as any fine tuned models which which have been _fused_ with a foundation model.
This includes importing foundation models as well as any fine tuned models which have been _fused_ with a foundation model.
## Importing a GGUF based model or adapter
If you have a GGUF based model or adapter it is possible to import it into Ollama. You can obtain a GGUF model or adapter by:

View File

@ -120,7 +120,7 @@ FROM <model directory>
The model directory should contain the Safetensors weights for a supported architecture.
Currently supported model architectures:
* Llama (including Llama 2, Llama 3, and Llama 3.1)
* Llama (including Llama 2, Llama 3, Llama 3.1, and Llama 3.2)
* Mistral (including Mistral 1, Mistral 2, and Mixtral)
* Gemma (including Gemma 1 and Gemma 2)
* Phi3

View File

@ -95,7 +95,9 @@ If none of those resolve the problem, gather additional information and file an
On linux, AMD GPU access typically requires `video` and/or `render` group membership to access the `/dev/kfd` device. If permissions are not set up correctly, Ollama will detect this and report an error in the server log.
When running in a container, in some Linux distributions and container runtimes, the ollama process may be unable to access the GPU. Use `ls -ld /dev/kfd /dev/dri /dev/dri/*` on the host system to determine the group assignments on your system, and pass additional `--group-add ...` arguments to the container so it can access the required devices.
When running in a container, in some Linux distributions and container runtimes, the ollama process may be unable to access the GPU. Use `ls -lnd /dev/kfd /dev/dri /dev/dri/*` on the host system to determine the **numeric** group IDs on your system, and pass additional `--group-add ...` arguments to the container so it can access the required devices. For example, in the following output `crw-rw---- 1 0 44 226, 0 Sep 16 16:55 /dev/dri/card0` the group ID column is `44`
If Ollama initially works on the GPU in a docker container, but then switches to running on CPU after some period of time with errors in the server log reporting GPU discovery failures, this can be resolved by disabling systemd cgroup management in Docker. Edit `/etc/docker/daemon.json` on the host and add `"exec-opts": ["native.cgroupdriver=cgroupfs"]` to the docker configuration.
If you are experiencing problems getting Ollama to correctly discover or use your GPU for inference, the following may help isolate the failure.
- `AMD_LOG_LEVEL=3` Enable info log levels in the AMD HIP/ROCm libraries. This can help show more detailed error codes that can help troubleshoot problems

View File

@ -10,7 +10,7 @@ This sounds like a typical censored response, but even llama2-uncensored gives a
So let's figure out how we can use **LangChain** with Ollama to ask our question to the actual document, the Odyssey by Homer, using Python.
Let's start by asking a simple question that we can get an answer to from the **Llama2** model using **Ollama**. First, we need to install the **LangChain** package:
Let's start by asking a simple question that we can get an answer to from the **Llama3** model using **Ollama**. First, we need to install the **LangChain** package:
`pip install langchain_community`

View File

@ -1,22 +1,15 @@
# Ollama Windows Preview
# Ollama Windows
Welcome to the Ollama Windows preview.
Welcome to Ollama for Windows.
No more WSL required!
Ollama now runs as a native Windows application, including NVIDIA and AMD Radeon GPU support.
After installing Ollama Windows Preview, Ollama will run in the background and
After installing Ollama for Windows, Ollama will run in the background and
the `ollama` command line is available in `cmd`, `powershell` or your favorite
terminal application. As usual the Ollama [api](./api.md) will be served on
`http://localhost:11434`.
As this is a preview release, you should expect a few bugs here and there. If
you run into a problem you can reach out on
[Discord](https://discord.gg/ollama), or file an
[issue](https://github.com/ollama/ollama/issues).
Logs will often be helpful in diagnosing the problem (see
[Troubleshooting](#troubleshooting) below)
## System Requirements
* Windows 10 22H2 or newer, Home or Pro
@ -25,6 +18,32 @@ Logs will often be helpful in diagnosing the problem (see
Ollama uses unicode characters for progress indication, which may render as unknown squares in some older terminal fonts in Windows 10. If you see this, try changing your terminal font settings.
## Filesystem Requirements
The Ollama install does not require Administrator, and installs in your home directory by default. You'll need at least 4GB of space for the binary install. Once you've installed Ollama, you'll need additional space for storing the Large Language models, which can be tens to hundreds of GB in size. If your home directory doesn't have enough space, you can change where the binaries are installed, and where the models are stored.
### Changing Install Location
To install the Ollama application in a location different than your home directory, start the installer with the following flag
```powershell
OllamaSetup.exe /DIR="d:\some\location"
```
### Changing Model Location
To change where Ollama stores the downloaded models instead of using your home directory, set the environment variable `OLLAMA_MODELS` in your user account.
1. Start the Settings (Windows 11) or Control Panel (Windows 10) application and search for _environment variables_.
2. Click on _Edit environment variables for your account_.
3. Edit or create a new variable for your user account for `OLLAMA_MODELS` where you want the models stored
4. Click OK/Apply to save.
If Ollama is already running, Quit the tray application and relaunch it from the Start menu, or a new terminal started after you saved the environment variables.
## API Access
Here's a quick example showing API access from `powershell`
@ -34,10 +53,6 @@ Here's a quick example showing API access from `powershell`
## Troubleshooting
While we're in preview, `OLLAMA_DEBUG` is always enabled, which adds
a "view logs" menu item to the app, and increases logging for the GUI app and
server.
Ollama on Windows stores files in a few different locations. You can view them in
the explorer window by hitting `<cmd>+R` and type in:
- `explorer %LOCALAPPDATA%\Ollama` contains logs, and downloaded updates
@ -52,6 +67,10 @@ the explorer window by hitting `<cmd>+R` and type in:
The Ollama Windows installer registers an Uninstaller application. Under `Add or remove programs` in Windows Settings, you can uninstall Ollama.
> [!NOTE]
> If you have [changed the OLLAMA_MODELS location](#changing-model-location), the installer will not remove your downloaded models
## Standalone CLI
The easiest way to install Ollama on Windows is to use the `OllamaSetup.exe`

View File

@ -265,9 +265,9 @@ func AsMap() map[string]EnvVar {
if runtime.GOOS != "darwin" {
ret["CUDA_VISIBLE_DEVICES"] = EnvVar{"CUDA_VISIBLE_DEVICES", CudaVisibleDevices(), "Set which NVIDIA devices are visible"}
ret["HIP_VISIBLE_DEVICES"] = EnvVar{"HIP_VISIBLE_DEVICES", HipVisibleDevices(), "Set which AMD devices are visible"}
ret["ROCR_VISIBLE_DEVICES"] = EnvVar{"ROCR_VISIBLE_DEVICES", RocrVisibleDevices(), "Set which AMD devices are visible"}
ret["GPU_DEVICE_ORDINAL"] = EnvVar{"GPU_DEVICE_ORDINAL", GpuDeviceOrdinal(), "Set which AMD devices are visible"}
ret["HIP_VISIBLE_DEVICES"] = EnvVar{"HIP_VISIBLE_DEVICES", HipVisibleDevices(), "Set which AMD devices are visible by numeric ID"}
ret["ROCR_VISIBLE_DEVICES"] = EnvVar{"ROCR_VISIBLE_DEVICES", RocrVisibleDevices(), "Set which AMD devices are visible by UUID or numeric ID"}
ret["GPU_DEVICE_ORDINAL"] = EnvVar{"GPU_DEVICE_ORDINAL", GpuDeviceOrdinal(), "Set which AMD devices are visible by numeric ID"}
ret["HSA_OVERRIDE_GFX_VERSION"] = EnvVar{"HSA_OVERRIDE_GFX_VERSION", HsaOverrideGfxVersion(), "Override the gfx used for all detected AMD GPUs"}
ret["OLLAMA_INTEL_GPU"] = EnvVar{"OLLAMA_INTEL_GPU", IntelGPU(), "Enable experimental Intel GPU detection"}
}

View File

@ -1,3 +0,0 @@
# `modelfile`
This package provides utilities for loading and inspecting model files

View File

@ -1 +0,0 @@
package fileutils

2
go.mod
View File

@ -1,6 +1,6 @@
module github.com/ollama/ollama
go 1.22.5
go 1.22.8
require (
github.com/containerd/console v1.0.3

View File

@ -30,7 +30,30 @@ func TestOrcaMiniBlueSky(t *testing.T) {
GenerateTestHelper(ctx, t, req, []string{"rayleigh", "scattering"})
}
func TestUnicodeOutput(t *testing.T) {
func TestUnicode(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Minute)
defer cancel()
// Set up the test data
req := api.GenerateRequest{
// DeepSeek has a Unicode tokenizer regex, making it a unicode torture test
Model: "deepseek-coder-v2:16b-lite-instruct-q2_K",
Prompt: "天空为什么是蓝色的?",
Stream: &stream,
Options: map[string]interface{}{
"temperature": 0,
"seed": 123,
// Workaround deepseek context shifting bug
"num_ctx": 8192,
"num_predict": 2048,
},
}
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
require.NoError(t, PullIfMissing(ctx, client, req.Model))
DoGenerate(ctx, t, client, req, []string{"散射", "频率"}, 120*time.Second, 120*time.Second)
}
func TestExtendedUnicodeOutput(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
defer cancel()
// Set up the test data
@ -43,7 +66,10 @@ func TestUnicodeOutput(t *testing.T) {
"seed": 123,
},
}
GenerateTestHelper(ctx, t, req, []string{"😀", "😊", "😁", "😂", "😄", "😃"})
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
require.NoError(t, PullIfMissing(ctx, client, req.Model))
DoGenerate(ctx, t, client, req, []string{"😀", "😊", "😁", "😂", "😄", "😃"}, 120*time.Second, 120*time.Second)
}
func TestUnicodeModelDir(t *testing.T) {

View File

@ -60,7 +60,8 @@ func TestMultiModelConcurrency(t *testing.T) {
for i := 0; i < len(req); i++ {
go func(i int) {
defer wg.Done()
DoGenerate(ctx, t, client, req[i], resp[i], 60*time.Second, 10*time.Second)
// Note: CPU based inference can crawl so don't give up too quickly
DoGenerate(ctx, t, client, req[i], resp[i], 90*time.Second, 30*time.Second)
}(i)
}
wg.Wait()

View File

@ -12,7 +12,7 @@ import (
"github.com/stretchr/testify/require"
)
func TestIntegrationMultimodal(t *testing.T) {
func TestIntegrationLlava(t *testing.T) {
image, err := base64.StdEncoding.DecodeString(imageEncoding)
require.NoError(t, err)
req := api.GenerateRequest{
@ -39,6 +39,33 @@ func TestIntegrationMultimodal(t *testing.T) {
DoGenerate(ctx, t, client, req, []string{resp}, 120*time.Second, 30*time.Second)
}
func TestIntegrationMllama(t *testing.T) {
image, err := base64.StdEncoding.DecodeString(imageEncoding)
require.NoError(t, err)
req := api.GenerateRequest{
// TODO fix up once we publish the final image
Model: "x/llama3.2-vision",
Prompt: "what does the text in this image say?",
Stream: &stream,
Options: map[string]interface{}{
"seed": 42,
"temperature": 0.0,
},
Images: []api.ImageData{
image,
},
}
resp := "the ollamas"
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Minute)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
require.NoError(t, PullIfMissing(ctx, client, req.Model))
// mllama models on CPU can be quite slow to start,
DoGenerate(ctx, t, client, req, []string{resp}, 240*time.Second, 30*time.Second)
}
const imageEncoding = `iVBORw0KGgoAAAANSUhEUgAAANIAAAB4CAYAAACHHqzKAAAAAXNSR0IArs4c6QAAAIRlWElmTU0AKgAAAAgABQESAAMAAAABAAEAAAEaAAUAAAABAAAASgEb
AAUAAAABAAAAUgEoAAMAAAABAAIAAIdpAAQAAAABAAAAWgAAAAAAAABIAAAAAQAAAEgAAAABAAOgAQADAAAAAQABAACgAgAEAAAAAQAAANKgAwAEAAAAAQAA
AHgAAAAAXdsepgAAAAlwSFlzAAALEwAACxMBAJqcGAAAAVlpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6

View File

@ -415,7 +415,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {
case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
regex_exprs = {
"[\r\n]",
"\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ--ℝℤΩℨK--ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA--𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
"\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ--ℝℤΩℨK--ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA--\U00010400-\U0001044f𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
"\\s?[!-/:-~---‟ -。]+",
"\\s+$",
"[一-龥ࠀ-一가-퟿]+",

105
llama/llama.cpp vendored
View File

@ -2699,7 +2699,7 @@ struct llama_hparams {
GGML_ABORT("fatal error");
}
bool cross_attention_layer(uint32_t il) const {
bool cross_attention_layers(uint32_t il) const {
return std::find(cross_attn_layers.begin(), cross_attn_layers.end(), il) != cross_attn_layers.end();
}
};
@ -2731,6 +2731,9 @@ struct llama_cparams {
bool offload_kqv;
bool flash_attn;
bool no_perf;
// TODO (jmorganca): this should most likely be passed in as part of a batch
// and not set on the context for all batches.
bool cross_attn = false;
enum llama_pooling_type pooling_type;
@ -3542,10 +3545,6 @@ struct llama_context {
struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
// TODO (jmorganca): this should most likely be passed in as part of a batch
// and not set on the context for all batches.
float * cross_attn_state = nullptr;
bool cross_attn_state_first_pass = true;
struct ggml_tensor * inp_cross_attn_state; // F32 [4, n_embd, 1061]
};
@ -3782,7 +3781,7 @@ static bool llama_kv_cache_init(
for (int i = 0; i < (int) n_layer; i++) {
// for cross attention layers
if (model.arch == LLM_ARCH_MLLAMA && hparams.cross_attention_layer(i)) {
if (model.arch == LLM_ARCH_MLLAMA && hparams.cross_attention_layers(i)) {
struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_k, 6404, hparams.n_head_kv(i));
ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_v, 6404, hparams.n_head_kv(i));
@ -7389,7 +7388,7 @@ static bool llm_load_tensors(
auto & layer = model.layers[i];
if (hparams.cross_attention_layer(i)) {
if (hparams.cross_attention_layers(i)) {
layer.cross_attn_k_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_K_NORM, "weight", i), {128});
layer.cross_attn_k_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_K_PROJ, "weight", i), {n_embd, 1024});
layer.cross_attn_o_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_O_PROJ, "weight", i), {n_embd, n_embd});
@ -9346,7 +9345,7 @@ static struct ggml_tensor * llm_build_inp_embd(
inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
} else {
lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
inpL = lctx.inp_embd;
ggml_set_input(lctx.inp_embd);
}
@ -9368,11 +9367,10 @@ static struct ggml_tensor * llm_build_inp_cross_attn_state(
const llm_build_cb & cb) {
const int64_t n_embd = hparams.n_embd;
struct ggml_tensor * inpCAS;
lctx.inp_cross_attn_state = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd, 1601, 4);
cb(lctx.inp_cross_attn_state, "inp_cross_attn_state", -1);
ggml_set_input(lctx.inp_cross_attn_state);
inpCAS = lctx.inp_cross_attn_state;
struct ggml_tensor * inpCAS = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd, 1601, 4);
cb(inpCAS, "inp_cross_attn_state", -1);
ggml_set_input(inpCAS);
lctx.inp_cross_attn_state = inpCAS;
return inpCAS;
}
@ -10979,8 +10977,8 @@ struct llm_build_context {
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
if (hparams.cross_attention_layer(il)) {
if (!lctx.cross_attn_state) {
if (hparams.cross_attention_layers(il)) {
if (!batch.embd && !cparams.cross_attn) {
continue;
}
@ -10991,42 +10989,28 @@ struct llm_build_context {
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
cb(Qcur, "Qcur", il);
Qcur = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
cb(Qcur, "Qcur", il);
// TODO: is this required?
Qcur = ggml_cont(ctx0, Qcur);
Qcur = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 0, 2, 1, 3));
cb(Qcur, "Qcur", il);
Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].cross_attn_q_norm, NULL, LLM_NORM_RMS, cb, il);
cb(Qcur, "Qcur", il);
struct ggml_tensor * Kcur;
if (lctx.cross_attn_state_first_pass) {
struct ggml_tensor * Kcur, * Vcur;
if (batch.embd) {
Kcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_k_proj, inpCAS);
cb(Kcur, "Kcur", il);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, 6404);
cb(Kcur, "Kcur", il);
Kcur = ggml_permute(ctx0, Kcur, 0, 2, 1, 3);
cb(Kcur, "Kcur", il);
// TODO: is this required?
Kcur = ggml_cont(ctx0, Kcur);
Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
cb(Kcur, "Kcur", il);
Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].cross_attn_k_norm, NULL, LLM_NORM_RMS, cb, il);
cb(Kcur, "Kcur", il);
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, kv_self.k_l[il]));
} else {
Kcur = ggml_view_tensor(ctx0, kv_self.k_l[il]);
cb(Kcur, "Kcur (view)", il);
}
struct ggml_tensor * Vcur;
if (lctx.cross_attn_state_first_pass) {
Vcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_v_proj, inpCAS);
cb(Vcur, "Vcur", il);
@ -11038,6 +11022,9 @@ struct llm_build_context {
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, kv_self.v_l[il]));
} else {
Kcur = ggml_view_tensor(ctx0, kv_self.k_l[il]);
cb(Kcur, "Kcur (view)", il);
Vcur = ggml_view_tensor(ctx0, kv_self.v_l[il]);
cb(Vcur, "Vcur (view)", il);
}
@ -11045,11 +11032,8 @@ struct llm_build_context {
struct ggml_tensor * kq = ggml_mul_mat(ctx0, Kcur, Qcur);
cb(kq, "kq", il);
kq = ggml_scale_inplace(ctx0, kq, 1.0f/sqrtf(float(n_embd_head)));
cb(kq, "kq_scaled", il);
// TODO: apply causal masks
struct ggml_tensor * kq_soft_max = ggml_soft_max_inplace(ctx0, kq);
struct ggml_tensor * kq_soft_max = ggml_soft_max_ext(ctx0, kq, nullptr, 1.f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
cb(kq_soft_max, "kq_soft_max", il);
Vcur = ggml_cont(ctx0, ggml_transpose(ctx0, Vcur));
@ -11139,8 +11123,8 @@ struct llm_build_context {
cb(Kcur, "Kcur", il);
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
if (il == n_layer - 1) {
@ -17197,10 +17181,19 @@ static void llama_set_inputs(llama_context & lctx, const llama_ubatch & batch) {
}
if (batch.embd) {
const int64_t n_embd = hparams.n_embd;
const int64_t n_tokens = batch.n_tokens;
if (lctx.inp_cross_attn_state && lctx.inp_cross_attn_state->buffer) {
ggml_backend_tensor_set(lctx.inp_cross_attn_state, batch.embd, 0, ggml_nbytes(lctx.inp_cross_attn_state));
// zero out inp_embd since it's not used
float * inp_embd_data = (float *)lctx.inp_embd->data;
for (int i = 0; i < ggml_nelements(lctx.inp_embd); ++i) {
inp_embd_data[i] = 0.0f;
}
} else {
const int64_t n_embd = hparams.n_embd;
const int64_t n_tokens = batch.n_tokens;
ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
}
}
if (batch.pos && lctx.inp_pos) {
@ -17209,14 +17202,6 @@ static void llama_set_inputs(llama_context & lctx, const llama_ubatch & batch) {
ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
}
// TODO (jmorganca): this might copy a lot of data on every request of a
// single generation even though it doesn't change, so we should
// find a way to not set this more than one time per image
if (lctx.inp_cross_attn_state &&
lctx.inp_cross_attn_state->buffer) {
ggml_backend_tensor_set(lctx.inp_cross_attn_state, lctx.cross_attn_state, 0, hparams.n_embd * 1601 * 4 * ggml_element_size(lctx.inp_cross_attn_state));
}
if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
const int64_t n_tokens = batch.n_tokens;
@ -17789,7 +17774,7 @@ static int llama_decode_internal(
n_outputs = 1;
}
lctx.sbatch.from_batch(batch_all, n_embd,
lctx.sbatch.from_batch(batch_all, batch_all.n_embd,
/* simple_split */ !kv_self.recurrent,
/* logits_all */ n_outputs == n_tokens_all);
@ -17899,10 +17884,6 @@ static int llama_decode_internal(
llama_set_inputs(lctx, ubatch);
// TODO: replace with something better to find out if its
// our first actual pass
lctx.cross_attn_state_first_pass = false;
llama_graph_compute(lctx, gf, n_threads, threadpool);
// update the kv ring buffer
@ -18086,7 +18067,7 @@ static int llama_encode_internal(
const int64_t n_embd = hparams.n_embd;
lctx.sbatch.from_batch(batch, n_embd, /* simple_split */ true, /* logits_all */ true);
lctx.sbatch.from_batch(batch, batch.n_embd, /* simple_split */ true, /* logits_all */ true);
const llama_ubatch ubatch = lctx.sbatch.split_simple(n_tokens);
@ -20194,11 +20175,6 @@ struct llama_context * llama_new_context_with_model(
return ctx;
}
void llama_set_cross_attn_state(struct llama_context * ctx, float * cross_attn_state) {
ctx->cross_attn_state_first_pass = true;
ctx->cross_attn_state = cross_attn_state;
}
void llama_free(struct llama_context * ctx) {
delete ctx;
}
@ -21686,6 +21662,10 @@ void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
ctx->cparams.causal_attn = causal_attn;
}
void llama_set_cross_attention(struct llama_context * ctx, bool cross_attention) {
ctx->cparams.cross_attn = cross_attention;
}
struct llama_batch llama_batch_get_one(
llama_token * tokens,
int32_t n_tokens,
@ -21695,6 +21675,7 @@ struct llama_batch llama_batch_get_one(
/*n_tokens =*/ n_tokens,
/*tokens =*/ tokens,
/*embd =*/ nullptr,
/*n_embd =*/ 0,
/*pos =*/ nullptr,
/*n_seq_id =*/ nullptr,
/*seq_id =*/ nullptr,
@ -21710,6 +21691,7 @@ struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_
/*n_tokens =*/ 0,
/*tokens =*/ nullptr,
/*embd =*/ nullptr,
/*n_embd =*/ 0,
/*pos =*/ nullptr,
/*n_seq_id =*/ nullptr,
/*seq_id =*/ nullptr,
@ -21721,6 +21703,7 @@ struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_
if (embd) {
batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
batch.n_embd = embd;
} else {
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
}

View File

@ -21,6 +21,8 @@ package llama
#cgo cuda CFLAGS: -fPIE -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
#cgo cuda CXXFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
#cgo cuda CXXFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
#cgo cuda_jetpack5 LDFLAGS: -lggml_cuda_jetpack5 -L/usr/local/cuda-11/lib64
#cgo cuda_jetpack6 LDFLAGS: -lggml_cuda_jetpack6 -L/usr/local/cuda-12/lib64
#cgo cuda_v11 LDFLAGS: -lggml_cuda_v11 -L/usr/local/cuda-11/lib64
#cgo cuda_v12 LDFLAGS: -lggml_cuda_v12 -L/usr/local/cuda-12/lib64
#cgo darwin,amd64 CFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers
@ -36,8 +38,8 @@ package llama
#cgo linux CXXFLAGS: -D_GNU_SOURCE
#cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/Linux/amd64
#cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/Linux/amd64
#cgo linux,arm64 CFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA -D__ARM_FEATURE_MATMUL_INT8
#cgo linux,arm64 CXXFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA -D__ARM_FEATURE_MATMUL_INT8
#cgo linux,arm64 CFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA
#cgo linux,arm64 CXXFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA
#cgo linux,arm64 LDFLAGS: -L${SRCDIR}/build/Linux/arm64
#cgo linux,arm64,sve CFLAGS: -march=armv8.6-a+sve
#cgo linux,arm64,sve CXXFLAGS: -march=armv8.6-a+sve
@ -68,6 +70,17 @@ package llama
#include "sampling_ext.h"
bool llamaProgressCallback(float progress, void *user_data);
typedef enum {COMP_UNKNOWN,COMP_GCC,COMP_CLANG} COMPILER;
COMPILER inline get_compiler() {
#if defined(__clang__)
return COMP_CLANG;
#elif defined(__GNUC__)
return COMP_GCC;
#else
return UNKNOWN_COMPILER;
#endif
}
*/
import "C"
@ -77,6 +90,7 @@ import (
"fmt"
"runtime"
"runtime/cgo"
"slices"
"strings"
"unsafe"
)
@ -88,7 +102,38 @@ func BackendInit() {
}
func PrintSystemInfo() string {
return C.GoString(C.llama_print_system_info())
var compiler string
switch C.get_compiler() {
case C.COMP_UNKNOWN:
compiler = "cgo(unknown_compiler)"
case C.COMP_GCC:
compiler = "cgo(gcc)"
case C.COMP_CLANG:
compiler = "cgo(clang)"
}
return C.GoString(C.llama_print_system_info()) + compiler
}
func GetModelArch(modelPath string) (string, error) {
mp := C.CString(modelPath)
defer C.free(unsafe.Pointer(mp))
gguf_ctx := C.gguf_init_from_file(mp, C.struct_gguf_init_params{no_alloc: true, ctx: (**C.struct_ggml_context)(C.NULL)})
if gguf_ctx == nil {
return "", errors.New("unable to load model file")
}
defer C.gguf_free(gguf_ctx)
key := C.CString("general.architecture")
defer C.free(unsafe.Pointer(key))
arch_index := C.gguf_find_key(gguf_ctx, key)
if int(arch_index) < 0 {
return "", errors.New("unknown model architecture")
}
arch := C.gguf_get_val_str(gguf_ctx, arch_index)
return C.GoString(arch), nil
}
type ContextParams struct {
@ -138,10 +183,6 @@ func (c *Context) Model() *Model {
return &Model{c: C.llama_get_model(c.c)}
}
func (c *Context) GetLogitsIth(i int) []float32 {
return unsafe.Slice((*float32)(unsafe.Pointer(C.llama_get_logits_ith(c.c, C.int(i)))), c.Model().NumVocab())
}
func (c *Context) KvCacheSeqAdd(seqId int, p0 int, p1 int, delta int) {
C.llama_kv_cache_seq_add(c.c, C.int(seqId), C.int(p0), C.int(p1), C.int(delta))
}
@ -165,7 +206,12 @@ func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
}
func (c *Context) GetEmbeddingsIth(i int) []float32 {
return unsafe.Slice((*float32)(unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))), c.Model().NEmbd())
embeddings := unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))
if embeddings == nil {
return nil
}
return unsafe.Slice((*float32)(embeddings), c.Model().NEmbd())
}
type ModelParams struct {
@ -186,7 +232,7 @@ func llamaProgressCallback(progress C.float, userData unsafe.Pointer) C.bool {
return true
}
func LoadModelFromFile(modelPath string, params ModelParams) *Model {
func LoadModelFromFile(modelPath string, params ModelParams) (*Model, error) {
cparams := C.llama_model_default_params()
cparams.n_gpu_layers = C.int(params.NumGpuLayers)
cparams.main_gpu = C.int32_t(params.MainGpu)
@ -216,18 +262,28 @@ func LoadModelFromFile(modelPath string, params ModelParams) *Model {
cparams.progress_callback_user_data = unsafe.Pointer(&handle)
}
return &Model{c: C.llama_load_model_from_file(C.CString(modelPath), cparams)}
m := Model{c: C.llama_load_model_from_file(C.CString(modelPath), cparams)}
if m.c == nil {
return nil, fmt.Errorf("unable to load model: %s", modelPath)
}
return &m, nil
}
func FreeModel(model *Model) {
C.llama_free_model(model.c)
}
func NewContextWithModel(model *Model, params ContextParams) *Context {
return &Context{
func NewContextWithModel(model *Model, params ContextParams) (*Context, error) {
c := Context{
c: C.llama_new_context_with_model(model.c, params.c),
numThreads: int(params.c.n_threads),
}
if c.c == nil {
return nil, errors.New("unable to create llama context")
}
return &c, nil
}
func (m *Model) NumVocab() int {
@ -247,6 +303,9 @@ func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float
defer C.free(unsafe.Pointer(cLoraPath))
loraAdapter := C.llama_lora_adapter_init(m.c, cLoraPath)
if loraAdapter == nil {
return errors.New("unable to load lora")
}
err := -1
if loraAdapter != nil {
@ -262,18 +321,40 @@ func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float
type Batch struct {
c C.struct_llama_batch
batchSize int
maxSeq int
embedSize int
}
// Creates a new batch for either word tokens if embed is 0 or
// image embeddings if embed is specified. Batches cannot contain
// both types at the same time
func NewBatch(nTokens int, embed int, maxSeq int) *Batch {
return &Batch{
c: C.llama_batch_init(C.int(nTokens), C.int(embed), C.int(maxSeq)),
batchSize: nTokens,
embedSize: embed,
// Creates a new batch for either word tokens or image embeddings (if embedSize is non-zero).
// Batches cannot contain both types at the same time. batchSize is the maximum number of entries
// that can be added per sequence
func NewBatch(batchSize int, maxSeq int, embedSize int) (*Batch, error) {
b := Batch{
c: C.llama_batch_init(C.int(batchSize*maxSeq), C.int(embedSize), C.int(maxSeq)),
batchSize: batchSize,
maxSeq: maxSeq,
embedSize: embedSize,
}
// Check to see if any of the allocations in llama_batch_init() failed
nilPointer := (embedSize == 0 && b.c.token == nil) || (embedSize != 0 && b.c.embd == nil) ||
b.c.pos == nil || b.c.n_seq_id == nil || b.c.seq_id == nil || b.c.logits == nil ||
slices.Contains(unsafe.Slice(b.c.seq_id, b.allocSize()), nil)
if nilPointer {
C.llama_batch_free(b.c)
return nil, fmt.Errorf("unable to allocate batch (batchSize=%v maxSeq=%v embedSize=%v)", batchSize, maxSeq, embedSize)
}
return &b, nil
}
func (b *Batch) Size() int {
return b.batchSize
}
func (b *Batch) allocSize() int {
return b.batchSize * b.maxSeq
}
func (b *Batch) NumTokens() int {
@ -288,21 +369,21 @@ func (b *Batch) IsEmbedding() bool {
// when the batch was initialized. The other argument will be ignored. Adds to the
// batch with the given position for the given sequence ids, and optionally instructs
// to include logits.
func (b *Batch) Add(token int, embed []float32, pos int, seqIds []int, logits bool) {
func (b *Batch) Add(token int, embed []float32, pos int, logits bool, seqIds ...int) {
if !b.IsEmbedding() {
unsafe.Slice(b.c.token, b.batchSize)[b.c.n_tokens] = C.llama_token(token)
unsafe.Slice(b.c.token, b.allocSize())[b.c.n_tokens] = C.llama_token(token)
} else {
copy(unsafe.Slice((*float32)(b.c.embd), b.batchSize*b.embedSize)[int(b.c.n_tokens)*b.embedSize:], embed)
copy(unsafe.Slice((*float32)(b.c.embd), b.allocSize()*b.embedSize)[int(b.c.n_tokens)*b.embedSize:], embed)
}
unsafe.Slice(b.c.pos, b.batchSize)[b.c.n_tokens] = C.llama_pos(pos)
unsafe.Slice(b.c.n_seq_id, b.batchSize)[b.c.n_tokens] = C.int(len(seqIds))
unsafe.Slice(b.c.pos, b.allocSize())[b.c.n_tokens] = C.llama_pos(pos)
unsafe.Slice(b.c.n_seq_id, b.allocSize())[b.c.n_tokens] = C.int(len(seqIds))
for i, s := range seqIds {
unsafe.Slice((unsafe.Slice(b.c.seq_id, b.batchSize)[b.c.n_tokens]), C.int(len(seqIds)))[i] = C.int32_t(s)
unsafe.Slice((unsafe.Slice(b.c.seq_id, b.allocSize())[b.c.n_tokens]), C.int(len(seqIds)))[i] = C.int32_t(s)
}
if logits {
unsafe.Slice(b.c.logits, b.batchSize)[b.c.n_tokens] = 1
unsafe.Slice(b.c.logits, b.allocSize())[b.c.n_tokens] = 1
}
b.c.n_tokens += 1
@ -412,71 +493,42 @@ func Quantize(infile, outfile string, ftype uint32) error {
return nil
}
// llava
// vision processing
type ClipContext struct {
c *C.struct_clip_ctx
m *C.struct_mllama_ctx
IsMllama bool
embedPin runtime.Pinner
pinned bool
c *C.struct_clip_ctx
}
func getVisionArch(mp *C.char) (string, error) {
gguf_ctx := C.gguf_init_from_file(mp, C.struct_gguf_init_params{no_alloc: true, ctx: (**C.struct_ggml_context)(C.NULL)})
if gguf_ctx == nil {
return "", errors.New("unable to load vision projector")
}
defer C.gguf_free(gguf_ctx)
arch_index := C.gguf_find_key(gguf_ctx, C.CString("general.architecture"))
if int(arch_index) < 0 {
return "", errors.New("unknown vision model architecture")
}
arch := C.gguf_get_val_str(gguf_ctx, arch_index)
return C.GoString(arch), nil
}
func NewClipContext(modelPath string) (*ClipContext, error) {
func NewClipContext(llamaContext *Context, modelPath string) (*ClipContext, error) {
mp := C.CString(modelPath)
defer C.free(unsafe.Pointer(mp))
arch, err := getVisionArch(mp)
if err != nil {
return nil, err
c := C.clip_model_load(mp, 1)
if c == nil {
return nil, fmt.Errorf("unable to load clip model: %v", modelPath)
}
var cc ClipContext
if arch == "clip" {
cc.c = C.clip_model_load(mp, 1)
} else if arch == "mllama" {
cc.m = C.mllama_model_load(mp, 1)
cc.IsMllama = true
} else {
return nil, fmt.Errorf("unknown vision model architecture: %s", arch)
projEmbedSize := int(C.clip_n_mmproj_embd(c))
modelEmbedSize := llamaContext.Model().NEmbd()
if projEmbedSize != modelEmbedSize {
return nil, fmt.Errorf("projector embedding size (%d) does not match model (%d)", projEmbedSize, modelEmbedSize)
}
// XXX: check embedding size?
return &cc, nil
return &ClipContext{c: c}, nil
}
func (c *ClipContext) Free() {
if c.c != nil {
C.clip_free(c.c)
}
if c.m != nil {
C.mllama_free(c.m)
}
C.clip_free(c.c)
}
func NewLlavaImageEmbed(llamaContext *Context, clipContext *ClipContext, data []byte) [][]float32 {
c := C.llava_image_embed_make_with_bytes(clipContext.c, C.int(llamaContext.numThreads), (*C.uchar)(unsafe.Pointer(&data[0])), C.int(len(data)))
func (c *ClipContext) NewEmbed(llamaContext *Context, data []byte) ([][]float32, error) {
l := C.llava_image_embed_make_with_bytes(c.c, C.int(llamaContext.numThreads), (*C.uchar)(unsafe.Pointer(&data[0])), C.int(len(data)))
if l == nil {
return nil, errors.New("unable to make llava embedding from image")
}
numTokens := int(c.n_image_pos)
numTokens := int(l.n_image_pos)
numEmbed := llamaContext.Model().NEmbd()
s := unsafe.Slice((*float32)(c.embed), numEmbed*numTokens)
s := unsafe.Slice((*float32)(l.embed), numEmbed*numTokens)
embed := make([][]float32, numTokens)
rows := make([]float32, len(s))
@ -486,51 +538,66 @@ func NewLlavaImageEmbed(llamaContext *Context, clipContext *ClipContext, data []
embed[i] = rows[i*numEmbed : (i+1)*numEmbed]
}
C.llava_image_embed_free(c)
C.llava_image_embed_free(l)
return embed
return embed, nil
}
func NewMllamaImageEmbed(llamaContext *Context, clipContext *ClipContext, data []byte, aspectRatioId int) [][]float32 {
type MllamaContext struct {
c *C.struct_mllama_ctx
}
func NewMllamaContext(llamaContext *Context, modelPath string) (*MllamaContext, error) {
mp := C.CString(modelPath)
defer C.free(unsafe.Pointer(mp))
c := C.mllama_model_load(mp, 1)
if c == nil {
return nil, fmt.Errorf("unable to load mllama model: %v", modelPath)
}
projEmbedSize := int(C.mllama_n_embd(c))
modelEmbedSize := llamaContext.Model().NEmbd()
if projEmbedSize != modelEmbedSize {
return nil, fmt.Errorf("projector embedding size (%d) does not match model (%d)", projEmbedSize, modelEmbedSize)
}
return &MllamaContext{c: c}, nil
}
func (m *MllamaContext) Free() {
C.mllama_free(m.c)
}
func (m *MllamaContext) NewEmbed(llamaContext *Context, data []byte, aspectRatioId int) ([][]float32, error) {
img := C.mllama_image_init()
defer C.mllama_image_free(img)
C.mllama_image_load_from_data(unsafe.Pointer(&data[0]), C.int(len(data)), 560, 560, 3, 4, C.int(aspectRatioId), img)
numTokens := int(C.mllama_n_positions(clipContext.m) * C.mllama_n_tiles(clipContext.m))
numEmbed := llamaContext.Model().NEmbd()
rows := make([]float32, numEmbed*numTokens)
C.mllama_image_encode(clipContext.m, C.int(llamaContext.numThreads), img, (*C.float)(unsafe.Pointer(&rows[0])))
embed := make([][]float32, numTokens)
for i := range embed {
embed[i] = rows[i*numEmbed : (i+1)*numEmbed]
ok := bool(C.mllama_image_load_from_data(unsafe.Pointer(&data[0]), C.int(len(data)), 560, 560, 3, 4, C.int(aspectRatioId), img))
if !ok {
return nil, errors.New("unable to load mllama image data")
}
return embed
rows := make([]float32, m.EmbedSize(llamaContext))
ok = bool(C.mllama_image_encode(m.c, C.int(llamaContext.numThreads), img, (*C.float)(unsafe.Pointer(&rows[0]))))
if !ok {
return nil, errors.New("unable to make mllama embedding from image")
}
embed := make([][]float32, 1)
embed[0] = rows
return embed, nil
}
// This really needs to be set on a batch instead
func MllamaSetCrossAttn(llamaContext *Context, clipContext *ClipContext, embed [][]float32) {
if embed != nil {
if clipContext.pinned {
panic("Cross attention state already pinned")
}
func (m *MllamaContext) EmbedSize(llamaContext *Context) int {
numTokens := int(C.mllama_n_positions(m.c) * C.mllama_n_tiles(m.c))
numEmbed := llamaContext.Model().NEmbd()
embedData := &embed[0][0]
clipContext.embedPin.Pin(embedData)
clipContext.pinned = true
return numTokens * numEmbed
}
C.llama_set_cross_attn_state(llamaContext.c, (*C.float)(unsafe.Pointer(embedData)))
} else {
C.llama_set_cross_attn_state(llamaContext.c, (*C.float)(C.NULL))
if clipContext.pinned {
clipContext.embedPin.Unpin()
clipContext.pinned = false
}
}
func (c *Context) SetCrossAttention(state bool) {
C.llama_set_cross_attention(c.c, C.bool(state))
}
// sampling
@ -558,7 +625,7 @@ type SamplingParams struct {
Grammar string
}
func NewSamplingContext(model *Model, params SamplingParams) *SamplingContext {
func NewSamplingContext(model *Model, params SamplingParams) (*SamplingContext, error) {
var cparams C.struct_gpt_sampler_cparams
cparams.top_k = C.int32_t(params.TopK)
cparams.top_p = C.float(params.TopP)
@ -581,9 +648,13 @@ func NewSamplingContext(model *Model, params SamplingParams) *SamplingContext {
cparams.grammar = grammar
context := &SamplingContext{c: C.gpt_sampler_cinit(model.c, &cparams)}
if context.c == nil {
return nil, errors.New("unable to create sampling context")
}
runtime.SetFinalizer(context, func(s *SamplingContext) { C.gpt_sampler_cfree(s.c) })
return context
return context, nil
}
func (s *SamplingContext) Reset() {

3
llama/llama.h vendored
View File

@ -266,6 +266,7 @@ extern "C" {
llama_token * token;
float * embd;
int32_t n_embd;
llama_pos * pos;
int32_t * n_seq_id;
llama_seq_id ** seq_id;
@ -451,7 +452,7 @@ extern "C" {
// TODO (jmorganca): this should most likely be passed in as part of a batch
// and not set on the context for all batches.
LLAMA_API void llama_set_cross_attn_state(struct llama_context * ctx, float * cross_attn_state);
LLAMA_API void llama_set_cross_attention(struct llama_context * ctx, bool cross_attn_state);
// Frees all allocated memory
LLAMA_API void llama_free(struct llama_context * ctx);

2
llama/llava.cpp vendored
View File

@ -435,7 +435,7 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
if (n_eval > n_batch) {
n_eval = n_batch;
}
llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), n_embd, nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
if (llama_decode(ctx_llama, batch)) {
LOG_ERR("%s : failed to eval\n", __func__);
return false;

View File

@ -58,6 +58,8 @@ endif
GPU_COMPILER_CUFLAGS = \
$(GPU_COMPILER_FPIC) \
$(addprefix -m,$(GPU_RUNNER_CPU_FLAGS)) \
-mf16c \
-mfma \
-parallel-jobs=2 \
-c \
-O3 \
@ -77,6 +79,9 @@ GPU_COMPILER_CUFLAGS = \
-D_CRT_SECURE_NO_WARNINGS \
-D_GNU_SOURCE \
-D_XOPEN_SOURCE=600 \
-DUSE_PROF_API=1 \
-std=gnu++14 \
-x hip \
-mllvm=-amdgpu-early-inline-all=true \
-mllvm=-amdgpu-function-calls=false \
-Wno-expansion-to-defined \
@ -87,6 +92,12 @@ GPU_COMPILER_CUFLAGS = \
-Wno-unused-result \
-I.
# Workaround buggy P2P copy on some windows multi-GPU setups
# This workaround breaks linux systems with small system RAM, so only enable on windows
ifeq ($(OS),windows)
GPU_COMPILER_CUFLAGS += -DGGML_CUDA_NO_PEER_COPY=1
endif
include make/gpu.make
# Adjust the rules from gpu.make to handle the ROCm dependencies properly

View File

@ -3,7 +3,7 @@
REPO_ROOT:=$(dir $(patsubst %/,%,$(dir $(patsubst %/,%,$(dir $(abspath $(lastword $(MAKEFILE_LIST))))))))
DST_DIR:=$(dir $(patsubst %/,%,$(dir $(abspath $(lastword $(MAKEFILE_LIST))))))
include $(REPO_ROOT)llama/vendoring.env
include $(REPO_ROOT)llama/vendoring
LLAMACPP_REPO := $(REPO_ROOT)llama/vendor/

View File

@ -76,3 +76,9 @@ else
CP := cp -af
endif
COMMON_SRCS := \
$(wildcard *.c) \
$(wildcard *.cpp)
COMMON_HDRS := \
$(wildcard *.h) \
$(wildcard *.hpp)

View File

@ -20,7 +20,7 @@ GPU_COMPILER_CFLAGS_LINUX = $(CFLAGS) -Xcompiler -fPIC -D_GNU_SOURCE
GPU_COMPILER_CXXFLAGS_WIN = $(CXXFLAGS) -D_WIN32_WINNT=0x602
GPU_COMPILER_CXXFLAGS_LINUX = $(CXXFLAGS) -Xcompiler -fPIC -D_GNU_SOURCE
GPU_LIBS = $(sort $(wildcard $(addsuffix *.$(SHARED_EXT)*,$(addprefix $(GPU_LIB_DIR)/$(SHARED_PREFIX),$(GPU_RUNNER_LIBS_SHORT)))))
GPU_DIST_DEPS_LIBS= $(sort $(addprefix $(DIST_LIB_DIR)/,$(notdir $(GPU_LIBS))))
GPU_DIST_DEPS_LIBS= $(sort $(addprefix $(DIST_GPU_RUNNER_DEPS_DIR)/,$(notdir $(GPU_LIBS))))
ifeq ($(OS),linux)
CUDA_PATH?=/usr/local/cuda

View File

@ -34,13 +34,6 @@ endif
GPU_RUNNER_LIBS = $(wildcard $(addsuffix .$(SHARED_EXT).*,$(addprefix $(GPU_LIB_DIR)/$(SHARED_PREFIX),$(GPU_RUNNER_LIBS_SHORT))))
DIST_GPU_RUNNER_LIB_DEPS = $(addprefix $(DIST_GPU_RUNNER_DEPS_DIR)/,$(notdir $(GPU_RUNNER_LIBS)))
COMMON_SRCS := \
$(wildcard *.c) \
$(wildcard *.cpp)
COMMON_HDRS := \
$(wildcard *.h) \
$(wildcard *.hpp)
GPU_RUNNER_SRCS := \
ggml-cuda.cu \
$(filter-out $(wildcard ggml-cuda/fattn*.cu),$(wildcard ggml-cuda/*.cu)) \
@ -92,7 +85,7 @@ $(RUNNERS_BUILD_DIR)/$(GPU_RUNNER_NAME)/ollama_llama_server$(EXE_EXT): $(RUNNERS
GOARCH=$(ARCH) CGO_LDFLAGS="$(TARGET_CGO_LDFLAGS)" go build -buildmode=pie $(GPU_GOFLAGS) -trimpath -tags $(subst $(space),$(comma),$(GPU_RUNNER_CPU_FLAGS) $(GPU_RUNNER_GO_TAGS)) -o $@ ./runner
$(RUNNERS_BUILD_DIR)/$(GPU_RUNNER_NAME)/$(SHARED_PREFIX)ggml_$(GPU_RUNNER_NAME).$(SHARED_EXT): $(GPU_RUNNER_OBJS) $(DIST_GPU_RUNNER_LIB_DEPS) $(COMMON_HDRS) $(GPU_RUNNER_HDRS)
@-mkdir -p $(dir $@)
$(CCACHE) $(GPU_COMPILER) --shared $(GPU_RUNNER_DRIVER_LIB_LINK) -L${DIST_GPU_RUNNER_DEPS_DIR} $(foreach lib, $(GPU_RUNNER_LIBS_SHORT), -l$(lib)) $(GPU_RUNNER_OBJS) -o $@
$(CCACHE) $(GPU_COMPILER) --shared -L$(GPU_LIB_DIR) $(GPU_RUNNER_DRIVER_LIB_LINK) -L${DIST_GPU_RUNNER_DEPS_DIR} $(foreach lib, $(GPU_RUNNER_LIBS_SHORT), -l$(lib)) $(GPU_RUNNER_OBJS) -o $@
# Distribution targets
$(RUNNERS_DIST_DIR)/%: $(RUNNERS_BUILD_DIR)/%

View File

@ -12,27 +12,49 @@ kv cache once per run
remaining is to implement the cross attention mask
---
include/llama.h | 4 +
src/llama.cpp | 456 ++++++++++++++++++++++++++++++++++++++++++++++--
2 files changed, 447 insertions(+), 13 deletions(-)
examples/llava/llava.cpp | 2 +-
include/llama.h | 5 +
src/llama.cpp | 447 +++++++++++++++++++++++++++++++++++++--
3 files changed, 436 insertions(+), 18 deletions(-)
diff --git a/examples/llava/llava.cpp b/examples/llava/llava.cpp
index 8558c6bd..37b2f2e2 100644
--- a/examples/llava/llava.cpp
+++ b/examples/llava/llava.cpp
@@ -409,7 +409,7 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
if (n_eval > n_batch) {
n_eval = n_batch;
}
- llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
+ llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), n_embd, nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
if (llama_decode(ctx_llama, batch)) {
LOG_ERR("%s : failed to eval\n", __func__);
return false;
diff --git a/include/llama.h b/include/llama.h
index 7cae1bbe..122e3cf1 100644
index 7cae1bbe..aca09310 100644
--- a/include/llama.h
+++ b/include/llama.h
@@ -423,6 +423,10 @@ extern "C" {
@@ -240,6 +240,7 @@ extern "C" {
llama_token * token;
float * embd;
+ int32_t n_embd;
llama_pos * pos;
int32_t * n_seq_id;
llama_seq_id ** seq_id;
@@ -423,6 +424,10 @@ extern "C" {
struct llama_model * model,
struct llama_context_params params);
+ // TODO (jmorganca): this should most likely be passed in as part of a batch
+ // and not set on the context for all batches.
+ LLAMA_API void llama_set_cross_attn_state(struct llama_context * ctx, float * cross_attn_state);
+ LLAMA_API void llama_set_cross_attention(struct llama_context * ctx, bool cross_attn_state);
+
// Frees all allocated memory
LLAMA_API void llama_free(struct llama_context * ctx);
diff --git a/src/llama.cpp b/src/llama.cpp
index 83b80b59..b189a19a 100644
index 83b80b59..35748488 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -169,6 +169,7 @@ static std::string format(const char * fmt, ...) {
@ -160,13 +182,23 @@ index 83b80b59..b189a19a 100644
GGML_ABORT("fatal error");
}
+
+ bool cross_attention_layer(uint32_t il) const {
+ bool cross_attention_layers(uint32_t il) const {
+ return std::find(cross_attn_layers.begin(), cross_attn_layers.end(), il) != cross_attn_layers.end();
+ }
};
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
@@ -2806,6 +2859,16 @@ struct llama_layer {
@@ -2652,6 +2705,9 @@ struct llama_cparams {
bool offload_kqv;
bool flash_attn;
bool no_perf;
+ // TODO (jmorganca): this should most likely be passed in as part of a batch
+ // and not set on the context for all batches.
+ bool cross_attn = false;
enum llama_pooling_type pooling_type;
@@ -2806,6 +2862,16 @@ struct llama_layer {
struct ggml_tensor * ffn_down_scale;
struct ggml_tensor * bskcn_tv;
@ -183,25 +215,21 @@ index 83b80b59..b189a19a 100644
};
// very similar to llama_batch,
@@ -3452,6 +3515,12 @@ struct llama_context {
@@ -3452,6 +3518,8 @@ struct llama_context {
struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch]
struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
+
+ // TODO (jmorganca): this should most likely be passed in as part of a batch
+ // and not set on the context for all batches.
+ float * cross_attn_state = nullptr;
+ bool cross_attn_state_first_pass = true;
+ struct ggml_tensor * inp_cross_attn_state; // F32 [4, n_embd, 1061]
};
struct llama_lora_weight {
@@ -3686,6 +3755,18 @@ static bool llama_kv_cache_init(
@@ -3686,6 +3754,18 @@ static bool llama_kv_cache_init(
cache.v_l.reserve(n_layer);
for (int i = 0; i < (int) n_layer; i++) {
+ // for cross attention layers
+ if (model.arch == LLM_ARCH_MLLAMA && hparams.cross_attention_layer(i)) {
+ if (model.arch == LLM_ARCH_MLLAMA && hparams.cross_attention_layers(i)) {
+ struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
+ ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_k, 6404, hparams.n_head_kv(i));
+ ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_v, 6404, hparams.n_head_kv(i));
@ -215,7 +243,7 @@ index 83b80b59..b189a19a 100644
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
@@ -5460,12 +5541,14 @@ static void llm_load_hparams(
@@ -5460,12 +5540,14 @@ static void llm_load_hparams(
}
// zero-out the per-layer hparams
@ -235,7 +263,7 @@ index 83b80b59..b189a19a 100644
// n_head_kv is optional, default to n_head
hparams.n_head_kv_arr = hparams.n_head_arr;
@@ -5514,7 +5597,7 @@ static void llm_load_hparams(
@@ -5514,7 +5596,7 @@ static void llm_load_hparams(
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
@ -244,7 +272,7 @@ index 83b80b59..b189a19a 100644
if (hparams.n_rot != hparams.n_embd_head_k) {
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
}
@@ -5554,6 +5637,16 @@ static void llm_load_hparams(
@@ -5554,6 +5636,16 @@ static void llm_load_hparams(
}
}
} break;
@ -261,7 +289,7 @@ index 83b80b59..b189a19a 100644
case LLM_ARCH_MINICPM:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@@ -7249,6 +7342,55 @@ static bool llm_load_tensors(
@@ -7249,6 +7341,55 @@ static bool llm_load_tensors(
layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head_qk_rope/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
}
} break;
@ -286,7 +314,7 @@ index 83b80b59..b189a19a 100644
+
+ auto & layer = model.layers[i];
+
+ if (hparams.cross_attention_layer(i)) {
+ if (hparams.cross_attention_layers(i)) {
+ layer.cross_attn_k_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_K_NORM, "weight", i), {128});
+ layer.cross_attn_k_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_K_PROJ, "weight", i), {n_embd, 1024});
+ layer.cross_attn_o_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_O_PROJ, "weight", i), {n_embd, n_embd});
@ -317,7 +345,7 @@ index 83b80b59..b189a19a 100644
case LLM_ARCH_GROK:
{
if (n_expert == 0) {
@@ -9093,7 +9235,7 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
@@ -9093,7 +9234,7 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
model.hparams.n_vocab != model.vocab.id_to_token.size()) {
@ -326,16 +354,7 @@ index 83b80b59..b189a19a 100644
}
if (params.vocab_only) {
@@ -9178,7 +9320,7 @@ static struct ggml_tensor * llm_build_inp_embd(
inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
} else {
- lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
+ lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
inpL = lctx.inp_embd;
ggml_set_input(lctx.inp_embd);
}
@@ -9193,6 +9335,22 @@ static struct ggml_tensor * llm_build_inp_embd(
@@ -9193,6 +9334,21 @@ static struct ggml_tensor * llm_build_inp_embd(
return inpL;
}
@ -346,11 +365,10 @@ index 83b80b59..b189a19a 100644
+ const llm_build_cb & cb) {
+ const int64_t n_embd = hparams.n_embd;
+
+ struct ggml_tensor * inpCAS;
+ lctx.inp_cross_attn_state = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd, 1601, 4);
+ cb(lctx.inp_cross_attn_state, "inp_cross_attn_state", -1);
+ ggml_set_input(lctx.inp_cross_attn_state);
+ inpCAS = lctx.inp_cross_attn_state;
+ struct ggml_tensor * inpCAS = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd, 1601, 4);
+ cb(inpCAS, "inp_cross_attn_state", -1);
+ ggml_set_input(inpCAS);
+ lctx.inp_cross_attn_state = inpCAS;
+
+ return inpCAS;
+}
@ -358,7 +376,7 @@ index 83b80b59..b189a19a 100644
static void llm_build_kv_store(
struct ggml_context * ctx,
const llama_hparams & hparams,
@@ -10167,6 +10325,7 @@ struct llm_build_context {
@@ -10167,6 +10323,7 @@ struct llm_build_context {
lctx.inp_pos_bucket = nullptr;
lctx.inp_embd_enc = nullptr;
lctx.inp_KQ_mask_cross = nullptr;
@ -366,7 +384,7 @@ index 83b80b59..b189a19a 100644
}
void free() {
@@ -10754,6 +10913,253 @@ struct llm_build_context {
@@ -10754,6 +10911,239 @@ struct llm_build_context {
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
@ -410,8 +428,8 @@ index 83b80b59..b189a19a 100644
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ if (hparams.cross_attention_layer(il)) {
+ if (!lctx.cross_attn_state) {
+ if (hparams.cross_attention_layers(il)) {
+ if (!batch.embd && !cparams.cross_attn) {
+ continue;
+ }
+
@ -422,42 +440,28 @@ index 83b80b59..b189a19a 100644
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+ cb(Qcur, "Qcur", il);
+
+ Qcur = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
+ cb(Qcur, "Qcur", il);
+
+ // TODO: is this required?
+ Qcur = ggml_cont(ctx0, Qcur);
+ Qcur = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 0, 2, 1, 3));
+ cb(Qcur, "Qcur", il);
+
+ Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].cross_attn_q_norm, NULL, LLM_NORM_RMS, cb, il);
+ cb(Qcur, "Qcur", il);
+
+ struct ggml_tensor * Kcur;
+ if (lctx.cross_attn_state_first_pass) {
+ struct ggml_tensor * Kcur, * Vcur;
+ if (batch.embd) {
+ Kcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_k_proj, inpCAS);
+ cb(Kcur, "Kcur", il);
+
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, 6404);
+ cb(Kcur, "Kcur", il);
+
+ Kcur = ggml_permute(ctx0, Kcur, 0, 2, 1, 3);
+ cb(Kcur, "Kcur", il);
+
+ // TODO: is this required?
+ Kcur = ggml_cont(ctx0, Kcur);
+ Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
+ cb(Kcur, "Kcur", il);
+
+ Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].cross_attn_k_norm, NULL, LLM_NORM_RMS, cb, il);
+ cb(Kcur, "Kcur", il);
+
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, kv_self.k_l[il]));
+ } else {
+ Kcur = ggml_view_tensor(ctx0, kv_self.k_l[il]);
+ cb(Kcur, "Kcur (view)", il);
+ }
+
+ struct ggml_tensor * Vcur;
+ if (lctx.cross_attn_state_first_pass) {
+ Vcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_v_proj, inpCAS);
+ cb(Vcur, "Vcur", il);
+
@ -469,6 +473,9 @@ index 83b80b59..b189a19a 100644
+
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, kv_self.v_l[il]));
+ } else {
+ Kcur = ggml_view_tensor(ctx0, kv_self.k_l[il]);
+ cb(Kcur, "Kcur (view)", il);
+
+ Vcur = ggml_view_tensor(ctx0, kv_self.v_l[il]);
+ cb(Vcur, "Vcur (view)", il);
+ }
@ -476,11 +483,8 @@ index 83b80b59..b189a19a 100644
+ struct ggml_tensor * kq = ggml_mul_mat(ctx0, Kcur, Qcur);
+ cb(kq, "kq", il);
+
+ kq = ggml_scale_inplace(ctx0, kq, 1.0f/sqrtf(float(n_embd_head)));
+ cb(kq, "kq_scaled", il);
+
+ // TODO: apply causal masks
+ struct ggml_tensor * kq_soft_max = ggml_soft_max_inplace(ctx0, kq);
+ struct ggml_tensor * kq_soft_max = ggml_soft_max_ext(ctx0, kq, nullptr, 1.f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
+ cb(kq_soft_max, "kq_soft_max", il);
+
+ Vcur = ggml_cont(ctx0, ggml_transpose(ctx0, Vcur));
@ -570,8 +574,8 @@ index 83b80b59..b189a19a 100644
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+
+
+ if (il == n_layer - 1) {
@ -620,7 +624,7 @@ index 83b80b59..b189a19a 100644
// lm_head
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
cb(cur, "result_output", -1);
@@ -16501,6 +16907,10 @@ static struct ggml_cgraph * llama_build_graph(
@@ -16501,6 +16891,10 @@ static struct ggml_cgraph * llama_build_graph(
{
result = llm.build_llama();
} break;
@ -631,33 +635,48 @@ index 83b80b59..b189a19a 100644
case LLM_ARCH_BAICHUAN:
{
result = llm.build_baichuan();
@@ -16773,6 +17183,14 @@ static void llama_set_inputs(llama_context & lctx, const llama_ubatch & batch) {
ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
@@ -16761,10 +17155,19 @@ static void llama_set_inputs(llama_context & lctx, const llama_ubatch & batch) {
}
+ // TODO (jmorganca): this might copy a lot of data on every request of a
+ // single generation even though it doesn't change, so we should
+ // find a way to not set this more than one time per image
+ if (lctx.inp_cross_attn_state &&
+ lctx.inp_cross_attn_state->buffer) {
+ ggml_backend_tensor_set(lctx.inp_cross_attn_state, lctx.cross_attn_state, 0, hparams.n_embd * 1601 * 4 * ggml_element_size(lctx.inp_cross_attn_state));
+ }
+
if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
const int64_t n_tokens = batch.n_tokens;
@@ -17455,6 +17873,10 @@ static int llama_decode_internal(
if (batch.embd) {
- const int64_t n_embd = hparams.n_embd;
- const int64_t n_tokens = batch.n_tokens;
+ if (lctx.inp_cross_attn_state && lctx.inp_cross_attn_state->buffer) {
+ ggml_backend_tensor_set(lctx.inp_cross_attn_state, batch.embd, 0, ggml_nbytes(lctx.inp_cross_attn_state));
+ // zero out inp_embd since it's not used
+ float * inp_embd_data = (float *)lctx.inp_embd->data;
+ for (int i = 0; i < ggml_nelements(lctx.inp_embd); ++i) {
+ inp_embd_data[i] = 0.0f;
+ }
+ } else {
+ const int64_t n_embd = hparams.n_embd;
+ const int64_t n_tokens = batch.n_tokens;
llama_set_inputs(lctx, ubatch);
- ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
+ ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
+ }
}
+ // TODO: replace with something better to find out if its
+ // our first actual pass
+ lctx.cross_attn_state_first_pass = false;
+
llama_graph_compute(lctx, gf, n_threads, threadpool);
if (batch.pos && lctx.inp_pos) {
@@ -17345,7 +17748,7 @@ static int llama_decode_internal(
n_outputs = 1;
}
// update the kv ring buffer
@@ -18648,7 +19070,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
- lctx.sbatch.from_batch(batch_all, n_embd,
+ lctx.sbatch.from_batch(batch_all, batch_all.n_embd,
/* simple_split */ !kv_self.recurrent,
/* logits_all */ n_outputs == n_tokens_all);
@@ -17638,7 +18041,7 @@ static int llama_encode_internal(
const int64_t n_embd = hparams.n_embd;
- lctx.sbatch.from_batch(batch, n_embd, /* simple_split */ true, /* logits_all */ true);
+ lctx.sbatch.from_batch(batch, batch.n_embd, /* simple_split */ true, /* logits_all */ true);
const llama_ubatch ubatch = lctx.sbatch.split_simple(n_tokens);
@@ -18648,7 +19051,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
if (llama_model_has_encoder(&model)) {
n_attn_layer *= 3;
}
@ -668,19 +687,7 @@ index 83b80b59..b189a19a 100644
}
size_t total_size_org = 0;
@@ -19744,6 +20168,11 @@ struct llama_context * llama_new_context_with_model(
return ctx;
}
+void llama_set_cross_attn_state(struct llama_context * ctx, float * cross_attn_state) {
+ ctx->cross_attn_state_first_pass = true;
+ ctx->cross_attn_state = cross_attn_state;
+}
+
void llama_free(struct llama_context * ctx) {
delete ctx;
}
@@ -19814,6 +20243,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
@@ -19814,6 +20219,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
// use what we call a normal RoPE, operating on pairs of consecutive head values
case LLM_ARCH_LLAMA:
@ -688,3 +695,38 @@ index 83b80b59..b189a19a 100644
case LLM_ARCH_BAICHUAN:
case LLM_ARCH_STARCODER:
case LLM_ARCH_PLAMO:
@@ -21230,6 +21636,10 @@ void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
ctx->cparams.causal_attn = causal_attn;
}
+void llama_set_cross_attention(struct llama_context * ctx, bool cross_attention) {
+ ctx->cparams.cross_attn = cross_attention;
+}
+
struct llama_batch llama_batch_get_one(
llama_token * tokens,
int32_t n_tokens,
@@ -21239,6 +21649,7 @@ struct llama_batch llama_batch_get_one(
/*n_tokens =*/ n_tokens,
/*tokens =*/ tokens,
/*embd =*/ nullptr,
+ /*n_embd =*/ 0,
/*pos =*/ nullptr,
/*n_seq_id =*/ nullptr,
/*seq_id =*/ nullptr,
@@ -21254,6 +21665,7 @@ struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_
/*n_tokens =*/ 0,
/*tokens =*/ nullptr,
/*embd =*/ nullptr,
+ /*n_embd =*/ 0,
/*pos =*/ nullptr,
/*n_seq_id =*/ nullptr,
/*seq_id =*/ nullptr,
@@ -21265,6 +21677,7 @@ struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_
if (embd) {
batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
+ batch.n_embd = embd;
} else {
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
}

View File

@ -0,0 +1,66 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Daniel Hiltgen <daniel@ollama.com>
Date: Fri, 25 Oct 2024 16:25:18 -0700
Subject: [PATCH] fix deepseek deseret regex
On windows compiled with gcc the c++ regex library failed to handle
the characters
---
src/llama-vocab.cpp | 2 +-
src/unicode.cpp | 21 +++++++++++++++++++++
2 files changed, 22 insertions(+), 1 deletion(-)
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
index d2f34ddd..3ef6af19 100644
--- a/src/llama-vocab.cpp
+++ b/src/llama-vocab.cpp
@@ -389,7 +389,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {
case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
regex_exprs = {
"[\r\n]",
- "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ--ℝℤΩℨK--ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA--z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
+ "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ--ℝℤΩℨK--ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA--\U00010400-\U0001044f𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
"\\s?[!-/:-~---‟ -。]+",
"\\s+$",
"[一-龥ࠀ-一가-퟿]+",
diff --git a/src/unicode.cpp b/src/unicode.cpp
index f4e941cd..9d78ff16 100644
--- a/src/unicode.cpp
+++ b/src/unicode.cpp
@@ -2,6 +2,11 @@
#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
#endif
+#if defined(_WIN32)
+#define WIN32_LEAN_AND_MEAN
+#include <windows.h>
+#endif
+
#include "unicode.h"
#include "unicode-data.h"
@@ -201,8 +206,24 @@ static std::unordered_map<std::string, uint8_t> unicode_utf8_to_byte_map() {
}
static inline std::wstring unicode_wstring_from_utf8(const std::string & s) {
+#ifdef _WIN32
+ int wlen = MultiByteToWideChar(CP_UTF8, 0, s.c_str(), -1, NULL, 0);
+ if (!wlen) {
+ throw std::invalid_argument("failed to convert regex");
+ }
+ wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t));
+ wlen = MultiByteToWideChar(CP_UTF8, 0, s.c_str(), -1, wbuf, wlen);
+ if (!wlen) {
+ free(wbuf);
+ throw std::invalid_argument("failed to convert regex");
+ }
+ std::wstring ret = std::wstring(wbuf);
+ free(wbuf);
+ return ret;
+#else
std::wstring_convert<std::codecvt_utf8<wchar_t>> conv;
return conv.from_bytes(s);
+#endif
}
static std::vector<std::string> unicode_byte_encoding_process(const std::vector<std::string> & bpe_words) {

View File

@ -2,7 +2,7 @@ package main
import (
"errors"
"hash/maphash"
"fmt"
"log/slog"
"reflect"
"time"
@ -20,14 +20,14 @@ type InputCache struct {
// optimize cache eviction for multiple users
multiUserCache bool
// cache of images to embeddings
images []imageCache
imageHash maphash.Hash
lc *llama.Context
}
func NewInputCache(lc *llama.Context, kvSize int, numSlots int, multiUserCache bool) *InputCache {
func NewInputCache(lc *llama.Context, kvSize int, numSlots int, multiUserCache bool) (*InputCache, error) {
if kvSize/numSlots < 1 {
return nil, fmt.Errorf("must have at least one kv cache entry per parallel sequence (kv: %v parallel: %v)", kvSize, numSlots)
}
slots := make([]InputCacheSlot, numSlots)
for i := range slots {
@ -41,9 +41,8 @@ func NewInputCache(lc *llama.Context, kvSize int, numSlots int, multiUserCache b
numCtx: kvSize / numSlots,
slots: slots,
multiUserCache: multiUserCache,
images: make([]imageCache, numSlots),
lc: lc,
}
}, nil
}
// Locking: Operations on InputCacheSlot (including finding one
@ -64,7 +63,7 @@ type InputCacheSlot struct {
lastUsed time.Time
}
func (c *InputCache) LoadCacheSlot(prompt []input, cachePrompt bool) (*InputCacheSlot, []input, int, error) {
func (c *InputCache) LoadCacheSlot(prompt []input, cachePrompt bool) (*InputCacheSlot, []input, error) {
var slot *InputCacheSlot
var numPast int
var err error
@ -81,7 +80,7 @@ func (c *InputCache) LoadCacheSlot(prompt []input, cachePrompt bool) (*InputCach
slot, numPast, err = c.findBestCacheSlot(prompt)
}
if err != nil {
return nil, nil, 0, err
return nil, nil, err
}
if !cachePrompt {
@ -108,7 +107,7 @@ func (c *InputCache) LoadCacheSlot(prompt []input, cachePrompt bool) (*InputCach
prompt = prompt[numPast:]
slot.Inputs = slot.Inputs[:numPast]
return slot, prompt, numPast, nil
return slot, prompt, nil
}
func (c *InputCache) findLongestCacheSlot(prompt []input) (*InputCacheSlot, int, error) {
@ -200,66 +199,30 @@ func countCommonPrefix(a []input, b []input) int {
return count
}
func (c *InputCache) ShiftCacheSlot(slot *InputCacheSlot, numKeep int, numDiscard int, numPast int) {
// Frees up space in the KV cache by deleting the oldest half of history and shifting
// the newest half into that space (saving numKeep inputs at the beginning).
//
// Assumes that at least 1 entry can be freed up by shifting (i.e. numKeep < numCtx)
func (c *InputCache) ShiftCacheSlot(slot *InputCacheSlot, numKeep int) {
targetFree := (c.numCtx - numKeep) / 2
targetFree = max(targetFree, 1)
currentFree := c.numCtx - len(slot.Inputs)
discard := targetFree - currentFree
if discard <= 0 {
return
}
slog.Debug("context limit hit - shifting", "limit", c.numCtx, "input", len(slot.Inputs),
"keep", numKeep, "discard", discard)
// TODO (jessegross): KV cache removal can fail for certain types of models
// server.cpp doesn't handle this, though we can be more graceful
c.lc.KvCacheSeqRm(slot.Id, numKeep, numKeep+numDiscard)
c.lc.KvCacheSeqAdd(slot.Id, numKeep+numDiscard, numPast, -numDiscard)
c.lc.KvCacheSeqRm(slot.Id, numKeep, numKeep+discard)
c.lc.KvCacheSeqAdd(slot.Id, numKeep+discard, len(slot.Inputs), -discard)
for i := numKeep + numDiscard; i < len(slot.Inputs); i++ {
slot.Inputs[i-numDiscard] = slot.Inputs[i]
for i := numKeep + discard; i < len(slot.Inputs); i++ {
slot.Inputs[i-discard] = slot.Inputs[i]
}
slot.Inputs = slot.Inputs[:len(slot.Inputs)-numDiscard]
}
// Locking: Lookup and store operations on imageCache require a lock
// to be held that serializes these with each other. Hash does not
// require a lock nor they need to be serialized with InputCacheSlot.
type imageCache struct {
key uint64
val [][]float32
lastUsed time.Time
}
func (c *InputCache) HashImage(image []byte) uint64 {
c.imageHash.Reset()
_, _ = c.imageHash.Write(image)
return c.imageHash.Sum64()
}
var ErrImageNotFound = errors.New("image not found in cache")
func (c *InputCache) FindImage(hash uint64) ([][]float32, error) {
for i := range c.images {
if c.images[i].key == hash {
slog.Debug("loading image embeddings from cache", "entry", i)
c.images[i].lastUsed = time.Now()
return c.images[i].val, nil
}
}
return nil, ErrImageNotFound
}
func (c *InputCache) AddImage(hash uint64, embed [][]float32) {
best := time.Now()
var bestImage int
for i := range c.images {
if c.images[i].key == hash {
bestImage = i
break
}
if c.images[i].lastUsed.Compare(best) < 0 {
best = c.images[i].lastUsed
bestImage = i
}
}
slog.Debug("storing image embeddings in cache", "entry", bestImage, "used", c.images[bestImage].lastUsed)
c.images[bestImage].key = hash
c.images[bestImage].val = embed
c.images[bestImage].lastUsed = time.Now()
slot.Inputs = slot.Inputs[:len(slot.Inputs)-discard]
}

View File

@ -1,7 +1,6 @@
package main
import (
"reflect"
"testing"
"time"
)
@ -228,77 +227,3 @@ func TestFindCacheSlot(t *testing.T) {
})
}
}
func TestImageCache(t *testing.T) {
cache := NewInputCache(nil, 2048, 4, false)
valA := [][]float32{{0.1, 0.2}, {0.3}}
valB := [][]float32{{0.4}, {0.5}, {0.6}}
valC := [][]float32{{0.7}}
valD := [][]float32{{0.8}}
valE := [][]float32{{0.9}}
// Empty cache
result, err := cache.FindImage(0x5adb61d31933a946)
if err != ErrImageNotFound {
t.Errorf("found result in empty cache: result %v, err %v", result, err)
}
// Insert A
cache.AddImage(0x5adb61d31933a946, valA)
result, err = cache.FindImage(0x5adb61d31933a946)
if !reflect.DeepEqual(result, valA) {
t.Errorf("failed to find expected value: result %v, err %v", result, err)
}
// Insert B
cache.AddImage(0x011551369a34a901, valB)
result, err = cache.FindImage(0x5adb61d31933a946)
if !reflect.DeepEqual(result, valA) {
t.Errorf("failed to find expected value: result %v, err %v", result, err)
}
result, err = cache.FindImage(0x011551369a34a901)
if !reflect.DeepEqual(result, valB) {
t.Errorf("failed to find expected value: result %v, err %v", result, err)
}
// Replace B with C
cache.AddImage(0x011551369a34a901, valC)
result, err = cache.FindImage(0x5adb61d31933a946)
if !reflect.DeepEqual(result, valA) {
t.Errorf("failed to find expected value: result %v, err %v", result, err)
}
result, err = cache.FindImage(0x011551369a34a901)
if !reflect.DeepEqual(result, valC) {
t.Errorf("failed to find expected value: result %v, err %v", result, err)
}
// Evict A
cache.AddImage(0x756b218a517e7353, valB)
cache.AddImage(0x75e5e8d35d7e3967, valD)
cache.AddImage(0xd96f7f268ca0646e, valE)
result, err = cache.FindImage(0x5adb61d31933a946)
if reflect.DeepEqual(result, valA) {
t.Errorf("failed to find expected value: result %v, err %v", result, err)
}
result, err = cache.FindImage(0x756b218a517e7353)
if !reflect.DeepEqual(result, valB) {
t.Errorf("failed to find expected value: result %v, err %v", result, err)
}
result, err = cache.FindImage(0x011551369a34a901)
if !reflect.DeepEqual(result, valC) {
t.Errorf("failed to find expected value: result %v, err %v", result, err)
}
result, err = cache.FindImage(0x75e5e8d35d7e3967)
if !reflect.DeepEqual(result, valD) {
t.Errorf("failed to find expected value: result %v, err %v", result, err)
}
result, err = cache.FindImage(0xd96f7f268ca0646e)
if !reflect.DeepEqual(result, valE) {
t.Errorf("failed to find expected value: result %v, err %v", result, err)
}
}

183
llama/runner/image.go Normal file
View File

@ -0,0 +1,183 @@
package main
import (
"errors"
"fmt"
"hash/maphash"
"log/slog"
"slices"
"sync"
"time"
"github.com/ollama/ollama/llama"
)
const imageCacheSize = 4
type ImageContext struct {
// mu is required to be held when generating embeddings or accessing the cache
mu sync.Mutex
clip *llama.ClipContext
mllama *llama.MllamaContext
// cache of images to embeddings
images []imageCache
imageHash maphash.Hash
}
func NewImageContext(llamaContext *llama.Context, modelPath string) (*ImageContext, error) {
arch, err := llama.GetModelArch(modelPath)
if err != nil {
return nil, fmt.Errorf("unable to determine vision architecture: %w (%s)", err, modelPath)
}
var c ImageContext
if arch == "clip" {
c.clip, err = llama.NewClipContext(llamaContext, modelPath)
} else if arch == "mllama" {
c.mllama, err = llama.NewMllamaContext(llamaContext, modelPath)
} else {
return nil, fmt.Errorf("unknown vision model architecture: %s", arch)
}
if err != nil {
return nil, err
}
c.images = make([]imageCache, imageCacheSize)
return &c, nil
}
func (c *ImageContext) Free(modelPath string) {
if c == nil {
return
}
if c.clip != nil {
c.clip.Free()
}
if c.mllama != nil {
c.mllama.Free()
}
}
func (c *ImageContext) NewEmbed(llamaContext *llama.Context, data []byte, aspectRatioId int) ([][]float32, error) {
if c == nil {
return nil, nil
}
if len(data) <= 0 {
return nil, errors.New("received zero length image")
}
hash := c.hashImage(data)
c.mu.Lock()
defer c.mu.Unlock()
embed, err := c.findImage(hash)
if err != nil {
if c.mllama != nil {
embed, err = c.mllama.NewEmbed(llamaContext, data, aspectRatioId)
if err != nil {
return nil, err
}
} else if c.clip != nil {
embed, err = c.clip.NewEmbed(llamaContext, data)
if err != nil {
return nil, err
}
} else {
return nil, errors.New("received image but vision model not loaded")
}
c.addImage(hash, embed)
}
return embed, nil
}
func (c *ImageContext) BatchSize(configuredBatchSize int) int {
// If images are not supported, we don't need to allocate embedding batches
if c == nil {
return 0
}
// Mllama maps an image to 1 embedding token (llava creates many tokens)
// and doesn't support more than a single image per request.
// The embeddings are large (100 MB), so allocating a big batch can fail
// on some systems
if c.mllama != nil {
return 1
}
return configuredBatchSize
}
func (c *ImageContext) EmbedSize(llamaContext *llama.Context) int {
if c != nil && c.mllama != nil {
return c.mllama.EmbedSize(llamaContext)
} else {
return llamaContext.Model().NEmbd()
}
}
func (c *ImageContext) NeedCrossAttention(inputs ...input) bool {
if c == nil || c.mllama == nil {
return false
}
return slices.ContainsFunc(inputs, func(input input) bool {
return input.embed != nil
})
}
type imageCache struct {
key uint64
val [][]float32
lastUsed time.Time
}
func (c *ImageContext) hashImage(image []byte) uint64 {
c.imageHash.Reset()
_, _ = c.imageHash.Write(image)
return c.imageHash.Sum64()
}
var errImageNotFound = errors.New("image not found in cache")
func (c *ImageContext) findImage(hash uint64) ([][]float32, error) {
for i := range c.images {
if c.images[i].key == hash {
slog.Debug("loading image embeddings from cache", "entry", i)
c.images[i].lastUsed = time.Now()
return c.images[i].val, nil
}
}
return nil, errImageNotFound
}
func (c *ImageContext) addImage(hash uint64, embed [][]float32) {
best := time.Now()
var bestImage int
for i := range c.images {
if c.images[i].key == hash {
bestImage = i
break
}
if c.images[i].lastUsed.Compare(best) < 0 {
best = c.images[i].lastUsed
bestImage = i
}
}
slog.Debug("storing image embeddings in cache", "entry", bestImage, "used", c.images[bestImage].lastUsed)
c.images[bestImage].key = hash
c.images[bestImage].val = embed
c.images[bestImage].lastUsed = time.Now()
}

View File

@ -0,0 +1,80 @@
package main
import (
"reflect"
"testing"
)
func TestImageCache(t *testing.T) {
cache := ImageContext{images: make([]imageCache, 4)}
valA := [][]float32{{0.1, 0.2}, {0.3}}
valB := [][]float32{{0.4}, {0.5}, {0.6}}
valC := [][]float32{{0.7}}
valD := [][]float32{{0.8}}
valE := [][]float32{{0.9}}
// Empty cache
result, err := cache.findImage(0x5adb61d31933a946)
if err != errImageNotFound {
t.Errorf("found result in empty cache: result %v, err %v", result, err)
}
// Insert A
cache.addImage(0x5adb61d31933a946, valA)
result, err = cache.findImage(0x5adb61d31933a946)
if !reflect.DeepEqual(result, valA) {
t.Errorf("failed to find expected value: result %v, err %v", result, err)
}
// Insert B
cache.addImage(0x011551369a34a901, valB)
result, err = cache.findImage(0x5adb61d31933a946)
if !reflect.DeepEqual(result, valA) {
t.Errorf("failed to find expected value: result %v, err %v", result, err)
}
result, err = cache.findImage(0x011551369a34a901)
if !reflect.DeepEqual(result, valB) {
t.Errorf("failed to find expected value: result %v, err %v", result, err)
}
// Replace B with C
cache.addImage(0x011551369a34a901, valC)
result, err = cache.findImage(0x5adb61d31933a946)
if !reflect.DeepEqual(result, valA) {
t.Errorf("failed to find expected value: result %v, err %v", result, err)
}
result, err = cache.findImage(0x011551369a34a901)
if !reflect.DeepEqual(result, valC) {
t.Errorf("failed to find expected value: result %v, err %v", result, err)
}
// Evict A
cache.addImage(0x756b218a517e7353, valB)
cache.addImage(0x75e5e8d35d7e3967, valD)
cache.addImage(0xd96f7f268ca0646e, valE)
result, err = cache.findImage(0x5adb61d31933a946)
if reflect.DeepEqual(result, valA) {
t.Errorf("failed to find expected value: result %v, err %v", result, err)
}
result, err = cache.findImage(0x756b218a517e7353)
if !reflect.DeepEqual(result, valB) {
t.Errorf("failed to find expected value: result %v, err %v", result, err)
}
result, err = cache.findImage(0x011551369a34a901)
if !reflect.DeepEqual(result, valC) {
t.Errorf("failed to find expected value: result %v, err %v", result, err)
}
result, err = cache.findImage(0x75e5e8d35d7e3967)
if !reflect.DeepEqual(result, valD) {
t.Errorf("failed to find expected value: result %v, err %v", result, err)
}
result, err = cache.findImage(0xd96f7f268ca0646e)
if !reflect.DeepEqual(result, valE) {
t.Errorf("failed to find expected value: result %v, err %v", result, err)
}
}

View File

@ -34,9 +34,6 @@ type input struct {
}
type Sequence struct {
// number of inputs evaluated
numPast int
// batch index
iBatch int
@ -52,6 +49,10 @@ type Sequence struct {
// input cache being used by this sequence
cache *InputCacheSlot
// does this sequence require cross-attention layers to be processed? - if we have seen
// an image for certain multi-modal models
crossAttention bool
// channel to send responses over
responses chan string
@ -108,26 +109,23 @@ func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequen
params.numKeep = len(inputs)
}
if !params.embedding {
// Subtracting 4 ensures that at least 1 input can be discarded during shift
params.numKeep = min(params.numKeep, s.cache.numCtx-4)
params.numKeep += s.bosToken
} else {
// Embeddings are 1 shot - just truncate to the context window, without ever shifting
params.numKeep = min(params.numKeep, s.cache.numCtx)
if s.model.AddBOSToken() {
params.numKeep += 1
}
// truncate to fit in context window
// Ensure that at least 1 input can be discarded during shift
params.numKeep = min(params.numKeep, s.cache.numCtx-1)
if len(inputs) > s.cache.numCtx {
slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "numKeep", params.numKeep)
newInputs := inputs[:params.numKeep]
newInputs = append(newInputs, inputs[len(inputs)-s.cache.numCtx+params.numKeep:]...)
inputs = newInputs
slog.Warn("input exceeds context length", "prompt", len(inputs), "limit", s.cache.numCtx)
}
var sc *llama.SamplingContext
if params.samplingParams != nil {
sc = llama.NewSamplingContext(s.model, *params.samplingParams)
sc, err = llama.NewSamplingContext(s.model, *params.samplingParams)
if err != nil {
return nil, err
}
for _, input := range inputs {
if input.embed == nil {
sc.Accept(input.token, false)
@ -190,16 +188,10 @@ func (s *Server) inputs(prompt string, images []ImageData) ([]input, error) {
return nil, fmt.Errorf("invalid image index: %d", n)
}
hash := s.cache.HashImage(images[imageIndex].Data)
// Vision models cannot be accessed concurrently
s.clip.mu.Lock()
embed, err := s.cache.FindImage(hash)
embed, err := s.image.NewEmbed(s.lc, images[imageIndex].Data, images[imageIndex].AspectRatioID)
if err != nil {
embed = llama.NewLlavaImageEmbed(s.lc, s.clip.cc, images[imageIndex].Data)
s.cache.AddImage(hash, embed)
return nil, err
}
s.clip.mu.Unlock()
for _, e := range embed {
inputs = append(inputs, input{embed: e})
@ -207,41 +199,17 @@ func (s *Server) inputs(prompt string, images []ImageData) ([]input, error) {
}
}
if s.clip.cc != nil {
var embed [][]float32
if s.clip.cc.IsMllama && len(images) >= 1 {
hash := s.cache.HashImage(images[0].Data)
s.clip.mu.Lock()
var err error
embed, err = s.cache.FindImage(hash)
if err != nil {
embed = llama.NewMllamaImageEmbed(s.lc, s.clip.cc, images[0].Data, images[0].AspectRatioID)
s.cache.AddImage(hash, embed)
}
s.clip.mu.Unlock()
}
s.mu.Lock()
llama.MllamaSetCrossAttn(s.lc, s.clip.cc, embed)
s.mu.Unlock()
}
return inputs, nil
}
type clip struct {
cc *llama.ClipContext
mu sync.Mutex
}
type Server struct {
model *llama.Model
lc *llama.Context
// required for image embeddings
clip clip
image *ImageContext
// TODO (jmorganca): make this n_batch
batchSize int
// parallel is the number of parallel requests to handle
@ -254,9 +222,6 @@ type Server struct {
// KV cache
cache *InputCache
// does this model require a beginning of sequence token?
bosToken int
// next sequence for prompt processing to avoid starvation
nextSeq int
@ -281,18 +246,6 @@ func (s *Server) allNil() bool {
return true
}
func (s *Server) shiftContext(seq *Sequence) {
numLeft := seq.numPast - seq.numKeep
numDiscard := numLeft / 2
slog.Debug("context limit hit - shifting", "limit", s.cache.numCtx, "numPast", seq.numPast,
"numKeep", seq.numKeep, "numLeft", numLeft, "numDiscard", numDiscard)
s.cache.ShiftCacheSlot(seq.cache, seq.numKeep, numDiscard, seq.numPast)
seq.numPast -= numDiscard
}
func flushPending(seq *Sequence) bool {
joined := strings.Join(seq.pendingResponses, "")
seq.pendingResponses = []string{}
@ -327,22 +280,31 @@ func (s *Server) removeSequence(seqIndex int, reason string) {
close(seq.responses)
close(seq.embedding)
seq.cache.InUse = false
if s.clip.cc != nil {
llama.MllamaSetCrossAttn(s.lc, s.clip.cc, nil)
}
s.seqs[seqIndex] = nil
}
func (s *Server) run(ctx context.Context) {
s.ready.Wait()
// logically these batches are used only within the context of processBatch
// Logically these batches are used only within the context of processBatch
// but it is better for performance to allocate them once here
tokenBatch := llama.NewBatch(s.batchSize*len(s.seqs), 0, len(s.seqs))
tokenBatch, err := llama.NewBatch(s.batchSize, len(s.seqs), 0)
if err != nil {
panic(err)
}
defer tokenBatch.Free()
embedBatch := llama.NewBatch(s.batchSize*len(s.seqs), s.lc.Model().NEmbd(), len(s.seqs))
defer embedBatch.Free()
var embedBatch *llama.Batch
embedBatchSize := s.image.BatchSize(s.batchSize)
if embedBatchSize != 0 {
embedBatch, err = llama.NewBatch(embedBatchSize, len(s.seqs), s.image.EmbedSize(s.lc))
if err != nil {
panic(err)
}
defer embedBatch.Free()
} else {
embedBatch = &llama.Batch{}
}
for {
select {
@ -371,6 +333,7 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
defer s.mu.Unlock()
var batch *llama.Batch
crossAttention := false
seqIdx := s.nextSeq - 1
for range s.seqs {
@ -382,17 +345,24 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
}
// if past the num predict limit
if seq.numPredict > 0 && seq.numPredicted > seq.numPredict {
if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
s.removeSequence(seqIdx, "limit")
continue
}
if seq.numPast+len(seq.inputs) > s.cache.numCtx {
s.shiftContext(seq)
}
var numInputsProcessed int
shifted := false
for i, input := range seq.inputs {
if len(seq.cache.Inputs)+1 > s.cache.numCtx {
if !shifted {
s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
shifted = true
} else {
break
}
}
embedding := input.embed != nil
// If we don't currently have a batch, use one of the correct type and
@ -404,24 +374,24 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
batch = tokenBatch
} else {
batch = embedBatch
seq.crossAttention = s.image.NeedCrossAttention(input)
}
} else if embedding != batch.IsEmbedding() {
} else if embedding != batch.IsEmbedding() || crossAttention != seq.crossAttention {
s.nextSeq = seqIdx
break
}
// todo: make this n_batch
if i >= s.batchSize {
if i >= batch.Size() {
break
}
batch.Add(input.token, input.embed, seq.numPast, []int{seq.cache.Id}, numInputsProcessed+1 == len(seq.inputs))
seq.numPast++
crossAttention = seq.crossAttention
batch.Add(input.token, input.embed, len(seq.cache.Inputs), i+1 == len(seq.inputs), seq.cache.Id)
seq.cache.Inputs = append(seq.cache.Inputs, input)
numInputsProcessed++
}
if numInputsProcessed > 0 {
seq.cache.Inputs = append(seq.cache.Inputs, seq.inputs[:numInputsProcessed]...)
seq.inputs = seq.inputs[numInputsProcessed:]
seq.iBatch = batch.NumTokens() - 1
}
@ -431,6 +401,8 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
return
}
s.lc.SetCrossAttention(crossAttention)
err := s.lc.Decode(batch)
if err != nil {
slog.Error("failed to decode batch", "error", err)
@ -642,12 +614,15 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
s.mu.Lock()
for i, sq := range s.seqs {
if sq == nil {
seq.cache, seq.inputs, seq.numPast, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
if err != nil {
s.mu.Unlock()
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
return
}
seq.crossAttention = s.image.NeedCrossAttention(seq.cache.Inputs...)
s.seqs[i] = seq
s.cond.Signal()
break
@ -722,7 +697,7 @@ func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
s.mu.Lock()
for i, sq := range s.seqs {
if sq == nil {
seq.cache, seq.inputs, seq.numPast, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
if err != nil {
s.mu.Unlock()
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
@ -790,10 +765,17 @@ func (s *Server) loadModel(
) {
llama.BackendInit()
s.model = llama.LoadModelFromFile(mpath, params)
var err error
s.model, err = llama.LoadModelFromFile(mpath, params)
if err != nil {
panic(err)
}
ctxParams := llama.NewContextParams(kvSize, s.batchSize*s.parallel, s.parallel, threads, flashAttention)
s.lc = llama.NewContextWithModel(s.model, ctxParams)
s.lc, err = llama.NewContextWithModel(s.model, ctxParams)
if err != nil {
panic(err)
}
if lpath != "" {
err := s.model.ApplyLoraFromFile(s.lc, lpath, 1.0, threads)
@ -802,19 +784,18 @@ func (s *Server) loadModel(
}
}
if s.model.AddBOSToken() {
s.bosToken = 1
}
if ppath != "" {
var err error
s.clip.cc, err = llama.NewClipContext(ppath)
s.image, err = NewImageContext(s.lc, ppath)
if err != nil {
panic(err)
}
}
s.cache = NewInputCache(s.lc, kvSize, s.parallel, multiUserCache)
s.cache, err = NewInputCache(s.lc, kvSize, s.parallel, multiUserCache)
if err != nil {
panic(err)
}
s.status = ServerStatusReady
s.ready.Done()
@ -837,14 +818,8 @@ func main() {
mlock := flag.Bool("mlock", false, "force system to keep model in RAM rather than swapping or compressing")
tensorSplit := flag.String("tensor-split", "", "fraction of the model to offload to each GPU, comma-separated list of proportions")
multiUserCache := flag.Bool("multiuser-cache", false, "optimize input cache algorithm for multiple users")
// Expose requirements as a JSON output to stdout
requirements := flag.Bool("requirements", false, "print json requirement information")
// These are either ignored by llama.cpp or have no significance to us
_ = flag.Bool("embedding", false, "enable embedding vector output (default: disabled)")
_ = flag.Bool("log-disable", false, "disables logging to a file")
_ = flag.Bool("memory-f32", false, "use f32 instead of f16 for memory key+value (default: disabled) not recommended: doubles context memory required and no measurable increase in quality")
flag.Parse()
if *requirements {
printRequirements(os.Stdout)
@ -867,7 +842,7 @@ func main() {
})
slog.SetDefault(slog.New(handler))
slog.Info("starting go runner")
slog.Debug("system info", "cpu", llama.PrintSystemInfo(), "threads", *threads)
slog.Info("system", "info", llama.PrintSystemInfo(), "threads", *threads)
server := &Server{
batchSize: *batchSize,

View File

@ -5,24 +5,28 @@
struct gpt_sampler *gpt_sampler_cinit(
const struct llama_model *model, struct gpt_sampler_cparams *params)
{
gpt_sampler_params sparams;
sparams.top_k = params->top_k;
sparams.top_p = params->top_p;
sparams.min_p = params->min_p;
sparams.tfs_z = params->tfs_z;
sparams.typ_p = params->typical_p;
sparams.temp = params->temp;
sparams.penalty_last_n = params->penalty_last_n;
sparams.penalty_repeat = params->penalty_repeat;
sparams.penalty_freq = params->penalty_freq;
sparams.penalty_present = params->penalty_present;
sparams.mirostat = params->mirostat;
sparams.mirostat_tau = params->mirostat_tau;
sparams.mirostat_eta = params->mirostat_eta;
sparams.penalize_nl = params->penalize_nl;
sparams.seed = params->seed;
sparams.grammar = params->grammar;
return gpt_sampler_init(model, sparams);
try {
gpt_sampler_params sparams;
sparams.top_k = params->top_k;
sparams.top_p = params->top_p;
sparams.min_p = params->min_p;
sparams.tfs_z = params->tfs_z;
sparams.typ_p = params->typical_p;
sparams.temp = params->temp;
sparams.penalty_last_n = params->penalty_last_n;
sparams.penalty_repeat = params->penalty_repeat;
sparams.penalty_freq = params->penalty_freq;
sparams.penalty_present = params->penalty_present;
sparams.mirostat = params->mirostat;
sparams.mirostat_tau = params->mirostat_tau;
sparams.mirostat_eta = params->mirostat_eta;
sparams.penalize_nl = params->penalize_nl;
sparams.seed = params->seed;
sparams.grammar = params->grammar;
return gpt_sampler_init(model, sparams);
} catch (const std::exception & err) {
return nullptr;
}
}
void gpt_sampler_cfree(struct gpt_sampler *sampler)

21
llama/unicode.cpp vendored
View File

@ -28,6 +28,11 @@
#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif
#include "unicode.h"
#include "unicode-data.h"
@ -227,8 +232,24 @@ static std::unordered_map<std::string, uint8_t> unicode_utf8_to_byte_map() {
}
static inline std::wstring unicode_wstring_from_utf8(const std::string & s) {
#ifdef _WIN32
int wlen = MultiByteToWideChar(CP_UTF8, 0, s.c_str(), -1, NULL, 0);
if (!wlen) {
throw std::invalid_argument("failed to convert regex");
}
wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t));
wlen = MultiByteToWideChar(CP_UTF8, 0, s.c_str(), -1, wbuf, wlen);
if (!wlen) {
free(wbuf);
throw std::invalid_argument("failed to convert regex");
}
std::wstring ret = std::wstring(wbuf);
free(wbuf);
return ret;
#else
std::wstring_convert<std::codecvt_utf8<wchar_t>> conv;
return conv.from_bytes(s);
#endif
}
static std::vector<std::string> unicode_byte_encoding_process(const std::vector<std::string> & bpe_words) {

View File

@ -1,11 +1,9 @@
package fileutils
package llm
import "fmt"
type fileType uint32
// TODO this should map over to the GGML CGO enum type
const (
fileTypeF32 fileType = iota
fileTypeF16

View File

@ -1,4 +1,4 @@
package fileutils
package llm
import (
"encoding/binary"

View File

@ -1,11 +1,10 @@
package fileutils
package llm
import (
"encoding/binary"
"errors"
"fmt"
"io"
"os"
"slices"
"strings"
"sync"
@ -361,7 +360,7 @@ func DecodeGGML(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
}, offset, nil
}
func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload uint64) {
func (llm GGML) GraphSize(context, batch uint64) (kv, partialOffload, fullOffload uint64) {
embedding := llm.KV().EmbeddingLength()
heads := llm.KV().HeadCount()
headsKV := llm.KV().HeadCountKV()
@ -369,9 +368,12 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
embeddingHeads := llm.KV().EmbeddingHeadCount()
embeddingHeadsK := llm.KV().EmbeddingHeadCountK()
embeddingHeadsV := llm.KV().EmbeddingHeadCountV()
layers := llm.Tensors().Layers()
kv = 2 * context * llm.KV().BlockCount() * (embeddingHeadsK + embeddingHeadsV) * headsKV
switch llm.KV().Architecture() {
case "llama":
fullOffload = max(
@ -401,6 +403,42 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
)
}
case "mllama":
var visionTokens, tiles uint64 = 1601, 4
if crossAttentionLayers, ok := llm.KV()["mllama.attention.cross_attention_layers"].(*array); ok {
kv = headsKV *
(embeddingHeadsK + embeddingHeadsV) * // one for K, one for V
(2* // sizeof(float16)
(llm.KV().BlockCount()-uint64(crossAttentionLayers.size))* // num non-cross attention layers
context +
4* // sizeof(float32)
uint64(crossAttentionLayers.size)* // num cross attention layers
visionTokens*
tiles)
}
fullOffload = max(
4*batch*(2+3*embedding+embeddingHeadsK*heads+context*(1+heads)),
// vocab graph
4*batch*(embedding+vocab),
)
var ropeFreqsCount uint64
if ropeFreqs, ok := llm.Tensors().Layers()["rope_freqs"]; ok {
if ropeFreqsWeights, ok := ropeFreqs["weights"]; ok {
ropeFreqsCount = ropeFreqsWeights.parameters()
}
}
partialOffload = max(
4*(batch*
(2*embedding+1+context*(1+heads)+embeddingHeadsK*heads)+
ropeFreqsCount+
embeddingHeadsK*context*headsKV),
// vocab graph
4*batch*(embedding+vocab)+embedding*vocab*105/128,
)
case "gemma", "gemma2":
fullOffload = max(
4*batch*(embedding+vocab),
@ -489,23 +527,3 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
return
}
// LoadModel will load a model from disk. The model must be in the GGML format.
//
// It collects array values for arrays with a size less than or equal to
// maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
// the maxArraySize is negative, all arrays are collected.
func LoadModel(model string, maxArraySize int) (*GGML, error) {
if _, err := os.Stat(model); err != nil {
return nil, err
}
f, err := os.Open(model)
if err != nil {
return nil, err
}
defer f.Close()
ggml, _, err := DecodeGGML(f, maxArraySize)
return ggml, err
}

1
llm/ggml_test.go Normal file
View File

@ -0,0 +1 @@
package llm

View File

@ -1,4 +1,4 @@
package fileutils
package llm
import (
"bytes"

View File

@ -1,4 +1,4 @@
package runners
package llm
import (
"syscall"

View File

@ -1,4 +1,4 @@
package runners
package llm
import (
"syscall"

View File

@ -1,4 +1,4 @@
package runners
package llm
import (
"syscall"

View File

@ -1,4 +1,4 @@
package fileutils
package llm
import (
"fmt"
@ -123,13 +123,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
slog.Warn("model missing blk.0 layer size")
}
// fp16 k,v = sizeof(float16) * n_ctx * n_layer * (n_embd_head_k + n_embd_head_v) * n_head_kv
var kv uint64 = 2 * uint64(opts.NumCtx) * ggml.KV().BlockCount() * (ggml.KV().EmbeddingHeadCountK() + ggml.KV().EmbeddingHeadCountV()) * ggml.KV().HeadCountKV()
// KV is proportional to the number of layers
layerSize += kv / ggml.KV().BlockCount()
graphPartialOffload, graphFullOffload = ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)))
kv, graphPartialOffload, graphFullOffload := ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)))
if graphPartialOffload == 0 {
graphPartialOffload = ggml.KV().GQA() * kv / 6
}
@ -137,6 +131,9 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
graphFullOffload = graphPartialOffload
}
// KV is proportional to the number of layers
layerSize += kv / ggml.KV().BlockCount()
// on metal there's no partial offload overhead
if gpus[0].Library == "metal" {
graphPartialOffload = graphFullOffload
@ -329,7 +326,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
return estimate
}
func (m MemoryEstimate) Log() {
func (m MemoryEstimate) log() {
overhead := envconfig.GpuOverhead()
log := slog.With()

View File

@ -1,4 +1,4 @@
package fileutils
package llm
import (
"bytes"

View File

@ -1,4 +1,4 @@
package runners
package llm
import (
"bufio"
@ -28,11 +28,24 @@ import (
"github.com/ollama/ollama/build"
"github.com/ollama/ollama/discover"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/fileutils"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/llama"
"github.com/ollama/ollama/runners"
)
type LlamaServer interface {
Ping(ctx context.Context) error
WaitUntilRunning(ctx context.Context) error
Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error
Embedding(ctx context.Context, input string) ([]float32, error)
Tokenize(ctx context.Context, content string) ([]int, error)
Detokenize(ctx context.Context, tokens []int) (string, error)
Close() error
EstimatedVRAM() uint64 // Total VRAM across all GPUs
EstimatedTotal() uint64
EstimatedVRAMByGPU(gpuID string) uint64
}
// llmServer is an instance of the llama.cpp server
type llmServer struct {
port int
@ -45,7 +58,7 @@ type llmServer struct {
modelLock sync.Mutex // Temporary until we switch fully to Go server
model *llama.Model // If non-nil, the runner is a new Go server
estimate fileutils.MemoryEstimate
estimate MemoryEstimate
totalLayers uint64
// gpuCount int
gpus discover.GpuInfoList // Recorded just before the model loaded, free space will be incorrect
@ -55,12 +68,32 @@ type llmServer struct {
sem *semaphore.Weighted
}
// LoadModel will load a model from disk. The model must be in the GGML format.
//
// It collects array values for arrays with a size less than or equal to
// maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
// the maxArraySize is negative, all arrays are collected.
func LoadModel(model string, maxArraySize int) (*GGML, error) {
if _, err := os.Stat(model); err != nil {
return nil, err
}
f, err := os.Open(model)
if err != nil {
return nil, err
}
defer f.Close()
ggml, _, err := DecodeGGML(f, maxArraySize)
return ggml, err
}
// NewLlamaServer will run a server for the given GPUs
// The gpu list must be a single family.
func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *fileutils.GGML, adapters, projectors []string, opts api.Options, numParallel int) (LLMServer, error) {
func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapters, projectors []string, opts api.Options, numParallel int) (LlamaServer, error) {
var err error
var cpuRunner string
var estimate fileutils.MemoryEstimate
var estimate MemoryEstimate
var systemTotalMemory uint64
var systemFreeMemory uint64
var systemSwapFreeMemory uint64
@ -76,10 +109,10 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *fileutils.GGM
gpus = discover.GetCPUInfo()
}
if len(gpus) == 1 && gpus[0].Library == "cpu" {
cpuRunner = ServerForCpu()
estimate = fileutils.EstimateGPULayers(gpus, ggml, projectors, opts)
cpuRunner = runners.ServerForCpu()
estimate = EstimateGPULayers(gpus, ggml, projectors, opts)
} else {
estimate = fileutils.EstimateGPULayers(gpus, ggml, projectors, opts)
estimate = EstimateGPULayers(gpus, ggml, projectors, opts)
switch {
case gpus[0].Library == "metal" && estimate.VRAMSize > systemTotalMemory:
@ -88,7 +121,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *fileutils.GGM
opts.NumGPU = 0
case gpus[0].Library != "metal" && estimate.Layers == 0:
// Don't bother loading into the GPU if no layers can fit
cpuRunner = ServerForCpu()
cpuRunner = runners.ServerForCpu()
gpus = discover.GetCPUInfo()
case opts.NumGPU < 0 && estimate.Layers > 0 && gpus[0].Library != "cpu":
opts.NumGPU = estimate.Layers
@ -106,7 +139,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *fileutils.GGM
}
}
estimate.Log()
estimate.log()
// Loop through potential servers
finalErr := errors.New("no suitable llama servers found")
@ -115,12 +148,12 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *fileutils.GGM
return nil, errors.New("ollama supports only one lora adapter, but multiple were provided")
}
rDir, err := Refresh(build.EmbedFS)
rDir, err := runners.Refresh(build.EmbedFS)
if err != nil {
return nil, err
}
availableServers := GetAvailableServers(rDir)
availableServers := runners.GetAvailableServers(rDir)
if len(availableServers) == 0 {
return nil, finalErr
}
@ -128,7 +161,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *fileutils.GGM
if cpuRunner != "" {
servers = []string{cpuRunner}
} else {
servers = ServersForGpu(gpus[0]) // All GPUs in the list are matching Library and Variant
servers = runners.ServersForGpu(gpus[0]) // All GPUs in the list are matching Library and Variant
}
demandLib := envconfig.LLMLibrary()
if demandLib != "" {
@ -153,7 +186,6 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *fileutils.GGM
"--model", model,
"--ctx-size", strconv.Itoa(opts.NumCtx),
"--batch-size", strconv.Itoa(opts.NumBatch),
"--embedding",
}
if opts.NumGPU >= 0 {
@ -185,10 +217,6 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *fileutils.GGM
params = append(params, "--threads", strconv.Itoa(defaultThreads))
}
if !opts.F16KV {
params = append(params, "--memory-f32")
}
flashAttnEnabled := envconfig.FlashAttention()
for _, g := range gpus {
@ -278,9 +306,9 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *fileutils.GGM
// Note: we always put the dependency path first
// since this was the exact version we compiled/linked against
if gpus[0].DependencyPath != "" {
if gpus[0].DependencyPath != nil {
// assume gpus from the same library have the same dependency path
libraryPaths = append([]string{gpus[0].DependencyPath}, libraryPaths...)
libraryPaths = append(gpus[0].DependencyPath, libraryPaths...)
}
server := filepath.Join(dir, "ollama_llama_server")
@ -292,7 +320,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *fileutils.GGM
_, err := os.Stat(server)
if errors.Is(err, os.ErrNotExist) {
slog.Warn("llama server disappeared, reinitializing payloads", "path", server, "error", err)
_, err = Refresh(build.EmbedFS)
_, err = runners.Refresh(build.EmbedFS)
if err != nil {
slog.Warn("failed to reinitialize payloads", "error", err)
return nil, err
@ -640,6 +668,23 @@ type completion struct {
}
}
type CompletionRequest struct {
Prompt string
Format string
Images []ImageData
Options *api.Options
}
type CompletionResponse struct {
Content string
DoneReason string
Done bool
PromptEvalCount int
PromptEvalDuration time.Duration
EvalCount int
EvalDuration time.Duration
}
func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error {
if err := s.sem.Acquire(ctx, 1); err != nil {
slog.Error("Failed to acquire semaphore", "error", err)
@ -908,7 +953,10 @@ func (s *llmServer) Tokenize(ctx context.Context, content string) ([]int, error)
if resp.StatusCode == http.StatusNotFound {
if s.model == nil {
slog.Debug("new runner detected, loading model for cgo tokenization")
m := llama.LoadModelFromFile(s.modelPath, llama.ModelParams{VocabOnly: true})
m, err := llama.LoadModelFromFile(s.modelPath, llama.ModelParams{VocabOnly: true})
if err != nil {
return nil, err
}
s.model = m
}
return s.model.Tokenize(content, false, true)
@ -977,7 +1025,10 @@ func (s *llmServer) Detokenize(ctx context.Context, tokens []int) (string, error
if resp.StatusCode == http.StatusNotFound {
if s.model == nil {
slog.Debug("new runner detected, loading model for cgo tokenization")
m := llama.LoadModelFromFile(s.modelPath, llama.ModelParams{VocabOnly: true})
m, err := llama.LoadModelFromFile(s.modelPath, llama.ModelParams{VocabOnly: true})
if err != nil {
return "", err
}
s.model = m
}
var resp string

View File

@ -1,4 +1,4 @@
package runners
package llm
import (
"bytes"

View File

@ -440,7 +440,6 @@ func TestParseFileParameters(t *testing.T) {
"num_gpu 1": {"num_gpu", "1"},
"main_gpu 1": {"main_gpu", "1"},
"low_vram true": {"low_vram", "true"},
"f16_kv true": {"f16_kv", "true"},
"logits_all true": {"logits_all", "true"},
"vocab_only true": {"vocab_only", "true"},
"use_mmap true": {"use_mmap", "true"},

View File

@ -1,3 +0,0 @@
# `runners`
Ollama uses a subprocess model to run one or more child processes to load the LLM. On some platforms (Linux non-containerized, MacOS) these executables are carried as payloads inside the main executable via the ../build package. Extraction and discovery of these runners at runtime is implemented in this package. This package also provides the abstraction to communicate with these subprocesses.

View File

@ -2,7 +2,6 @@ package runners
import (
"compress/gzip"
"context"
"errors"
"fmt"
"io"
@ -16,11 +15,9 @@ import (
"strings"
"sync"
"syscall"
"time"
"golang.org/x/sync/errgroup"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/discover"
"github.com/ollama/ollama/envconfig"
)
@ -34,36 +31,6 @@ var (
runnersDir = ""
)
type CompletionRequest struct {
Prompt string
Format string
Images []ImageData
Options *api.Options
}
type CompletionResponse struct {
Content string
DoneReason string
Done bool
PromptEvalCount int
PromptEvalDuration time.Duration
EvalCount int
EvalDuration time.Duration
}
type LLMServer interface {
Ping(ctx context.Context) error
WaitUntilRunning(ctx context.Context) error
Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error
Embedding(ctx context.Context, input string) ([]float32, error)
Tokenize(ctx context.Context, content string) ([]int, error)
Detokenize(ctx context.Context, tokens []int) (string, error)
Close() error
EstimatedVRAM() uint64 // Total VRAM across all GPUs
EstimatedTotal() uint64
EstimatedVRAMByGPU(gpuID string) uint64
}
// Return the location where runners are stored
// If runners are payloads, this will either extract them
// or refresh them if any have disappeared due to tmp cleaners

View File

@ -6,17 +6,18 @@ set -e
mkdir -p dist
# These require Xcode v13 or older to target MacOS v11
# If installed to an alternate location use the following to enable
# export SDKROOT=/Applications/Xcode_12.5.1.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk
# export DEVELOPER_DIR=/Applications/Xcode_12.5.1.app/Contents/Developer
export CGO_CFLAGS=-mmacosx-version-min=11.3
export CGO_CXXFLAGS=-mmacosx-version-min=11.3
export CGO_LDFLAGS=-mmacosx-version-min=11.3
for TARGETARCH in arm64 amd64; do
echo "Building Go runner darwin $TARGETARCH"
rm -rf llama/build
GOOS=darwin ARCH=$TARGETARCH GOARCH=$TARGETARCH make -C llama -j 8
# These require Xcode v13 or older to target MacOS v11
# If installed to an alternate location use the following to enable
# export SDKROOT=/Applications/Xcode_12.5.1.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk
# export DEVELOPER_DIR=/Applications/Xcode_12.5.1.app/Contents/Developer
export CGO_CFLAGS=-mmacosx-version-min=11.3
export CGO_CXXFLAGS=-mmacosx-version-min=11.3
export CGO_LDFLAGS=-mmacosx-version-min=11.3
CGO_ENABLED=1 GOOS=darwin GOARCH=$TARGETARCH go build -trimpath -o dist/ollama-darwin-$TARGETARCH
CGO_ENABLED=1 GOOS=darwin GOARCH=$TARGETARCH go build -trimpath -cover -o dist/ollama-darwin-$TARGETARCH-cov
done

View File

@ -75,7 +75,6 @@ function checkEnv() {
} else {
write-host "Code signing disabled - please set KEY_CONTAINERS to sign and copy ollama_inc.crt to the top of the source tree"
}
}
@ -91,11 +90,6 @@ function buildOllama() {
write-host "Building ollama CLI"
& go build -trimpath -ldflags "-s -w -X=github.com/ollama/ollama/version.Version=$script:VERSION -X=github.com/ollama/ollama/server.mode=release" .
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
if ("${env:KEY_CONTAINER}") {
& "${script:SignTool}" sign /v /fd sha256 /t http://timestamp.digicert.com /f "${script:OLLAMA_CERT}" `
/csp "Google Cloud KMS Provider" /kc ${env:KEY_CONTAINER} ollama.exe
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
}
New-Item -ItemType Directory -Path .\dist\windows-${script:TARGET_ARCH}\ -Force
cp .\ollama.exe .\dist\windows-${script:TARGET_ARCH}\
}
@ -106,11 +100,6 @@ function buildApp() {
& windres -l 0 -o ollama.syso ollama.rc
& go build -trimpath -ldflags "-s -w -H windowsgui -X=github.com/ollama/ollama/version.Version=$script:VERSION -X=github.com/ollama/ollama/server.mode=release" -o "${script:SRC_DIR}\dist\windows-${script:TARGET_ARCH}-app.exe" .
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
if ("${env:KEY_CONTAINER}") {
& "${script:SignTool}" sign /v /fd sha256 /t http://timestamp.digicert.com /f "${script:OLLAMA_CERT}" `
/csp "Google Cloud KMS Provider" /kc ${env:KEY_CONTAINER} "${script:SRC_DIR}\dist\windows-${script:TARGET_ARCH}-app.exe"
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
}
}
function gatherDependencies() {
@ -143,16 +132,19 @@ function gatherDependencies() {
copy-item -path "${env:VCToolsRedistDir}\vc_redist.arm64.exe" -destination "${script:DIST_DIR}" -verbose
}
cp "${script:SRC_DIR}\app\ollama_welcome.ps1" "${script:SRC_DIR}\dist\"
}
function sign() {
if ("${env:KEY_CONTAINER}") {
write-host "about to sign"
foreach ($file in (get-childitem "${script:DIST_DIR}\lib\ollama\cu*.dll") + @("${script:SRC_DIR}\dist\ollama_welcome.ps1")){
write-host "signing $file"
& "${script:SignTool}" sign /v /fd sha256 /t http://timestamp.digicert.com /f "${script:OLLAMA_CERT}" `
/csp "Google Cloud KMS Provider" /kc ${env:KEY_CONTAINER} $file
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
}
write-host "Signing Ollama executables, scripts and libraries"
& "${script:SignTool}" sign /v /fd sha256 /t http://timestamp.digicert.com /f "${script:OLLAMA_CERT}" `
/csp "Google Cloud KMS Provider" /kc ${env:KEY_CONTAINER} `
$(get-childitem -path "${script:SRC_DIR}\dist" -r -include @('ollama_welcome.ps1')) `
$(get-childitem -path "${script:SRC_DIR}\dist\windows-*" -r -include @('*.exe', '*.dll'))
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
} else {
write-host "Signing not enabled"
}
}
@ -183,6 +175,7 @@ try {
buildOllama
buildApp
gatherDependencies
sign
buildInstaller
distZip
} else {

View File

@ -120,6 +120,78 @@ func TestGetOptimalTiledCanvas(t *testing.T) {
TileSize: 560,
Expected: image.Point{1120, 1120},
},
{
ImageSize: image.Point{800, 600},
MaxImageTiles: 4,
TileSize: 560,
Expected: image.Point{1120, 1120},
},
{
ImageSize: image.Point{640, 480},
MaxImageTiles: 4,
TileSize: 560,
Expected: image.Point{1120, 560},
},
{
ImageSize: image.Point{320, 200},
MaxImageTiles: 4,
TileSize: 560,
Expected: image.Point{560, 560},
},
{
ImageSize: image.Point{1320, 200},
MaxImageTiles: 4,
TileSize: 560,
Expected: image.Point{1680, 560},
},
{
ImageSize: image.Point{2000, 200},
MaxImageTiles: 4,
TileSize: 560,
Expected: image.Point{2240, 560},
},
{
ImageSize: image.Point{10000, 200},
MaxImageTiles: 4,
TileSize: 560,
Expected: image.Point{2240, 560},
},
{
ImageSize: image.Point{480, 640},
MaxImageTiles: 4,
TileSize: 560,
Expected: image.Point{560, 1120},
},
{
ImageSize: image.Point{200, 320},
MaxImageTiles: 4,
TileSize: 560,
Expected: image.Point{560, 560},
},
{
ImageSize: image.Point{200, 1320},
MaxImageTiles: 4,
TileSize: 560,
Expected: image.Point{560, 1680},
},
{
ImageSize: image.Point{200, 2000},
MaxImageTiles: 4,
TileSize: 560,
Expected: image.Point{560, 2240},
},
{
ImageSize: image.Point{200, 10000},
MaxImageTiles: 4,
TileSize: 560,
Expected: image.Point{560, 2240},
},
{
ImageSize: image.Point{10000, 10000},
MaxImageTiles: 4,
TileSize: 560,
Expected: image.Point{1120, 1120},
},
}
for _, c := range cases {

View File

@ -25,9 +25,9 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/auth"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/fileutils"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/llama"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/template"
"github.com/ollama/ollama/types/errtypes"
@ -91,7 +91,7 @@ func (m *Model) CheckCapabilities(caps ...Capability) error {
defer f.Close()
// TODO(mxyng): decode the GGML into model to avoid doing this multiple times
ggml, _, err := fileutils.DecodeGGML(f, 0)
ggml, _, err := llm.DecodeGGML(f, 0)
if err != nil {
slog.Error("couldn't decode ggml", "error", err)
continue
@ -431,7 +431,7 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio
baseLayer.MediaType == "application/vnd.ollama.image.model" &&
baseLayer.GGML != nil &&
baseLayer.GGML.Name() == "gguf" {
want, err := fileutils.ParseFileType(quantization)
want, err := llm.ParseFileType(quantization)
if err != nil {
return err
}
@ -467,7 +467,7 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio
return err
}
ggml, _, err := fileutils.DecodeGGML(temp, 0)
ggml, _, err := llm.DecodeGGML(temp, 0)
if err != nil {
return err
}
@ -690,7 +690,8 @@ func CopyModel(src, dst model.Name) error {
}
func deleteUnusedLayers(deleteMap map[string]struct{}) error {
manifests, err := Manifests()
// Ignore corrupt manifests to avoid blocking deletion of layers that are freshly orphaned
manifests, err := Manifests(true)
if err != nil {
return err
}
@ -853,8 +854,8 @@ func PullModel(ctx context.Context, name string, regOpts *registryOptions, fn fu
manifest, _, err := GetManifest(mp)
if errors.Is(err, os.ErrNotExist) {
// noop
} else if err != nil && !errors.Is(err, os.ErrNotExist) {
return err
} else if err != nil {
slog.Warn("pulling model with bad existing manifest", "name", name, "error", err)
} else {
for _, l := range manifest.Layers {
deleteMap[l.Digest] = struct{}{}

View File

@ -106,7 +106,8 @@ func (l *Layer) Remove() error {
return nil
}
ms, err := Manifests()
// Ignore corrupt manifests to avoid blocking deletion of layers that are freshly orphaned
ms, err := Manifests(true)
if err != nil {
return err
}

View File

@ -123,7 +123,7 @@ func WriteManifest(name model.Name, config Layer, layers []Layer) error {
return json.NewEncoder(f).Encode(m)
}
func Manifests() (map[model.Name]*Manifest, error) {
func Manifests(continueOnError bool) (map[model.Name]*Manifest, error) {
manifests, err := GetManifestPath()
if err != nil {
return nil, err
@ -145,22 +145,29 @@ func Manifests() (map[model.Name]*Manifest, error) {
if !fi.IsDir() {
rel, err := filepath.Rel(manifests, match)
if err != nil {
if !continueOnError {
return nil, fmt.Errorf("%s %w", match, err)
}
slog.Warn("bad filepath", "path", match, "error", err)
continue
}
n := model.ParseNameFromFilepath(rel)
if !n.IsValid() {
if !continueOnError {
return nil, fmt.Errorf("%s %w", rel, err)
}
slog.Warn("bad manifest name", "path", rel)
continue
}
m, err := ParseNamedManifest(n)
if syntax := &(json.SyntaxError{}); errors.As(err, &syntax) {
if err != nil {
if !continueOnError {
return nil, fmt.Errorf("%s %w", n, err)
}
slog.Warn("bad manifest", "name", n, "error", err)
continue
} else if err != nil {
return nil, fmt.Errorf("%s: %w", n, err)
}
ms[n] = m

View File

@ -112,7 +112,7 @@ func TestManifests(t *testing.T) {
createManifest(t, d, p)
}
ms, err := Manifests()
ms, err := Manifests(true)
if err != nil {
t.Fatal(err)
}

View File

@ -18,7 +18,7 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/convert"
"github.com/ollama/ollama/fileutils"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/template"
"github.com/ollama/ollama/types/model"
)
@ -27,7 +27,7 @@ var intermediateBlobs map[string]string = make(map[string]string)
type layerGGML struct {
Layer
*fileutils.GGML
*llm.GGML
}
func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
@ -67,7 +67,7 @@ func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressRe
}
defer blob.Close()
ggml, _, err := fileutils.DecodeGGML(blob, 0)
ggml, _, err := llm.DecodeGGML(blob, 0)
if err != nil {
return nil, err
}
@ -112,7 +112,7 @@ func parseFromZipFile(_ context.Context, command string, baseLayers []*layerGGML
switch command {
case "adapter":
var baseModel *fileutils.GGML
var baseModel *llm.GGML
for _, l := range baseLayers {
if l.GGML != nil {
baseModel = l.GGML
@ -150,7 +150,7 @@ func parseFromZipFile(_ context.Context, command string, baseLayers []*layerGGML
}
defer bin.Close()
ggml, _, err := fileutils.DecodeGGML(bin, 0)
ggml, _, err := llm.DecodeGGML(bin, 0)
if err != nil {
return nil, err
}
@ -184,7 +184,7 @@ func parseFromFile(ctx context.Context, command string, baseLayers []*layerGGML,
var offset int64
for offset < stat.Size() {
ggml, n, err := fileutils.DecodeGGML(file, 0)
ggml, n, err := llm.DecodeGGML(file, 0)
if errors.Is(err, io.EOF) {
break
} else if err != nil {
@ -263,7 +263,7 @@ func detectContentType(r io.Reader) (string, error) {
return "", err
}
if contentType := fileutils.DetectGGMLType(b.Bytes()); contentType != "" {
if contentType := llm.DetectGGMLType(b.Bytes()); contentType != "" {
return contentType, nil
}

View File

@ -13,7 +13,7 @@ import (
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/fileutils"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/template"
)
@ -147,7 +147,7 @@ func TestParseFromFileFromLayer(t *testing.T) {
t.Fatalf("failed to open file: %v", err)
}
defer file.Close()
if err := fileutils.WriteGGUF(file, fileutils.KV{"general.architecture": "gemma"}, []fileutils.Tensor{}); err != nil {
if err := llm.WriteGGUF(file, llm.KV{"general.architecture": "gemma"}, []llm.Tensor{}); err != nil {
t.Fatalf("failed to write gguf: %v", err)
}
@ -200,7 +200,7 @@ func TestParseLayerFromCopy(t *testing.T) {
defer file2.Close()
for range 5 {
if err := fileutils.WriteGGUF(file2, fileutils.KV{"general.architecture": "gemma"}, []fileutils.Tensor{}); err != nil {
if err := llm.WriteGGUF(file2, llm.KV{"general.architecture": "gemma"}, []llm.Tensor{}); err != nil {
t.Fatalf("failed to write gguf: %v", err)
}
}

View File

@ -10,7 +10,7 @@ import (
"strings"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/runners"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/server/imageproc"
"github.com/ollama/ollama/template"
)
@ -22,11 +22,21 @@ var errTooManyImages = errors.New("vision model only supports a single image per
// chatPrompt accepts a list of messages and returns the prompt and images that should be used for the next chat turn.
// chatPrompt truncates any messages that exceed the context window of the model, making sure to always include 1) the
// latest message and 2) system messages
func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.Options, msgs []api.Message, tools []api.Tool) (prompt string, images []runners.ImageData, _ error) {
func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.Options, msgs []api.Message, tools []api.Tool) (prompt string, images []llm.ImageData, _ error) {
var system []api.Message
isMllama := checkMllamaModelFamily(m)
var imageNumTokens int
// TODO: Ideally we would compute this from the projector metadata but some pieces are implementation dependent
if isMllama {
// Our mllama implementation packs all of the embeddings into a single token
imageNumTokens = 1
} else {
// Clip images are represented as 768 tokens, each an embedding
imageNumTokens = 768
}
n := len(msgs) - 1
// in reverse, find all messages that fit into context window
for i := n; i >= 0; i-- {
@ -59,9 +69,7 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
ctxLen := len(s)
if m.ProjectorPaths != nil {
for _, m := range msgs[i:] {
// images are represented as 768 sized embeddings
// TODO: get embedding length from project metadata
ctxLen += 768 * len(m.Images)
ctxLen += imageNumTokens * len(m.Images)
}
}
@ -75,11 +83,16 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
currMsgIdx := n
if isMllama {
lastMsgIdx := len(msgs) - 1
for i := lastMsgIdx; i >= currMsgIdx; i-- {
if len(msgs[i].Images) > 0 {
data, aspectRatioID, err := imageproc.Preprocess(msgs[i].Images[0])
for cnt, msg := range msgs[currMsgIdx:] {
prefix := ""
imgPrompt := ""
prompt := msg.Content
for _, i := range msg.Images {
var imgData llm.ImageData
if isMllama {
data, aspectRatioID, err := imageproc.Preprocess(i)
if err != nil {
return "", nil, err
}
@ -90,37 +103,30 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
return "", nil, err
}
imgData := runners.ImageData{
imgData = llm.ImageData{
ID: len(images),
Data: buf.Bytes(),
AspectRatioID: aspectRatioID,
}
msgs[i].Content = strings.TrimSpace("<|image|>" + msgs[i].Content)
images = append(images, imgData)
break
}
}
} else {
for cnt, msg := range msgs[currMsgIdx:] {
prefix := ""
prompt := msg.Content
for _, i := range msg.Images {
imgData := runners.ImageData{
imgPrompt = "<|image|>"
} else {
imgData = llm.ImageData{
ID: len(images),
Data: i,
}
imgTag := fmt.Sprintf("[img-%d]", imgData.ID)
if !strings.Contains(prompt, "[img]") {
prefix += imgTag
} else {
prompt = strings.Replace(prompt, "[img]", imgTag, 1)
}
images = append(images, imgData)
imgPrompt = " "
}
msgs[currMsgIdx+cnt].Content = strings.TrimSpace(prefix + " " + prompt)
imgTag := fmt.Sprintf("[img-%d]", imgData.ID)
if !strings.Contains(prompt, "[img]") {
prefix += imgTag
} else {
prompt = strings.Replace(prompt, "[img]", imgTag, 1)
}
images = append(images, imgData)
}
msgs[currMsgIdx+cnt].Content = strings.TrimSpace(prefix + imgPrompt + prompt)
}
// truncate any messages that do not fit into the context window

View File

@ -249,7 +249,7 @@ func TestChatPrompt(t *testing.T) {
{Role: "user", Content: "How many hotdogs are in this image?", Images: []api.ImageData{imgBuf}},
},
expect: expect{
prompt: "<|image|>How many hotdogs are in this image? ",
prompt: "[img-0]<|image|>How many hotdogs are in this image? ",
images: [][]byte{imgBuf},
aspectRatioID: 1,
},
@ -264,7 +264,7 @@ func TestChatPrompt(t *testing.T) {
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager.", Images: []api.ImageData{imgBuf}},
},
expect: expect{
prompt: "You're a test, Harry! I-I'm a what? <|image|>A test. And a thumping good one at that, I'd wager. ",
prompt: "You're a test, Harry! I-I'm a what? [img-0]<|image|>A test. And a thumping good one at that, I'd wager. ",
images: [][]byte{imgBuf},
aspectRatioID: 1,
},
@ -279,8 +279,8 @@ func TestChatPrompt(t *testing.T) {
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager.", Images: []api.ImageData{imgBuf2}},
},
expect: expect{
prompt: "You're a test, Harry! I-I'm a what? <|image|>A test. And a thumping good one at that, I'd wager. ",
images: [][]byte{imgBuf2},
prompt: "[img-0]<|image|>You're a test, Harry! I-I'm a what? [img-1]<|image|>A test. And a thumping good one at that, I'd wager. ",
images: [][]byte{imgBuf, imgBuf2},
aspectRatioID: 1,
},
},
@ -294,7 +294,7 @@ func TestChatPrompt(t *testing.T) {
{Role: "user", Content: "Which ones have mustard?"},
},
expect: expect{
prompt: "<|image|>How many hotdogs are in this image? There are four hotdogs. Which ones have mustard? ",
prompt: "[img-0]<|image|>How many hotdogs are in this image? There are four hotdogs. Which ones have mustard? ",
images: [][]byte{imgBuf},
aspectRatioID: 1,
},

View File

@ -4,6 +4,7 @@ import (
"bytes"
"cmp"
"context"
"encoding/binary"
"encoding/json"
"errors"
"fmt"
@ -29,10 +30,11 @@ import (
"github.com/ollama/ollama/build"
"github.com/ollama/ollama/discover"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/fileutils"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/openai"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/runners"
"github.com/ollama/ollama/server/imageproc"
"github.com/ollama/ollama/template"
"github.com/ollama/ollama/types/errtypes"
"github.com/ollama/ollama/types/model"
@ -78,7 +80,7 @@ func modelOptions(model *Model, requestOpts map[string]interface{}) (api.Options
// scheduleRunner schedules a runner after validating inputs such as capabilities and model options.
// It returns the allocated runner, model instance, and consolidated options if successful and error otherwise.
func (s *Server) scheduleRunner(ctx context.Context, name string, caps []Capability, requestOpts map[string]any, keepAlive *api.Duration) (runners.LLMServer, *Model, *api.Options, error) {
func (s *Server) scheduleRunner(ctx context.Context, name string, caps []Capability, requestOpts map[string]any, keepAlive *api.Duration) (llm.LlamaServer, *Model, *api.Options, error) {
if name == "" {
return nil, nil, nil, fmt.Errorf("model %w", errRequired)
}
@ -187,9 +189,26 @@ func (s *Server) GenerateHandler(c *gin.Context) {
return
}
images := make([]runners.ImageData, len(req.Images))
images := make([]llm.ImageData, len(req.Images))
for i := range req.Images {
images[i] = runners.ImageData{ID: i, Data: req.Images[i]}
if isMllama {
data, aspectRatioID, err := imageproc.Preprocess(req.Images[i])
if err != nil {
c.AbortWithStatusJSON(http.StatusInternalServerError, gin.H{"error": "error processing image"})
return
}
buf := new(bytes.Buffer)
err = binary.Write(buf, binary.LittleEndian, data)
if err != nil {
c.AbortWithStatusJSON(http.StatusInternalServerError, gin.H{"error": "error processing image"})
return
}
images[i] = llm.ImageData{ID: i, Data: buf.Bytes(), AspectRatioID: aspectRatioID}
} else {
images[i] = llm.ImageData{ID: i, Data: req.Images[i]}
}
}
prompt := req.Prompt
@ -220,11 +239,11 @@ func (s *Server) GenerateHandler(c *gin.Context) {
}
for _, i := range images {
imgPrompt := ""
if isMllama {
msgs = append(msgs, api.Message{Role: "user", Content: "<|image|>"})
} else {
msgs = append(msgs, api.Message{Role: "user", Content: fmt.Sprintf("[img-%d]", i.ID)})
imgPrompt = "<|image|>"
}
msgs = append(msgs, api.Message{Role: "user", Content: fmt.Sprintf("[img-%d]"+imgPrompt, i.ID)})
}
values.Messages = append(msgs, api.Message{Role: "user", Content: req.Prompt})
@ -248,19 +267,19 @@ func (s *Server) GenerateHandler(c *gin.Context) {
prompt = b.String()
}
slog.Debug("generate request", "prompt", prompt, "images", images)
slog.Debug("generate request", "images", len(images), "prompt", prompt)
ch := make(chan any)
go func() {
// TODO (jmorganca): avoid building the response twice both here and below
var sb strings.Builder
defer close(ch)
if err := r.Completion(c.Request.Context(), runners.CompletionRequest{
if err := r.Completion(c.Request.Context(), llm.CompletionRequest{
Prompt: prompt,
Images: images,
Format: req.Format,
Options: opts,
}, func(cr runners.CompletionResponse) {
}, func(cr llm.CompletionResponse) {
res := api.GenerateResponse{
Model: req.Model,
CreatedAt: time.Now().UTC(),
@ -603,7 +622,7 @@ func (s *Server) PushHandler(c *gin.Context) {
}
func checkNameExists(name model.Name) error {
names, err := Manifests()
names, err := Manifests(true)
if err != nil {
return err
}
@ -639,7 +658,7 @@ func (s *Server) CreateHandler(c *gin.Context) {
}
if r.Path == "" && r.Modelfile == "" {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "path or fileutils are required"})
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "path or modelfile are required"})
return
}
@ -647,7 +666,7 @@ func (s *Server) CreateHandler(c *gin.Context) {
if r.Path != "" && r.Modelfile == "" {
f, err := os.Open(r.Path)
if err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("error reading fileutils: %s", err)})
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("error reading modelfile: %s", err)})
return
}
defer f.Close()
@ -851,12 +870,12 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
return resp, nil
}
func getKVData(digest string, verbose bool) (fileutils.KV, error) {
func getKVData(digest string, verbose bool) (llm.KV, error) {
maxArraySize := 0
if verbose {
maxArraySize = -1
}
kvData, err := fileutils.LoadModel(digest, maxArraySize)
kvData, err := llm.LoadModel(digest, maxArraySize)
if err != nil {
return nil, err
}
@ -875,7 +894,7 @@ func getKVData(digest string, verbose bool) (fileutils.KV, error) {
}
func (s *Server) ListHandler(c *gin.Context) {
ms, err := Manifests()
ms, err := Manifests(true)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
@ -1192,18 +1211,22 @@ func Serve(ln net.Listener) error {
}
if !envconfig.NoPrune() {
// clean up unused layers and manifests
if err := PruneLayers(); err != nil {
return err
}
if _, err := Manifests(false); err != nil {
slog.Warn("corrupt manifests detected, skipping prune operation. Re-pull or delete to clear", "error", err)
} else {
// clean up unused layers and manifests
if err := PruneLayers(); err != nil {
return err
}
manifestsPath, err := GetManifestPath()
if err != nil {
return err
}
manifestsPath, err := GetManifestPath()
if err != nil {
return err
}
if err := PruneDirectory(manifestsPath); err != nil {
return err
if err := PruneDirectory(manifestsPath); err != nil {
return err
}
}
}
@ -1436,12 +1459,12 @@ func (s *Server) ChatHandler(c *gin.Context) {
ch := make(chan any)
go func() {
defer close(ch)
if err := r.Completion(c.Request.Context(), runners.CompletionRequest{
if err := r.Completion(c.Request.Context(), llm.CompletionRequest{
Prompt: prompt,
Images: images,
Format: req.Format,
Options: opts,
}, func(r runners.CompletionResponse) {
}, func(r llm.CompletionResponse) {
res := api.ChatResponse{
Model: req.Model,
CreatedAt: time.Now().UTC(),

View File

@ -16,12 +16,12 @@ import (
"github.com/gin-gonic/gin"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/fileutils"
"github.com/ollama/ollama/llm"
)
var stream bool = false
func createBinFile(t *testing.T, kv map[string]any, ti []fileutils.Tensor) string {
func createBinFile(t *testing.T, kv map[string]any, ti []llm.Tensor) string {
t.Helper()
f, err := os.CreateTemp(t.TempDir(), "")
@ -30,7 +30,7 @@ func createBinFile(t *testing.T, kv map[string]any, ti []fileutils.Tensor) strin
}
defer f.Close()
if err := fileutils.WriteGGUF(f, kv, ti); err != nil {
if err := llm.WriteGGUF(f, kv, ti); err != nil {
t.Fatal(err)
}
@ -581,7 +581,7 @@ func TestCreateDetectTemplate(t *testing.T) {
t.Run("matched", func(t *testing.T) {
w := createRequest(t, s.CreateHandler, api.CreateRequest{
Name: "test",
Modelfile: fmt.Sprintf("FROM %s", createBinFile(t, fileutils.KV{
Modelfile: fmt.Sprintf("FROM %s", createBinFile(t, llm.KV{
"tokenizer.chat_template": "{{ bos_token }}{% for message in messages %}{{'<|' + message['role'] + '|>' + '\n' + message['content'] + '<|end|>\n' }}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>\n' }}{% else %}{{ eos_token }}{% endif %}",
}, nil)),
Stream: &stream,

View File

@ -16,19 +16,18 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/discover"
"github.com/ollama/ollama/fileutils"
"github.com/ollama/ollama/runners"
"github.com/ollama/ollama/llm"
)
type mockRunner struct {
runners.LLMServer
llm.LlamaServer
// CompletionRequest is only valid until the next call to Completion
runners.CompletionRequest
runners.CompletionResponse
llm.CompletionRequest
llm.CompletionResponse
}
func (m *mockRunner) Completion(_ context.Context, r runners.CompletionRequest, fn func(r runners.CompletionResponse)) error {
func (m *mockRunner) Completion(_ context.Context, r llm.CompletionRequest, fn func(r llm.CompletionResponse)) error {
m.CompletionRequest = r
fn(m.CompletionResponse)
return nil
@ -42,8 +41,8 @@ func (mockRunner) Tokenize(_ context.Context, s string) (tokens []int, err error
return
}
func newMockServer(mock *mockRunner) func(discover.GpuInfoList, string, *fileutils.GGML, []string, []string, api.Options, int) (runners.LLMServer, error) {
return func(gpus discover.GpuInfoList, model string, ggml *fileutils.GGML, projectors, system []string, opts api.Options, numParallel int) (runners.LLMServer, error) {
func newMockServer(mock *mockRunner) func(discover.GpuInfoList, string, *llm.GGML, []string, []string, api.Options, int) (llm.LlamaServer, error) {
return func(gpus discover.GpuInfoList, model string, ggml *llm.GGML, projectors, system []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
return mock, nil
}
}
@ -52,7 +51,7 @@ func TestGenerateChat(t *testing.T) {
gin.SetMode(gin.TestMode)
mock := mockRunner{
CompletionResponse: runners.CompletionResponse{
CompletionResponse: llm.CompletionResponse{
Done: true,
DoneReason: "stop",
PromptEvalCount: 1,
@ -73,7 +72,7 @@ func TestGenerateChat(t *testing.T) {
getGpuFn: discover.GetGPUInfo,
getCpuFn: discover.GetCPUInfo,
reschedDelay: 250 * time.Millisecond,
loadFn: func(req *LlmRequest, ggml *fileutils.GGML, gpus discover.GpuInfoList, numParallel int) {
loadFn: func(req *LlmRequest, ggml *llm.GGML, gpus discover.GpuInfoList, numParallel int) {
// add small delay to simulate loading
time.Sleep(time.Millisecond)
req.successCh <- &runnerRef{
@ -92,7 +91,7 @@ func TestGenerateChat(t *testing.T) {
{{- if .System }}System: {{ .System }} {{ end }}
{{- if .Prompt }}User: {{ .Prompt }} {{ end }}
{{- if .Response }}Assistant: {{ .Response }} {{ end }}"""
`, createBinFile(t, fileutils.KV{
`, createBinFile(t, llm.KV{
"general.architecture": "llama",
"llama.block_count": uint32(1),
"llama.context_length": uint32(8192),
@ -102,7 +101,7 @@ func TestGenerateChat(t *testing.T) {
"tokenizer.ggml.tokens": []string{""},
"tokenizer.ggml.scores": []float32{0},
"tokenizer.ggml.token_type": []int32{0},
}, []fileutils.Tensor{
}, []llm.Tensor{
{Name: "token_embd.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_down.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
@ -147,10 +146,10 @@ func TestGenerateChat(t *testing.T) {
t.Run("missing capabilities chat", func(t *testing.T) {
w := createRequest(t, s.CreateHandler, api.CreateRequest{
Model: "bert",
Modelfile: fmt.Sprintf("FROM %s", createBinFile(t, fileutils.KV{
Modelfile: fmt.Sprintf("FROM %s", createBinFile(t, llm.KV{
"general.architecture": "bert",
"bert.pooling_type": uint32(0),
}, []fileutils.Tensor{})),
}, []llm.Tensor{})),
Stream: &stream,
})
@ -350,7 +349,7 @@ func TestGenerate(t *testing.T) {
gin.SetMode(gin.TestMode)
mock := mockRunner{
CompletionResponse: runners.CompletionResponse{
CompletionResponse: llm.CompletionResponse{
Done: true,
DoneReason: "stop",
PromptEvalCount: 1,
@ -371,7 +370,7 @@ func TestGenerate(t *testing.T) {
getGpuFn: discover.GetGPUInfo,
getCpuFn: discover.GetCPUInfo,
reschedDelay: 250 * time.Millisecond,
loadFn: func(req *LlmRequest, ggml *fileutils.GGML, gpus discover.GpuInfoList, numParallel int) {
loadFn: func(req *LlmRequest, ggml *llm.GGML, gpus discover.GpuInfoList, numParallel int) {
// add small delay to simulate loading
time.Sleep(time.Millisecond)
req.successCh <- &runnerRef{
@ -390,7 +389,7 @@ func TestGenerate(t *testing.T) {
{{- if .System }}System: {{ .System }} {{ end }}
{{- if .Prompt }}User: {{ .Prompt }} {{ end }}
{{- if .Response }}Assistant: {{ .Response }} {{ end }}"""
`, createBinFile(t, fileutils.KV{
`, createBinFile(t, llm.KV{
"general.architecture": "llama",
"llama.block_count": uint32(1),
"llama.context_length": uint32(8192),
@ -400,7 +399,7 @@ func TestGenerate(t *testing.T) {
"tokenizer.ggml.tokens": []string{""},
"tokenizer.ggml.scores": []float32{0},
"tokenizer.ggml.token_type": []int32{0},
}, []fileutils.Tensor{
}, []llm.Tensor{
{Name: "token_embd.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_down.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
@ -445,10 +444,10 @@ func TestGenerate(t *testing.T) {
t.Run("missing capabilities generate", func(t *testing.T) {
w := createRequest(t, s.CreateHandler, api.CreateRequest{
Model: "bert",
Modelfile: fmt.Sprintf("FROM %s", createBinFile(t, fileutils.KV{
Modelfile: fmt.Sprintf("FROM %s", createBinFile(t, llm.KV{
"general.architecture": "bert",
"bert.pooling_type": uint32(0),
}, []fileutils.Tensor{})),
}, []llm.Tensor{})),
Stream: &stream,
})

View File

@ -16,7 +16,7 @@ import (
"testing"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/fileutils"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/openai"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/types/model"
@ -83,14 +83,14 @@ func Test_Routes(t *testing.T) {
fname := createTestFile(t, "ollama-model")
r := strings.NewReader(fmt.Sprintf("FROM %s\nPARAMETER seed 42\nPARAMETER top_p 0.9\nPARAMETER stop foo\nPARAMETER stop bar", fname))
fileutils, err := parser.ParseFile(r)
modelfile, err := parser.ParseFile(r)
if err != nil {
t.Fatalf("failed to parse file: %v", err)
}
fn := func(resp api.ProgressResponse) {
t.Logf("Status: %s", resp.Status)
}
err = CreateModel(context.TODO(), model.ParseName(name), "", "", fileutils, fn)
err = CreateModel(context.TODO(), model.ParseName(name), "", "", modelfile, fn)
if err != nil {
t.Fatalf("failed to create model: %v", err)
}
@ -561,8 +561,8 @@ func TestShow(t *testing.T) {
Name: "show-model",
Modelfile: fmt.Sprintf(
"FROM %s\nFROM %s",
createBinFile(t, fileutils.KV{"general.architecture": "test"}, nil),
createBinFile(t, fileutils.KV{"general.type": "projector", "general.architecture": "clip"}, nil),
createBinFile(t, llm.KV{"general.architecture": "test"}, nil),
createBinFile(t, llm.KV{"general.type": "projector", "general.architecture": "clip"}, nil),
),
})

Some files were not shown because too many files have changed in this diff Show More