forked from third-party-mirrors/ollama
Compare commits
15 Commits
mxyng/sync
...
main
Author | SHA1 | Date | |
---|---|---|---|
1401b24c79 | |||
|
67691e410d | ||
|
d7eb05b936 | ||
|
636a743c2b | ||
|
df011054fa | ||
|
ac07160c8d | ||
|
6606e4243c | ||
|
65973ceb64 | ||
|
bebef1e50d | ||
|
d48c1c5a44 | ||
|
36a8372b28 | ||
|
4e94227b5d | ||
|
479d551766 | ||
|
76b2b723b2 | ||
|
b8d77cdeab |
2
.github/workflows/test.yaml
vendored
2
.github/workflows/test.yaml
vendored
@ -281,7 +281,7 @@ jobs:
|
||||
shell: bash
|
||||
- uses: golangci/golangci-lint-action@v6
|
||||
with:
|
||||
args: --timeout 8m0s -v
|
||||
args: --timeout 10m0s -v
|
||||
test:
|
||||
strategy:
|
||||
matrix:
|
||||
|
72
Dockerfile
72
Dockerfile
@ -5,6 +5,8 @@ ARG CUDA_V11_ARCHITECTURES="50;52;53;60;61;62;70;72;75;80;86"
|
||||
ARG CUDA_VERSION_12=12.4.0
|
||||
ARG CUDA_V12_ARCHITECTURES="60;61;62;70;72;75;80;86;87;89;90;90a"
|
||||
ARG ROCM_VERSION=6.1.2
|
||||
ARG JETPACK_6=r36.2.0
|
||||
ARG JETPACK_5=r35.4.1
|
||||
|
||||
### To create a local image for building linux binaries on mac or windows with efficient incremental builds
|
||||
#
|
||||
@ -13,7 +15,7 @@ ARG ROCM_VERSION=6.1.2
|
||||
#
|
||||
### Then incremental builds will be much faster in this container
|
||||
#
|
||||
# make -C llama -j 10 && go build -trimpath -o dist/linux-amd64/ollama .
|
||||
# make -j 10 && go build -trimpath -o dist/linux-amd64/ollama .
|
||||
#
|
||||
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete AS unified-builder-amd64
|
||||
ARG CMAKE_VERSION
|
||||
@ -76,9 +78,9 @@ ARG CUDA_V12_ARCHITECTURES
|
||||
ARG OLLAMA_FAST_BUILD
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
if grep "^flags" /proc/cpuinfo|grep avx>/dev/null; then \
|
||||
make -C llama -j $(expr $(nproc) / 2 ) ; \
|
||||
make -j $(expr $(nproc) / 2 ) ; \
|
||||
else \
|
||||
make -C llama -j 5 ; \
|
||||
make -j 5 ; \
|
||||
fi
|
||||
|
||||
FROM --platform=linux/arm64 unified-builder-arm64 AS runners-arm64
|
||||
@ -90,7 +92,46 @@ ARG CUDA_V11_ARCHITECTURES
|
||||
ARG CUDA_V12_ARCHITECTURES
|
||||
ARG OLLAMA_FAST_BUILD
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
make -C llama -j 8
|
||||
make -j 5
|
||||
|
||||
# Jetsons need to be built in discrete stages
|
||||
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK_5} AS runners-jetpack5-arm64
|
||||
ARG GOLANG_VERSION
|
||||
RUN apt-get update && apt-get install -y git curl ccache && \
|
||||
curl -s -L https://dl.google.com/go/go${GOLANG_VERSION}.linux-arm64.tar.gz | tar xz -C /usr/local && \
|
||||
ln -s /usr/local/go/bin/go /usr/local/bin/go && \
|
||||
ln -s /usr/local/go/bin/gofmt /usr/local/bin/gofmt && \
|
||||
apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
WORKDIR /go/src/github.com/ollama/ollama/
|
||||
COPY . .
|
||||
ARG CGO_CFLAGS
|
||||
ENV GOARCH arm64
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
make -j 5 cuda_v11 \
|
||||
CUDA_ARCHITECTURES="72;87" \
|
||||
GPU_RUNNER_VARIANT=_jetpack5 \
|
||||
CGO_EXTRA_LDFLAGS_LINUX=-L/usr/local/cuda/lib64/stubs \
|
||||
DIST_LIB_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ollama \
|
||||
DIST_GPU_RUNNER_DEPS_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ollama/cuda_jetpack5
|
||||
|
||||
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK_6} AS runners-jetpack6-arm64
|
||||
ARG GOLANG_VERSION
|
||||
RUN apt-get update && apt-get install -y git curl ccache && \
|
||||
curl -s -L https://dl.google.com/go/go${GOLANG_VERSION}.linux-arm64.tar.gz | tar xz -C /usr/local && \
|
||||
ln -s /usr/local/go/bin/go /usr/local/bin/go && \
|
||||
ln -s /usr/local/go/bin/gofmt /usr/local/bin/gofmt && \
|
||||
apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
WORKDIR /go/src/github.com/ollama/ollama/
|
||||
COPY . .
|
||||
ARG CGO_CFLAGS
|
||||
ENV GOARCH arm64
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
make -j 5 cuda_v12 \
|
||||
CUDA_ARCHITECTURES="87" \
|
||||
GPU_RUNNER_VARIANT=_jetpack6 \
|
||||
CGO_EXTRA_LDFLAGS_LINUX=-L/usr/local/cuda/lib64/stubs \
|
||||
DIST_LIB_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ollama \
|
||||
DIST_GPU_RUNNER_DEPS_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ollama/cuda_jetpack6
|
||||
|
||||
|
||||
# Intermediate stages used for ./scripts/build_linux.sh
|
||||
@ -134,12 +175,20 @@ FROM --platform=linux/arm64 builder-arm64 AS build-arm64
|
||||
COPY . .
|
||||
COPY --from=runners-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
|
||||
COPY --from=runners-arm64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
COPY --from=runners-jetpack5-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
|
||||
COPY --from=runners-jetpack5-arm64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
COPY --from=runners-jetpack6-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
|
||||
COPY --from=runners-jetpack6-arm64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
ARG GOFLAGS
|
||||
ARG CGO_CFLAGS
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
go build -trimpath -o dist/linux-arm64/bin/ollama .
|
||||
RUN cd dist/linux-$GOARCH && \
|
||||
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH.tgz
|
||||
RUN cd dist/linux-$GOARCH-jetpack5 && \
|
||||
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH-jetpack5.tgz
|
||||
RUN cd dist/linux-$GOARCH-jetpack6 && \
|
||||
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH-jetpack6.tgz
|
||||
|
||||
FROM --platform=linux/amd64 scratch AS dist-amd64
|
||||
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
|
||||
@ -180,16 +229,23 @@ RUN rm -rf \
|
||||
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-amd64
|
||||
RUN apt-get update && \
|
||||
apt-get install -y ca-certificates && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
COPY --from=container-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
|
||||
COPY --from=runners-cuda-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
|
||||
FROM --platform=linux/arm64 ubuntu:22.04 AS runtime-arm64
|
||||
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ /lib/
|
||||
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ /lib/
|
||||
RUN apt-get update && \
|
||||
apt-get install -y ca-certificates && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
COPY --from=container-build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/bin/ /bin/
|
||||
COPY --from=runners-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
|
||||
COPY --from=cpu-build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
|
||||
COPY --from=cuda-11-build-runner-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
|
||||
COPY --from=cuda-12-build-runner-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
|
||||
COPY --from=cuda-build-jetpack5-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
|
||||
COPY --from=cuda-build-jetpack6-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
|
||||
|
||||
|
||||
# ROCm libraries larger so we keep it distinct from the CPU/CUDA image
|
||||
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-rocm
|
||||
@ -198,7 +254,7 @@ FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-rocm
|
||||
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64-rocm/lib/ /lib/
|
||||
RUN apt-get update && \
|
||||
apt-get install -y ca-certificates && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
COPY --from=container-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
|
||||
COPY --from=runners-rocm-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
|
||||
|
45
README.md
45
README.md
@ -47,26 +47,28 @@ Ollama supports a list of models available on [ollama.com/library](https://ollam
|
||||
|
||||
Here are some example models that can be downloaded:
|
||||
|
||||
| Model | Parameters | Size | Download |
|
||||
| ------------------ | ---------- | ----- | ------------------------------ |
|
||||
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
|
||||
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
|
||||
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
|
||||
| Llama 3.1 | 70B | 40GB | `ollama run llama3.1:70b` |
|
||||
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
|
||||
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
|
||||
| Phi 3 Medium | 14B | 7.9GB | `ollama run phi3:medium` |
|
||||
| Gemma 2 | 2B | 1.6GB | `ollama run gemma2:2b` |
|
||||
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
|
||||
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
|
||||
| Mistral | 7B | 4.1GB | `ollama run mistral` |
|
||||
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
|
||||
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
|
||||
| Starling | 7B | 4.1GB | `ollama run starling-lm` |
|
||||
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
|
||||
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
|
||||
| LLaVA | 7B | 4.5GB | `ollama run llava` |
|
||||
| Solar | 10.7B | 6.1GB | `ollama run solar` |
|
||||
| Model | Parameters | Size | Download |
|
||||
| ------------------ | ---------- | ----- | -------------------------------- |
|
||||
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
|
||||
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
|
||||
| Llama 3.2 Vision | 11B | 7.9GB | `ollama run llama3.2-vision` |
|
||||
| Llama 3.2 Vision | 90B | 55GB | `ollama run llama3.2-vision:90b` |
|
||||
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
|
||||
| Llama 3.1 | 70B | 40GB | `ollama run llama3.1:70b` |
|
||||
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
|
||||
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
|
||||
| Phi 3 Medium | 14B | 7.9GB | `ollama run phi3:medium` |
|
||||
| Gemma 2 | 2B | 1.6GB | `ollama run gemma2:2b` |
|
||||
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
|
||||
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
|
||||
| Mistral | 7B | 4.1GB | `ollama run mistral` |
|
||||
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
|
||||
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
|
||||
| Starling | 7B | 4.1GB | `ollama run starling-lm` |
|
||||
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
|
||||
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
|
||||
| LLaVA | 7B | 4.5GB | `ollama run llava` |
|
||||
| Solar | 10.7B | 6.1GB | `ollama run solar` |
|
||||
|
||||
> [!NOTE]
|
||||
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
|
||||
@ -359,6 +361,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Ollama eBook Summary](https://github.com/cognitivetech/ollama-ebook-summary/)
|
||||
- [Ollama Mixture of Experts (MOE) in 50 lines of code](https://github.com/rapidarchitect/ollama_moe)
|
||||
- [vim-intelligence-bridge](https://github.com/pepo-ec/vim-intelligence-bridge) Simple interaction of "Ollama" with the Vim editor
|
||||
- [aichat](https://github.com/sigoden/aichat) All-in-one LLM CLI tool featuring Shell Assistant, Chat-REPL, RAG, AI tools & agents, with access to OpenAI, Claude, Gemini, Ollama, Groq, and more.
|
||||
|
||||
### Apple Vision Pro
|
||||
- [Enchanted](https://github.com/AugustDev/enchanted)
|
||||
@ -415,6 +418,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Ollama PHP](https://github.com/ArdaGnsrn/ollama-php)
|
||||
- [Agents-Flex for Java](https://github.com/agents-flex/agents-flex) with [example](https://github.com/agents-flex/agents-flex/tree/main/agents-flex-llm/agents-flex-llm-ollama/src/test/java/com/agentsflex/llm/ollama)
|
||||
- [Ollama for Swift](https://github.com/mattt/ollama-swift)
|
||||
- [GoLamify](https://github.com/prasad89/golamify)
|
||||
|
||||
### Mobile
|
||||
|
||||
@ -452,6 +456,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Discord-Ollama Chat Bot](https://github.com/kevinthedang/discord-ollama) (Generalized TypeScript Discord Bot w/ Tuning Documentation)
|
||||
- [Discord AI chat/moderation bot](https://github.com/rapmd73/Companion) Chat/moderation bot written in python. Uses Ollama to create personalities.
|
||||
- [Headless Ollama](https://github.com/nischalj10/headless-ollama) (Scripts to automatically install ollama client & models on any OS for apps that depends on ollama server)
|
||||
- [Local AI Helper](https://github.com/ivostoykov/localAI) (Chrome and Firefox extensions that enable interactions with the active tab and customisable API endpoints. Includes secure storage for user prompts.)
|
||||
- [vnc-lm](https://github.com/jk011ru/vnc-lm) (A containerized Discord bot with support for attachments and web links)
|
||||
- [LSP-AI](https://github.com/SilasMarvin/lsp-ai) (Open-source language server for AI-powered functionality)
|
||||
- [QodeAssist](https://github.com/Palm1r/QodeAssist) (AI-powered coding assistant plugin for Qt Creator)
|
||||
|
@ -55,7 +55,7 @@ func checkError(resp *http.Response, body []byte) error {
|
||||
|
||||
// ClientFromEnvironment creates a new [Client] using configuration from the
|
||||
// environment variable OLLAMA_HOST, which points to the network host and
|
||||
// port on which the ollama service is listenting. The format of this variable
|
||||
// port on which the ollama service is listening. The format of this variable
|
||||
// is:
|
||||
//
|
||||
// <scheme>://<host>:<port>
|
||||
|
12
api/types.go
12
api/types.go
@ -12,7 +12,7 @@ import (
|
||||
"time"
|
||||
)
|
||||
|
||||
// StatusError is an error with and HTTP status code.
|
||||
// StatusError is an error with an HTTP status code and message.
|
||||
type StatusError struct {
|
||||
StatusCode int
|
||||
Status string
|
||||
@ -57,7 +57,7 @@ type GenerateRequest struct {
|
||||
Template string `json:"template"`
|
||||
|
||||
// Context is the context parameter returned from a previous call to
|
||||
// Generate call. It can be used to keep a short conversational memory.
|
||||
// [Client.Generate]. It can be used to keep a short conversational memory.
|
||||
Context []int `json:"context,omitempty"`
|
||||
|
||||
// Stream specifies whether the response is streaming; it is true by default.
|
||||
@ -90,14 +90,14 @@ type ChatRequest struct {
|
||||
// Messages is the messages of the chat - can be used to keep a chat memory.
|
||||
Messages []Message `json:"messages"`
|
||||
|
||||
// Stream enable streaming of returned response; true by default.
|
||||
// Stream enables streaming of returned responses; true by default.
|
||||
Stream *bool `json:"stream,omitempty"`
|
||||
|
||||
// Format is the format to return the response in (e.g. "json").
|
||||
Format string `json:"format"`
|
||||
|
||||
// KeepAlive controls how long the model will stay loaded into memory
|
||||
// followin the request.
|
||||
// following the request.
|
||||
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
||||
|
||||
// Tools is an optional list of tools the model has access to.
|
||||
@ -203,8 +203,8 @@ type Metrics struct {
|
||||
EvalDuration time.Duration `json:"eval_duration,omitempty"`
|
||||
}
|
||||
|
||||
// Options specified in [GenerateRequest], if you add a new option here add it
|
||||
// to the API docs also.
|
||||
// Options specified in [GenerateRequest]. If you add a new option here, also
|
||||
// add it to the API docs.
|
||||
type Options struct {
|
||||
Runner
|
||||
|
||||
|
@ -800,9 +800,9 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
|
||||
case "parameters":
|
||||
fmt.Println(resp.Parameters)
|
||||
case "system":
|
||||
fmt.Println(resp.System)
|
||||
fmt.Print(resp.System)
|
||||
case "template":
|
||||
fmt.Println(resp.Template)
|
||||
fmt.Print(resp.Template)
|
||||
}
|
||||
|
||||
return nil
|
||||
|
@ -350,7 +350,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
gpuInfo.DependencyPath = libDir
|
||||
gpuInfo.DependencyPath = []string{libDir}
|
||||
|
||||
if gfxOverride == "" {
|
||||
// Only load supported list once
|
||||
|
@ -111,7 +111,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
|
||||
UnreliableFreeMemory: true,
|
||||
|
||||
ID: strconv.Itoa(i), // TODO this is probably wrong if we specify visible devices
|
||||
DependencyPath: libDir,
|
||||
DependencyPath: []string{libDir},
|
||||
MinimumMemory: rocmMinimumMemory,
|
||||
Name: name,
|
||||
Compute: gfx,
|
||||
|
@ -240,7 +240,7 @@ func GetGPUInfo() GpuInfoList {
|
||||
Library: "cpu",
|
||||
Variant: cpuCapability.String(),
|
||||
ID: "0",
|
||||
DependencyPath: depPath,
|
||||
DependencyPath: []string{depPath},
|
||||
},
|
||||
CPUs: details,
|
||||
},
|
||||
@ -293,11 +293,11 @@ func GetGPUInfo() GpuInfoList {
|
||||
gpuInfo.DriverMinor = driverMinor
|
||||
variant := cudaVariant(gpuInfo)
|
||||
if depPath != "" {
|
||||
gpuInfo.DependencyPath = depPath
|
||||
gpuInfo.DependencyPath = []string{depPath}
|
||||
// Check for variant specific directory
|
||||
if variant != "" {
|
||||
if _, err := os.Stat(filepath.Join(depPath, "cuda_"+variant)); err == nil {
|
||||
gpuInfo.DependencyPath = filepath.Join(depPath, "cuda_"+variant)
|
||||
gpuInfo.DependencyPath = []string{filepath.Join(depPath, "cuda_"+variant), depPath}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -370,7 +370,7 @@ func GetGPUInfo() GpuInfoList {
|
||||
gpuInfo.FreeMemory = uint64(memInfo.free)
|
||||
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
|
||||
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
|
||||
gpuInfo.DependencyPath = depPath
|
||||
gpuInfo.DependencyPath = []string{depPath}
|
||||
oneapiGPUs = append(oneapiGPUs, gpuInfo)
|
||||
}
|
||||
}
|
||||
|
@ -25,7 +25,7 @@ type GpuInfo struct { // TODO better name maybe "InferenceProcessor"?
|
||||
MinimumMemory uint64 `json:"-"`
|
||||
|
||||
// Any extra PATH/LD_LIBRARY_PATH dependencies required for the Library to operate properly
|
||||
DependencyPath string `json:"lib_path,omitempty"`
|
||||
DependencyPath []string `json:"lib_path,omitempty"`
|
||||
|
||||
// Extra environment variables specific to the GPU as list of [key,value]
|
||||
EnvWorkarounds [][2]string `json:"envs,omitempty"`
|
||||
|
@ -32,7 +32,7 @@ ollama run my-model
|
||||
|
||||
Ollama supports importing adapters based on several different model architectures including:
|
||||
|
||||
* Llama (including Llama 2, Llama 3, and Llama 3.1);
|
||||
* Llama (including Llama 2, Llama 3, Llama 3.1, and Llama 3.2);
|
||||
* Mistral (including Mistral 1, Mistral 2, and Mixtral); and
|
||||
* Gemma (including Gemma 1 and Gemma 2)
|
||||
|
||||
@ -67,14 +67,12 @@ ollama run my-model
|
||||
|
||||
Ollama supports importing models for several different architectures including:
|
||||
|
||||
* Llama (including Llama 2, Llama 3, and Llama 3.1);
|
||||
* Llama (including Llama 2, Llama 3, Llama 3.1, and Llama 3.2);
|
||||
* Mistral (including Mistral 1, Mistral 2, and Mixtral);
|
||||
* Gemma (including Gemma 1 and Gemma 2); and
|
||||
* Phi3
|
||||
|
||||
This includes importing foundation models as well as any fine tuned models which which have been _fused_ with a foundation model.
|
||||
|
||||
|
||||
This includes importing foundation models as well as any fine tuned models which have been _fused_ with a foundation model.
|
||||
## Importing a GGUF based model or adapter
|
||||
|
||||
If you have a GGUF based model or adapter it is possible to import it into Ollama. You can obtain a GGUF model or adapter by:
|
||||
|
@ -120,7 +120,7 @@ FROM <model directory>
|
||||
The model directory should contain the Safetensors weights for a supported architecture.
|
||||
|
||||
Currently supported model architectures:
|
||||
* Llama (including Llama 2, Llama 3, and Llama 3.1)
|
||||
* Llama (including Llama 2, Llama 3, Llama 3.1, and Llama 3.2)
|
||||
* Mistral (including Mistral 1, Mistral 2, and Mixtral)
|
||||
* Gemma (including Gemma 1 and Gemma 2)
|
||||
* Phi3
|
||||
|
@ -95,7 +95,9 @@ If none of those resolve the problem, gather additional information and file an
|
||||
|
||||
On linux, AMD GPU access typically requires `video` and/or `render` group membership to access the `/dev/kfd` device. If permissions are not set up correctly, Ollama will detect this and report an error in the server log.
|
||||
|
||||
When running in a container, in some Linux distributions and container runtimes, the ollama process may be unable to access the GPU. Use `ls -ld /dev/kfd /dev/dri /dev/dri/*` on the host system to determine the group assignments on your system, and pass additional `--group-add ...` arguments to the container so it can access the required devices.
|
||||
When running in a container, in some Linux distributions and container runtimes, the ollama process may be unable to access the GPU. Use `ls -lnd /dev/kfd /dev/dri /dev/dri/*` on the host system to determine the **numeric** group IDs on your system, and pass additional `--group-add ...` arguments to the container so it can access the required devices. For example, in the following output `crw-rw---- 1 0 44 226, 0 Sep 16 16:55 /dev/dri/card0` the group ID column is `44`
|
||||
|
||||
If Ollama initially works on the GPU in a docker container, but then switches to running on CPU after some period of time with errors in the server log reporting GPU discovery failures, this can be resolved by disabling systemd cgroup management in Docker. Edit `/etc/docker/daemon.json` on the host and add `"exec-opts": ["native.cgroupdriver=cgroupfs"]` to the docker configuration.
|
||||
|
||||
If you are experiencing problems getting Ollama to correctly discover or use your GPU for inference, the following may help isolate the failure.
|
||||
- `AMD_LOG_LEVEL=3` Enable info log levels in the AMD HIP/ROCm libraries. This can help show more detailed error codes that can help troubleshoot problems
|
||||
|
@ -21,6 +21,8 @@ package llama
|
||||
#cgo cuda CFLAGS: -fPIE -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
|
||||
#cgo cuda CXXFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
|
||||
#cgo cuda CXXFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
|
||||
#cgo cuda_jetpack5 LDFLAGS: -lggml_cuda_jetpack5 -L/usr/local/cuda-11/lib64
|
||||
#cgo cuda_jetpack6 LDFLAGS: -lggml_cuda_jetpack6 -L/usr/local/cuda-12/lib64
|
||||
#cgo cuda_v11 LDFLAGS: -lggml_cuda_v11 -L/usr/local/cuda-11/lib64
|
||||
#cgo cuda_v12 LDFLAGS: -lggml_cuda_v12 -L/usr/local/cuda-12/lib64
|
||||
#cgo darwin,amd64 CFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers
|
||||
@ -36,8 +38,8 @@ package llama
|
||||
#cgo linux CXXFLAGS: -D_GNU_SOURCE
|
||||
#cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/Linux/amd64
|
||||
#cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/Linux/amd64
|
||||
#cgo linux,arm64 CFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA -D__ARM_FEATURE_MATMUL_INT8
|
||||
#cgo linux,arm64 CXXFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA -D__ARM_FEATURE_MATMUL_INT8
|
||||
#cgo linux,arm64 CFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA
|
||||
#cgo linux,arm64 CXXFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA
|
||||
#cgo linux,arm64 LDFLAGS: -L${SRCDIR}/build/Linux/arm64
|
||||
#cgo linux,arm64,sve CFLAGS: -march=armv8.6-a+sve
|
||||
#cgo linux,arm64,sve CXXFLAGS: -march=armv8.6-a+sve
|
||||
|
@ -20,7 +20,7 @@ GPU_COMPILER_CFLAGS_LINUX = $(CFLAGS) -Xcompiler -fPIC -D_GNU_SOURCE
|
||||
GPU_COMPILER_CXXFLAGS_WIN = $(CXXFLAGS) -D_WIN32_WINNT=0x602
|
||||
GPU_COMPILER_CXXFLAGS_LINUX = $(CXXFLAGS) -Xcompiler -fPIC -D_GNU_SOURCE
|
||||
GPU_LIBS = $(sort $(wildcard $(addsuffix *.$(SHARED_EXT)*,$(addprefix $(GPU_LIB_DIR)/$(SHARED_PREFIX),$(GPU_RUNNER_LIBS_SHORT)))))
|
||||
GPU_DIST_DEPS_LIBS= $(sort $(addprefix $(DIST_LIB_DIR)/,$(notdir $(GPU_LIBS))))
|
||||
GPU_DIST_DEPS_LIBS= $(sort $(addprefix $(DIST_GPU_RUNNER_DEPS_DIR)/,$(notdir $(GPU_LIBS))))
|
||||
|
||||
ifeq ($(OS),linux)
|
||||
CUDA_PATH?=/usr/local/cuda
|
||||
|
@ -2,6 +2,7 @@ package main
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"reflect"
|
||||
"time"
|
||||
@ -22,7 +23,11 @@ type InputCache struct {
|
||||
lc *llama.Context
|
||||
}
|
||||
|
||||
func NewInputCache(lc *llama.Context, kvSize int, numSlots int, multiUserCache bool) *InputCache {
|
||||
func NewInputCache(lc *llama.Context, kvSize int, numSlots int, multiUserCache bool) (*InputCache, error) {
|
||||
if kvSize/numSlots < 1 {
|
||||
return nil, fmt.Errorf("must have at least one kv cache entry per parallel sequence (kv: %v parallel: %v)", kvSize, numSlots)
|
||||
}
|
||||
|
||||
slots := make([]InputCacheSlot, numSlots)
|
||||
|
||||
for i := range slots {
|
||||
@ -37,7 +42,7 @@ func NewInputCache(lc *llama.Context, kvSize int, numSlots int, multiUserCache b
|
||||
slots: slots,
|
||||
multiUserCache: multiUserCache,
|
||||
lc: lc,
|
||||
}
|
||||
}, nil
|
||||
}
|
||||
|
||||
// Locking: Operations on InputCacheSlot (including finding one
|
||||
@ -58,7 +63,7 @@ type InputCacheSlot struct {
|
||||
lastUsed time.Time
|
||||
}
|
||||
|
||||
func (c *InputCache) LoadCacheSlot(prompt []input, cachePrompt bool) (*InputCacheSlot, []input, int, error) {
|
||||
func (c *InputCache) LoadCacheSlot(prompt []input, cachePrompt bool) (*InputCacheSlot, []input, error) {
|
||||
var slot *InputCacheSlot
|
||||
var numPast int
|
||||
var err error
|
||||
@ -75,7 +80,7 @@ func (c *InputCache) LoadCacheSlot(prompt []input, cachePrompt bool) (*InputCach
|
||||
slot, numPast, err = c.findBestCacheSlot(prompt)
|
||||
}
|
||||
if err != nil {
|
||||
return nil, nil, 0, err
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
if !cachePrompt {
|
||||
@ -102,7 +107,7 @@ func (c *InputCache) LoadCacheSlot(prompt []input, cachePrompt bool) (*InputCach
|
||||
prompt = prompt[numPast:]
|
||||
slot.Inputs = slot.Inputs[:numPast]
|
||||
|
||||
return slot, prompt, numPast, nil
|
||||
return slot, prompt, nil
|
||||
}
|
||||
|
||||
func (c *InputCache) findLongestCacheSlot(prompt []input) (*InputCacheSlot, int, error) {
|
||||
@ -194,14 +199,30 @@ func countCommonPrefix(a []input, b []input) int {
|
||||
return count
|
||||
}
|
||||
|
||||
func (c *InputCache) ShiftCacheSlot(slot *InputCacheSlot, numKeep int, numDiscard int, numPast int) {
|
||||
// TODO (jessegross): KV cache removal can fail for certain types of models
|
||||
// server.cpp doesn't handle this, though we can be more graceful
|
||||
c.lc.KvCacheSeqRm(slot.Id, numKeep, numKeep+numDiscard)
|
||||
c.lc.KvCacheSeqAdd(slot.Id, numKeep+numDiscard, numPast, -numDiscard)
|
||||
// Frees up space in the KV cache by deleting the oldest half of history and shifting
|
||||
// the newest half into that space (saving numKeep inputs at the beginning).
|
||||
//
|
||||
// Assumes that at least 1 entry can be freed up by shifting (i.e. numKeep < numCtx)
|
||||
func (c *InputCache) ShiftCacheSlot(slot *InputCacheSlot, numKeep int) {
|
||||
targetFree := (c.numCtx - numKeep) / 2
|
||||
targetFree = max(targetFree, 1)
|
||||
|
||||
for i := numKeep + numDiscard; i < len(slot.Inputs); i++ {
|
||||
slot.Inputs[i-numDiscard] = slot.Inputs[i]
|
||||
currentFree := c.numCtx - len(slot.Inputs)
|
||||
discard := targetFree - currentFree
|
||||
|
||||
if discard <= 0 {
|
||||
return
|
||||
}
|
||||
slot.Inputs = slot.Inputs[:len(slot.Inputs)-numDiscard]
|
||||
|
||||
slog.Debug("context limit hit - shifting", "limit", c.numCtx, "input", len(slot.Inputs),
|
||||
"keep", numKeep, "discard", discard)
|
||||
|
||||
// TODO (jessegross): KV cache removal can fail for certain types of models
|
||||
c.lc.KvCacheSeqRm(slot.Id, numKeep, numKeep+discard)
|
||||
c.lc.KvCacheSeqAdd(slot.Id, numKeep+discard, len(slot.Inputs), -discard)
|
||||
|
||||
for i := numKeep + discard; i < len(slot.Inputs); i++ {
|
||||
slot.Inputs[i-discard] = slot.Inputs[i]
|
||||
}
|
||||
slot.Inputs = slot.Inputs[:len(slot.Inputs)-discard]
|
||||
}
|
||||
|
@ -34,9 +34,6 @@ type input struct {
|
||||
}
|
||||
|
||||
type Sequence struct {
|
||||
// number of inputs evaluated
|
||||
numPast int
|
||||
|
||||
// batch index
|
||||
iBatch int
|
||||
|
||||
@ -112,21 +109,15 @@ func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequen
|
||||
params.numKeep = len(inputs)
|
||||
}
|
||||
|
||||
if !params.embedding {
|
||||
// Subtracting 4 ensures that at least 1 input can be discarded during shift
|
||||
params.numKeep = min(params.numKeep, s.cache.numCtx-4)
|
||||
params.numKeep += s.bosToken
|
||||
} else {
|
||||
// Embeddings are 1 shot - just truncate to the context window, without ever shifting
|
||||
params.numKeep = min(params.numKeep, s.cache.numCtx)
|
||||
if s.model.AddBOSToken() {
|
||||
params.numKeep += 1
|
||||
}
|
||||
|
||||
// truncate to fit in context window
|
||||
// Ensure that at least 1 input can be discarded during shift
|
||||
params.numKeep = min(params.numKeep, s.cache.numCtx-1)
|
||||
|
||||
if len(inputs) > s.cache.numCtx {
|
||||
slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "numKeep", params.numKeep)
|
||||
newInputs := inputs[:params.numKeep]
|
||||
newInputs = append(newInputs, inputs[len(inputs)-s.cache.numCtx+params.numKeep:]...)
|
||||
inputs = newInputs
|
||||
slog.Warn("input exceeds context length", "prompt", len(inputs), "limit", s.cache.numCtx)
|
||||
}
|
||||
|
||||
var sc *llama.SamplingContext
|
||||
@ -231,9 +222,6 @@ type Server struct {
|
||||
// KV cache
|
||||
cache *InputCache
|
||||
|
||||
// does this model require a beginning of sequence token?
|
||||
bosToken int
|
||||
|
||||
// next sequence for prompt processing to avoid starvation
|
||||
nextSeq int
|
||||
|
||||
@ -258,18 +246,6 @@ func (s *Server) allNil() bool {
|
||||
return true
|
||||
}
|
||||
|
||||
func (s *Server) shiftContext(seq *Sequence) {
|
||||
numLeft := seq.numPast - seq.numKeep
|
||||
numDiscard := numLeft / 2
|
||||
|
||||
slog.Debug("context limit hit - shifting", "limit", s.cache.numCtx, "numPast", seq.numPast,
|
||||
"numKeep", seq.numKeep, "numLeft", numLeft, "numDiscard", numDiscard)
|
||||
|
||||
s.cache.ShiftCacheSlot(seq.cache, seq.numKeep, numDiscard, seq.numPast)
|
||||
|
||||
seq.numPast -= numDiscard
|
||||
}
|
||||
|
||||
func flushPending(seq *Sequence) bool {
|
||||
joined := strings.Join(seq.pendingResponses, "")
|
||||
seq.pendingResponses = []string{}
|
||||
@ -369,17 +345,24 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
|
||||
}
|
||||
|
||||
// if past the num predict limit
|
||||
if seq.numPredict > 0 && seq.numPredicted > seq.numPredict {
|
||||
if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
|
||||
s.removeSequence(seqIdx, "limit")
|
||||
continue
|
||||
}
|
||||
|
||||
if seq.numPast+len(seq.inputs) > s.cache.numCtx {
|
||||
s.shiftContext(seq)
|
||||
}
|
||||
|
||||
var numInputsProcessed int
|
||||
shifted := false
|
||||
|
||||
for i, input := range seq.inputs {
|
||||
if len(seq.cache.Inputs)+1 > s.cache.numCtx {
|
||||
if !shifted {
|
||||
s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
|
||||
shifted = true
|
||||
} else {
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
embedding := input.embed != nil
|
||||
|
||||
// If we don't currently have a batch, use one of the correct type and
|
||||
@ -403,13 +386,12 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
|
||||
}
|
||||
|
||||
crossAttention = seq.crossAttention
|
||||
batch.Add(input.token, input.embed, seq.numPast, numInputsProcessed+1 == len(seq.inputs), seq.cache.Id)
|
||||
seq.numPast++
|
||||
batch.Add(input.token, input.embed, len(seq.cache.Inputs), i+1 == len(seq.inputs), seq.cache.Id)
|
||||
seq.cache.Inputs = append(seq.cache.Inputs, input)
|
||||
numInputsProcessed++
|
||||
}
|
||||
|
||||
if numInputsProcessed > 0 {
|
||||
seq.cache.Inputs = append(seq.cache.Inputs, seq.inputs[:numInputsProcessed]...)
|
||||
seq.inputs = seq.inputs[numInputsProcessed:]
|
||||
seq.iBatch = batch.NumTokens() - 1
|
||||
}
|
||||
@ -632,7 +614,7 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
|
||||
s.mu.Lock()
|
||||
for i, sq := range s.seqs {
|
||||
if sq == nil {
|
||||
seq.cache, seq.inputs, seq.numPast, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
|
||||
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
|
||||
if err != nil {
|
||||
s.mu.Unlock()
|
||||
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
|
||||
@ -715,7 +697,7 @@ func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
|
||||
s.mu.Lock()
|
||||
for i, sq := range s.seqs {
|
||||
if sq == nil {
|
||||
seq.cache, seq.inputs, seq.numPast, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
|
||||
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
|
||||
if err != nil {
|
||||
s.mu.Unlock()
|
||||
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
|
||||
@ -802,10 +784,6 @@ func (s *Server) loadModel(
|
||||
}
|
||||
}
|
||||
|
||||
if s.model.AddBOSToken() {
|
||||
s.bosToken = 1
|
||||
}
|
||||
|
||||
if ppath != "" {
|
||||
var err error
|
||||
s.image, err = NewImageContext(s.lc, ppath)
|
||||
@ -814,7 +792,10 @@ func (s *Server) loadModel(
|
||||
}
|
||||
}
|
||||
|
||||
s.cache = NewInputCache(s.lc, kvSize, s.parallel, multiUserCache)
|
||||
s.cache, err = NewInputCache(s.lc, kvSize, s.parallel, multiUserCache)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
s.status = ServerStatusReady
|
||||
s.ready.Done()
|
||||
|
@ -128,17 +128,6 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapter
|
||||
}
|
||||
}
|
||||
|
||||
// On linux and windows, over-allocating CPU memory will almost always result in an error
|
||||
// Darwin has fully dynamic swap so has no direct concept of free swap space
|
||||
if runtime.GOOS != "darwin" {
|
||||
systemMemoryRequired := estimate.TotalSize - estimate.VRAMSize
|
||||
available := systemFreeMemory + systemSwapFreeMemory
|
||||
if systemMemoryRequired > available {
|
||||
slog.Warn("model request too large for system", "requested", format.HumanBytes2(systemMemoryRequired), "available", available, "total", format.HumanBytes2(systemTotalMemory), "free", format.HumanBytes2(systemFreeMemory), "swap", format.HumanBytes2(systemSwapFreeMemory))
|
||||
return nil, fmt.Errorf("model requires more system memory (%s) than is available (%s)", format.HumanBytes2(systemMemoryRequired), format.HumanBytes2(available))
|
||||
}
|
||||
}
|
||||
|
||||
estimate.log()
|
||||
|
||||
// Loop through potential servers
|
||||
@ -306,9 +295,9 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapter
|
||||
|
||||
// Note: we always put the dependency path first
|
||||
// since this was the exact version we compiled/linked against
|
||||
if gpus[0].DependencyPath != "" {
|
||||
if gpus[0].DependencyPath != nil {
|
||||
// assume gpus from the same library have the same dependency path
|
||||
libraryPaths = append([]string{gpus[0].DependencyPath}, libraryPaths...)
|
||||
libraryPaths = append(gpus[0].DependencyPath, libraryPaths...)
|
||||
}
|
||||
|
||||
server := filepath.Join(dir, "ollama_llama_server")
|
||||
|
Loading…
x
Reference in New Issue
Block a user