From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Thu, 17 Oct 2024 17:19:25 -0700
Subject: [PATCH] add unpad operator

---
 ggml/include/ggml.h        | 10 ++++
 ggml/src/ggml-cuda.cu      |  4 ++
 ggml/src/ggml-cuda/pad.cu  | 46 +++++++++++++++++++
 ggml/src/ggml-cuda/pad.cuh |  1 +
 ggml/src/ggml-metal.m      | 33 ++++++++++++++
 ggml/src/ggml-metal.metal  | 45 ++++++++++++++++++
 ggml/src/ggml.c            | 93 +++++++++++++++++++++++++++++++++++++-
 7 files changed, 230 insertions(+), 2 deletions(-)

diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h
index ce3d92cb..962cb5f7 100644
--- a/ggml/include/ggml.h
+++ b/ggml/include/ggml.h
@@ -506,6 +506,7 @@ extern "C" {
         GGML_OP_POOL_2D_BACK,
         GGML_OP_UPSCALE, // nearest interpolate
         GGML_OP_PAD,
+        GGML_OP_UNPAD,
         GGML_OP_ARANGE,
         GGML_OP_TIMESTEP_EMBEDDING,
         GGML_OP_ARGSORT,
@@ -1764,6 +1765,15 @@ extern "C" {
             int                  p2,
             int                  p3);
 
+    // unpad each dimension: [x, ..., x, y, ..., y] -> [x, ..., x]
+    GGML_API struct ggml_tensor * ggml_unpad(
+            struct ggml_context * ctx,
+            struct ggml_tensor  * a,
+            int                  p0,
+            int                  p1,
+            int                  p2,
+            int                  p3);
+
     // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
     // timesteps: [N,]
     // return: [N, dim]
diff --git a/ggml/src/ggml-cuda.cu b/ggml/src/ggml-cuda.cu
index fe77b81c..6e84af56 100644
--- a/ggml/src/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda.cu
@@ -2270,6 +2270,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
         case GGML_OP_PAD:
             ggml_cuda_op_pad(ctx, dst);
             break;
+        case GGML_OP_UNPAD:
+            ggml_cuda_op_unpad(ctx, dst);
+            break;
         case GGML_OP_ARANGE:
             ggml_cuda_op_arange(ctx, dst);
             break;
@@ -2992,6 +2995,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
         case GGML_OP_GROUP_NORM:
         case GGML_OP_UPSCALE:
         case GGML_OP_PAD:
+        case GGML_OP_UNPAD:
         case GGML_OP_ARANGE:
         case GGML_OP_TIMESTEP_EMBEDDING:
         case GGML_OP_LEAKY_RELU:
diff --git a/ggml/src/ggml-cuda/pad.cu b/ggml/src/ggml-cuda/pad.cu
index aba539e8..39fd4b16 100644
--- a/ggml/src/ggml-cuda/pad.cu
+++ b/ggml/src/ggml-cuda/pad.cu
@@ -47,3 +47,49 @@ void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
         src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
         dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
 }
+
+static __global__ void unpad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
+    // blockIdx.z: idx of ne2*ne3, aka ne02*ne03
+    // blockIdx.y: idx of ne1
+    // blockIDx.x: idx of ne0 / BLOCK_SIZE
+    int nidx = threadIdx.x + blockIdx.x * blockDim.x;
+    if (nidx >= ne0) {
+        return;
+    }
+
+    // operation
+    int offset_dst =
+        nidx +
+        blockIdx.y * ne0 +
+        blockIdx.z * ne0 * gridDim.y;
+    if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) {
+        int offset_src =
+            nidx +
+            blockIdx.y * ne00 +
+            blockIdx.z * ne00 * ne01;
+        dst[offset_dst] = x[offset_src];
+    }
+}
+
+static void unpad_f32_cuda(const float * x, float * dst,
+    const int ne00, const int ne01, const int ne02, const int ne03,
+    const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
+    int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
+    dim3 gridDim(num_blocks, ne1, ne2*ne3);
+    unpad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
+}
+
+void ggml_cuda_op_unpad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const float * src0_d = (const float *)src0->data;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT(dst->type == GGML_TYPE_F32);
+    GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
+
+    unpad_f32_cuda(src0_d, dst_d,
+        src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
+        dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
+}
diff --git a/ggml/src/ggml-cuda/pad.cuh b/ggml/src/ggml-cuda/pad.cuh
index 8fd386b0..e2ededc3 100644
--- a/ggml/src/ggml-cuda/pad.cuh
+++ b/ggml/src/ggml-cuda/pad.cuh
@@ -3,3 +3,4 @@
 #define CUDA_PAD_BLOCK_SIZE 256
 
 void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+void ggml_cuda_op_unpad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
diff --git a/ggml/src/ggml-metal.m b/ggml/src/ggml-metal.m
index 829c5e39..25702d85 100644
--- a/ggml/src/ggml-metal.m
+++ b/ggml/src/ggml-metal.m
@@ -193,6 +193,7 @@
     GGML_METAL_KERNEL_TYPE_IM2COL_F32,
     GGML_METAL_KERNEL_TYPE_UPSCALE_F32,
     GGML_METAL_KERNEL_TYPE_PAD_F32,
+    GGML_METAL_KERNEL_TYPE_UNPAD_F32,
     GGML_METAL_KERNEL_TYPE_ARANGE_F32,
     GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32,
     GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,
@@ -689,6 +690,7 @@ static void ggml_metal_log(enum ggml_log_level level, const char * format, ...){
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32,                    im2col_f32,                     true);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32,                   upscale_f32,                    true);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32,                       pad_f32,                        true);
+        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UNPAD_F32,                     unpad_f32,                        true);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32,        timestep_embedding_f32,         true);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARANGE_F32,                    arange_f32,                     true);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,           argsort_f32_i32_asc,            true);
@@ -846,6 +848,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_context * ctx
             return false;
         case GGML_OP_UPSCALE:
         case GGML_OP_PAD:
+        case GGML_OP_UNPAD:
         case GGML_OP_ARANGE:
         case GGML_OP_TIMESTEP_EMBEDDING:
         case GGML_OP_ARGSORT:
@@ -2655,6 +2658,36 @@ static void ggml_metal_encode_node(
 
                 const int nth = MIN(1024, ne0);
 
+                [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
+            } break;
+        case GGML_OP_UNPAD:
+            {
+                GGML_ASSERT(src0->type == GGML_TYPE_F32);
+
+                id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_UNPAD_F32].pipeline;
+
+                [encoder setComputePipelineState:pipeline];
+                [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
+                [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
+                [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
+                [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
+                [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
+                [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
+                [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
+                [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
+                [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
+                [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
+                [encoder setBytes:&ne0  length:sizeof(ne0)  atIndex:10];
+                [encoder setBytes:&ne1  length:sizeof(ne1)  atIndex:11];
+                [encoder setBytes:&ne2  length:sizeof(ne2)  atIndex:12];
+                [encoder setBytes:&ne3  length:sizeof(ne3)  atIndex:13];
+                [encoder setBytes:&nb0  length:sizeof(nb0)  atIndex:14];
+                [encoder setBytes:&nb1  length:sizeof(nb1)  atIndex:15];
+                [encoder setBytes:&nb2  length:sizeof(nb2)  atIndex:16];
+                [encoder setBytes:&nb3  length:sizeof(nb3)  atIndex:17];
+
+                const int nth = MIN(1024, ne0);
+
                 [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
             } break;
         case GGML_OP_ARANGE:
diff --git a/ggml/src/ggml-metal.metal b/ggml/src/ggml-metal.metal
index 2b200032..09887511 100644
--- a/ggml/src/ggml-metal.metal
+++ b/ggml/src/ggml-metal.metal
@@ -2029,6 +2029,51 @@ kernel void kernel_pad_f32(
     }
 }
 
+kernel void kernel_unpad_f32(
+    device  const char * src0,
+    device        char * dst,
+    constant   int64_t & ne00,
+    constant   int64_t & ne01,
+    constant   int64_t & ne02,
+    constant   int64_t & ne03,
+    constant  uint64_t & nb00,
+    constant  uint64_t & nb01,
+    constant  uint64_t & nb02,
+    constant  uint64_t & nb03,
+    constant   int64_t & ne0,
+    constant   int64_t & ne1,
+    constant   int64_t & ne2,
+    constant   int64_t & ne3,
+    constant  uint64_t & nb0,
+    constant  uint64_t & nb1,
+    constant  uint64_t & nb2,
+    constant  uint64_t & nb3,
+    uint3 tgpig[[threadgroup_position_in_grid]],
+    uint3 tpitg[[thread_position_in_threadgroup]],
+    uint3   ntg[[threads_per_threadgroup]]) {
+
+    const int64_t i3 = tgpig.z;
+    const int64_t i2 = tgpig.y;
+    const int64_t i1 = tgpig.x;
+
+    const int64_t i03 = i3;
+    const int64_t i02 = i2;
+    const int64_t i01 = i1;
+
+    device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
+    device       float * dst_ptr  = (device       float *) (dst  +  i3*nb3  +  i2*nb2  +  i1*nb1);
+
+    if (i1 < ne01 && i2 < ne02 && i3 < ne03) {
+        for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
+            if (i0 < ne00) {
+                dst_ptr[i0] = src0_ptr[i0];
+            }
+        }
+
+        return;
+    }
+}
+
 kernel void kernel_arange_f32(
     device        char * dst,
     constant   int64_t & ne0,
diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c
index bcbc32d9..f4864ac8 100644
--- a/ggml/src/ggml.c
+++ b/ggml/src/ggml.c
@@ -2997,6 +2997,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
     "POOL_2D_BACK",
     "UPSCALE",
     "PAD",
+    "UNPAD",
     "ARANGE",
     "TIMESTEP_EMBEDDING",
     "ARGSORT",
@@ -3030,7 +3031,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
     "OPT_STEP_ADAMW",
 };
 
-static_assert(GGML_OP_COUNT == 80, "GGML_OP_COUNT != 80");
+static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
 
 static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
     "none",
@@ -3091,6 +3092,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
     "pool_2d_back(x)",
     "upscale(x)",
     "pad(x)",
+    "unpad(x)",
     "arange(start, stop, step)",
     "timestep_embedding(timesteps, dim, max_period)",
     "argsort(x)",
@@ -3124,7 +3126,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
     "adamw(x)",
 };
 
-static_assert(GGML_OP_COUNT == 80, "GGML_OP_COUNT != 80");
+static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
 
 static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
 
@@ -6955,6 +6957,32 @@ struct ggml_tensor * ggml_pad(
     return result;
 }
 
+// ggml_unpad
+
+struct ggml_tensor * ggml_unpad(
+    struct ggml_context * ctx,
+    struct ggml_tensor  * a,
+    int p0, int p1, int p2, int p3) {
+    bool is_node = false;
+
+    if (a->grad) {
+        GGML_ABORT("fatal error"); // TODO: implement backward
+        is_node = true;
+    }
+
+    struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
+            a->ne[0] - p0,
+            a->ne[1] - p1,
+            a->ne[2] - p2,
+            a->ne[3] - p3);
+
+    result->op = GGML_OP_UNPAD;
+    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+    result->src[0] = a;
+
+    return result;
+}
+
 // ggml_arange
 
 struct ggml_tensor * ggml_arange(
@@ -15312,6 +15340,58 @@ static void ggml_compute_forward_pad(
     }
 }
 
+static void ggml_compute_forward_unpad_f32(
+    const struct ggml_compute_params *params,
+    struct ggml_tensor *dst) {
+
+    const struct ggml_tensor * src0 = dst->src[0];
+
+    GGML_ASSERT(src0->nb[0] == sizeof(float));
+    GGML_ASSERT( dst->nb[0] == sizeof(float));
+
+    const int ith = params->ith;
+    const int nth = params->nth;
+
+    GGML_TENSOR_UNARY_OP_LOCALS
+
+    float * dst_ptr = (float *) dst->data;
+
+    // TODO: optimize
+
+    for (int64_t i2 = 0; i2 < ne2; ++i2) {
+        for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
+            for (int64_t i0 = 0; i0 < ne0; ++i0) {
+                for (int64_t i3 = 0; i3 < ne3; ++i3) {
+                    const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
+
+                    const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
+
+                    if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
+                        dst_ptr[dst_idx] = *src_ptr;
+                    }
+                }
+            }
+        }
+    }
+}
+
+static void ggml_compute_forward_unpad(
+    const struct ggml_compute_params * params,
+    struct ggml_tensor * dst) {
+
+    const struct ggml_tensor * src0 = dst->src[0];
+
+    switch (src0->type) {
+        case GGML_TYPE_F32:
+            {
+                ggml_compute_forward_unpad_f32(params, dst);
+            } break;
+        default:
+            {
+                GGML_ABORT("fatal error");
+            }
+    }
+}
 
 // ggml_compute_forward_arange
 
@@ -17294,6 +17374,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
             {
                 ggml_compute_forward_pad(params, tensor);
             } break;
+        case GGML_OP_UNPAD:
+            {
+                ggml_compute_forward_unpad(params, tensor);
+            } break;
         case GGML_OP_ARANGE:
             {
                 ggml_compute_forward_arange(params, tensor);
@@ -18369,6 +18453,10 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
             {
                 GGML_ABORT("fatal error"); // TODO: not implemented
             }
+        case GGML_OP_UNPAD:
+            {
+                GGML_ABORT("fatal error"); // TODO: not implemented
+            }
         case GGML_OP_ARANGE:
             {
                 GGML_ABORT("fatal error"); // TODO: not implemented
@@ -19165,6 +19253,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
             } break;
         case GGML_OP_UPSCALE:
         case GGML_OP_PAD:
+        case GGML_OP_UNPAD:
         case GGML_OP_ARANGE:
         case GGML_OP_TIMESTEP_EMBEDDING:
         case GGML_OP_ARGSORT: