ollama/llama/llama.go
Jesse Gross 69cc5795a7 runner.go: Shift context window when KV cache space is exceeded
Currently, once the KV cache is full, text generation stops. Instead,
we should shift out the oldest context so that new generation can
continue based on more recent context.

This uses the algorithm from llama.cpp that is currently used by Ollama
with the server.cpp code. There are others but they are never turned
on through Ollama, so this restores parity.

The algorithm is:
 - Retain a configurable number of tokens at the beginning (for things
like beginning of sequence tokens
 - Drop the oldest half of the remaining tokens
 - Shift the remaining new tokens to the back of the cache
2024-09-03 21:15:14 -04:00

447 lines
13 KiB
Go

package llama
/*
#cgo CFLAGS: -std=c11 -DNDEBUG -DLOG_DISABLE_LOGS
#cgo CXXFLAGS: -std=c++11 -DNDEBUG -DLOG_DISABLE_LOGS
#cgo darwin,arm64 CFLAGS: -DGGML_USE_METAL -DGGML_USE_ACCELERATE -DGGML_METAL_EMBED_LIBRARY -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
#cgo darwin,arm64 CXXFLAGS: -DGGML_USE_METAL -DGGML_USE_ACCELERATE -DGGML_METAL_EMBED_LIBRARY -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
#cgo darwin,arm64 LDFLAGS: -framework Foundation -framework Metal -framework MetalKit -framework Accelerate
#cgo darwin,amd64 CFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers
#cgo darwin,amd64 CXXFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers
#cgo darwin,amd64 LDFLAGS: -framework Foundation
#cgo darwin,amd64 LDFLAGS: -L${SRCDIR}/build/Darwin/amd64
#cgo darwin,amd64,avx2 CFLAGS: -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
#cgo darwin,amd64,avx2 CXXFLAGS: -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
#cgo darwin,amd64,avx2 LDFLAGS: -framework Accelerate
#cgo linux CFLAGS: -D_GNU_SOURCE
#cgo linux CXXFLAGS: -D_GNU_SOURCE
#cgo linux,arm64 LDFLAGS: -L${SRCDIR}/build/Linux/arm64
#cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/Linux/amd64
#cgo windows CFLAGS: -Wno-discarded-qualifiers
#cgo windows LDFLAGS: -lmsvcrt
#cgo windows,arm64 LDFLAGS: -L${SRCDIR}/build/Windows/arm64
#cgo windows,amd64 LDFLAGS: -L${SRCDIR}/build/Windows/amd64
#cgo avx CFLAGS: -mavx
#cgo avx CXXFLAGS: -mavx
#cgo avx2 CFLAGS: -mavx2 -mfma
#cgo avx2 CXXFLAGS: -mavx2 -mfma
#cgo cuda CFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
#cgo cuda CXXFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
#cgo rocm CFLAGS: -DGGML_USE_CUDA -DGGML_USE_HIPBLAS -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
#cgo rocm CXXFLAGS: -DGGML_USE_CUDA -DGGML_USE_HIPBLAS -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
#cgo rocm LDFLAGS: -L${SRCDIR} -lggml_hipblas -lhipblas -lamdhip64 -lrocblas
#cgo windows,cuda LDFLAGS: -lggml_cuda -lcuda -lcudart -lcublas -lcublasLt
#cgo windows,rocm LDFLAGS: -lggml_hipblas -lhipblas -lamdhip64 -lrocblas
#cgo linux,cuda LDFLAGS: -L/usr/local/cuda/lib64 -lggml_cuda -lcuda -lcudart -lcublas -lcublasLt -lpthread -ldl -lrt
#cgo linux,rocm LDFLAGS: -L/opt/rocm/lib
#include <stdlib.h>
#include "llama.h"
#include "clip.h"
#include "llava.h"
#include "sampling_ext.h"
bool llamaProgressCallback(float progress, void *user_data);
*/
import "C"
import (
_ "embed"
"errors"
"fmt"
"runtime"
"runtime/cgo"
"strings"
"unsafe"
)
func BackendInit() {
C.llama_backend_init()
}
func PrintSystemInfo() string {
return C.GoString(C.llama_print_system_info())
}
type ContextParams struct {
c C.struct_llama_context_params
}
func NewContextParams(numCtx int, threads int, flashAttention bool) ContextParams {
params := C.llama_context_default_params()
params.n_ctx = C.uint(numCtx)
params.n_threads = C.uint(runtime.NumCPU())
params.n_threads_batch = params.n_threads
params.embeddings = C.bool(true)
params.flash_attn = C.bool(flashAttention)
params.n_threads = C.uint(threads)
return ContextParams{c: params}
}
type ModelParams struct {
c C.struct_llama_model_params
}
//export llamaProgressCallback
func llamaProgressCallback(progress C.float, userData unsafe.Pointer) C.bool {
handle := cgo.Handle(userData)
callback := handle.Value().(func(float32))
callback(float32(progress))
return true
}
func NewModelParams(numGpuLayers int, mainGpu int, callback func(float32)) ModelParams {
params := C.llama_model_default_params()
params.n_gpu_layers = C.int(numGpuLayers)
params.main_gpu = C.int32_t(mainGpu)
handle := cgo.NewHandle(callback)
params.progress_callback = C.llama_progress_callback(C.llamaProgressCallback)
params.progress_callback_user_data = unsafe.Pointer(handle)
runtime.SetFinalizer(&params, func(p *C.struct_llama_model_params) {
handle.Delete()
})
return ModelParams{c: params}
}
type Context struct {
c *C.struct_llama_context
}
func (c *Context) KvCacheClear() {
C.llama_kv_cache_clear(c.c)
}
func (c *Context) Decode(batch Batch) error {
// Positive return values does not mean a fatal error, but rather a warning.
// 0 - success
// 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
// < 0 - error
code := int(C.llama_decode(c.c, batch.c))
if code < 0 {
return fmt.Errorf("llama_decode failed with code %d", code)
}
if code > 0 {
return fmt.Errorf("could not find a KV slot for the batch - try reducing the size of the batch or increase the context. code: %d", code)
}
return nil
}
func (c *Context) Model() *Model {
return &Model{c: C.llama_get_model(c.c)}
}
func (c *Context) GetLogitsIth(i int) []float32 {
return unsafe.Slice((*float32)(unsafe.Pointer(C.llama_get_logits_ith(c.c, C.int(i)))), c.Model().NumVocab())
}
func (c *Context) SampleTokenGreedy(logits []float32) int {
candidates := (*C.struct_llama_token_data)(C.malloc(C.size_t(len(logits)) * C.size_t(unsafe.Sizeof(C.struct_llama_token_data{}))))
defer C.free(unsafe.Pointer(candidates))
for i, logit := range logits {
ptr := (*C.struct_llama_token_data)(unsafe.Pointer(uintptr(unsafe.Pointer(candidates)) + uintptr(i)*unsafe.Sizeof(C.struct_llama_token_data{})))
ptr.id = C.int(i)
ptr.logit = C.float(logit)
ptr.p = 0.0
}
return int(C.llama_sample_token_greedy(c.c, &C.llama_token_data_array{
data: candidates,
size: C.size_t(len(logits)),
sorted: C.bool(false),
}))
}
func (c *Context) KvCacheSeqAdd(seqId int, p0 int, p1 int, delta int) {
C.llama_kv_cache_seq_add(c.c, C.int(seqId), C.int(p0), C.int(p1), C.int(delta))
}
func (c *Context) KvCacheSeqRm(seqId int, p0 int, p1 int) bool {
return bool(C.llama_kv_cache_seq_rm(c.c, C.int(seqId), C.int(p0), C.int(p1)))
}
// Get the embeddings for a sequence id
func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
embeddings := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
if embeddings == nil {
return nil
}
return unsafe.Slice((*float32)(embeddings), c.Model().NEmbd())
}
func (c *Context) GetEmbeddingsIth(i int) []float32 {
return unsafe.Slice((*float32)(unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))), c.Model().NEmbd())
}
func LoadModelFromFile(modelPath string, params ModelParams) *Model {
return &Model{c: C.llama_load_model_from_file(C.CString(modelPath), params.c)}
}
func NewContextWithModel(model *Model, params ContextParams) *Context {
return &Context{c: C.llama_new_context_with_model(model.c, params.c)}
}
func (m *Model) NumVocab() int {
return int(C.llama_n_vocab(m.c))
}
func (m *Model) TokenIsEog(token int) bool {
return bool(C.llama_token_is_eog(m.c, C.llama_token(token)))
}
func (m *Model) ShouldAddBOSToken() bool {
addBos := int(C.llama_add_bos_token(m.c))
if addBos != -1 {
return addBos != 0
} else {
return C.llama_vocab_type(m.c) == C.LLAMA_VOCAB_TYPE_SPM
}
}
func (m *Model) ApplyLoraFromFile(loraPath string, scale float32, baseModelPath string, threads int) error {
cLoraPath := C.CString(loraPath)
defer C.free(unsafe.Pointer(cLoraPath))
var cBaseModelPath *C.char
if baseModelPath != "" {
cBaseModelPath = C.CString(baseModelPath)
}
code := int(C.llama_model_apply_lora_from_file(m.c, cLoraPath, C.float(scale), cBaseModelPath, C.int32_t(threads)))
if code != 0 {
return errors.New("error applying lora from file")
}
return nil
}
type Batch struct {
c C.struct_llama_batch
batchSize int
}
func NewBatch(nTokens int, embd int, maxSeq int) Batch {
return Batch{
c: C.llama_batch_init(C.int(nTokens), C.int(embd), C.int(maxSeq)),
batchSize: nTokens,
}
}
func (b *Batch) NumTokens() int {
return int(b.c.n_tokens)
}
// Add adds a token to the batch with the given position for the given
// sequence ids, and optionally instructs to include logits.
func (b *Batch) Add(token int, pos int, seqIds []int, logits bool) {
unsafe.Slice(b.c.token, b.batchSize)[b.c.n_tokens] = C.llama_token(token)
unsafe.Slice(b.c.pos, b.batchSize)[b.c.n_tokens] = C.llama_pos(pos)
unsafe.Slice(b.c.n_seq_id, b.batchSize)[b.c.n_tokens] = C.int(len(seqIds))
for i, s := range seqIds {
unsafe.Slice((unsafe.Slice(b.c.seq_id, b.batchSize)[b.c.n_tokens]), C.int(len(seqIds)))[i] = C.int32_t(s)
}
if logits {
unsafe.Slice(b.c.logits, b.batchSize)[b.c.n_tokens] = 1
}
b.c.n_tokens += 1
}
func (b *Batch) Clear() {
b.c.n_tokens = 0
}
func (b *Batch) Free() {
b.batchSize = 0
C.llama_batch_free(b.c)
}
func BatchGetOne(tokens []int, pos0 int, seqId int) Batch {
return Batch{c: C.llama_batch_get_one((*C.int)(unsafe.Pointer(&tokens[0])), C.int32_t(len(tokens)), C.int(pos0), C.int(seqId))}
}
type Model struct {
c *C.struct_llama_model
}
func (m *Model) TokenToPiece(token int) string {
tokenLen := 12
buf := make([]byte, tokenLen)
tokenLen = int(C.llama_token_to_piece(
m.c,
C.int32_t(token),
(*C.char)(unsafe.Pointer(&buf[0])),
C.int32_t(tokenLen),
C.int32_t(0),
C.bool(true),
))
if tokenLen < 0 {
tokenLen = -tokenLen
buf = make([]byte, tokenLen)
C.llama_token_to_piece(
m.c,
C.int32_t(token),
(*C.char)(unsafe.Pointer(&buf[0])),
C.int32_t(tokenLen),
C.int32_t(0),
C.bool(true),
)
}
return strings.TrimRight(string(buf), "\x00")
}
func (m *Model) Tokenize(text string, addSpecial bool, parseSpecial bool) ([]int, error) {
maxTokens := len(text) + 2
cTokens := make([]C.llama_token, maxTokens)
cText := C.CString(text)
defer C.free(unsafe.Pointer(cText))
result := C.llama_tokenize(
m.c,
cText,
C.int32_t(len(text)),
&cTokens[0],
C.int32_t(maxTokens),
C.bool(addSpecial),
C.bool(parseSpecial),
)
if result < 0 {
return nil, fmt.Errorf("tokenization failed, required %d tokens", -result)
}
tokens := make([]int, result)
for i := range result {
tokens[i] = int(cTokens[i])
}
return tokens, nil
}
func (m *Model) NEmbd() int {
return int(C.llama_n_embd(m.c))
}
func Quantize(infile, outfile string, ftype uint32) error {
cinfile := C.CString(infile)
defer C.free(unsafe.Pointer(cinfile))
coutfile := C.CString(outfile)
defer C.free(unsafe.Pointer(coutfile))
params := C.llama_model_quantize_default_params()
params.nthread = -1
params.ftype = ftype
if rc := C.llama_model_quantize(cinfile, coutfile, &params); rc != 0 {
return fmt.Errorf("llama_model_quantize: %d", rc)
}
return nil
}
// llava
type ClipContext struct {
c *C.struct_clip_ctx
}
func NewClipContext(modelPath string) *ClipContext {
mp := C.CString(modelPath)
defer C.free(unsafe.Pointer(mp))
cc := C.clip_model_load(mp, 1)
return &ClipContext{c: cc}
}
type LlavaContext struct {
c *C.struct_llava_context
}
type LlavaImageEmbed struct {
c *C.struct_llava_image_embed
}
func NewLlavaImageEmbed(clipContext *ClipContext, data []byte) *LlavaImageEmbed {
return &LlavaImageEmbed{c: C.llava_image_embed_make_with_bytes(clipContext.c, C.int(runtime.NumCPU()), (*C.uchar)(unsafe.Pointer(&data[0])), C.int(len(data)))}
}
func LlavaEvalImageEmbed(llamaContext *Context, embed *LlavaImageEmbed, nBatch int, nPast *int) {
C.llava_eval_image_embed(llamaContext.c, embed.c, C.int(nBatch), (*C.int)(unsafe.Pointer(nPast)))
}
// sampling
// TODO: this is a temporary wrapper to allow calling C++ code from CGo
type SamplingContext struct {
c *C.struct_llama_sampling_context
}
type SamplingParams struct {
TopK int
TopP float32
TfsZ float32
TypicalP float32
Temp float32
PenaltyRepeat float32
PenaltyFreq float32
PenaltyPresent float32
Mirostat int
MirostatTau float32
MirostatEta float32
PenalizeNl bool
Seed uint32
Grammar string
}
func NewSamplingContext(params SamplingParams) *SamplingContext {
var cparams C.struct_llama_sampling_cparams
cparams.top_k = C.int32_t(params.TopK)
cparams.top_p = C.float(params.TopP)
cparams.tfs_z = C.float(params.TfsZ)
cparams.typical_p = C.float(params.TypicalP)
cparams.temp = C.float(params.Temp)
cparams.penalty_repeat = C.float(params.PenaltyRepeat)
cparams.penalty_freq = C.float(params.PenaltyFreq)
cparams.penalty_present = C.float(params.PenaltyFreq)
cparams.mirostat = C.int32_t(params.Mirostat)
cparams.mirostat_tau = C.float(params.MirostatTau)
cparams.mirostat_eta = C.float(params.MirostatEta)
cparams.penalize_nl = C.bool(params.PenalizeNl)
cparams.seed = C.uint32_t(params.Seed)
grammar := C.CString(params.Grammar)
defer C.free(unsafe.Pointer(grammar))
cparams.grammar = grammar
return &SamplingContext{c: C.llama_sampling_cinit(&cparams)}
}
func (s *SamplingContext) Free() {
C.llama_sampling_cfree(s.c)
}
func (s *SamplingContext) Reset() {
C.llama_sampling_creset(s.c)
}
func (s *SamplingContext) Sample(ctxMain *Context, ctxConfig *Context, idx int) int {
// TODO (jmorganca): handle nil for all args
if ctxConfig == nil {
return int(C.llama_sampling_csample(s.c, ctxMain.c, nil, C.int(idx)))
}
return int(C.llama_sampling_csample(s.c, ctxMain.c, ctxConfig.c, C.int(idx)))
}
func (s *SamplingContext) Accept(ctxMain *Context, id int, applyGrammar bool) {
C.llama_sampling_caccept(s.c, ctxMain.c, C.llama_token(id), C.bool(applyGrammar))
}