forked from third-party-mirrors/ollama
132 lines
2.5 KiB
Go
132 lines
2.5 KiB
Go
package main
|
|
|
|
import (
|
|
"flag"
|
|
"fmt"
|
|
"io"
|
|
"log"
|
|
"os"
|
|
"runtime"
|
|
"strings"
|
|
|
|
"github.com/ollama/ollama/llama"
|
|
)
|
|
|
|
func main() {
|
|
mpath := flag.String("model", "", "Path to model binary file")
|
|
ppath := flag.String("projector", "", "Path to projector binary file")
|
|
image := flag.String("image", "", "Path to image file")
|
|
prompt := flag.String("prompt", "", "Prompt including <image> tag")
|
|
flag.Parse()
|
|
|
|
if *mpath == "" {
|
|
panic("model path is required")
|
|
}
|
|
|
|
if *prompt == "" {
|
|
panic("prompt is required")
|
|
}
|
|
|
|
// load the model
|
|
llama.BackendInit()
|
|
params := llama.NewModelParams(999, 0, func(p float32) {
|
|
fmt.Printf("loading... %f\n", p)
|
|
})
|
|
model := llama.LoadModelFromFile(*mpath, params)
|
|
ctxParams := llama.NewContextParams(2048, runtime.NumCPU(), false)
|
|
|
|
// language model context
|
|
lc := llama.NewContextWithModel(model, ctxParams)
|
|
|
|
// eval before
|
|
batch := llama.NewBatch(512, 0, 1)
|
|
var nPast int
|
|
|
|
// clip context
|
|
var clipCtx *llama.ClipContext
|
|
|
|
// multi-modal
|
|
if *ppath != "" {
|
|
clipCtx = llama.NewClipContext(*ppath)
|
|
|
|
// open image file
|
|
file, err := os.Open(*image)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
defer file.Close()
|
|
|
|
data, err := io.ReadAll(file)
|
|
if err != nil {
|
|
log.Fatal(err)
|
|
}
|
|
|
|
embedding := llama.NewLlavaImageEmbed(clipCtx, data)
|
|
|
|
parts := strings.Split(*prompt, "<image>")
|
|
if len(parts) != 2 {
|
|
panic("prompt must contain exactly one <image>")
|
|
}
|
|
|
|
beforeTokens, err := lc.Model().Tokenize(parts[0], true, true)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
for _, t := range beforeTokens {
|
|
batch.Add(t, nPast, []int{0}, true)
|
|
nPast++
|
|
}
|
|
|
|
err = lc.Decode(batch)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
llama.LlavaEvalImageEmbed(lc, embedding, 512, &nPast)
|
|
|
|
afterTokens, err := lc.Model().Tokenize(parts[1], true, true)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
for _, t := range afterTokens {
|
|
batch.Add(t, nPast, []int{0}, true)
|
|
nPast++
|
|
}
|
|
} else {
|
|
tokens, err := lc.Model().Tokenize(*prompt, true, true)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
for _, t := range tokens {
|
|
batch.Add(t, nPast, []int{0}, true)
|
|
nPast++
|
|
}
|
|
}
|
|
|
|
// main loop
|
|
for n := nPast; n < 4096; n++ {
|
|
err := lc.Decode(batch)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
// sample a token
|
|
logits := lc.GetLogitsIth(batch.NumTokens() - 1)
|
|
token := lc.SampleTokenGreedy(logits)
|
|
|
|
// if it's an end of sequence token, break
|
|
if lc.Model().TokenIsEog(token) {
|
|
break
|
|
}
|
|
|
|
// print the token
|
|
str := lc.Model().TokenToPiece(token)
|
|
fmt.Print(str)
|
|
batch.Clear()
|
|
batch.Add(token, n, []int{0}, true)
|
|
}
|
|
}
|