ollama/llama/runner/runner.go
Jesse Gross 90d25d3b0a runner.go: Check for incomplete UTF-8 character
Generated text can contain a partial multi-byte Unicode character at
the end. Check for this and hold it over until the next token is
produced.
2024-09-03 21:15:14 -04:00

709 lines
18 KiB
Go

package main
import (
"context"
"encoding/json"
"flag"
"fmt"
"log"
"log/slog"
"math"
"net"
"net/http"
"os"
"path/filepath"
"runtime"
"strconv"
"strings"
"sync"
"time"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/llama"
)
type Sequence struct {
// number of tokens evaluated
nPast int
// batch index
iBatch int
// number of tokens predicted so far
numPredicted int
// tokens left to evaluate
tokens []int
// channel to send responses over
responses chan string
// number of tokens to predict
numPredict int
samplingCtx *llama.SamplingContext
// channel to send back the embedding if embedding only
embedding chan []float32
// stop sequences
stop []string
// number of tokens to keep at the beginning when shifting context window
numKeep int
// true if an embedding are to be returned instead of text generation
embeddingOnly bool
doneReason string
// Metrics
t_start_process_prompt time.Time
t_start_genereration time.Time
n_decoded int
n_prompt_tokens int
}
type NewSequenceParams struct {
numPredict int
stop []string
numKeep int
samplingParams *llama.SamplingParams
embedding bool
}
func (s *Server) NewSequence(prompt string, params NewSequenceParams) *Sequence {
tokens, err := s.lc.Model().Tokenize(prompt, true, true)
if err != nil {
panic(err)
}
if params.numKeep < 0 {
params.numKeep = len(tokens)
}
// Subtracting 4 ensures that at least 1 token can be discarded during shift
params.numKeep = min(params.numKeep, s.numCtx-4)
params.numKeep += s.bosToken
// truncate to fit in context window
if len(tokens) > s.numCtx {
slog.Warn("truncating input prompt", "limit", s.numCtx, "prompt", len(tokens), "numKeep", params.numKeep)
newTokens := tokens[:params.numKeep]
newTokens = append(newTokens, tokens[len(tokens)-s.numCtx+params.numKeep:]...)
tokens = newTokens
}
var sc *llama.SamplingContext
if params.samplingParams != nil {
sc = llama.NewSamplingContext(*params.samplingParams)
for _, t := range tokens {
sc.Accept(s.lc, t, false)
}
}
return &Sequence{
tokens: tokens,
n_prompt_tokens: len(tokens),
numPredict: params.numPredict,
responses: make(chan string, 1),
embedding: make(chan []float32, 1),
samplingCtx: sc,
embeddingOnly: params.embedding,
stop: params.stop,
numKeep: params.numKeep,
}
}
type Server struct {
model *llama.Model
lc *llama.Context
cc *llama.ClipContext
batchSize int
// parallel is the number of parallel requests to handle
parallel int
// seqs is the list of parallel sequences being evaluated
// TODO (jmorganca): this can probably be moved into run()
seqs []*Sequence
// context window size
numCtx int
// does this model require a beginning of sequence token?
bosToken int
mu sync.Mutex
cond *sync.Cond
progress float32
status string
}
func (s *Server) allNil() bool {
for _, item := range s.seqs {
if item != nil {
return false
}
}
return true
}
func (s *Server) shiftContext(seqIndex int) {
seq := s.seqs[seqIndex]
numLeft := seq.nPast - seq.numKeep
numDiscard := numLeft / 2
slog.Debug("context limit hit - shifting", "limit", s.numCtx, "nPast", seq.nPast,
"numKeep", seq.numKeep, "numLeft", numLeft, "numDiscard", numDiscard)
s.lc.KvCacheSeqRm(seqIndex, seq.numKeep, seq.numKeep+numDiscard)
s.lc.KvCacheSeqAdd(seqIndex, seq.numKeep+numDiscard, seq.nPast, -numDiscard)
seq.nPast -= numDiscard
}
func incompleteUnicode(token string) bool {
incomplete := false
// check if there is incomplete UTF-8 character at the end
for i := 1; i < 5 && i <= len(token); i++ {
c := token[len(token)-i]
if (c & 0xc0) == 0x80 {
// continuation byte: 10xxxxxx
continue
}
if (c & 0xe0) == 0xc0 {
// 2-byte character: 110xxxxx ...
incomplete = i < 2
} else if (c & 0xf0) == 0xe0 {
// 3-byte character: 1110xxxx ...
incomplete = i < 3
} else if (c & 0xf8) == 0xf0 {
// 4-byte character: 11110xxx ...
incomplete = i < 4
}
// else 1-byte character or invalid byte
break
}
return incomplete
}
func (s *Server) run(ctx context.Context) {
// TODO - should this be n_ctx / parallel like the old server.cpp setup?
batch := llama.NewBatch(s.batchSize, 0, s.parallel)
defer batch.Free()
// build up stop sequences as we recognize them
// TODO (jmorganca): simplify this
pieces := make([][]string, s.parallel)
for {
select {
case <-ctx.Done():
return
default:
slog.Debug("Processing batch", "seqs", len(s.seqs))
s.mu.Lock()
for s.allNil() {
s.cond.Wait() // Wait until an item is added
}
s.mu.Unlock()
for i, seq := range s.seqs {
if seq == nil {
continue
}
// if past the num predict limit
if seq.numPredict > 0 && seq.numPredicted > seq.numPredict {
seq.doneReason = "limit"
close(seq.responses)
s.lc.KvCacheSeqRm(i, 0, -1)
s.seqs[i] = nil
continue
}
if seq.nPast+len(seq.tokens) > s.numCtx {
s.shiftContext(i)
}
if seq.t_start_process_prompt.IsZero() {
seq.t_start_process_prompt = time.Now()
}
var numTokensProcessed int
for j, t := range seq.tokens {
// todo: make this n_batch
if j >= s.batchSize {
break
}
batch.Add(t, seq.nPast, []int{i}, numTokensProcessed+1 == len(seq.tokens))
seq.nPast++
numTokensProcessed++
}
seq.tokens = seq.tokens[numTokensProcessed:]
seq.iBatch = batch.NumTokens() - 1
}
if batch.NumTokens() == 0 {
continue
}
err := s.lc.Decode(batch)
if err != nil {
slog.Error("failed to decode batch", "error", err)
panic("Failed to decode")
}
for i, seq := range s.seqs {
if seq == nil {
continue
}
// don't sample prompt processing
if len(seq.tokens) != 0 {
continue
}
// if done processing the prompt, generating an embedding and return
if seq.embeddingOnly {
embd := s.lc.GetEmbeddingsSeq(i)
if embd == nil {
embd = s.lc.GetEmbeddingsIth(seq.iBatch)
}
seq.embedding <- embd
close(seq.embedding)
s.lc.KvCacheSeqRm(i, 0, -1)
s.seqs[i] = nil
continue
}
// sample a token
// logits := s.lc.GetLogitsIth(ibatch[i])
// token := s.lc.SampleTokenGreedy(logits)
token := seq.samplingCtx.Sample(s.lc, nil, seq.iBatch)
seq.samplingCtx.Accept(s.lc, token, true)
seq.n_decoded += 1
if seq.n_decoded == 1 {
seq.t_start_genereration = time.Now()
}
piece := s.model.TokenToPiece(token)
seq.numPredicted++
slog.Debug("sampled", "piece", piece)
// if it's an end of sequence token, break
// TODO: just end this sequence
if s.model.TokenIsEog(token) {
// TODO: end the sequence instead of quitting the pool
s.lc.KvCacheSeqRm(i, 0, -1)
// TODO (jmorganca): we should send this back
// as it's important for the /api/generate context
// seq.responses <- piece
seq.doneReason = "stop"
close(seq.responses)
seq.samplingCtx.Free()
pieces[i] = []string{}
s.seqs[i] = nil
continue
}
seq.tokens = []int{token}
pieces[i] = append(pieces[i], piece)
sequence := strings.Join(pieces[i], "")
if incompleteUnicode(sequence) {
continue
}
if ok, stop := findStop(sequence, seq.stop); ok {
slog.Info("hit stop token", "stop", seq.stop)
truncated := truncateStop(pieces[i], stop)
for _, p := range truncated {
seq.responses <- p
}
s.lc.KvCacheSeqRm(i, 0, -1)
seq.doneReason = "stop"
close(seq.responses)
seq.samplingCtx.Free()
pieces[i] = []string{}
s.seqs[i] = nil
continue
}
if containsStopSuffix(sequence, seq.stop) {
continue
}
for _, p := range pieces[i] {
seq.responses <- p
}
pieces[i] = []string{}
}
batch.Clear()
}
}
}
type Options struct {
api.Runner
NumKeep int `json:"n_keep"`
Seed int `json:"seed"`
NumPredict int `json:"n_predict"`
TopK int `json:"top_k"`
TopP float32 `json:"top_p"`
MinP float32 `json:"min_p"`
TFSZ float32 `json:"tfs_z"`
TypicalP float32 `json:"typical_p"`
RepeatLastN int `json:"repeat_last_n"`
Temperature float32 `json:"temperature"`
RepeatPenalty float32 `json:"repeat_penalty"`
PresencePenalty float32 `json:"presence_penalty"`
FrequencyPenalty float32 `json:"frequency_penalty"`
Mirostat int `json:"mirostat"`
MirostatTau float32 `json:"mirostat_tau"`
MirostatEta float32 `json:"mirostat_eta"`
PenalizeNewline bool `json:"penalize_nl"`
Stop []string `json:"stop"`
}
type CompletionRequest struct {
Prompt string `json:"prompt"`
Images []string `json:"images"`
Grammar string `json:"grammar"`
Options
}
type Timings struct {
PredictedN int `json:"predicted_n"`
PredictedMS float64 `json:"predicted_ms"`
PromptN int `json:"prompt_n"`
PromptMS float64 `json:"prompt_ms"`
}
type CompletionResponse struct {
Content string `json:"content"`
Stop bool `json:"stop"`
Model string `json:"model,omitempty"`
Prompt string `json:"prompt,omitempty"`
StoppedLimit bool `json:"stopped_limit,omitempty"`
PredictedN int `json:"predicted_n,omitempty"`
PredictedMS float64 `json:"predicted_ms,omitempty"`
PromptN int `json:"prompt_n,omitempty"`
PromptMS float64 `json:"prompt_ms,omitempty"`
Timings Timings `json:"timings"`
}
func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
var req CompletionRequest
req.Options = Options(api.DefaultOptions())
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
http.Error(w, "Bad request", http.StatusBadRequest)
return
}
// Set the headers to indicate streaming
w.Header().Set("Content-Type", "application/json")
w.Header().Set("Transfer-Encoding", "chunked")
w.WriteHeader(http.StatusOK)
var samplingParams llama.SamplingParams
samplingParams.TopK = req.TopK
samplingParams.TopP = req.TopP
samplingParams.TfsZ = req.TFSZ
samplingParams.TypicalP = req.TypicalP
samplingParams.Temp = req.Temperature
samplingParams.RepeatLastN = req.RepeatLastN
samplingParams.PenaltyRepeat = req.RepeatPenalty
samplingParams.PenaltyFreq = req.FrequencyPenalty
samplingParams.PenaltyPresent = req.PresencePenalty
samplingParams.Mirostat = req.Mirostat
samplingParams.MirostatTau = req.MirostatTau
samplingParams.MirostatEta = req.MirostatEta
samplingParams.PenalizeNl = req.PenalizeNewline
samplingParams.Seed = uint32(req.Seed)
samplingParams.Grammar = req.Grammar
seq := s.NewSequence(req.Prompt, NewSequenceParams{
numPredict: req.NumPredict,
stop: req.Stop,
numKeep: req.NumKeep,
samplingParams: &samplingParams,
embedding: false,
})
// TODO (jmorganca): add to sequence queue instead of
// failing if a slot isn't available
s.mu.Lock()
for i, sq := range s.seqs {
if sq == nil {
s.seqs[i] = seq
s.cond.Signal()
break
}
}
s.mu.Unlock()
// stream the response
for content := range seq.responses {
if err := json.NewEncoder(w).Encode(&CompletionResponse{
Content: content,
}); err != nil {
log.Println("Failed to encode result:", err)
return
}
flusher, ok := w.(http.Flusher)
if !ok {
http.Error(w, "Streaming not supported", http.StatusInternalServerError)
return
}
flusher.Flush()
}
// Send the stop
if err := json.NewEncoder(w).Encode(&CompletionResponse{
Stop: true,
Timings: Timings{
PromptN: seq.n_prompt_tokens,
PromptMS: float64(seq.t_start_genereration.Sub(seq.t_start_process_prompt).Milliseconds()),
PredictedN: seq.n_decoded,
PredictedMS: float64(time.Since(seq.t_start_genereration).Milliseconds()),
},
}); err != nil {
log.Println("Failed to encode result:", err)
return
}
flusher, ok := w.(http.Flusher)
if !ok {
http.Error(w, "Streaming not supported", http.StatusInternalServerError)
return
}
flusher.Flush()
}
type EmbeddingRequest struct {
Content []string `json:"content"`
}
type EmbeddingResponse struct {
Embedding [][]float32 `json:"embedding"`
}
// TODO (jmorganca): is it safe to do this concurrently with decoding?
func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
var req EmbeddingRequest
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
http.Error(w, "Bad request", http.StatusBadRequest)
return
}
w.Header().Set("Content-Type", "application/json")
slog.Debug("embedding request", "content", req.Content)
seqs := make([]*Sequence, len(req.Content))
embeddings := make([][]float32, len(req.Content))
var processed int
for i, content := range req.Content {
seqs[i] = s.NewSequence(content, NewSequenceParams{embedding: true})
}
// TODO - refactor to go routines to add seq's and drain the responses
// so we don't stall until each set is iterated through
for processed < len(seqs) {
s.mu.Lock()
for i, sq := range s.seqs {
if processed >= len(seqs) {
break
}
if sq == nil {
s.seqs[i] = seqs[processed]
processed += 1
}
}
s.cond.Signal()
s.mu.Unlock()
for i := range processed {
embeddings[i] = <-seqs[i].embedding
}
}
if err := json.NewEncoder(w).Encode(&EmbeddingResponse{
Embedding: embeddings,
}); err != nil {
log.Println("Failed to encode result:", err)
return
}
}
type HealthResponse struct {
Status string `json:"status"`
Progress float32 `json:"progress"`
}
// TODO (jmorganca): is it safe to do this concurrently with decoding?
func (s *Server) health(w http.ResponseWriter, r *http.Request) {
w.Header().Set("Content-Type", "application/json")
if err := json.NewEncoder(w).Encode(&HealthResponse{
Status: s.status,
Progress: s.progress,
}); err != nil {
log.Println("Failed to encode result:", err)
return
}
}
func main() {
mpath := flag.String("model", "", "Path to model binary file")
ppath := flag.String("mmproj", "", "Path to projector binary file")
parallel := flag.Int("parallel", 1, "Number of sequences to handle simultaneously")
batchSize := flag.Int("batch-size", 512, "Batch size")
nGpuLayers := flag.Int("n-gpu-layers", 0, "Number of layers to offload to GPU")
mainGpu := flag.Int("main-gpu", 0, "Main GPU")
flashAttention := flag.Bool("flash-attn", false, "Enable flash attention")
numCtx := flag.Int("ctx-size", 2048, "Context (or KV cache) size")
lpath := flag.String("lora", "", "Path to lora layer file")
port := flag.Int("port", 8080, "Port to expose the server on")
threads := flag.Int("threads", runtime.NumCPU(), "Number of threads to use during generation")
// TODO not yet implemented but wired to keep the parsing aligned
embedding := flag.Bool("embedding", false, "enable embedding vector output (default: disabled)")
logDisable := flag.Bool("log-disable", false, "disables logging to a file")
verbose := flag.Bool("verbose", false, "verbose output (default: disabled)")
f32 := flag.Bool("memory-f32", false, "use f32 instead of f16 for memory key+value (default: disabled) not recommended: doubles context memory required and no measurable increase in quality")
noMmap := flag.Bool("no-mmap", false, "do not memory-map model (slower load but may reduce pageouts if not using mlock)")
mlock := flag.Bool("mlock", false, "force system to keep model in RAM rather than swapping or compressing")
tensorSplit := flag.String("tensor-split", "", "fraction of the model to offload to each GPU, comma-separated list of proportions")
flag.Parse()
level := slog.LevelInfo
if *verbose {
level = slog.LevelDebug
}
handler := slog.NewTextHandler(os.Stderr, &slog.HandlerOptions{
Level: level,
AddSource: true,
ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr {
if attr.Key == slog.SourceKey {
source := attr.Value.Any().(*slog.Source)
source.File = filepath.Base(source.File)
}
return attr
},
})
slog.SetDefault(slog.New(handler))
// TODO actually implement...
if *embedding {
slog.Warn("embeddings not yet support")
}
if *logDisable {
slog.Info("ignoring --log-disable")
}
if *f32 {
slog.Warn("memory-f32 not yet supported")
}
if *noMmap {
slog.Warn("no-mmap not yet supported")
}
if *mlock {
slog.Warn("mlock not yet supported")
}
if *tensorSplit != "" {
slog.Warn("tensor-split not yet implemented")
}
server := &Server{
numCtx: *numCtx,
batchSize: *batchSize,
parallel: *parallel,
seqs: make([]*Sequence, *parallel),
status: "loading",
}
// load the model
llama.BackendInit()
params := llama.NewModelParams(*nGpuLayers, *mainGpu, func(progress float32) {
slog.Debug("Loading model", "progress %", math.Round(float64(progress*100)))
server.progress = progress
})
server.model = llama.LoadModelFromFile(*mpath, params)
if *lpath != "" {
err := server.model.ApplyLoraFromFile(*lpath, 1.0, "", *threads)
if err != nil {
panic(err)
}
}
ctxParams := llama.NewContextParams(*numCtx, *threads, *flashAttention)
server.lc = llama.NewContextWithModel(server.model, ctxParams)
if server.model.ShouldAddBOSToken() {
server.bosToken = 1
}
if *ppath != "" {
server.cc = llama.NewClipContext(*ppath)
}
server.cond = sync.NewCond(&server.mu)
ctx, cancel := context.WithCancel(context.Background())
go server.run(ctx)
addr := "127.0.0.1:" + strconv.Itoa(*port)
listener, err := net.Listen("tcp", addr)
if err != nil {
fmt.Println("Listen error:", err)
return
}
defer listener.Close()
mux := http.NewServeMux()
mux.HandleFunc("/embedding", server.embeddings)
mux.HandleFunc("/completion", server.completion)
mux.HandleFunc("/health", server.health)
httpServer := http.Server{
Handler: mux,
}
server.status = "ok"
log.Println("Server listening on", addr)
if err := httpServer.Serve(listener); err != nil {
log.Fatal("server error:", err)
}
cancel()
}