2024-05-29 02:39:47 +03:00

69 lines
2.4 KiB
Python

import os
import numpy as np
import onnxruntime
from huggingface_hub import snapshot_download
from .tokenizer import TokenizerG2P
class TTS:
def __init__(self, model_name: str, save_path: str = "./model", add_time_to_end: float = 1.0,
tokenizer_load_dict=True) -> None:
if not os.path.exists(save_path):
os.mkdir(save_path)
model_dir = os.path.join(save_path, model_name)
if not os.path.exists(model_dir):
snapshot_download(repo_id=model_name,
allow_patterns=["*.txt", "*.onnx", "*.json"],
local_dir=model_dir
)
self.model = onnxruntime.InferenceSession(os.path.join(model_dir, "exported/model.onnx"),
providers=['CPUExecutionProvider'])
self.tokenizer = TokenizerG2P(os.path.join(model_dir, "exported"), load_dict=tokenizer_load_dict)
self.add_time_to_end = add_time_to_end
def _add_silent(self, audio, silence_duration: float = 1.0, sample_rate: int = 22050):
num_samples_silence = int(sample_rate * silence_duration)
silence_array = np.zeros(num_samples_silence, dtype=np.float32)
audio_with_silence = np.concatenate((audio, silence_array), axis=0)
return audio_with_silence
def _intersperse(self, lst, item):
result = [item] * (len(lst) * 2 + 1)
result[1::2] = lst
return result
def _get_seq(self, text):
phoneme_ids = self.tokenizer._get_seq(text)
phoneme_ids_inter = self._intersperse(phoneme_ids, 0)
return phoneme_ids_inter
def __call__(self, text: str, play=False, lenght_scale=1.2):
phoneme_ids = self._get_seq(text)
text = np.expand_dims(np.array(phoneme_ids, dtype=np.int64), 0)
text_lengths = np.array([text.shape[1]], dtype=np.int64)
scales = np.array(
[0.667, lenght_scale, 0.8],
dtype=np.float32,
)
audio = self.model.run(
None,
{
"input": text,
"input_lengths": text_lengths,
"scales": scales,
"sid": None,
},
)[0][0, 0][0]
audio = self._add_silent(audio, silence_duration=self.add_time_to_end)
if play:
self.play_audio(audio)
return audio