fix gradio and folder name
This commit is contained in:
parent
358960a3c4
commit
11740c30d7
@ -1,86 +0,0 @@
|
||||
import gradio as gr
|
||||
|
||||
import sys
|
||||
import os
|
||||
from collections.abc import Iterable
|
||||
|
||||
from langchain.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader, UnstructuredHTMLLoader
|
||||
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
|
||||
|
||||
from langchain.chains import RetrievalQA
|
||||
|
||||
from langchain.llms import Ollama
|
||||
|
||||
from langchain.vectorstores import FAISS, Chroma
|
||||
|
||||
from langchain.embeddings import GPT4AllEmbeddings, CacheBackedEmbeddings
|
||||
|
||||
from langchain.storage import LocalFileStore#, RedisStore, UpstashRedisStore, InMemoryStore
|
||||
|
||||
ollama = Ollama(base_url='http://localhost:11434',
|
||||
#model="codellama")
|
||||
#model="starcoder")
|
||||
model="llama2")
|
||||
|
||||
docsUrl = "/home/user/dev/docs"
|
||||
|
||||
documents = []
|
||||
for file in os.listdir(docsUrl):
|
||||
|
||||
if file.endswith(".pdf"):
|
||||
pdf_path = docsUrl + "/" + file
|
||||
loader = PyPDFLoader(pdf_path)
|
||||
documents.extend(loader.load())
|
||||
print("Found " + pdf_path)
|
||||
elif file.endswith('.docx') or file.endswith('.doc'):
|
||||
doc_path = docsUrl + "/" + file
|
||||
loader = Docx2txtLoader(doc_path)
|
||||
documents.extend(loader.load())
|
||||
print("Found " + doc_path)
|
||||
elif file.endswith('.txt') or file.endswith('.kt') or file.endswith('.json'):
|
||||
text_path = docsUrl + "/" + file
|
||||
loader = TextLoader(text_path)
|
||||
documents.extend(loader.load())
|
||||
print("Found " + text_path)
|
||||
elif file.endswith('.html') or file.endswith('.htm'):
|
||||
htm_path = docsUrl + "/" + file
|
||||
loader = UnstructuredHTMLLoader(htm_path)
|
||||
documents.extend(loader.load())
|
||||
print("Found " + htm_path)
|
||||
|
||||
|
||||
text_splitter = CharacterTextSplitter(chunk_size=32, chunk_overlap=32)
|
||||
all_splits = text_splitter.split_documents(documents)
|
||||
|
||||
|
||||
|
||||
#fs = LocalFileStore("/home/gabriele/dev/cache/")
|
||||
|
||||
#underlying_embeddings = GPT4AllEmbeddings()
|
||||
#cached_embedder = CacheBackedEmbeddings.from_bytes_store(
|
||||
# underlying_embeddings, fs, namespace=underlying_embeddings.model
|
||||
#)
|
||||
|
||||
|
||||
|
||||
vectorstore = Chroma.from_documents(documents=all_splits, embedding=GPT4AllEmbeddings(embeddings_chunk_size=1000))
|
||||
#vectorstore = FAISS.from_documents(documents=all_splits, embedding=cached_embedder)
|
||||
|
||||
|
||||
def AI_response(question, history):
|
||||
docs = vectorstore.similarity_search(question)
|
||||
len(docs)
|
||||
qachain=RetrievalQA.from_chain_type(ollama, retriever=vectorstore.as_retriever())
|
||||
#reply=qachain()
|
||||
#reply=str(qachain({"query": question}))
|
||||
reply=str(qachain.run(question))
|
||||
return reply
|
||||
|
||||
|
||||
|
||||
demo = gr.ChatInterface(AI_response, title="Put your files in folder" + docsUrl)
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo.launch(server_name="0.0.0.0", server_port=7860)
|
||||
|
80
examples/langchain-python-langchain-webui/main.py
Normal file
80
examples/langchain-python-langchain-webui/main.py
Normal file
@ -0,0 +1,80 @@
|
||||
#! /usr/bin/python3.10
|
||||
|
||||
import gradio as gr
|
||||
import sys
|
||||
import os
|
||||
import subprocess
|
||||
from collections.abc import Iterable
|
||||
from langchain.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader, UnstructuredHTMLLoader
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
|
||||
from langchain.chains import RetrievalQA
|
||||
from langchain.llms import Ollama
|
||||
from langchain.vectorstores import FAISS, Chroma
|
||||
from langchain.embeddings import GPT4AllEmbeddings, CacheBackedEmbeddings
|
||||
from langchain.storage import LocalFileStore#, RedisStore, UpstashRedisStore, InMemoryStore
|
||||
|
||||
docsUrl = "/home/user/dev/docs"
|
||||
ollamaModel="llama2"
|
||||
|
||||
def get_ollama_names():
|
||||
output = subprocess.check_output(["ollama", "list"])
|
||||
lines = output.decode("utf-8").splitlines()
|
||||
names = {}
|
||||
for line in lines[1:]:
|
||||
name = line.split()[0].split(':')[0]
|
||||
names[name] = name
|
||||
return names
|
||||
|
||||
names = get_ollama_names()
|
||||
|
||||
def greet(name):
|
||||
global ollamaModel
|
||||
ollamaModel=name
|
||||
return f"{name}"
|
||||
|
||||
dropdown = gr.Dropdown(label="Models available", choices=names, value="llama2")
|
||||
textbox = gr.Textbox(label="You chose")
|
||||
|
||||
def AI_response(question, history):
|
||||
ollama = Ollama(base_url='http://localhost:11434', model=ollamaModel)
|
||||
print(ollamaModel)
|
||||
documents = []
|
||||
for file in os.listdir(docsUrl):
|
||||
if file.endswith(".pdf"):
|
||||
pdf_path = docsUrl + "/" + file
|
||||
loader = PyPDFLoader(pdf_path)
|
||||
documents.extend(loader.load())
|
||||
print("Found " + pdf_path)
|
||||
elif file.endswith('.docx') or file.endswith('.doc'):
|
||||
doc_path = docsUrl + "/" + file
|
||||
loader = Docx2txtLoader(doc_path)
|
||||
documents.extend(loader.load())
|
||||
print("Found " + doc_path)
|
||||
elif file.endswith('.txt') or file.endswith('.kt') or file.endswith('.json'):
|
||||
text_path = docsUrl + "/" + file
|
||||
loader = TextLoader(text_path)
|
||||
documents.extend(loader.load())
|
||||
print("Found " + text_path)
|
||||
elif file.endswith('.html') or file.endswith('.htm'):
|
||||
htm_path = docsUrl + "/" + file
|
||||
loader = UnstructuredHTMLLoader(htm_path)
|
||||
documents.extend(loader.load())
|
||||
print("Found " + htm_path)
|
||||
|
||||
text_splitter = CharacterTextSplitter(chunk_size=32, chunk_overlap=32)
|
||||
all_splits = text_splitter.split_documents(documents)
|
||||
vectorstore = Chroma.from_documents(documents=all_splits, embedding=GPT4AllEmbeddings(embeddings_chunk_size=1000))
|
||||
docs = vectorstore.similarity_search(question)
|
||||
len(docs)
|
||||
qachain=RetrievalQA.from_chain_type(ollama, retriever=vectorstore.as_retriever())
|
||||
reply=str(qachain.run(question))
|
||||
return reply
|
||||
|
||||
|
||||
|
||||
with gr.Blocks() as demo:
|
||||
interface = gr.Interface(fn=greet, inputs=[dropdown], outputs=[textbox], title="Choose a LLM model")
|
||||
chat = gr.ChatInterface(AI_response, title="Put your files in folder " + docsUrl)
|
||||
|
||||
demo.launch()
|
||||
|
Loading…
x
Reference in New Issue
Block a user