diff --git a/.github/workflows/release.yaml b/.github/workflows/release.yaml index 5ae630c3..f0c6db5d 100644 --- a/.github/workflows/release.yaml +++ b/.github/workflows/release.yaml @@ -31,7 +31,7 @@ jobs: security set-keychain-settings -lut 3600 build.keychain - uses: actions/setup-go@v5 with: - go-version-file: go.mod + go-version: "stable" cache: true - name: Build Darwin env: @@ -87,7 +87,7 @@ jobs: write-host "plugin installed" - uses: actions/setup-go@v5 with: - go-version-file: go.mod + go-version: "stable" cache: true - run: go get ./... - run: | @@ -141,7 +141,7 @@ jobs: write-host "plugin installed" - uses: actions/setup-go@v5 with: - go-version-file: go.mod + go-version: "stable" cache: true - name: 'Install ROCm' run: | @@ -218,7 +218,7 @@ jobs: write-host "plugin installed" - uses: actions/setup-go@v5 with: - go-version-file: go.mod + go-version: "stable" cache: true - name: 'Install CUDA' run: | @@ -306,7 +306,7 @@ jobs: write-host "plugin installed" - uses: actions/setup-go@v5 with: - go-version-file: go.mod + go-version: "stable" cache: true - run: go get - uses: actions/download-artifact@v4 diff --git a/.github/workflows/test.yaml b/.github/workflows/test.yaml index 90fef6e5..5e002a22 100644 --- a/.github/workflows/test.yaml +++ b/.github/workflows/test.yaml @@ -63,7 +63,7 @@ jobs: - uses: actions/checkout@v4 - uses: actions/setup-go@v5 with: - go-version-file: go.mod + go-version: "stable" cache: true - run: go get ./... - run: | @@ -163,7 +163,7 @@ jobs: - uses: actions/checkout@v4 - uses: actions/setup-go@v5 with: - go-version-file: go.mod + go-version: "stable" cache: true - name: 'Install ROCm' run: | @@ -200,7 +200,7 @@ jobs: - uses: actions/checkout@v4 - uses: actions/setup-go@v5 with: - go-version-file: go.mod + go-version: "stable" cache: true - name: 'Install CUDA' run: | @@ -255,7 +255,7 @@ jobs: submodules: recursive - uses: actions/setup-go@v5 with: - go-version-file: go.mod + go-version: "stable" cache: false - run: | case ${{ matrix.arch }} in @@ -297,7 +297,7 @@ jobs: submodules: recursive - uses: actions/setup-go@v5 with: - go-version-file: go.mod + go-version: "stable" cache: true - run: | case ${{ matrix.arch }} in diff --git a/Dockerfile b/Dockerfile index ca393496..c8efdd8a 100644 --- a/Dockerfile +++ b/Dockerfile @@ -1,4 +1,4 @@ -ARG GOLANG_VERSION=1.22.1 +ARG GOLANG_VERSION=1.22.5 ARG CMAKE_VERSION=3.22.1 # this CUDA_VERSION corresponds with the one specified in docs/gpu.md ARG CUDA_VERSION=11.3.1 diff --git a/README.md b/README.md index b96f4c16..0cc15266 100644 --- a/README.md +++ b/README.md @@ -35,10 +35,10 @@ The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `olla ## Quickstart -To run and chat with [Llama 3](https://ollama.com/library/llama3): +To run and chat with [Llama 3.1](https://ollama.com/library/llama3.1): ``` -ollama run llama3 +ollama run llama3.1 ``` ## Model library @@ -49,8 +49,9 @@ Here are some example models that can be downloaded: | Model | Parameters | Size | Download | | ------------------ | ---------- | ----- | ------------------------------ | -| Llama 3 | 8B | 4.7GB | `ollama run llama3` | -| Llama 3 | 70B | 40GB | `ollama run llama3:70b` | +| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` | +| Llama 3.1 | 70B | 40GB | `ollama run llama3.1:70b` | +| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` | | Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` | | Phi 3 Medium | 14B | 7.9GB | `ollama run phi3:medium` | | Gemma 2 | 9B | 5.5GB | `ollama run gemma2` | @@ -64,7 +65,8 @@ Here are some example models that can be downloaded: | LLaVA | 7B | 4.5GB | `ollama run llava` | | Solar | 10.7B | 6.1GB | `ollama run solar` | -> Note: You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models. +> [!NOTE] +> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models. ## Customize a model @@ -96,16 +98,16 @@ See the [guide](docs/import.md) on importing models for more information. ### Customize a prompt -Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3` model: +Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3.1` model: ``` -ollama pull llama3 +ollama pull llama3.1 ``` Create a `Modelfile`: ``` -FROM llama3 +FROM llama3.1 # set the temperature to 1 [higher is more creative, lower is more coherent] PARAMETER temperature 1 @@ -140,7 +142,7 @@ ollama create mymodel -f ./Modelfile ### Pull a model ``` -ollama pull llama3 +ollama pull llama3.1 ``` > This command can also be used to update a local model. Only the diff will be pulled. @@ -148,13 +150,13 @@ ollama pull llama3 ### Remove a model ``` -ollama rm llama3 +ollama rm llama3.1 ``` ### Copy a model ``` -ollama cp llama3 my-model +ollama cp llama3.1 my-model ``` ### Multiline input @@ -171,21 +173,21 @@ I'm a basic program that prints the famous "Hello, world!" message to the consol ### Multimodal models ``` ->>> What's in this image? /Users/jmorgan/Desktop/smile.png +ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png" The image features a yellow smiley face, which is likely the central focus of the picture. ``` ### Pass the prompt as an argument ``` -$ ollama run llama3 "Summarize this file: $(cat README.md)" +$ ollama run llama3.1 "Summarize this file: $(cat README.md)" Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications. ``` ### Show model information ``` -ollama show llama3 +ollama show llama3.1 ``` ### List models on your computer @@ -213,7 +215,7 @@ Next, start the server: Finally, in a separate shell, run a model: ``` -./ollama run llama3 +./ollama run llama3.1 ``` ## REST API @@ -224,7 +226,7 @@ Ollama has a REST API for running and managing models. ``` curl http://localhost:11434/api/generate -d '{ - "model": "llama3", + "model": "llama3.1", "prompt":"Why is the sky blue?" }' ``` @@ -233,7 +235,7 @@ curl http://localhost:11434/api/generate -d '{ ``` curl http://localhost:11434/api/chat -d '{ - "model": "llama3", + "model": "llama3.1", "messages": [ { "role": "user", "content": "why is the sky blue?" } ] @@ -296,6 +298,8 @@ See the [API documentation](./docs/api.md) for all endpoints. - [Kerlig AI](https://www.kerlig.com/) (AI writing assistant for macOS) - [AI Studio](https://github.com/MindWorkAI/AI-Studio) - [Sidellama](https://github.com/gyopak/sidellama) (browser-based LLM client) +- [LLMStack](https://github.com/trypromptly/LLMStack) (No-code multi-agent framework to build LLM agents and workflows) +- [BoltAI for Mac](https://boltai.com) (AI Chat Client for Mac) ### Terminal @@ -334,6 +338,7 @@ See the [API documentation](./docs/api.md) for all endpoints. ### Libraries - [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/modules/model_io/models/llms/integrations/ollama) with [example](https://js.langchain.com/docs/use_cases/question_answering/local_retrieval_qa) +- [Firebase Genkit](https://firebase.google.com/docs/genkit/plugins/ollama) - [LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example) - [LangChain4j](https://github.com/langchain4j/langchain4j) with [example](https://github.com/langchain4j/langchain4j-examples/tree/main/ollama-examples/src/main/java) - [LangChainRust](https://github.com/Abraxas-365/langchain-rust) with [example](https://github.com/Abraxas-365/langchain-rust/blob/main/examples/llm_ollama.rs) @@ -387,7 +392,7 @@ See the [API documentation](./docs/api.md) for all endpoints. - [Llama Coder](https://github.com/ex3ndr/llama-coder) (Copilot alternative using Ollama) - [Ollama Copilot](https://github.com/bernardo-bruning/ollama-copilot) (Proxy that allows you to use ollama as a copilot like Github copilot) - [twinny](https://github.com/rjmacarthy/twinny) (Copilot and Copilot chat alternative using Ollama) -- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and HuggingFace) +- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and Hugging Face) - [Page Assist](https://github.com/n4ze3m/page-assist) (Chrome Extension) - [AI Telegram Bot](https://github.com/tusharhero/aitelegrambot) (Telegram bot using Ollama in backend) - [AI ST Completion](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (Sublime Text 4 AI assistant plugin with Ollama support) diff --git a/SECURITY.md b/SECURITY.md new file mode 100644 index 00000000..d38bb7c4 --- /dev/null +++ b/SECURITY.md @@ -0,0 +1,25 @@ +# Security + +The Ollama maintainer team takes security seriously and will actively work to resolve security issues. + +## Reporting a vulnerability + +If you discover a security vulnerability, please do not open a public issue. Instead, please report it by emailing hello@ollama.com. We ask that you give us sufficient time to investigate and address the vulnerability before disclosing it publicly. + +Please include the following details in your report: +- A description of the vulnerability +- Steps to reproduce the issue +- Your assessment of the potential impact +- Any possible mitigations + +## Security best practices + +While the maintainer team does their best to secure Ollama, users are encouraged to implement their own security best practices, such as: + +- Regularly updating to the latest version of Ollama +- Securing access to hosted instances of Ollama +- Monitoring systems for unusual activity + +## Contact + +For any other questions or concerns related to security, please contact us at hello@ollama.com diff --git a/api/client.go b/api/client.go index c59fbc42..e02b21bf 100644 --- a/api/client.go +++ b/api/client.go @@ -20,7 +20,6 @@ import ( "encoding/json" "fmt" "io" - "net" "net/http" "net/url" "runtime" @@ -63,13 +62,8 @@ func checkError(resp *http.Response, body []byte) error { // If the variable is not specified, a default ollama host and port will be // used. func ClientFromEnvironment() (*Client, error) { - ollamaHost := envconfig.Host - return &Client{ - base: &url.URL{ - Scheme: ollamaHost.Scheme, - Host: net.JoinHostPort(ollamaHost.Host, ollamaHost.Port), - }, + base: envconfig.Host(), http: http.DefaultClient, }, nil } diff --git a/api/client_test.go b/api/client_test.go index fe9fd74f..23fe9334 100644 --- a/api/client_test.go +++ b/api/client_test.go @@ -2,8 +2,6 @@ package api import ( "testing" - - "github.com/ollama/ollama/envconfig" ) func TestClientFromEnvironment(t *testing.T) { @@ -33,7 +31,6 @@ func TestClientFromEnvironment(t *testing.T) { for k, v := range testCases { t.Run(k, func(t *testing.T) { t.Setenv("OLLAMA_HOST", v.value) - envconfig.LoadConfig() client, err := ClientFromEnvironment() if err != v.err { diff --git a/api/types.go b/api/types.go index 65a99c76..c2529652 100644 --- a/api/types.go +++ b/api/types.go @@ -114,6 +114,11 @@ func (t Tools) String() string { return string(bts) } +func (t Tool) String() string { + bts, _ := json.Marshal(t) + return string(bts) +} + // Message is a single message in a chat sequence. The message contains the // role ("system", "user", or "assistant"), the content and an optional list // of images. @@ -209,6 +214,7 @@ type Options struct { NumPredict int `json:"num_predict,omitempty"` TopK int `json:"top_k,omitempty"` TopP float32 `json:"top_p,omitempty"` + MinP float32 `json:"min_p,omitempty"` TFSZ float32 `json:"tfs_z,omitempty"` TypicalP float32 `json:"typical_p,omitempty"` RepeatLastN int `json:"repeat_last_n,omitempty"` @@ -261,6 +267,10 @@ type EmbedRequest struct { type EmbedResponse struct { Model string `json:"model"` Embeddings [][]float32 `json:"embeddings"` + + TotalDuration time.Duration `json:"total_duration,omitempty"` + LoadDuration time.Duration `json:"load_duration,omitempty"` + PromptEvalCount int `json:"prompt_eval_count,omitempty"` } // EmbeddingRequest is the request passed to [Client.Embeddings]. diff --git a/app/lifecycle/logging.go b/app/lifecycle/logging.go index a8f1f7cd..3672aad5 100644 --- a/app/lifecycle/logging.go +++ b/app/lifecycle/logging.go @@ -14,7 +14,7 @@ import ( func InitLogging() { level := slog.LevelInfo - if envconfig.Debug { + if envconfig.Debug() { level = slog.LevelDebug } diff --git a/app/ollama.iss b/app/ollama.iss index 6bedb9ff..dc6178f7 100644 --- a/app/ollama.iss +++ b/app/ollama.iss @@ -138,7 +138,7 @@ SetupAppRunningError=Another Ollama installer is running.%n%nPlease cancel or fi ;FinishedHeadingLabel=Run your first model -;FinishedLabel=%nRun this command in a PowerShell or cmd terminal.%n%n%n ollama run llama3 +;FinishedLabel=%nRun this command in a PowerShell or cmd terminal.%n%n%n ollama run llama3.1 ;ClickFinish=%n [Registry] diff --git a/app/ollama_welcome.ps1 b/app/ollama_welcome.ps1 index 9af37a46..46777a3a 100644 --- a/app/ollama_welcome.ps1 +++ b/app/ollama_welcome.ps1 @@ -4,5 +4,5 @@ write-host "Welcome to Ollama!" write-host "" write-host "Run your first model:" write-host "" -write-host "`tollama run llama3" +write-host "`tollama run llama3.1" write-host "" \ No newline at end of file diff --git a/cmd/cmd.go b/cmd/cmd.go index 2252a905..c1a3c3f6 100644 --- a/cmd/cmd.go +++ b/cmd/cmd.go @@ -362,9 +362,24 @@ func RunHandler(cmd *cobra.Command, args []string) error { opts.MultiModal = slices.Contains(info.Details.Families, "clip") opts.ParentModel = info.Details.ParentModel - opts.Messages = append(opts.Messages, info.Messages...) if interactive { + if err := loadModel(cmd, &opts); err != nil { + return err + } + + for _, msg := range info.Messages { + switch msg.Role { + case "user": + fmt.Printf(">>> %s\n", msg.Content) + case "assistant": + state := &displayResponseState{} + displayResponse(msg.Content, opts.WordWrap, state) + fmt.Println() + fmt.Println() + } + } + return generateInteractive(cmd, opts) } return generate(cmd, opts) @@ -1076,7 +1091,7 @@ func RunServer(cmd *cobra.Command, _ []string) error { return err } - ln, err := net.Listen("tcp", net.JoinHostPort(envconfig.Host.Host, envconfig.Host.Port)) + ln, err := net.Listen("tcp", envconfig.Host().Host) if err != nil { return err } @@ -1341,10 +1356,10 @@ func NewCLI() *cobra.Command { envVars["OLLAMA_NUM_PARALLEL"], envVars["OLLAMA_NOPRUNE"], envVars["OLLAMA_ORIGINS"], + envVars["OLLAMA_SCHED_SPREAD"], envVars["OLLAMA_TMPDIR"], envVars["OLLAMA_FLASH_ATTENTION"], envVars["OLLAMA_LLM_LIBRARY"], - envVars["OLLAMA_MAX_VRAM"], }) default: appendEnvDocs(cmd, envs) diff --git a/cmd/interactive.go b/cmd/interactive.go index adbc3e9f..b566eb2f 100644 --- a/cmd/interactive.go +++ b/cmd/interactive.go @@ -1,6 +1,7 @@ package cmd import ( + "cmp" "errors" "fmt" "io" @@ -9,13 +10,14 @@ import ( "path/filepath" "regexp" "slices" - "sort" "strings" "github.com/spf13/cobra" + "golang.org/x/exp/maps" "github.com/ollama/ollama/api" "github.com/ollama/ollama/envconfig" + "github.com/ollama/ollama/parser" "github.com/ollama/ollama/progress" "github.com/ollama/ollama/readline" "github.com/ollama/ollama/types/errtypes" @@ -46,29 +48,10 @@ func loadModel(cmd *cobra.Command, opts *runOptions) error { KeepAlive: opts.KeepAlive, } - return client.Chat(cmd.Context(), chatReq, func(resp api.ChatResponse) error { - p.StopAndClear() - for _, msg := range opts.Messages { - switch msg.Role { - case "user": - fmt.Printf(">>> %s\n", msg.Content) - case "assistant": - state := &displayResponseState{} - displayResponse(msg.Content, opts.WordWrap, state) - fmt.Println() - fmt.Println() - } - } - return nil - }) + return client.Chat(cmd.Context(), chatReq, func(api.ChatResponse) error { return nil }) } func generateInteractive(cmd *cobra.Command, opts runOptions) error { - err := loadModel(cmd, &opts) - if err != nil { - return err - } - usage := func() { fmt.Fprintln(os.Stderr, "Available Commands:") fmt.Fprintln(os.Stderr, " /set Set session variables") @@ -138,6 +121,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error { fmt.Fprintln(os.Stderr, " /set parameter num_predict Max number of tokens to predict") fmt.Fprintln(os.Stderr, " /set parameter top_k Pick from top k num of tokens") fmt.Fprintln(os.Stderr, " /set parameter top_p Pick token based on sum of probabilities") + fmt.Fprintln(os.Stderr, " /set parameter min_p Pick token based on top token probability * min_p") fmt.Fprintln(os.Stderr, " /set parameter num_ctx Set the context size") fmt.Fprintln(os.Stderr, " /set parameter temperature Set creativity level") fmt.Fprintln(os.Stderr, " /set parameter repeat_penalty How strongly to penalize repetitions") @@ -157,7 +141,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error { return err } - if envconfig.NoHistory { + if envconfig.NoHistory() { scanner.HistoryDisable() } @@ -375,9 +359,9 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error { return err } req := &api.ShowRequest{ - Name: opts.Model, - System: opts.System, - Options: opts.Options, + Name: opts.Model, + System: opts.System, + Options: opts.Options, } resp, err := client.Show(cmd.Context(), req) if err != nil { @@ -506,31 +490,35 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error { } func buildModelfile(opts runOptions) string { - var mf strings.Builder - model := opts.ParentModel - if model == "" { - model = opts.Model - } - fmt.Fprintf(&mf, "FROM %s\n", model) + var f parser.File + f.Commands = append(f.Commands, parser.Command{Name: "model", Args: cmp.Or(opts.ParentModel, opts.Model)}) + if opts.System != "" { - fmt.Fprintf(&mf, "SYSTEM \"\"\"%s\"\"\"\n", opts.System) + f.Commands = append(f.Commands, parser.Command{Name: "system", Args: opts.System}) } - keys := make([]string, 0) - for k := range opts.Options { - keys = append(keys, k) - } - sort.Strings(keys) + keys := maps.Keys(opts.Options) + slices.Sort(keys) for _, k := range keys { - fmt.Fprintf(&mf, "PARAMETER %s %v\n", k, opts.Options[k]) + v := opts.Options[k] + var cmds []parser.Command + switch t := v.(type) { + case []string: + for _, s := range t { + cmds = append(cmds, parser.Command{Name: k, Args: s}) + } + default: + cmds = append(cmds, parser.Command{Name: k, Args: fmt.Sprintf("%v", t)}) + } + + f.Commands = append(f.Commands, cmds...) } - fmt.Fprintln(&mf) for _, msg := range opts.Messages { - fmt.Fprintf(&mf, "MESSAGE %s \"\"\"%s\"\"\"\n", msg.Role, msg.Content) + f.Commands = append(f.Commands, parser.Command{Name: "message", Args: fmt.Sprintf("%s: %s", msg.Role, msg.Content)}) } - return mf.String() + return f.String() } func normalizeFilePath(fp string) string { diff --git a/cmd/interactive_test.go b/cmd/interactive_test.go index 711f3860..bb7e0aba 100644 --- a/cmd/interactive_test.go +++ b/cmd/interactive_test.go @@ -1,12 +1,10 @@ package cmd import ( - "bytes" "testing" - "text/template" + "github.com/google/go-cmp/cmp" "github.com/stretchr/testify/assert" - "github.com/stretchr/testify/require" "github.com/ollama/ollama/api" ) @@ -57,58 +55,53 @@ d:\path with\spaces\seven.svg inbetween7 c:\users\jdoe\eight.png inbetween8 func TestModelfileBuilder(t *testing.T) { opts := runOptions{ - Model: "hork", - System: "You are part horse and part shark, but all hork. Do horklike things", + Model: "hork", + System: "You are part horse and part shark, but all hork. Do horklike things", Messages: []api.Message{ {Role: "user", Content: "Hey there hork!"}, {Role: "assistant", Content: "Yes it is true, I am half horse, half shark."}, }, - Options: map[string]interface{}{}, + Options: map[string]any{ + "temperature": 0.9, + "seed": 42, + "penalize_newline": false, + "stop": []string{"hi", "there"}, + }, } - opts.Options["temperature"] = 0.9 - opts.Options["seed"] = 42 - opts.Options["penalize_newline"] = false - opts.Options["stop"] = []string{"hi", "there"} - - mf := buildModelfile(opts) - expectedModelfile := `FROM {{.Model}} -SYSTEM """{{.System}}""" + t.Run("model", func(t *testing.T) { + expect := `FROM hork +SYSTEM You are part horse and part shark, but all hork. Do horklike things PARAMETER penalize_newline false PARAMETER seed 42 -PARAMETER stop [hi there] +PARAMETER stop hi +PARAMETER stop there PARAMETER temperature 0.9 - -MESSAGE user """Hey there hork!""" -MESSAGE assistant """Yes it is true, I am half horse, half shark.""" +MESSAGE user Hey there hork! +MESSAGE assistant Yes it is true, I am half horse, half shark. ` - tmpl, err := template.New("").Parse(expectedModelfile) - require.NoError(t, err) + actual := buildModelfile(opts) + if diff := cmp.Diff(expect, actual); diff != "" { + t.Errorf("mismatch (-want +got):\n%s", diff) + } + }) - var buf bytes.Buffer - err = tmpl.Execute(&buf, opts) - require.NoError(t, err) - assert.Equal(t, buf.String(), mf) - - opts.ParentModel = "horseshark" - mf = buildModelfile(opts) - expectedModelfile = `FROM {{.ParentModel}} -SYSTEM """{{.System}}""" + t.Run("parent model", func(t *testing.T) { + opts.ParentModel = "horseshark" + expect := `FROM horseshark +SYSTEM You are part horse and part shark, but all hork. Do horklike things PARAMETER penalize_newline false PARAMETER seed 42 -PARAMETER stop [hi there] +PARAMETER stop hi +PARAMETER stop there PARAMETER temperature 0.9 - -MESSAGE user """Hey there hork!""" -MESSAGE assistant """Yes it is true, I am half horse, half shark.""" +MESSAGE user Hey there hork! +MESSAGE assistant Yes it is true, I am half horse, half shark. ` - - tmpl, err = template.New("").Parse(expectedModelfile) - require.NoError(t, err) - - var parentBuf bytes.Buffer - err = tmpl.Execute(&parentBuf, opts) - require.NoError(t, err) - assert.Equal(t, parentBuf.String(), mf) + actual := buildModelfile(opts) + if diff := cmp.Diff(expect, actual); diff != "" { + t.Errorf("mismatch (-want +got):\n%s", diff) + } + }) } diff --git a/convert/convert.go b/convert/convert.go index 103de457..b9461e4f 100644 --- a/convert/convert.go +++ b/convert/convert.go @@ -1,200 +1,122 @@ package convert import ( - "cmp" - "encoding/binary" "encoding/json" + "errors" "fmt" "io" + "io/fs" "log/slog" - "os" - "path/filepath" - "slices" - "strings" - "google.golang.org/protobuf/proto" - - "github.com/ollama/ollama/convert/sentencepiece" "github.com/ollama/ollama/llm" ) -const ( - _ int32 = iota - tokenTypeNormal - tokenTypeUnknown - tokenTypeControl - tokenTypeUserDefined - tokenTypeUnused - tokenTypeByte -) - -type Params struct { - Architectures []string `json:"architectures"` - VocabSize int `json:"vocab_size"` - HiddenSize int `json:"hidden_size"` // n_embd - HiddenLayers int `json:"num_hidden_layers"` // n_layer - ContextSize int `json:"max_position_embeddings"` - IntermediateSize int `json:"intermediate_size"` - AttentionHeads int `json:"num_attention_heads"` // n_head - KeyValHeads int `json:"num_key_value_heads"` - NormEPS float64 `json:"rms_norm_eps"` - BoSTokenID int `json:"bos_token_id"` - EoSTokenID int `json:"eos_token_id"` - HeadDimension int `json:"head_dim"` - PaddingTokenID int `json:"pad_token_id"` - RopeFrequencyBase float64 `json:"rope_theta"` - - Experts int `json:"num_local_experts"` - ExpertsUsed int `json:"num_experts_per_tok"` - - PreTokenizer string - - ByteOrder +type Parameters struct { + Architectures []string `json:"architectures"` + VocabSize uint32 `json:"vocab_size"` } -type ByteOrder interface { - binary.ByteOrder - binary.AppendByteOrder +func (Parameters) KV(t *Tokenizer) llm.KV { + kv := llm.KV{ + "general.file_type": uint32(1), + "general.quantization_version": uint32(2), + "tokenizer.ggml.pre": t.Pre, + "tokenizer.ggml.model": t.Vocabulary.Model, + "tokenizer.ggml.tokens": t.Vocabulary.Tokens, + "tokenizer.ggml.scores": t.Vocabulary.Scores, + "tokenizer.ggml.token_type": t.Vocabulary.Types, + } + + if t.Template != "" { + kv["tokenizer.chat_template"] = t.Template + } + + for _, sv := range t.SpecialVocabulary { + kv[fmt.Sprintf("tokenizer.ggml.%s_token_id", sv.Key())] = uint32(sv.ID) + kv[fmt.Sprintf("tokenizer.ggml.add_%s_token", sv.Key())] = sv.AddToken + } + + return kv } -type ModelArch interface { - GetTensors() error - LoadVocab() error - WriteGGUF(io.WriteSeeker) error +func (Parameters) specialTokenTypes() []string { + return []string{ + "bos", "eos", "unk", "sep", "pad", "cls", "mask", + } } -type ModelFormat interface { - GetLayerName(string) (string, error) - GetTensors(string, *Params) ([]llm.Tensor, error) - GetParams(string) (*Params, error) - GetModelArch(string, string, *Params) (ModelArch, error) +func (Parameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error { + return llm.WriteGGUF(ws, kv, ts) } -type ModelData struct { - Path string - Name string - Params *Params - Vocab *Vocab - Tensors []llm.Tensor - Format ModelFormat +type Converter interface { + // KV maps parameters to LLM key-values + KV(*Tokenizer) llm.KV + // Tensors maps input tensors to LLM tensors. Model specific modifications can be done here. + Tensors([]Tensor) []llm.Tensor + + // tensorName returns the LLM tensor name for a specific input name + tensorName(string) string + // specialTokenTypes returns any special token types the model uses + specialTokenTypes() []string + writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error } -func GetModelFormat(dirname string) (ModelFormat, error) { - files, err := filepath.Glob(filepath.Join(dirname, "*")) +// Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations +// and files it finds in the input path. +// Supported input model formats include safetensors. +// Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model. +func Convert(fsys fs.FS, ws io.WriteSeeker) error { + bts, err := fs.ReadFile(fsys, "config.json") if err != nil { - return nil, err + return err } - for _, fn := range files { - if strings.HasSuffix(fn, ".safetensors") { - return &SafetensorFormat{}, nil - } else if strings.HasSuffix(fn, ".bin") || strings.HasSuffix(fn, ".pth") { - slog.Debug("model is torch") - return &TorchFormat{}, nil - } + var p Parameters + if err := json.Unmarshal(bts, &p); err != nil { + return err } - return nil, fmt.Errorf("couldn't determine model format") -} + if len(p.Architectures) < 1 { + return errors.New("unknown architecture") + } -// Details on gguf's tokenizer can be found at: -// https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#tokenizer -type Vocab struct { - Tokens []string - Scores []float32 - Types []int32 - Merges []string -} + var conv Converter + switch p.Architectures[0] { + case "LlamaForCausalLM", "MistralForCausalLM": + conv = &llama{} + case "MixtralForCausalLM": + conv = &mixtral{} + case "GemmaForCausalLM": + conv = &gemma{} + default: + return errors.New("unsupported architecture") + } -func LoadSentencePieceTokens(dirpath string, params *Params) (*Vocab, error) { - slog.Info(fmt.Sprintf("reading vocab from %s", filepath.Join(dirpath, "tokenizer.model"))) - in, err := os.ReadFile(filepath.Join(dirpath, "tokenizer.model")) + if err := json.Unmarshal(bts, conv); err != nil { + return err + } + + t, err := parseTokenizer(fsys, conv.specialTokenTypes()) if err != nil { - return nil, err + return err } - // To regenerate sentencepiece from the protobufs use: - // protoc -I=./ --go_out=./ sentencepiece_model.proto - modelProto := &sentencepiece.ModelProto{} - if err := proto.Unmarshal(in, modelProto); err != nil { - return nil, err - } - - v := &Vocab{ - Tokens: make([]string, 0), - Scores: make([]float32, 0), - Types: make([]int32, 0), - } - - pieces := modelProto.GetPieces() - for _, p := range pieces { - v.Tokens = append(v.Tokens, p.GetPiece()) - v.Scores = append(v.Scores, p.GetScore()) - t := p.GetType() - switch t { - case sentencepiece.ModelProto_SentencePiece_UNKNOWN: - case sentencepiece.ModelProto_SentencePiece_CONTROL: - case sentencepiece.ModelProto_SentencePiece_UNUSED: - case sentencepiece.ModelProto_SentencePiece_BYTE: - default: - t = sentencepiece.ModelProto_SentencePiece_NORMAL + if vocabSize := int(p.VocabSize); vocabSize > len(t.Vocabulary.Tokens) { + slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", p.VocabSize, "actual", len(t.Vocabulary.Tokens)) + for i := range vocabSize - len(t.Vocabulary.Tokens) { + t.Vocabulary.Tokens = append(t.Vocabulary.Tokens, fmt.Sprintf("[PAD%d]", i)) + t.Vocabulary.Scores = append(t.Vocabulary.Scores, -1) + t.Vocabulary.Types = append(t.Vocabulary.Types, tokenTypeUserDefined) } - v.Types = append(v.Types, int32(t)) + } else { + slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens)) } - slog.Info(fmt.Sprintf("vocab size: %d", len(v.Tokens))) - - // add any additional tokens - addIn, err := os.ReadFile(filepath.Join(dirpath, "added_tokens.json")) - if os.IsNotExist(err) { - return v, nil - } else if err != nil { - return nil, err + ts, err := parseTensors(fsys) + if err != nil { + return err } - slog.Info("reading user defined tokens") - - var extraTokenData map[string]int - if err := json.Unmarshal(addIn, &extraTokenData); err != nil { - return nil, err - } - - type token struct { - key string - pos int - } - - extraTokens := make([]token, 0) - for k, id := range extraTokenData { - extraTokens = append(extraTokens, token{k, id}) - } - - slices.SortFunc(extraTokens, func(a, b token) int { - return cmp.Compare(a.pos, b.pos) - }) - - numToks := len(v.Tokens) - - for cnt, t := range extraTokens { - // the token id should match the specific index for the total number of tokens - if t.pos != cnt+numToks { - return nil, fmt.Errorf("token ID '%d' for '%s' doesn't match total token size", t.pos, t.key) - } - v.Tokens = append(v.Tokens, t.key) - v.Scores = append(v.Scores, -1000.0) - v.Types = append(v.Types, tokenTypeUserDefined) - } - slog.Info(fmt.Sprintf("vocab size w/ extra tokens: %d", len(v.Tokens))) - - if params.VocabSize > len(v.Tokens) { - missingTokens := params.VocabSize - len(v.Tokens) - slog.Warn(fmt.Sprintf("vocab is missing %d tokens", missingTokens)) - for cnt := range missingTokens { - v.Tokens = append(v.Tokens, fmt.Sprintf("", cnt+1)) - v.Scores = append(v.Scores, -1) - v.Types = append(v.Types, tokenTypeUserDefined) - } - } - - return v, nil + return conv.writeFile(ws, conv.KV(t), conv.Tensors(ts)) } diff --git a/convert/convert_gemma.go b/convert/convert_gemma.go new file mode 100644 index 00000000..9213e157 --- /dev/null +++ b/convert/convert_gemma.go @@ -0,0 +1,103 @@ +package convert + +import ( + "strings" + + "github.com/pdevine/tensor" + "github.com/pdevine/tensor/native" + + "github.com/ollama/ollama/llm" +) + +type gemma struct { + Parameters + MaxPositionEmbeddings uint32 `json:"max_position_embeddings"` + HiddenSize uint32 `json:"hidden_size"` + HiddenLayers uint32 `json:"num_hidden_layers"` + IntermediateSize uint32 `json:"intermediate_size"` + NumAttentionHeads uint32 `json:"num_attention_heads"` + NumKeyValueHeads uint32 `json:"num_key_value_heads"` + RMSNormEPS float32 `json:"rms_norm_eps"` + HeadDim uint32 `json:"head_dim"` +} + +var _ Converter = (*gemma)(nil) + +func (p *gemma) KV(t *Tokenizer) llm.KV { + kv := p.Parameters.KV(t) + kv["general.architecture"] = "gemma" + kv["general.name"] = "gemma" + kv["gemma.context_length"] = p.MaxPositionEmbeddings + kv["gemma.embedding_length"] = p.HiddenSize + kv["gemma.block_count"] = p.HiddenLayers + kv["gemma.feed_forward_length"] = p.IntermediateSize + kv["gemma.attention.head_count"] = p.NumAttentionHeads + kv["gemma.attention.head_count_kv"] = p.NumKeyValueHeads + kv["gemma.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS + kv["gemma.attention.key_length"] = p.HeadDim + kv["gemma.attention.value_length"] = p.HeadDim + kv["tokenizer.ggml.eot_token_id"] = uint32(107) + kv["tokenizer.ggml.middle_token_id"] = uint32(68) + kv["tokenizer.ggml.prefix_token_id"] = uint32(67) + kv["tokenizer.ggml.suffix_token_id"] = uint32(69) + return kv +} + +func (p *gemma) Tensors(ts []Tensor) []llm.Tensor { + var out []llm.Tensor + for _, t := range ts { + name := p.tensorName(t.Name()) + if strings.HasSuffix(name, "_norm.weight") { + t.SetRepacker(p.addOne) + } + + out = append(out, llm.Tensor{ + Name: name, + Kind: t.Kind(), + Shape: t.Shape(), + WriterTo: t, + }) + } + + return out +} + +func (p *gemma) tensorName(n string) string { + return strings.NewReplacer( + "model.embed_tokens", "token_embd", + "model.norm", "output_norm", + "model.layers", "blk", + "input_layernorm", "attn_norm", + "self_attn.q_proj", "attn_q", + "self_attn.k_proj", "attn_k", + "self_attn.v_proj", "attn_v", + "self_attn.o_proj", "attn_output", + "mlp.gate_proj", "ffn_gate", + "mlp.down_proj", "ffn_down", + "mlp.up_proj", "ffn_up", + "post_attention_layernorm", "ffn_norm", + "block_sparse_moe.gate", "ffn_inp", + ).Replace(n) +} + +func (*gemma) addOne(_ string, data []float32, shape []uint64) ([]float32, error) { + n := tensor.New(tensor.WithShape(int(shape[0])), tensor.WithBacking(data)) + ones := tensor.Ones(tensor.Float32, int(shape[0])) + + n, err := n.Add(ones) + if err != nil { + return nil, err + } + + ts, err := native.SelectF32(n, 0) + if err != nil { + return nil, err + } + + var f32s []float32 + for _, t := range ts { + f32s = append(f32s, t...) + } + + return f32s, nil +} diff --git a/convert/convert_llama.go b/convert/convert_llama.go new file mode 100644 index 00000000..ed6469c5 --- /dev/null +++ b/convert/convert_llama.go @@ -0,0 +1,182 @@ +package convert + +import ( + "cmp" + "fmt" + "strings" + + "github.com/ollama/ollama/llm" + "github.com/pdevine/tensor" + "github.com/pdevine/tensor/native" +) + +type llama struct { + Parameters + NLayers uint32 `json:"n_layers"` + NumHiddenLayers uint32 `json:"num_hidden_layers"` + NLayer uint32 `json:"n_layer"` + MaxPositionEmbeddings uint32 `json:"max_position_embeddings"` + NCtx uint32 `json:"n_ctx"` + HiddenSize uint32 `json:"hidden_size"` + NEmbd uint32 `json:"n_embd"` + IntermediateSize uint32 `json:"intermediate_size"` + NInner uint32 `json:"n_inner"` + NumAttentionHeads uint32 `json:"num_attention_heads"` + NHead uint32 `json:"n_head"` + NumKeyValueHeads uint32 `json:"num_key_value_heads"` + RopeTheta float32 `json:"rope_theta"` + RopeScaling struct { + Type string `json:"type"` + Factor float32 `json:"factor"` + } `json:"rope_scaling"` + RMSNormEPS float32 `json:"rms_norm_eps"` + LayerNormEPS float32 `json:"layer_norm_eps"` + LayerNormEpsilon float32 `json:"layer_norm_epsilon"` + NormEpsilon float32 `json:"norm_epsilon"` + HeadDim uint32 `json:"head_dim"` +} + +var _ Converter = (*llama)(nil) + +func (p *llama) KV(t *Tokenizer) llm.KV { + kv := p.Parameters.KV(t) + kv["general.architecture"] = "llama" + kv["general.name"] = "llama" + kv["llama.vocab_size"] = p.VocabSize + + kv["llama.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer) + + if contextLength := cmp.Or(p.MaxPositionEmbeddings, p.NCtx); contextLength > 0 { + kv["llama.context_length"] = contextLength + } + + if embeddingLength := cmp.Or(p.HiddenSize, p.NEmbd); embeddingLength > 0 { + kv["llama.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd) + } + + if feedForwardLength := cmp.Or(p.IntermediateSize, p.NInner); feedForwardLength > 0 { + kv["llama.feed_forward_length"] = cmp.Or(p.IntermediateSize, p.NInner) + } + + if headCount := cmp.Or(p.NumAttentionHeads, p.NHead); headCount > 0 { + kv["llama.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead) + kv["llama.rope.dimension_count"] = p.HiddenSize / headCount + } + + if p.RopeTheta > 0 { + kv["llama.rope.freq_base"] = p.RopeTheta + } + + if p.RopeScaling.Type == "linear" { + kv["llama.rope.scaling.type"] = p.RopeScaling.Type + kv["llama.rope.scaling.factor"] = p.RopeScaling.Factor + } + + if p.NumKeyValueHeads > 0 { + kv["llama.attention.head_count_kv"] = p.NumKeyValueHeads + } + + if p.RMSNormEPS > 0 { + kv["llama.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS + } + + if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon, p.NormEpsilon); layerNormEpsilon > 0 { + kv["llama.attention.layer_norm_epsilon"] = layerNormEpsilon + } + + if p.HeadDim > 0 { + kv["llama.attention.key_length"] = p.HeadDim + kv["llama.attention.value_length"] = p.HeadDim + } + + if len(t.Merges) > 0 { + kv["tokenizer.ggml.merges"] = t.Merges + } + + return kv +} + +func (p *llama) Tensors(ts []Tensor) []llm.Tensor { + var out []llm.Tensor + for _, t := range ts { + name := p.tensorName(t.Name()) + if strings.HasSuffix(name, "attn_q.weight") || + strings.HasSuffix(name, "attn_k.weight") { + t.SetRepacker(p.repack) + } + + out = append(out, llm.Tensor{ + Name: name, + Kind: t.Kind(), + Shape: t.Shape(), + WriterTo: t, + }) + } + + return out +} + +func (p *llama) tensorName(n string) string { + return strings.NewReplacer( + "lm_head", "output", + "model.embed_tokens", "token_embd", + "model.norm", "output_norm", + "model.layers", "blk", + "input_layernorm", "attn_norm", + "self_attn.q_proj", "attn_q", + "self_attn.k_proj", "attn_k", + "self_attn.v_proj", "attn_v", + "self_attn.o_proj", "attn_output", + "mlp.gate_proj", "ffn_gate", + "mlp.down_proj", "ffn_down", + "mlp.up_proj", "ffn_up", + "post_attention_layernorm", "ffn_norm", + // mixtral + "block_sparse_moe.gate", "ffn_gate_inp", + ).Replace(n) +} + +func (p *llama) repack(name string, data []float32, shape []uint64) ([]float32, error) { + var dims []int + for _, dim := range shape { + dims = append(dims, int(dim)) + } + + var heads uint32 + if strings.HasSuffix(name, "q_proj.weight") { + heads = p.NumAttentionHeads + } else if strings.HasSuffix(name, "k_proj.weight") { + heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads) + } else { + return nil, fmt.Errorf("unknown tensor for repack: %s", name) + } + + n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data)) + if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil { + return nil, err + } + + if err := n.T(0, 2, 1, 3); err != nil { + return nil, err + } + + if err := n.Reshape(dims...); err != nil { + return nil, err + } + + if err := n.Transpose(); err != nil { + return nil, err + } + + ts, err := native.SelectF32(n, 1) + if err != nil { + return nil, err + } + + var f32s []float32 + for _, t := range ts { + f32s = append(f32s, t...) + } + + return f32s, nil +} diff --git a/convert/convert_mixtral.go b/convert/convert_mixtral.go new file mode 100644 index 00000000..3263a27b --- /dev/null +++ b/convert/convert_mixtral.go @@ -0,0 +1,89 @@ +package convert + +import ( + "fmt" + "io" + "slices" + "strings" + + "github.com/ollama/ollama/llm" +) + +type mixtral struct { + llama + NumLocalExperts uint32 `json:"num_local_experts"` + NumExpertsPerToken uint32 `json:"num_experts_per_tok"` +} + +var _ Converter = (*mixtral)(nil) + +func (p *mixtral) KV(t *Tokenizer) llm.KV { + kv := p.llama.KV(t) + + if p.NumLocalExperts > 0 { + kv["llama.expert_count"] = p.NumLocalExperts + } + + if p.NumExpertsPerToken > 0 { + kv["llama.expert_used_count"] = p.NumExpertsPerToken + } + + return kv +} + +func (p *mixtral) Tensors(ts []Tensor) []llm.Tensor { + oldnew := []string{ + "model.layers", "blk", + "w1", "ffn_gate_exps", + "w2", "ffn_down_exps", + "w3", "ffn_up_exps", + } + + for i := range p.NumLocalExperts { + oldnew = append(oldnew, fmt.Sprintf(".block_sparse_moe.experts.%d.", i), ".") + } + + // group experts of the same layer (model.layers.%d) and type (w[123]) into a single tensor + namer := strings.NewReplacer(oldnew...) + experts := make(map[string]experts) + + // merge experts into a single tensor while removing them from ts + ts = slices.DeleteFunc(ts, func(t Tensor) bool { + if !strings.Contains(t.Name(), ".block_sparse_moe.experts.") { + return false + } + + name := namer.Replace(t.Name()) + experts[name] = append(experts[name], t) + return true + }) + + var out []llm.Tensor + for n, e := range experts { + // TODO(mxyng): sanity check experts + out = append(out, llm.Tensor{ + Name: n, + Kind: e[0].Kind(), + Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...), + WriterTo: e, + }) + } + + return append(out, p.llama.Tensors(ts)...) +} + +type experts []Tensor + +func (e experts) WriteTo(w io.Writer) (int64, error) { + // TODO(mxyng): experts _should_ be numerically sorted by expert but this should check + for _, t := range e { + // the canonical merged experts tensor stacks all experts along a new, 0 axis, + // e.g. `tensor.Stack(0, e[0], e[1:]...)`, which requires allocating temporary buffers + // this accomplishes the same thing by writing each expert tensor in sequence + if _, err := t.WriteTo(w); err != nil { + return 0, err + } + } + + return 0, nil +} diff --git a/convert/convert_test.go b/convert/convert_test.go index 6aa33a49..67a2fcfe 100644 --- a/convert/convert_test.go +++ b/convert/convert_test.go @@ -1,48 +1,33 @@ -//go:build slow - package convert import ( + "crypto/sha256" + "encoding/json" + "flag" + "fmt" + "io" + "io/fs" + "log/slog" + "math" "os" "path/filepath" + "slices" "testing" "github.com/ollama/ollama/llm" + "golang.org/x/exp/maps" ) -func convertFull(t *testing.T, p string) (llm.KV, llm.Tensors) { +func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) { t.Helper() - mf, err := GetModelFormat(p) - if err != nil { - t.Fatal(err) - } - - params, err := mf.GetParams(p) - if err != nil { - t.Fatal(err) - } - - arch, err := mf.GetModelArch("", p, params) - if err != nil { - t.Fatal(err) - } - - if err := arch.LoadVocab(); err != nil { - t.Fatal(err) - } - - if err := arch.GetTensors(); err != nil { - t.Fatal(err) - } - f, err := os.CreateTemp(t.TempDir(), "f16") if err != nil { t.Fatal(err) } defer f.Close() - if err := arch.WriteGGUF(f); err != nil { + if err := Convert(fsys, f); err != nil { t.Fatal(err) } @@ -50,53 +35,91 @@ func convertFull(t *testing.T, p string) (llm.KV, llm.Tensors) { if err != nil { t.Fatal(err) } - defer r.Close() + t.Cleanup(func() { r.Close() }) - m, _, err := llm.DecodeGGML(r) + m, _, err := llm.DecodeGGML(r, math.MaxInt) if err != nil { t.Fatal(err) } - return m.KV(), m.Tensors() + if _, err := r.Seek(0, io.SeekStart); err != nil { + t.Fatal(err) + } + + return r, m.KV(), m.Tensors() +} + +func TestMain(m *testing.M) { + var level slog.Level + flag.TextVar(&level, "level", slog.LevelInfo, "log level") + flag.Parse() + slog.SetLogLoggerLevel(level) + os.Exit(m.Run()) } func TestConvertFull(t *testing.T) { - cases := []struct { - path string - arch string - tensors int - layers int - }{ - {"Meta-Llama-3-8B-Instruct", "llama", 291, 35}, - {"Mistral-7B-Instruct-v0.2", "llama", 291, 35}, - {"Mixtral-8x7B-Instruct-v0.1", "llama", 291, 35}, - {"gemma-2b-it", "gemma", 164, 20}, + cases := []string{ + "Meta-Llama-3-8B-Instruct", + "Mistral-7B-Instruct-v0.2", + "Mixtral-8x7B-Instruct-v0.1", + "gemma-2b-it", } - for _, tt := range cases { - t.Run(tt.path, func(t *testing.T) { - p := filepath.Join("testdata", tt.path) - if _, err := os.Stat(p); err != nil { + for i := range cases { + tt := cases[i] + t.Run(tt, func(t *testing.T) { + t.Parallel() + + p := filepath.Join("testdata", tt) + if testing.Short() { + t.Skip("skipping in short mode") + } else if _, err := os.Stat(p); err != nil { t.Skipf("%s not found", p) } - kv, tensors := convertFull(t, p) + f, kv, tensors := convertFull(t, os.DirFS(p)) + actual := make(map[string]string) + for k, v := range kv { + if s, ok := v.(json.Marshaler); !ok { + actual[k] = fmt.Sprintf("%v", v) + } else { + bts, err := json.Marshal(s) + if err != nil { + t.Fatal(err) + } - if kv.Architecture() != tt.arch { - t.Fatalf("expected llama, got %s", kv.Architecture()) + actual[k] = fmt.Sprintf("%x", sha256.Sum256(bts)) + } } - if kv.FileType().String() != "F16" { - t.Fatalf("expected F16, got %s", kv.FileType()) + for _, tensor := range tensors.Items { + sha256sum := sha256.New() + sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size())) + if _, err := io.Copy(sha256sum, sr); err != nil { + t.Fatal(err) + } + + actual[tensor.Name] = fmt.Sprintf("%x", sha256sum.Sum(nil)) } - if len(tensors) != tt.tensors { - t.Fatalf("expected %d tensors, got %d", tt.tensors, len(tensors)) + expectFile, err := os.Open(filepath.Join("testdata", fmt.Sprintf("%s.json", tt))) + if err != nil { + t.Fatal(err) } - layers := tensors.Layers() - if len(layers) != tt.layers { - t.Fatalf("expected %d layers, got %d", tt.layers, len(layers)) + var expect map[string]string + if err := json.NewDecoder(expectFile).Decode(&expect); err != nil { + t.Fatal(err) + } + + keys := maps.Keys(expect) + slices.Sort(keys) + for _, k := range keys { + if v, ok := actual[k]; !ok { + t.Errorf("missing %s", k) + } else if v != expect[k] { + t.Errorf("unexpected %s: want %s, got %s", k, expect[k], v) + } } }) } diff --git a/convert/fs.go b/convert/fs.go new file mode 100644 index 00000000..bf6da6c2 --- /dev/null +++ b/convert/fs.go @@ -0,0 +1,58 @@ +package convert + +import ( + "archive/zip" + "errors" + "io" + "io/fs" + "os" + "path/filepath" +) + +type ZipReader struct { + r *zip.Reader + p string + + // limit is the maximum size of a file that can be read directly + // from the zip archive. Files larger than this size will be extracted + limit int64 +} + +func NewZipReader(r *zip.Reader, p string, limit int64) fs.FS { + return &ZipReader{r, p, limit} +} + +func (z *ZipReader) Open(name string) (fs.File, error) { + r, err := z.r.Open(name) + if err != nil { + return nil, err + } + defer r.Close() + + if fi, err := r.Stat(); err != nil { + return nil, err + } else if fi.Size() < z.limit { + return r, nil + } + + if !filepath.IsLocal(name) { + return nil, zip.ErrInsecurePath + } + + n := filepath.Join(z.p, name) + if _, err := os.Stat(n); errors.Is(err, os.ErrNotExist) { + w, err := os.Create(n) + if err != nil { + return nil, err + } + defer w.Close() + + if _, err := io.Copy(w, r); err != nil { + return nil, err + } + } else if err != nil { + return nil, err + } + + return os.Open(n) +} diff --git a/convert/gemma.go b/convert/gemma.go deleted file mode 100644 index d01ffedf..00000000 --- a/convert/gemma.go +++ /dev/null @@ -1,102 +0,0 @@ -package convert - -import ( - "fmt" - "io" - "log/slog" - "strings" - - "github.com/pdevine/tensor" - "github.com/pdevine/tensor/native" - - "github.com/ollama/ollama/llm" -) - -type GemmaModel struct { - ModelData -} - -func addOnes(data []float32, vectorSize int) ([]float32, error) { - n := tensor.New(tensor.WithShape(vectorSize), tensor.WithBacking(data)) - ones := tensor.Ones(tensor.Float32, vectorSize) - - n, err := n.Add(ones) - if err != nil { - return nil, err - } - - ts, err := native.SelectF32(n, 0) - if err != nil { - return nil, err - } - - var f32s []float32 - for _, t := range ts { - f32s = append(f32s, t...) - } - - return f32s, nil -} - -func (m *GemmaModel) GetTensors() error { - t, err := m.Format.GetTensors(m.Path, m.Params) - if err != nil { - return err - } - - slog.Debug(fmt.Sprintf("Total tensors: %d", len(t))) - for _, l := range t { - if strings.HasSuffix(l.Name, "norm.weight") { - wt := l.WriterTo.(safetensorWriterTo) - wt.repacker = m.Repack - l.WriterTo = wt - } - m.Tensors = append(m.Tensors, l) - } - - return nil -} - -func (m *GemmaModel) LoadVocab() error { - v, err := LoadSentencePieceTokens(m.Path, m.Params) - if err != nil { - return err - } - m.Vocab = v - return nil -} - -func (m *GemmaModel) Repack(_ string, data []float32, shape []uint64) ([]float32, error) { - return addOnes(data, int(shape[0])) -} - -func (m *GemmaModel) WriteGGUF(ws io.WriteSeeker) error { - kv := llm.KV{ - "general.architecture": "gemma", - "general.name": m.Name, - "gemma.context_length": uint32(m.Params.ContextSize), - "gemma.embedding_length": uint32(m.Params.HiddenSize), - "gemma.block_count": uint32(m.Params.HiddenLayers), - "gemma.feed_forward_length": uint32(m.Params.IntermediateSize), - "gemma.attention.head_count": uint32(m.Params.AttentionHeads), - "gemma.attention.head_count_kv": uint32(m.Params.KeyValHeads), - "gemma.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS), - "gemma.attention.key_length": uint32(m.Params.HeadDimension), - "gemma.attention.value_length": uint32(m.Params.HeadDimension), - "general.file_type": uint32(1), - "tokenizer.ggml.model": "llama", - - "tokenizer.ggml.tokens": m.Vocab.Tokens, - "tokenizer.ggml.scores": m.Vocab.Scores, - "tokenizer.ggml.token_type": m.Vocab.Types, - - "tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID), - "tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID), - "tokenizer.ggml.padding_token_id": uint32(m.Params.PaddingTokenID), - "tokenizer.ggml.unknown_token_id": uint32(3), - "tokenizer.ggml.add_bos_token": true, - "tokenizer.ggml.add_eos_token": false, - } - - return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors) -} diff --git a/convert/llama.go b/convert/llama.go deleted file mode 100644 index b4211b02..00000000 --- a/convert/llama.go +++ /dev/null @@ -1,159 +0,0 @@ -package convert - -import ( - "cmp" - "errors" - "fmt" - "io" - "os" - "path/filepath" - "regexp" - "strings" - - "github.com/pdevine/tensor" - "github.com/pdevine/tensor/native" - - "github.com/ollama/ollama/llm" -) - -type LlamaModel struct { - ModelData -} - -func (m *LlamaModel) GetTensors() error { - t, err := m.Format.GetTensors(m.Path, m.Params) - if err != nil { - return err - } - - pattern := `^blk\.[0-9]+\.attn_(?Pq|k)\.weight$` - re, err := regexp.Compile(pattern) - if err != nil { - return err - } - - for _, l := range t { - matches := re.FindAllStringSubmatch(l.Name, -1) - if len(matches) > 0 { - switch m.Format.(type) { - case *TorchFormat: - wt := l.WriterTo.(torchWriterTo) - wt.repacker = m.Repack - l.WriterTo = wt - case *SafetensorFormat: - wt := l.WriterTo.(safetensorWriterTo) - wt.repacker = m.Repack - l.WriterTo = wt - } - } - m.Tensors = append(m.Tensors, l) - } - - return nil -} - -func (m *LlamaModel) LoadVocab() (err error) { - pre, ts, merges, err := parseTokens(filepath.Join(m.Path, "tokenizer.json")) - if errors.Is(err, os.ErrNotExist) { - return nil - } else if err != nil { - return err - } - - m.Vocab = &Vocab{} - for _, t := range ts { - m.Vocab.Tokens = append(m.Vocab.Tokens, t.Content) - m.Vocab.Types = append(m.Vocab.Types, t.Type()) - } - - m.Vocab.Merges = merges - m.Params.PreTokenizer = pre - return nil -} - -func (m *LlamaModel) WriteGGUF(ws io.WriteSeeker) error { - kv := llm.KV{ - "general.architecture": "llama", - "general.name": m.Name, - "llama.vocab_size": uint32(len(m.Vocab.Tokens)), - "llama.context_length": uint32(m.Params.ContextSize), - "llama.embedding_length": uint32(m.Params.HiddenSize), - "llama.block_count": uint32(m.Params.HiddenLayers), - "llama.feed_forward_length": uint32(m.Params.IntermediateSize), - "llama.rope.freq_base": float32(m.Params.RopeFrequencyBase), - "llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads), - "llama.attention.head_count": uint32(m.Params.AttentionHeads), - "llama.attention.head_count_kv": uint32(m.Params.KeyValHeads), - "llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS), - "general.file_type": uint32(1), - "tokenizer.ggml.model": "gpt2", - - "tokenizer.ggml.pre": m.Params.PreTokenizer, - "tokenizer.ggml.tokens": m.Vocab.Tokens, - "tokenizer.ggml.token_type": m.Vocab.Types, - - "tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID), - "tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID), - "tokenizer.ggml.unknown_token_id": uint32(0), - } - - if len(m.Vocab.Merges) > 0 { - kv["tokenizer.ggml.merges"] = m.Vocab.Merges - } else { - kv["tokenizer.ggml.scores"] = m.Vocab.Scores - } - - return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors) -} - -func (m *LlamaModel) Repack(name string, data []float32, shape []uint64) ([]float32, error) { - return llamaRepack(name, m.Params, data, shape) -} - -func llamaRepack(name string, params *Params, data []float32, shape []uint64) ([]float32, error) { - var dims []int - for _, dim := range shape { - if dim != 0 { - dims = append(dims, int(dim)) - } - } - - var heads int - switch { - case strings.HasSuffix(name, "attn_q.weight"): - heads = params.AttentionHeads - case strings.HasSuffix(name, "attn_k.weight"): - heads = cmp.Or(params.KeyValHeads, params.AttentionHeads) - default: - return nil, fmt.Errorf("unknown tensor name: %s", name) - } - - n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data)) - if err := n.Reshape(append([]int{heads, 2, dims[0] / heads / 2}, dims[1:]...)...); err != nil { - return nil, err - } - - if err := n.T(0, 2, 1, 3); err != nil { - return nil, err - } - - if err := n.Reshape(dims...); err != nil { - return nil, err - } - - if err := n.Transpose(); err != nil { - return nil, err - } - - ts, err := native.SelectF32(n, 1) - if err != nil { - return nil, err - } - - var f32s []float32 - for _, t := range ts { - f32s = append(f32s, t...) - } - - return f32s, nil -} diff --git a/convert/mistral.go b/convert/mistral.go deleted file mode 100644 index da6874cf..00000000 --- a/convert/mistral.go +++ /dev/null @@ -1,79 +0,0 @@ -package convert - -import ( - "io" - "regexp" - - "github.com/ollama/ollama/llm" -) - -type MistralModel struct { - ModelData -} - -func (m *MistralModel) GetTensors() error { - t, err := m.Format.GetTensors(m.Path, m.Params) - if err != nil { - return err - } - - pattern := `^blk\.[0-9]+\.attn_(?Pq|k)\.weight$` - re, err := regexp.Compile(pattern) - if err != nil { - return err - } - - for _, l := range t { - matches := re.FindAllStringSubmatch(l.Name, -1) - if len(matches) > 0 { - wt := l.WriterTo.(safetensorWriterTo) - wt.repacker = m.Repack - l.WriterTo = wt - } - m.Tensors = append(m.Tensors, l) - } - - return nil -} - -func (m *MistralModel) LoadVocab() error { - v, err := LoadSentencePieceTokens(m.Path, m.Params) - if err != nil { - return err - } - m.Vocab = v - return nil -} - -func (m *MistralModel) WriteGGUF(ws io.WriteSeeker) error { - kv := llm.KV{ - "general.architecture": "llama", - "general.name": m.Name, - "llama.context_length": uint32(m.Params.ContextSize), - "llama.embedding_length": uint32(m.Params.HiddenSize), - "llama.block_count": uint32(m.Params.HiddenLayers), - "llama.feed_forward_length": uint32(m.Params.IntermediateSize), - "llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads), - "llama.attention.head_count": uint32(m.Params.AttentionHeads), - "llama.attention.head_count_kv": uint32(m.Params.KeyValHeads), - "llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS), - "general.file_type": uint32(1), - "tokenizer.ggml.model": "llama", - - "tokenizer.ggml.tokens": m.Vocab.Tokens, - "tokenizer.ggml.scores": m.Vocab.Scores, - "tokenizer.ggml.token_type": m.Vocab.Types, - - "tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID), - "tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID), - "tokenizer.ggml.add_bos_token": true, - "tokenizer.ggml.add_eos_token": false, - "tokenizer.ggml.unknown_token_id": uint32(0), - } - - return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors) -} - -func (m *MistralModel) Repack(name string, data []float32, shape []uint64) ([]float32, error) { - return llamaRepack(name, m.Params, data, shape) -} diff --git a/convert/mixtral.go b/convert/mixtral.go deleted file mode 100644 index baea68cd..00000000 --- a/convert/mixtral.go +++ /dev/null @@ -1,87 +0,0 @@ -package convert - -import ( - "io" - "regexp" - - "github.com/ollama/ollama/llm" -) - -type MixtralModel struct { - ModelData -} - -func (m *MixtralModel) GetTensors() error { - t, err := m.Format.GetTensors(m.Path, m.Params) - if err != nil { - return err - } - - pattern := `^blk\.[0-9]+\.attn_(?Pq|k)\.weight$` - re, err := regexp.Compile(pattern) - if err != nil { - return err - } - - for _, l := range t { - matches := re.FindAllStringSubmatch(l.Name, -1) - if len(matches) > 0 { - wt := l.WriterTo.(safetensorWriterTo) - wt.repacker = m.Repack - l.WriterTo = wt - } - m.Tensors = append(m.Tensors, l) - } - - return nil -} - -func (m *MixtralModel) LoadVocab() error { - v, err := LoadSentencePieceTokens(m.Path, m.Params) - if err != nil { - return err - } - m.Vocab = v - return nil -} - -func (m *MixtralModel) WriteGGUF(ws io.WriteSeeker) error { - kv := llm.KV{ - "general.architecture": "llama", - "general.name": m.Name, - "llama.block_count": uint32(m.Params.HiddenLayers), - "llama.context_length": uint32(m.Params.ContextSize), - "llama.embedding_length": uint32(m.Params.HiddenSize), - "llama.feed_forward_length": uint32(m.Params.IntermediateSize), - "llama.attention.head_count": uint32(m.Params.AttentionHeads), - "llama.attention.head_count_kv": uint32(m.Params.KeyValHeads), - - "llama.rope.freq_base": float32(m.Params.RopeFrequencyBase), - "llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS), - - "llama.expert_count": uint32(m.Params.Experts), - "llama.expert_used_count": uint32(m.Params.ExpertsUsed), - - "llama.vocab_size": uint32(len(m.Vocab.Tokens)), - "llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads), - - "general.file_type": uint32(1), - "tokenizer.ggml.model": "llama", - - "tokenizer.ggml.tokens": m.Vocab.Tokens, - "tokenizer.ggml.scores": m.Vocab.Scores, - "tokenizer.ggml.token_type": m.Vocab.Types, - - "tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID), - "tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID), - "tokenizer.ggml.unknown_token_id": uint32(0), - "tokenizer.ggml.add_bos_token": true, - "tokenizer.ggml.add_eos_token": false, - } - - return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors) -} - -func (m *MixtralModel) Repack(name string, data []float32, shape []uint64) ([]float32, error) { - return llamaRepack(name, m.Params, data, shape) -} diff --git a/convert/reader.go b/convert/reader.go new file mode 100644 index 00000000..ce95208e --- /dev/null +++ b/convert/reader.go @@ -0,0 +1,82 @@ +package convert + +import ( + "errors" + "io" + "io/fs" + "strings" +) + +type Tensor interface { + Name() string + Shape() []uint64 + Kind() uint32 + SetRepacker(repacker) + WriteTo(io.Writer) (int64, error) +} + +type tensorBase struct { + name string + shape []uint64 + repacker +} + +func (t tensorBase) Name() string { + return t.name +} + +func (t tensorBase) Shape() []uint64 { + return t.shape +} + +const ( + tensorKindF32 uint32 = iota + tensorKindF16 +) + +func (t tensorBase) Kind() uint32 { + if strings.HasSuffix(t.name, ".block_sparse_moe.gate.weight") { + return 0 + } + + switch len(t.shape) { + case 0: + panic("invalid tensor shape") + case 1: + return tensorKindF32 + default: + return tensorKindF16 + } +} + +func (t *tensorBase) SetRepacker(fn repacker) { + t.repacker = fn +} + +type repacker func(string, []float32, []uint64) ([]float32, error) + +func parseTensors(fsys fs.FS) ([]Tensor, error) { + patterns := []struct { + Pattern string + Func func(fs.FS, ...string) ([]Tensor, error) + }{ + {"model-*-of-*.safetensors", parseSafetensors}, + {"model.safetensors", parseSafetensors}, + {"pytorch_model-*-of-*.bin", parseTorch}, + {"pytorch_model.bin", parseTorch}, + {"consolidated.*.pth", parseTorch}, + } + + for _, pattern := range patterns { + matches, err := fs.Glob(fsys, pattern.Pattern) + if err != nil { + return nil, err + } + + if len(matches) > 0 { + return pattern.Func(fsys, matches...) + } + } + + return nil, errors.New("unknown tensor format") +} diff --git a/convert/reader_safetensors.go b/convert/reader_safetensors.go new file mode 100644 index 00000000..1c169504 --- /dev/null +++ b/convert/reader_safetensors.go @@ -0,0 +1,149 @@ +package convert + +import ( + "bytes" + "encoding/binary" + "encoding/json" + "fmt" + "io" + "io/fs" + "slices" + + "github.com/d4l3k/go-bfloat16" + "github.com/x448/float16" + "golang.org/x/exp/maps" +) + +type safetensorMetadata struct { + Type string `json:"dtype"` + Shape []uint64 `json:"shape"` + Offsets []int64 `json:"data_offsets"` +} + +func parseSafetensors(fsys fs.FS, ps ...string) ([]Tensor, error) { + var ts []Tensor + for _, p := range ps { + f, err := fsys.Open(p) + if err != nil { + return nil, err + } + defer f.Close() + + var n int64 + if err := binary.Read(f, binary.LittleEndian, &n); err != nil { + return nil, err + } + + b := bytes.NewBuffer(make([]byte, 0, n)) + if _, err = io.CopyN(b, f, n); err != nil { + return nil, err + } + + var headers map[string]safetensorMetadata + if err := json.NewDecoder(b).Decode(&headers); err != nil { + return nil, err + } + + keys := maps.Keys(headers) + slices.Sort(keys) + + for _, key := range keys { + if value := headers[key]; value.Type != "" { + ts = append(ts, safetensor{ + fs: fsys, + path: p, + dtype: value.Type, + offset: safetensorsPad(n, value.Offsets[0]), + size: safetensorsPad(n, value.Offsets[1]) - safetensorsPad(n, value.Offsets[0]), + tensorBase: &tensorBase{ + name: key, + shape: value.Shape, + }, + }) + } + } + } + + return ts, nil +} + +// safetensorsPad returns the padded size of the safetensors file given a length n and offset s +func safetensorsPad(n, offset int64) int64 { + return 8 + n + offset +} + +type safetensor struct { + fs fs.FS + path string + dtype string + offset int64 + size int64 + *tensorBase +} + +func (st safetensor) WriteTo(w io.Writer) (int64, error) { + f, err := st.fs.Open(st.path) + if err != nil { + return 0, err + } + defer f.Close() + + if seeker, ok := f.(io.Seeker); ok { + if _, err := seeker.Seek(st.offset, io.SeekStart); err != nil { + return 0, err + } + } else { + if _, err := io.CopyN(io.Discard, f, st.offset); err != nil { + return 0, err + } + } + + var f32s []float32 + switch st.dtype { + case "F32": + f32s = make([]float32, st.size/4) + if err = binary.Read(f, binary.LittleEndian, f32s); err != nil { + return 0, err + } + case "F16": + u16s := make([]uint16, st.size/2) + if err = binary.Read(f, binary.LittleEndian, u16s); err != nil { + return 0, err + } + + for _, b := range u16s { + f32s = append(f32s, float16.Frombits(b).Float32()) + } + + case "BF16": + u8s := make([]uint8, st.size) + if err = binary.Read(f, binary.LittleEndian, u8s); err != nil { + return 0, err + } + + f32s = bfloat16.DecodeFloat32(u8s) + default: + return 0, fmt.Errorf("unknown data type: %s", st.dtype) + } + + if st.repacker != nil { + f32s, err = st.repacker(st.Name(), f32s, st.Shape()) + if err != nil { + return 0, err + } + } + + switch st.Kind() { + case tensorKindF32: + return 0, binary.Write(w, binary.LittleEndian, f32s) + case tensorKindF16: + f16s := make([]uint16, len(f32s)) + for i := range f32s { + f16s[i] = float16.Fromfloat32(f32s[i]).Bits() + } + + return 0, binary.Write(w, binary.LittleEndian, f16s) + default: + return 0, fmt.Errorf("unknown storage type: %d", st.Kind()) + } +} diff --git a/convert/reader_torch.go b/convert/reader_torch.go new file mode 100644 index 00000000..531996bf --- /dev/null +++ b/convert/reader_torch.go @@ -0,0 +1,47 @@ +package convert + +import ( + "io" + "io/fs" + + "github.com/nlpodyssey/gopickle/pytorch" + "github.com/nlpodyssey/gopickle/types" +) + +func parseTorch(fsys fs.FS, ps ...string) ([]Tensor, error) { + var ts []Tensor + for _, p := range ps { + pt, err := pytorch.Load(p) + if err != nil { + return nil, err + } + + for _, k := range pt.(*types.Dict).Keys() { + t := pt.(*types.Dict).MustGet(k) + + var shape []uint64 + for dim := range t.(*pytorch.Tensor).Size { + shape = append(shape, uint64(dim)) + } + + ts = append(ts, torch{ + storage: t.(*pytorch.Tensor).Source, + tensorBase: &tensorBase{ + name: k.(string), + shape: shape, + }, + }) + } + } + + return ts, nil +} + +type torch struct { + storage pytorch.StorageInterface + *tensorBase +} + +func (pt torch) WriteTo(w io.Writer) (int64, error) { + return 0, nil +} diff --git a/convert/safetensors.go b/convert/safetensors.go deleted file mode 100644 index f45687f1..00000000 --- a/convert/safetensors.go +++ /dev/null @@ -1,309 +0,0 @@ -package convert - -import ( - "bytes" - "encoding/binary" - "encoding/json" - "fmt" - "io" - "os" - "path/filepath" - "regexp" - "slices" - "strings" - - "github.com/d4l3k/go-bfloat16" - "github.com/x448/float16" - - "github.com/ollama/ollama/llm" -) - -type safetensorWriterTo struct { - t *llm.Tensor - - params *Params - bo ByteOrder - - filename string - dtype string - - offset, size int64 - repacker func(string, []float32, []uint64) ([]float32, error) -} - -type safetensorMetadata struct { - Type string `json:"dtype"` - Shape []uint64 `json:"shape"` - Offsets []int64 `json:"data_offsets"` -} - -type SafetensorFormat struct{} - -func (m *SafetensorFormat) GetTensors(dirpath string, params *Params) ([]llm.Tensor, error) { - var tensors []llm.Tensor - matches, err := filepath.Glob(filepath.Join(dirpath, "*.safetensors")) - if err != nil { - return nil, err - } - - var offset uint64 - for _, f := range matches { - var t []llm.Tensor - var err error - t, offset, err = m.readTensors(f, offset, params) - if err != nil { - return nil, err - } - - tensors = append(tensors, t...) - } - return tensors, nil -} - -func (m *SafetensorFormat) readTensors(fn string, offset uint64, params *Params) ([]llm.Tensor, uint64, error) { - f, err := os.Open(fn) - if err != nil { - return nil, 0, err - } - defer f.Close() - - var n int64 - if err := binary.Read(f, binary.LittleEndian, &n); err != nil { - return nil, 0, err - } - - b := bytes.NewBuffer(make([]byte, 0, n)) - if _, err = io.CopyN(b, f, n); err != nil { - return nil, 0, err - } - - var headers map[string]safetensorMetadata - if err := json.NewDecoder(b).Decode(&headers); err != nil { - return nil, 0, err - } - - var keys []string - for key := range headers { - if !strings.HasSuffix(key, "self_attn.rotary_embd.inv_freq") { - keys = append(keys, key) - } - } - - slices.Sort(keys) - - var tensors []llm.Tensor - for _, key := range keys { - value := headers[key] - - var kind uint32 - switch len(value.Shape) { - case 0: - // valuedata - continue - case 2: - kind = 1 - } - - name, err := m.GetLayerName(key) - if err != nil { - return nil, 0, err - } - - shape := make([]uint64, len(value.Shape)) - copy(shape, value.Shape) - - pad := func(s int64) int64 { - return 8 + n + s - } - - t := llm.Tensor{ - Name: name, - Kind: kind, - Offset: offset, - Shape: shape, - } - - t.WriterTo = safetensorWriterTo{ - t: &t, - params: params, - bo: params.ByteOrder, - filename: fn, - dtype: value.Type, - offset: pad(value.Offsets[0]), - size: pad(value.Offsets[1]) - pad(value.Offsets[0]), - } - - offset += t.Size() - tensors = append(tensors, t) - } - - return tensors, offset, nil -} - -func (m *SafetensorFormat) GetParams(dirpath string) (*Params, error) { - f, err := os.Open(filepath.Join(dirpath, "config.json")) - if err != nil { - return nil, err - } - defer f.Close() - - var params Params - - if err := json.NewDecoder(f).Decode(¶ms); err != nil { - return nil, err - } - - params.ByteOrder = binary.LittleEndian - return ¶ms, nil -} - -func (m *SafetensorFormat) GetLayerName(n string) (string, error) { - directMap := map[string]string{ - "model.embed_tokens.weight": "token_embd.weight", - "lm_head.weight": "output.weight", - "model.norm.weight": "output_norm.weight", - } - - tMap := map[string]string{ - "model.layers.(\\d+).input_layernorm.weight": "blk.$1.attn_norm.weight", - "model.layers.(\\d+).mlp.down_proj.weight": "blk.$1.ffn_down.weight", - "model.layers.(\\d+).mlp.gate_proj.weight": "blk.$1.ffn_gate.weight", - "model.layers.(\\d+).mlp.up_proj.weight": "blk.$1.ffn_up.weight", - "model.layers.(\\d+).post_attention_layernorm.weight": "blk.$1.ffn_norm.weight", - "model.layers.(\\d+).self_attn.k_proj.weight": "blk.$1.attn_k.weight", - "model.layers.(\\d+).self_attn.o_proj.weight": "blk.$1.attn_output.weight", - "model.layers.(\\d+).self_attn.q_proj.weight": "blk.$1.attn_q.weight", - "model.layers.(\\d+).self_attn.v_proj.weight": "blk.$1.attn_v.weight", - "model.layers.(\\d+).block_sparse_moe.gate.weight": "blk.$1.ffn_gate_inp.weight", - "model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w1.weight": "blk.$1.ffn_gate.$2.weight", - "model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w2.weight": "blk.$1.ffn_down.$2.weight", - "model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w3.weight": "blk.$1.ffn_up.$2.weight", - } - - v, ok := directMap[n] - if ok { - return v, nil - } - - // quick hack to rename the layers to gguf format - for k, v := range tMap { - re := regexp.MustCompile(k) - newName := re.ReplaceAllString(n, v) - if newName != n { - return newName, nil - } - } - - return "", fmt.Errorf("couldn't find a layer name for '%s'", n) -} - -func (r safetensorWriterTo) WriteTo(w io.Writer) (n int64, err error) { - f, err := os.Open(r.filename) - if err != nil { - return 0, err - } - defer f.Close() - - if _, err = f.Seek(r.offset, io.SeekStart); err != nil { - return 0, err - } - - var f32s []float32 - switch r.dtype { - case "F32": - f32s = make([]float32, r.size/4) - if err = binary.Read(f, r.bo, f32s); err != nil { - return 0, err - } - case "F16": - u16s := make([]uint16, r.size/2) - if err = binary.Read(f, r.bo, u16s); err != nil { - return 0, err - } - - for _, b := range u16s { - f32s = append(f32s, float16.Frombits(b).Float32()) - } - - case "BF16": - u8s := make([]uint8, r.size) - if err = binary.Read(f, r.bo, u8s); err != nil { - return 0, err - } - - f32s = bfloat16.DecodeFloat32(u8s) - default: - return 0, fmt.Errorf("unknown data type: %s", r.dtype) - } - - if r.repacker != nil { - f32s, err = r.repacker(r.t.Name, f32s, r.t.Shape) - if err != nil { - return 0, err - } - } - - switch r.t.Kind { - case 0: - return 0, binary.Write(w, r.bo, f32s) - case 1: - f16s := make([]uint16, len(f32s)) - for i := range f32s { - f16s[i] = float16.Fromfloat32(f32s[i]).Bits() - } - - return 0, binary.Write(w, r.bo, f16s) - default: - return 0, fmt.Errorf("unknown storage type: %d", r.t.Kind) - } -} - -func (m *SafetensorFormat) GetModelArch(name, dirPath string, params *Params) (ModelArch, error) { - switch len(params.Architectures) { - case 0: - return nil, fmt.Errorf("No architecture specified to convert") - case 1: - switch params.Architectures[0] { - case "LlamaForCausalLM": - return &LlamaModel{ - ModelData{ - Name: name, - Path: dirPath, - Params: params, - Format: m, - }, - }, nil - case "MistralForCausalLM": - return &MistralModel{ - ModelData{ - Name: name, - Path: dirPath, - Params: params, - Format: m, - }, - }, nil - case "MixtralForCausalLM": - return &MixtralModel{ - ModelData{ - Name: name, - Path: dirPath, - Params: params, - Format: m, - }, - }, nil - case "GemmaForCausalLM": - return &GemmaModel{ - ModelData{ - Name: name, - Path: dirPath, - Params: params, - Format: m, - }, - }, nil - default: - return nil, fmt.Errorf("Models based on '%s' are not yet supported", params.Architectures[0]) - } - } - - return nil, fmt.Errorf("Unknown error") -} diff --git a/convert/testdata/Meta-Llama-3-8B-Instruct.json b/convert/testdata/Meta-Llama-3-8B-Instruct.json new file mode 100644 index 00000000..808826bb --- /dev/null +++ b/convert/testdata/Meta-Llama-3-8B-Instruct.json @@ -0,0 +1,313 @@ +{ + "general.architecture": "llama", + "general.file_type": "1", + "general.quantization_version": "2", + "llama.block_count": "32", + "llama.context_length": "8192", + "llama.embedding_length": "4096", + "llama.feed_forward_length": "14336", + "llama.rope.dimension_count": "128", + "llama.rope.freq_base": "500000", + "llama.vocab_size": "128256", + "llama.attention.head_count": "32", + "llama.attention.head_count_kv": "8", + "llama.attention.layer_norm_rms_epsilon": "1e-05", + "tokenizer.ggml.model": "gpt2", + "tokenizer.ggml.pre": "llama-bpe", + "tokenizer.ggml.bos_token_id": "128000", + "tokenizer.ggml.eos_token_id": "128009", + "tokenizer.ggml.merges": "d0cbac1fcc9dcf03724b8db5c9bfb593ae1cf68fb9bc72eb1d15274dcbbf618b", + "tokenizer.ggml.token_type": "d70a88809fd7da6f1f028622685cd64268a7a922c5d343c96f25b66327358978", + "tokenizer.ggml.tokens": "765b529dbcbc42dd202ce657341c63807b51f3b07e09898f6aa6196326865d5a", + "token_embd.weight": "b53102a11d9064bbd404833e3464b1b13e08ce73300b442312cccde2f19b2698", + "blk.0.attn_norm.weight": "7318df3cca9e8d153ff0a503026a1265e63d20b2a8c1dd7a2769585082b5d1ee", + "blk.0.ffn_down.weight": "b950806a1fc722c9fad7fd0b20c3c0a7fb50f14395e1e7663a590bfd62e20900", + "blk.0.ffn_gate.weight": "e73e580af6d4f08e060a74a3c25efdf5d3bed99e183d95a5a85ae859014839fd", + "blk.0.ffn_up.weight": "c8158af679ef99746da1befb67eebb19489e0bbe6ce7d97e13e348508244e516", + "blk.0.ffn_norm.weight": "7ec69c3c31e95e49a3359003b0033f6b9e85561a3e3fd83e7476661ecdd756bb", + "blk.0.attn_k.weight": "2732303257bac969b4964e0e32ec08b5a7f5c031bb02bf6ac4467b3ea0ebcf1e", + "blk.0.attn_output.weight": "ecda1d43b4ccc91cd5b366d7e7a275353990ac78561a07c83d9c77031aba12dc", + "blk.0.attn_q.weight": "569b1f5faf92b6f00910cf7effb2d5862f91038ce5c3b0019fc10e5d79fbd5e1", + "blk.0.attn_v.weight": "aa8416c5ef7e32fb54a1f20d6ac651656845d4af240564b397c39bd83e06e3b8", + "blk.1.attn_norm.weight": "03327e02862908c2a44b2f52decdb924bf4201f400b46f8037a9cb2e1d7a61ff", + "blk.1.ffn_down.weight": "5a83a87603f38c99f8e1e370a2d5f967bb45ac51d881a609304a7811027321e0", + "blk.1.ffn_gate.weight": "31da0572c79e655186c721c231376f85e56cdcc6257c28d08c8c5b40d5c22b40", + "blk.1.ffn_up.weight": "e0c811d64ca155c8de10a868e72015d43888834804614ee1aa2953129ffbc90f", + "blk.1.ffn_norm.weight": "5861f313d6137d6f0f904d423df47fffc6069e224ff746e1b637ac9c7f0af862", + "blk.1.attn_k.weight": "5fbbec0acca6457b9416ebdcd90e526885d0224537b7628f6be376a7f275313d", + "blk.1.attn_output.weight": "b237c9763fa3f75166a6f70b70f1566e77d0d89dfa164ed1b3137393e90575c3", + "blk.1.attn_q.weight": "c0a9cf4a98b4882b16f3eb2b49d933793dcc5357abb246fd3fe3134ed2b12e1c", + "blk.1.attn_v.weight": "96867111727200cac1af7865189dd41fd62b47584e5e5f33a91f1d34509cbd40", + "blk.2.attn_norm.weight": "f392f8a88ee3a95b1cc19c40dd4ef66317037b0faaa1800f610779e129ee0539", + "blk.2.ffn_down.weight": "73823eef46632aedcc8c1cb08a736b6aa97ca97842cd1fdfc5567d8dec459662", + "blk.2.ffn_gate.weight": "f4909ae19fc3848b00bb8b9050122e74f8e903b89e22937036f4cc9fea20a718", + "blk.2.ffn_up.weight": "16f4904a3d814ea68f00519724fc4943e48444a84c786bda39aa5efc298a7d84", + "blk.2.ffn_norm.weight": "e3ccdf56e75cb969f6f69c39caf6daf7c4e70e89e25df0f4d2e4bc60e159aafe", + "blk.2.attn_k.weight": "c3beb1e0a11bcf007ef0f0d8f6bdd3082d8b29090cd29597846b5d51e308a8e5", + "blk.2.attn_output.weight": "bb9f66c32cff51154fea92933c2cd62549236f8cb1a767f9ef28d3f99809b343", + "blk.2.attn_q.weight": "8eba394132eef2a05c5a92d62d2376000f7948448d7a2dc74e6b608203add20d", + "blk.2.attn_v.weight": "88f61f77c53567c617db3eef8f30621109a750e679f6784f7911739bd42c2f02", + "blk.3.attn_norm.weight": "7b996675b7ca75fa24107b3ebe0788653ede0f49ac83b8659d71ff54d591f81a", + "blk.3.ffn_down.weight": "2cb332bc05e4821962fdc9dcbcc7cc12630f32117711b687d18fb53c0bc4fbf4", + "blk.3.ffn_gate.weight": "340b387c7f208c8f0a6db904ef8d87c1e84b7d6ad57177abd32d86c8d18b760f", + "blk.3.ffn_up.weight": "07484433f8a7ee061c55aa0de2ecc009f769b0617c9c0ec096e9bb2946df9f0e", + "blk.3.ffn_norm.weight": "4f1a4ade36b393af341240bc894a2aab09cff7e4d56dc4658445deb107f9371b", + "blk.3.attn_k.weight": "483dcd96acb4528df84b9842970994630dbd82b8715ace394aa8b39fcf8d6291", + "blk.3.attn_output.weight": "beaff0810687923585642ee11d929cbf3b43dc6f87f30ddb552c222ab57bdbb3", + "blk.3.attn_q.weight": "0739355002f6fce520863add697e0ff25fc88215322dc3f993be7bb68dcce7e8", + "blk.3.attn_v.weight": "c216d17b6d90ee3e07f82598b8161fae34de2f392dbb0f745b682b578c324767", + "blk.4.attn_norm.weight": "91ab405bc4ba15bf63af233f266aa43aaab43789a9e6596e14a357c2ac7df217", + "blk.4.ffn_down.weight": "620f34ee75cdc73aecb8949af5fbb0d2437fd81422b6d8eb7acfc52addb9fc68", + "blk.4.ffn_gate.weight": "f6feec7bc9acadf35ec22532f8998d8e50f31afedabb19263590dcf8b9a92eee", + "blk.4.ffn_up.weight": "4a72af7cd28fd07b038f6cc4406678d120517280236ea85d9e76eff40ab2cc22", + "blk.4.ffn_norm.weight": "1805b37b44d5d682bdbd2fadeafb763ee001617d7870848cc487079ee34b21f9", + "blk.4.attn_k.weight": "a1e4f9d97cdf4c1b0d177cf00c4e32d1be30c1984a239b3c9bd73f8848888853", + "blk.4.attn_output.weight": "a1547e2497c423b0aff0eee71d9300d6fdf4e4986679418b6e637b69a9a6720b", + "blk.4.attn_q.weight": "0677483a9264ea6803d03d304d87a54632242cb516e8b76b6e3e8284c2f4de04", + "blk.4.attn_v.weight": "02691ba3af344fcc1969428ab0df811ac94aaa2fd91b0dc4ec1ac0a58806980d", + "blk.5.attn_norm.weight": "ba9c028335e5c895b87a5bd1448ca429248f9746ed97bdcb8679923206117156", + "blk.5.ffn_down.weight": "ccfdc9006acad1940a6bc05042a3947f1066acd671e0bb53b7684e9eea9ef5c9", + "blk.5.ffn_gate.weight": "623157679f1e742ccc3807c0b0153ddc8450104de75ec62f1370ec3807c09cf4", + "blk.5.ffn_up.weight": "05748804c65091f963729b58b085f58351891cac8a2861f5eae26b06aa60b2a0", + "blk.5.ffn_norm.weight": "84bae55af2efc8b8429f09056c8c04990c466dae31cb3f9356038b8957f1b406", + "blk.5.attn_k.weight": "8c766180c726b037d587fc52371de6e3307140c52409011609d1225624b6a3eb", + "blk.5.attn_output.weight": "490b582b3b1dc151ae55aee8b6743dad6c01fb49e43afefb6e68394b74be3d73", + "blk.5.attn_q.weight": "6f7b8ca4d9025ec836a44bbcca46be30c66b471a9fb62943ddff8288b3731409", + "blk.5.attn_v.weight": "9f70df3ba00c9e723214b3da83ff435a2163fff5915f75515c9664c05c866c27", + "blk.6.attn_norm.weight": "1a4a66613a682df6f061fc7c4d986f9f7e9175b62f0c42fc1ef31db536bd5942", + "blk.6.ffn_down.weight": "c56f25e4e49b443dbc82d88311ee63bc1f5002cc67e52f4787fd5f003aedeac1", + "blk.6.ffn_gate.weight": "31a5cf1aa9b831a81588d508550f51fc425f9517c43254d4ef7096d38029cf04", + "blk.6.ffn_up.weight": "ce135f3a1163e0c9297a615bdbe68a67ead21edce8debbfa9f6e15e6af8d4c94", + "blk.6.ffn_norm.weight": "4e328ce0648c94e732bc40501858ef6262ad1161e2e407b0cdcf4813fa9d45d8", + "blk.6.attn_k.weight": "1eb1c4c9f9c4c7ff7f5429075e0dc6a7782bed55109fa88df209a817dd8ef960", + "blk.6.attn_output.weight": "3d32986b56873b88655ee1edabdd413fdd9ab18b82108c9ce90bdbc2d3a6f3a3", + "blk.6.attn_q.weight": "8432f583b3a2809c99c393f9beb077cb0534dd5d247c17108f2986cadc6651f6", + "blk.6.attn_v.weight": "5045381513815bb91839dbac8335ffe49bbc7b0008369de7ea97eb676c5e2b36", + "blk.7.attn_norm.weight": "3dabd003638ec2499bfc8a48c49eef34276caab4fe76894eb963207848c2fdaf", + "blk.7.ffn_down.weight": "194fae858608bdcffd235be59ab119d0b91c8549f864ea06dae69249e099935f", + "blk.7.ffn_gate.weight": "00b24c29c30246892bce0791be804a89701d4c1332777e0bcdad5d9d5666604f", + "blk.7.ffn_up.weight": "44d7082a5280080c90cef9e19d410391de34f212ca0736377769b8ddd0c82d5e", + "blk.7.ffn_norm.weight": "21fe8a7fd6911c64e0d15a788b3b4cb6d71dd6ec51de65f760ee89afbb6ae53e", + "blk.7.attn_k.weight": "57a149eec5f6744a9526cd3925ac073f9d12db0fbcb5afe042ef4dc846458c44", + "blk.7.attn_output.weight": "0e9c28a3e81a2880251ce5eed77bcb8be8aaa1a51c9cb6de820b47ed83849fc2", + "blk.7.attn_q.weight": "15ee75263ee4e2a43eb322bc159ae004bb7d77e3a7e63ee4ddab700430693fff", + "blk.7.attn_v.weight": "440aa970bba4bff429fd7b7b1de21f2ad14fb2952b776cfa4acee68d7c6e9b8f", + "blk.8.attn_norm.weight": "af5b44825633c42c1ae964c82bb2be6a242d3a751f0a91f1bae4f593e8f5b6ec", + "blk.8.ffn_down.weight": "b11c14c76adca94fa200496dd2c10743becb23aab6642443ef1ae6d8710edbc1", + "blk.8.ffn_gate.weight": "7bb03d3325bf8637ae2fa1296b0651356515578d46a7c5ca65c7a923d7de27bc", + "blk.8.ffn_up.weight": "b956ef0a0669b5a9c9bf3a8da2d1c24f52d331cfb7354f6d7c51bd65be355e30", + "blk.8.ffn_norm.weight": "c78c3d748302edfef76f71ea5cb2055c94352122eee8b9b1173779a1814d224e", + "blk.8.attn_k.weight": "c0fba6a596ed9c1c32a7055c31a935a8b31e42b77282ee47c1f03ee3bde736b5", + "blk.8.attn_output.weight": "83cf9947080c5d8d571f04a842bc3dcfe7bbb0195fb25b346e22635e8649f2d4", + "blk.8.attn_q.weight": "47409350a576b333d97b7c877d69f47f46df504f3765102dfc0be9e521c7ecd6", + "blk.8.attn_v.weight": "1999dff91404fdcf1ecb34d9eaaaa9244ec7658a74dec8feb7cfd1fddba0347e", + "blk.9.attn_norm.weight": "1e6e29d5c3889ab4e1b0a5b9998cba60179b0f1fca133515df49cbc19d092593", + "blk.9.ffn_down.weight": "acb898a6490adff592e10b4c62d70edc5941661ee6da44658500e9205357c8e9", + "blk.9.ffn_gate.weight": "4cff63013593aadc3ffbaaa6ed70ffdba1224cd43c3644bf6f4162b5ac1ab542", + "blk.9.ffn_up.weight": "f985b5a2d6cf4fe32c7256301c3c89b8ad22b59e516342c52da42d8110766a4e", + "blk.9.ffn_norm.weight": "0d659c538bc6b21ed0018f107ab674a7424a00a42946c80e07208b479b21918f", + "blk.9.attn_k.weight": "f67611d888780d1b38c1c146b361c65310c8183bdf64fd73e2259985c6e8517f", + "blk.9.attn_output.weight": "f12ca1fa62a02ddc3f77f798bfb5707e0c50bf18ee0eaa67025521a98355f26b", + "blk.9.attn_q.weight": "3865185f4361a645b086ad47b72904c095313fb1c624e511647bf1a7dfc1c476", + "blk.9.attn_v.weight": "92125bbfed63544ab56052bd1e4aa453bbf34c795249ee54cde54907c8c6d1d3", + "blk.10.attn_norm.weight": "5d6bfbe545bcc2fcb2fc75c68f64b1f4c918badaf53e0156fe2d88aa977b2f94", + "blk.10.ffn_down.weight": "1dd9da8b0d2696ab5531fbca8a29c7d67567620a9d3e5fc2a19ec5d7e4c6cc8a", + "blk.10.ffn_gate.weight": "6e55e7f014edaebda0ac6819a426221d3b025c27312a2e18cc5806f31e3db226", + "blk.10.ffn_up.weight": "d80dde54af5db51241345ee8d64c1972608644f4deeac1e8195dc423bf27474a", + "blk.10.ffn_norm.weight": "f6ca65951d58ae3379eee8247bec34ebd0db05674cc9295593573841b8a55df3", + "blk.10.attn_k.weight": "b58e350bd6b49aba0fba4e4dd6865de3a2a0651ab865dbf2419b627b53ffc187", + "blk.10.attn_output.weight": "6b26a986e12fe66ec286a21d7d5af5eaa1bfe6f2bf502165d270e4497235a54a", + "blk.10.attn_q.weight": "3440e0e5b7e0d1e426424ae5a33f4e057be623249e9035ea12e57dbe5d3893c4", + "blk.10.attn_v.weight": "ebfadcfe14bcd6dee933053df0a67e12e7a196d5cc45728c1ffb2a2daedd5ca2", + "blk.11.attn_norm.weight": "3ed057b9576cd2de84507ef64c7646dc478c651efca4c2024cbe91a4f3fbf0bc", + "blk.11.ffn_down.weight": "8ff1c2487d22f5c499761e4eb721418f141f960160d0bab779595a34e4d68898", + "blk.11.ffn_gate.weight": "9c74e4507c7e45bf39b7cc7402198cd1dd77e3fff8c625b0413acaeb16efeb9f", + "blk.11.ffn_up.weight": "4367158007161d29939e00a322bb6776016e43f648a94f9b08a96a477aae75be", + "blk.11.ffn_norm.weight": "1cc0288c1491072121f4c9a0af20be0e13af49895696a3320e4fcac608768de3", + "blk.11.attn_k.weight": "066f5b3c144fce1366835e1ebf376f768b333b8ae29f5b478c42d1d0c809c855", + "blk.11.attn_output.weight": "e0d9f3d3f2c54aed59c02713ea4fb562799ddbacbe67ca3998dfc887bc44e47b", + "blk.11.attn_q.weight": "28d3ecc8a88cb3815e89a7f7a7d043da7a71f702b337a126e4d3a2ac1cd6370f", + "blk.11.attn_v.weight": "7c5cdef10ee73bca0a3b9f6ece5f0a0155664e0ce3d8de90ccdccfab5545e5e7", + "blk.12.attn_norm.weight": "973b133301a1af760cd7b3a7955371ea0a750808b442deb6adaf7b98482bd0c6", + "blk.12.ffn_down.weight": "d6c87b4b4ca03f75546ddd6a9e7fca720585a309188723c1ace8122438d4b200", + "blk.12.ffn_gate.weight": "2189a6e0cab1540bd05d6089b922aa8fd694be51255654933c165f302a0c955f", + "blk.12.ffn_up.weight": "5affbec19b58d092b9305721e3552481fe2eff51269ea3ed91cda3b9ef84d4df", + "blk.12.ffn_norm.weight": "f650fd42a34e950f758b4a130e7b8b1a712b1dcbede0291bb8edde47aaed0ef6", + "blk.12.attn_k.weight": "59b1e86f10450a7cc188beefc0856d2dcf44e8d7fdd9cd8859c30ec1ebaf24b6", + "blk.12.attn_output.weight": "446b0d36b2f66bd72a2323f4f4e9d85a0f621e9a58872e89a27248d6b1123238", + "blk.12.attn_q.weight": "3ed6bfd39f040301ed99fad882d3e569769d594259f9948445bef0e44ec881fb", + "blk.12.attn_v.weight": "e73652cd5d0029b1931be3ba9d82508f6696dce5a29d085476a54fb7a2ddbabc", + "blk.13.attn_norm.weight": "491b85278c0bd67bd31b9b8a9720902c244bd067e53a4a03641b7c0994782e82", + "blk.13.ffn_down.weight": "ad71cc248a85e9ced49307a24a9bfae01d387e979a7689c82ff59998e09741f3", + "blk.13.ffn_gate.weight": "0a55984d53971fab97575ee0ef5882013be7fdecfa76e3fbebb5dc85a07a14d4", + "blk.13.ffn_up.weight": "378b697b35e2e53c0de98e8e29b73d42ae3ec112ec16129aa5997a9e2f3b5943", + "blk.13.ffn_norm.weight": "f8aff2f69ab286210fad45a62b03f8d10b38f96a420d7baadf6b95d7b0b0bcd2", + "blk.13.attn_k.weight": "25ceb841afb1034831bea7f4d6a6c578def2ce4d4c412c780ef147dc9a598360", + "blk.13.attn_output.weight": "a242b322889c6bdaa14b67a7bab593db39df8eea3721638ef639abbb74d482e3", + "blk.13.attn_q.weight": "d80be9945a369439e835c55cfb0e97828b8a66bb7ced534d9059c92487bf20a9", + "blk.13.attn_v.weight": "ac33274cf9b67979d9ecdc967a55175afe0c9c4aeeff6391433cd9840c818706", + "blk.14.attn_norm.weight": "12a1e1091de5b2da12c9e7c0b1c8e6f09ce2a749733cf7d5240445b8e21cd093", + "blk.14.ffn_down.weight": "cfd41965c88266e32bc2dcdadda512499c35519e8686fefb9a7f249ab2291eb5", + "blk.14.ffn_gate.weight": "8dcfe774f07a095c7c6cf0a901c9df70d938bad7b5ba347fbc8f694e7603c0d1", + "blk.14.ffn_up.weight": "c7995577fe4a72ea0fb17c4a7b6b87b959072bbfdd5edacc6c367d43465809ae", + "blk.14.ffn_norm.weight": "81c41ebde41739e7016ffec31d2256217b825dc3cae049a935f5f61a60d22003", + "blk.14.attn_k.weight": "fb708bdebe4384f5c4b479c110028554f4d122f166b8091eda7d8d65e6780eb8", + "blk.14.attn_output.weight": "f5295caf2dfdc60553dcabe17537a80577e8b153c902247daac058df23542514", + "blk.14.attn_q.weight": "c12b7a3601c68c63ab5dc9d2599ebf3f3a10abc2c59d3a2126fffd5818f2763b", + "blk.14.attn_v.weight": "1ce968d9149bf0d5e237d52cc6d6433565b4bbf03252a736262bb00a2b34a687", + "blk.15.attn_norm.weight": "266fd2c36d7dcefc6b6bb7f1c9374c41f2bab5d6c84a063b6f91c4f682dad3c4", + "blk.15.ffn_down.weight": "6154886e9ef0a6cc08ab0d264a35f497e6f0987efdac992ed04e87088bea7801", + "blk.15.ffn_gate.weight": "183d9fd3c1b5657840099053d2fd3f72ad953b1de523296159b7761f20491a76", + "blk.15.ffn_up.weight": "51546d4498842ae2340ee226a0888d5f61e7d2ca4d052dfa06a77b0451242d3d", + "blk.15.ffn_norm.weight": "ef7378091a41a25a5f58bf1bf9d3bc64ea562e7f421e1c232b1f177c30fd3500", + "blk.15.attn_k.weight": "8d556ab8d9639324141774999b6eed0e91d7ee645bf3e7a3dcd200b2e7a00751", + "blk.15.attn_output.weight": "54aa6ba87def7cbe18b0c6ab3aff5c351cb3b6ca4a0d7b2cd5f75a1312991429", + "blk.15.attn_q.weight": "10731b0dc031ea8e0ef37bd7f010e0a78518a10a6df05a8bae48e3148b73ef3e", + "blk.15.attn_v.weight": "cbbe50c2ed7224866d3cf9b489c599f3ec41a4ea1aa3181e9f4e87e1fa0cefec", + "blk.16.attn_norm.weight": "387058eb39d4b28c04cf1368247417f1faeae8ae79d894c9f293457e0eaa00b0", + "blk.16.ffn_down.weight": "2cb26ccee585e933401ad5c82ed36ddacb3289efa0b28f8cf91b020ffbd9c333", + "blk.16.ffn_gate.weight": "d745985efb5bab42304e5d509024631efe35f92f2b2ec4931ead6db97ca9727e", + "blk.16.ffn_up.weight": "7a67bd195e0642828ca36eb7818149bb70c2c25f82de07e2b5807c520daf540e", + "blk.16.ffn_norm.weight": "7cefd061c8182482a89272f8a4e88a954b12609a62716923ca1cb3593b1c1651", + "blk.16.attn_k.weight": "d7968a2de67e755b4533e061aaad1cb62f8882af92dcad67f99d6d5112513439", + "blk.16.attn_output.weight": "9e9ab5788272ca3394ea89eadbce8c86ecc3fd75b7899184d6191c134ad9aae0", + "blk.16.attn_q.weight": "ef81c261b536c1a3a093b33f44cf2d42b86e5aa2d821674f07a0c80e992ed925", + "blk.16.attn_v.weight": "aef38e7958301b4a437cbdd2fbae6197f677b09269ec1eaf63188cd5da428d25", + "blk.17.attn_norm.weight": "28f6b289f1bc3131041e9f791b7a2a3a48baee0dfea27bf7051ebbb7ed364d80", + "blk.17.ffn_down.weight": "1a502829aafc6a9bd6bc81f12573bf8632d5c8c659f0dfb13c8b2411f3b1ec05", + "blk.17.ffn_gate.weight": "ddfd8aa0eb98846ebc9afe31366249159f46ae9815199dd70161527ed241ac4d", + "blk.17.ffn_up.weight": "4211a3cc247071bd361b30de2131d02382f552855062bf3b3e004c17992e5d09", + "blk.17.ffn_norm.weight": "647e5fa99a5b0d232af36d15816539f4d27e60a50a341b00aa88bb6e4474f8b9", + "blk.17.attn_k.weight": "d9125ff33a19c502c0f8846433ffc24395048582fc2f463d34a0301a82156f02", + "blk.17.attn_output.weight": "3d64fbb1cfef04444827f37c35fd9ad3413eb2165094d339ef89f00503f09de4", + "blk.17.attn_q.weight": "e5b29424028f578beca385fd82e29f37adedf3037cd51e5889d5a1ffb0428ca7", + "blk.17.attn_v.weight": "1809c5aaf2ac04c5d65539097564ad62796e87d24bb8b9ce5b095561a61d908a", + "blk.18.attn_norm.weight": "99daca58d001c627523d3adfbca1d95f04e590382a326866544d57989d5f4835", + "blk.18.ffn_down.weight": "84f30231ce6ca0f10227541dfc602d6418c1a210386b0c4926ef1656e7d4635c", + "blk.18.ffn_gate.weight": "ca5bbe4468b541740e54f69b9e08fcc8e478c344b70551dab21b1206acfbaadb", + "blk.18.ffn_up.weight": "0b3067b9dded31686dcfdc1e247eae3974a28a61ac59e9862758dbfaad64e8f7", + "blk.18.ffn_norm.weight": "8154a102232dbc0f90ce77ae5c1ff8f26f8b6e4dcf326e9ec1645749669e7960", + "blk.18.attn_k.weight": "25abb26021ccc481471a30e0d4cbeb7e1db29828417ec5136edeb93fecf09ac4", + "blk.18.attn_output.weight": "d87d481d9b046b68efa06ccdd4ed8cbf61e692d61114b75b7fad5ed75f5d87b2", + "blk.18.attn_q.weight": "cc6400379e15766992ff1293be79dc67682c28e9e15155a78109f4b64653b164", + "blk.18.attn_v.weight": "45c75cb1dd496aea3173aafe2575b841dd1d02cbe010b3198099731eb98f531c", + "blk.19.attn_norm.weight": "65389efc75297684773284ef8e5f8789a4504b636c9f33b8a32e0ee42499fa72", + "blk.19.ffn_down.weight": "4eefab7e939f64a17e4a214ca3c77a6fa110d94f677e2d6401086f70fc538b04", + "blk.19.ffn_gate.weight": "f1c0a59cafda66f466ab585b0b8b4861b58abe87a67cea1f6a488492242edfdf", + "blk.19.ffn_up.weight": "c42d045eef588db4a0e56960a57e110e1ff92eb8041107d19899165fd3b90f17", + "blk.19.ffn_norm.weight": "a8f33eda6d5d62ff5f333ad9771783caff556641f4e7df713451385676f441fa", + "blk.19.attn_k.weight": "0bab5d9e9083492bfb05a5a3bb23b79c0e7b99ef6a6644817b4d57d5c453b8a5", + "blk.19.attn_output.weight": "c99c551d70eafad0f7aea98fb6f9251635897168eb3895f76abf0d4ea3b3aa6f", + "blk.19.attn_q.weight": "c98bde95627c3b54c9443813ca50b4e14f518319681db6bbf7b2332ba26e9a60", + "blk.19.attn_v.weight": "ff3a490518cf64904db89ce0dc7d6eb89e870f1440e41883c6b55a221f82de84", + "blk.20.ffn_gate.weight": "761f0e317229cafe9d3754048ab038a0a84e9a287b196ab65f633139f2d29aba", + "blk.20.attn_k.weight": "45d13439b41066d282e8490a726785abf513605f46c79bd0c840f6419d27e790", + "blk.20.attn_output.weight": "a3b958d84b4a097844179b7d55c18fd0e4f319cb15e918c6fde33b68de1bcac6", + "blk.20.attn_q.weight": "127ab8e7d8c3f882874904196a02712bab42e6744fde45871b67350609d19f5e", + "blk.20.attn_v.weight": "5f0ad2d14a8ae42dd3bbeccfb33295687a14055fa92c54bc946249373c1c9f17", + "blk.20.attn_norm.weight": "77300b1755edc8c70089e0f45efa646056b9add7d8568b2324d2f3e62b64971a", + "blk.20.ffn_down.weight": "ab93d0e075b42e9017b701a070d561e698050d90aac4b4b9919256fbe50c3204", + "blk.20.ffn_up.weight": "4fd6628a07acc57a48d1ef83f81b7d7aa0bce569c1160a99d307284f8821322c", + "blk.20.ffn_norm.weight": "2a9e46b9e48e8e55215de56592e1f189530037c1c94a1428e3d6f106c7f26fb2", + "blk.21.attn_norm.weight": "4b3b5912c7bc61eb9da8e47d4651f896e85d9e59c4ecaa65df7acf3c21737298", + "blk.21.ffn_down.weight": "7146f931663d93b8771cd84405cd4802ea6560d0729b0d6d44588203c095bc53", + "blk.21.ffn_gate.weight": "b44ec5d64388fa40b90b3e9976d97a8b6800fa3b97584f32e64b03daffb8601f", + "blk.21.ffn_up.weight": "0cf3643fd23c685e17062cd11e116e17ce57a405e5e78953bab94cd62fe48789", + "blk.21.ffn_norm.weight": "4ef2cdb53da166df70b39f3e6b17af51848cfa5ea3c27ad6a1ae2a1bb1da1ce9", + "blk.21.attn_k.weight": "5d40f32a706f670c19972b14176bf660d5b045e3637b110dbf8d7de4ff32101a", + "blk.21.attn_output.weight": "18afaa916752ce16c9653ec0ec7e2fe60be55faa2aa5025d147be184adb75cac", + "blk.21.attn_q.weight": "2621daa5f858931514a4b2f0fe8d81cf9b96f541e6af99bfa7539e9bde8e34ee", + "blk.21.attn_v.weight": "63226dafc54c899bbce4aa49efceeedd8908e94faa613450fdda91f332b62864", + "blk.22.attn_norm.weight": "cf3058daab4d2c04387e7d169d1553bb8e7358eea66285ec067703f6ce62043a", + "blk.22.ffn_down.weight": "6a58d5fd220abdbac6cee7ba048abab794731af318f04982c2506df59413d0b3", + "blk.22.ffn_gate.weight": "d5614535324b03c7b91727a903b2a72f8d07ad17f7aa8b61ea173cf9b895069e", + "blk.22.ffn_up.weight": "ec20da3949566e93f66cabb67f8cd7eab399047ec6ebf5d43edfaf3669b82296", + "blk.22.ffn_norm.weight": "84c82f38f53a649972a44466fc476bf764e064ce18de870291edc302f3700e28", + "blk.22.attn_k.weight": "a3d2ecc37fde7c201176bb8abadf27f0d8ede9679a6034913e03d9db924fda12", + "blk.22.attn_output.weight": "5a3b8bb433f43a387df43dd371bdf80ddfac986dfeaf38e9bac1d7a0ec6628de", + "blk.22.attn_q.weight": "3a875cec661b4859f30a8fd2c866811184b25b68c9e36fe2663d299caf8b59c6", + "blk.22.attn_v.weight": "8717a83b79035058dcfd3ef6f8e5b36e71d77379e5a239e1899eef8766fb7703", + "blk.23.attn_norm.weight": "2b4a68a0a2f023dd646e4755c9bef17c2f631901154afd839edac7ac006ec99c", + "blk.23.ffn_down.weight": "29499b1586c6fc4883c9b7a9c8cf388035146b5aecf90c5c4c8c8e082c71e7d7", + "blk.23.ffn_gate.weight": "7d6554036d21c587b9b556428054f9c15cbef96d24b257f906fcef4ae38bd9c8", + "blk.23.ffn_up.weight": "19761ecb288d6ebd44b681c4535661583b1e19dc29e96d0c007333cd8f00aacf", + "blk.23.ffn_norm.weight": "37dc35500790a4ca33807b39cf7af65065e535dc25b9e94f3ed2759f61887ac9", + "blk.23.attn_k.weight": "717547d00323817b0cb40a72ec5f8cf42ecd1f9e3e42715c2cc5e38f07fffffe", + "blk.23.attn_output.weight": "a24786feb6a905fdf166d7500133757cbe494779d4ebcba9eb03046b319557df", + "blk.23.attn_q.weight": "6a2c4a98f138b928d22136efa163562691d3b4ed526d52d46a2fa2694a8f3965", + "blk.23.attn_v.weight": "c6e6081eb9c38a7fda023085957b460e9ea321e1fff408b38c2b58595c39979c", + "blk.24.attn_norm.weight": "5e6283f891e538670425f3e244b08dc6f96f33dfa4aefa913f8eb17212421850", + "blk.24.ffn_down.weight": "e09eb170f389deea0a4a1cbfdb52c12490768a2c60491b7bef8a4c445e2a08f5", + "blk.24.ffn_gate.weight": "af29d815cf49a38fc2ebd0bf9b2dd9933d023a29f2d766981acb9a1b53f09117", + "blk.24.ffn_up.weight": "36ccd9333426666de9d3088bd4dcdf5b624b09dca9e3a83a22fc0383f2d950fa", + "blk.24.ffn_norm.weight": "a88e1692318826db6ac42582d182e51a3c698c655d0e21e04fa086318832d07b", + "blk.24.attn_k.weight": "f7d61d6d1225289bcc502e3bbb0168b4584add0253218c1b77ac92ccef9a1c2e", + "blk.24.attn_output.weight": "85a1363b3ccc87312094c2195022687c16b0dad7fafb9e80bb4ec474d53c29ac", + "blk.24.attn_q.weight": "53482a2c008f42f4fad779ca323addc3712040149dfc12f782417756388a72bb", + "blk.24.attn_v.weight": "67498272369af7dd10097c73b07f731b565cfc9a559e711cc0d526389e7b44e2", + "blk.25.attn_norm.weight": "98dd617def5cb7825ee4833132ca2da2121245921585e1d9e36b93344adc321b", + "blk.25.ffn_down.weight": "7fd477d6c50aed5f424a878dd284343379cffbee8a34c0b6e55100c8305fa13f", + "blk.25.ffn_gate.weight": "f892c9806c8ec22e8aa746734ac9213428c534921cf161239e1d249fdb5d1ec0", + "blk.25.ffn_up.weight": "528bed14c9bf9762f790525ee40412545221f4321d2a2323fa8e73c58b7643c5", + "blk.25.ffn_norm.weight": "ca5831966672e7be6a578feeb631ec3570d3b5afe12860819ccb96e896ffc346", + "blk.25.attn_k.weight": "610d3068cc9b20401f0c3a0efea39a279dd9f564fde19baf3403b2ec2319e4c4", + "blk.25.attn_output.weight": "798aaf702e53b657265ac3b5e6caf3a0ab515bdadfeb1a3a156b4f3bfba76666", + "blk.25.attn_q.weight": "8a7fa25248de83029fb97b51d036a01baebe31fcb4be121ab00dd8b7de209b10", + "blk.25.attn_v.weight": "2a53d5e9f8a1218c66958c6388d3b37400a9af7956c785024ca44bfbc3c7d371", + "blk.26.attn_norm.weight": "5f44fc043481eb0771f3e6d2420bcbcf73140afb9a9feb8eddb6575452acebee", + "blk.26.ffn_down.weight": "944a60a409d0d5b6a851e33c69aca152454b691711a8b96f5bcc488772ab2833", + "blk.26.ffn_gate.weight": "2a0ca4abb3de5593e6693d8be69b63d6d1a639855ac8332a75f520353f030c62", + "blk.26.ffn_up.weight": "0b1df496163f9ac07bf89375d3eb441b51a81d41b47d769a04a61efc18dbe35b", + "blk.26.ffn_norm.weight": "56b8dd046e9be6ea71f7efd80dbd14e7fb1aa020d3cd38e063275f3873fd12f8", + "blk.26.attn_k.weight": "b1dabfabb970e6971c7ea6e53c63cf7ef56341e6a2edd9cf177785cad9af2f9a", + "blk.26.attn_output.weight": "39532c7e836baad164a655fb97ec5114ea4da37ffba9fdea2684f6e4450e6f84", + "blk.26.attn_q.weight": "8f48bf6aaa1252bc149e98af2be1777a5c0d2c3274c6d314171ea9344a41b604", + "blk.26.attn_v.weight": "02fb145f7fd905133750e90571effacadddfd3f4966552dc59982ac3900ab8c4", + "blk.27.attn_norm.weight": "654d168fc3cab716d91261f5719f180b7d697218401633b4878a759f1b5283f2", + "blk.27.ffn_down.weight": "2823272bec3a1c12f02cc4cb24aa4031abd7e9dbe0b02676e2305b21671818f0", + "blk.27.ffn_gate.weight": "b1a1d40cd02f97182cac17a79971d1934ee0daf3aa0bf11303568c636e208a64", + "blk.27.ffn_up.weight": "ed62ec72a020d070e64eb7b50237b32213944727b5b2427f45d989f50df5fb2a", + "blk.27.ffn_norm.weight": "c69649ac65d694b306a905dee8b03b89eec1ed188b1eaaf38f8e29d4b12e38a0", + "blk.27.attn_k.weight": "cc57bbf413f1fd227128dc66efc8590c73634cbd6f96d01ec4878b5e7ca6a925", + "blk.27.attn_output.weight": "cac407ad02361d53207b3c7e25ceab84dcb4347b8087055162e2efe14d11d84a", + "blk.27.attn_q.weight": "0af18e07cee12015761c07c94407024f4f4d77d97bdb24163db0e16669e2cef3", + "blk.27.attn_v.weight": "a1d08fbdfa40af773c5adcf93bd68b78a44ed144e3fc6bbeb8af02e937527eb6", + "blk.28.attn_norm.weight": "f39a51f814512b040a1082143150e4a49ff730f85cef49d7f77fc79d83e91f40", + "blk.28.ffn_down.weight": "74f29ed51055d1c1adb8f0660bbe538a27e016c65650f2d67efc6f1c84fa1b45", + "blk.28.ffn_gate.weight": "ae48bb16487ded6781c60aafc0bf738fb4ae15729952906f247d216592ce249a", + "blk.28.ffn_up.weight": "543009727718ac22f11ee4b17815f68ea6f15ba1f3e7ed5ecdb755cf6417565b", + "blk.28.ffn_norm.weight": "b8f9e54c322079ff20a82b88948cdc2916c22c7db40b9a9ed6d3cbe89efb727e", + "blk.28.attn_k.weight": "55d055ba653b728d6e784f9e013786fed07115c9fdf23367e3941386d5e77db8", + "blk.28.attn_output.weight": "155101c03ddbf18f4fd0694bfc982f33c7bae25c9b087d6f5273c2bfbffcf2c9", + "blk.28.attn_q.weight": "1ed19bfdd22e9c14eca014739982492e9516d411515a8585f65cf754d849e53f", + "blk.28.attn_v.weight": "11ba854dd575c025d37256eee9041f6d1bd2b549a083d6409a09bfc1542913f3", + "blk.29.attn_norm.weight": "02b0bf5e2fcefd11a153cc988c81ba672682e4844fcf6442423e21a0e10d566d", + "blk.29.ffn_down.weight": "594bb692ec2779938721ff4748666ca8370e0e4fe85229503f616438b8884f5f", + "blk.29.ffn_gate.weight": "8bedcf47e91dcb2cf4093de56b048ee411faab6ff472f89ab2c9c113a08e6967", + "blk.29.ffn_up.weight": "e241a547b5fd6dfca8200b8141e21c1c487a96cbc4e5855f181a7ed1be91b642", + "blk.29.ffn_norm.weight": "e63eba5e4c6b288bfd9f15e46e236086456c8b7f1f9c732c0b5de84962a2e7cc", + "blk.29.attn_k.weight": "afe5979d5bcf211aebb526620f5974bcb0a2c39c8be71e815575c55d6385e3aa", + "blk.29.attn_output.weight": "9c944ed44b124b014906fc240afd3b90aed56bbd9567f2eddfd5b7a685b3cb48", + "blk.29.attn_q.weight": "e234e08e5c1bd9245a2edc8d63e9933b6b879f97c01392209cad4f55f05f3ada", + "blk.29.attn_v.weight": "5cb8e3e5f954e775c5a5e4de7a9a62b17e9c6931bb0ff0e2f82c4126fd3e1a1c", + "blk.30.attn_norm.weight": "a65483ee51a0b214144ec8a14f28ea5437586e9e12ebe342a57d1f8627ee12af", + "blk.30.ffn_down.weight": "417959da77ceb33ead4271cbb9428b195196173a893c44e52880a7ec61b4856b", + "blk.30.ffn_gate.weight": "a0d503ffcbe45dc927600bb98c9f6082487e65cb577ab545add400d666a87638", + "blk.30.ffn_up.weight": "f8ab957b82ffcd10b21303cb5e866209b6fe95f827b1b94e9a949207952d12c0", + "blk.30.ffn_norm.weight": "210c7ceb0514a9ef27b5d4d1b3aff6dde43f1af0345a050d71097940e0e73e03", + "blk.30.attn_k.weight": "16861b9abcf5a3fe73c93d977ca45a1e6daa65be0fd85c2cff53486ce2033afa", + "blk.30.attn_output.weight": "ca541fb2e57e2257118c35784845b0c731278af8db3036ac53d71aa1681fdbdc", + "blk.30.attn_q.weight": "f7834917748e26bb456b945e230bc926c228e93696bc01fbc2b134bdeeac71a1", + "blk.30.attn_v.weight": "9292783171dbe5eb689d17c9bda11e537f0e9b328fced6986c938d61ed590e81", + "blk.31.ffn_gate.weight": "e4766a04bcd8f937ba883c6a144101e546747804ca66c35c97281d6ccb47b566", + "blk.31.ffn_up.weight": "cc1e666116f7e6b06736db4aa4b81003c583f54f4d9200bfa48842249940e16a", + "blk.31.attn_k.weight": "fc80b57557687504efae7d24265cb7dc39b8f826bb3d897a11783012dbedc44f", + "blk.31.attn_output.weight": "215617f50a1f5d9b2250b82f3652b35a9e9aa0ad9ef2b485d73965a14b2b872a", + "blk.31.attn_q.weight": "274b4f1dfb0bdec28632705677049fb3e327ce6d9e1f3baaad1560439039982f", + "blk.31.attn_v.weight": "e641b8b926f9dfcbbf6b6da1c02555525ac4b1c306d96f20cfbba7d6662c4e56", + "blk.31.attn_norm.weight": "b3243c361d4041ddb892ce6862dd5091f57d87357e3c67e177451b85d8baf34d", + "blk.31.ffn_down.weight": "0a00cd3ecd5e91624a27f9e239b1de425d5ba3cfff82c256a11a4ad434abf3c2", + "blk.31.ffn_norm.weight": "2a0d67ea2bb1303975712243f07273c92fce83baa11b1cd6d8e42e74ea3c810b", + "output.weight": "768615f077fb797967844571c58b94d7c399d884d115be3ab4b0154504cae892", + "output_norm.weight": "7cc5b7ce10e5082000fa00bfa68af8c7c5da218e59e2c41cf2f1499d40ca229e" +} diff --git a/convert/testdata/Mistral-7B-Instruct-v0.2.json b/convert/testdata/Mistral-7B-Instruct-v0.2.json new file mode 100644 index 00000000..88d447b3 --- /dev/null +++ b/convert/testdata/Mistral-7B-Instruct-v0.2.json @@ -0,0 +1,313 @@ +{ + "general.architecture": "llama", + "general.file_type": "1", + "general.quantization_version": "2", + "llama.block_count": "32", + "llama.context_length": "32768", + "llama.embedding_length": "4096", + "llama.feed_forward_length": "14336", + "llama.attention.head_count": "32", + "llama.attention.head_count_kv": "8", + "llama.attention.layer_norm_rms_epsilon": "1e-05", + "llama.rope.dimension_count": "128", + "tokenizer.ggml.model": "llama", + "tokenizer.ggml.add_bos_token": "true", + "tokenizer.ggml.add_eos_token": "false", + "tokenizer.ggml.bos_token_id": "1", + "tokenizer.ggml.eos_token_id": "2", + "tokenizer.ggml.unknown_token_id": "0", + "tokenizer.ggml.scores": "e3d3eea80bb41a1213f2d0aa3e8a38581d1f19323be77dbd779c9c7e3b72e676", + "tokenizer.ggml.token_type": "6040635e6bd38d98af06698feb75c1802bad35180ee6ae0a503e38c0f60fd71e", + "tokenizer.ggml.tokens": "604ac4bfbd019e430d7b6cdf18c6c0cd5b967900601f0307f714ec7773aa5ca6", + "token_embd.weight": "cde834ccac5e94324b25cb81b02d27312cac0c551b55a7e1d555d90bf6cb6e81", + "blk.0.attn_k.weight": "458bfdd9715c66e017c2447b1ed3c582963a3111479314e664faad8c914f42be", + "blk.0.attn_norm.weight": "e1fd60b95f713bae7b7e3ca933c64ae6c9cd1e8d808000204bbfdc19f0ba635b", + "blk.0.attn_output.weight": "df13b6a157d9d4f96c53b012b3b9bcd207d0c94144cbd22ae3ec13bb07d6c373", + "blk.0.attn_q.weight": "13b4126b4245bf06c915a93317c42b8174e05053535ec99dc576541e4cec7c25", + "blk.0.attn_v.weight": "5b1781d3a341214511b27eb4e268674ea3ea829dbdf8ae5a6bb89b3c0b33fafd", + "blk.0.ffn_down.weight": "49186f5d8148d316b07458841d13a2e66587f4af69b776188a809591ed9c070d", + "blk.0.ffn_gate.weight": "4397e30ece09136f00f4ff84ff49e5241b765a374deb8c5a12e897e2bf73473e", + "blk.0.ffn_norm.weight": "43260589aac3850a779bca3f9649f793bbfbe5db538361cb743b3830217f8287", + "blk.0.ffn_up.weight": "fd7ac918240a07566f6967527ffca58fcf433a30b78fdd6d84b2136d4ebd9987", + "blk.1.attn_k.weight": "209839566c7d235bdc20565a4766378b6ee8553133a5a3315abe8a85baa80712", + "blk.1.attn_norm.weight": "58c52986f7c69784ba327cb7f350923420782bee17fa39b1fbd13839d4005357", + "blk.1.attn_output.weight": "5067cc628449682665dfcf59b16e58fe2a9d2a81cb099f0fcd42f4f8670c6740", + "blk.1.attn_q.weight": "f410f9f0dd5edc09401af597d02e2a4c727f1502ec3ec3898321617b36c6df6b", + "blk.1.attn_v.weight": "d40fa49e07c102c0644e130e7909eaa93ed0d54e2edddc0759e721d58a4e4f5e", + "blk.1.ffn_down.weight": "594b1eff6ed4defbdd819fabbe2d48764984f08878a860bdb808511d5a25b8db", + "blk.1.ffn_gate.weight": "4cda97541e388a5bb607ce4cc8b3db1da7045830a630e7ba4d17807befcff346", + "blk.1.ffn_norm.weight": "66c13d7481be65b97aa474735ddc9674f33d512ddda76fa6fb45c7464b09f1ed", + "blk.1.ffn_up.weight": "1adc6de288ba4cc1237833ca8b4eb81107149842e38bc452e18e5cfe284338a2", + "blk.2.attn_k.weight": "5420423559f236ab22d85a00849f31e0cc6e9c7dd879de724393d8cd2b379153", + "blk.2.attn_norm.weight": "495fe1ab40cc52aa054ddd4f0c2d2790f4326c8d103296b1b38f3b1060db2a24", + "blk.2.attn_output.weight": "ccb83e7085381f558bfd65588c525ad2671feddcbc3887afb4038ad9c7aac348", + "blk.2.attn_q.weight": "2e8f77478392bc93c2a391f2e0f4a173a952bbab88a7aca099c6ee909726409a", + "blk.2.attn_v.weight": "d64512590f3b7ebbb9e77c2eb97fbda90b00d45c944f2b174f03a2cb11007567", + "blk.2.ffn_down.weight": "1de5084a05dcaa6b1bd926e83517dbe9ebe7fde79235fe56018b3028b1aa6397", + "blk.2.ffn_gate.weight": "cbea526b557f49aad8c976973cf367fcd12175b900f551984f498b9e07e4b7fd", + "blk.2.ffn_norm.weight": "530aa49b10c7eae08899d143409240deb95dae4e1d5bf78cea3b26393cff3ba1", + "blk.2.ffn_up.weight": "13a5fc19b96b4dcc1e9bd01998c8272ebe52034c1933ed123a506b711fae9a5c", + "blk.3.attn_k.weight": "1913b63a73305941d8cdc472e7f101c633d3357a78602eac0a4b49a744261075", + "blk.3.attn_norm.weight": "9c11bed5ab41f4adbfdae4ead65b525c8f19443e656a8c61ba412a4e1ad1193b", + "blk.3.attn_output.weight": "bb0b42c1d34779c5943272ed71f1dbb31ad8edd75f8bcd5c868f88505ac3a610", + "blk.3.attn_q.weight": "3461a1fe4e49f5319ea047cae98ccdb46528a3ec23831183fe87610b48c94948", + "blk.3.attn_v.weight": "82aa30be6a61526a41fb79bb28a2617416f5909f0477aa9e95e16be9370fcb38", + "blk.3.ffn_down.weight": "68521011ae03f5e3b0966127111afa8ee9f2eaeeef8d3a0b86b633e0332e9fbf", + "blk.3.ffn_gate.weight": "1e89e26338fd364bb679695968c65106382f15ad55c95cbb5ec9bdfeb766f432", + "blk.3.ffn_norm.weight": "c81932529a5a8c417c27b888dbe95fff8b447c2ea5f6f560444ec5d50b93832c", + "blk.3.ffn_up.weight": "305021735afd8669afefd713f56137248d5e817e60471a112ad06b7fa07ffe88", + "blk.4.attn_k.weight": "cc26ba5c5c28082a79e6abfe61186029e80b145252ca6a7924c437f0bcf2d51b", + "blk.4.attn_norm.weight": "302d251fdcc91f7468cf33f80b49484251d8917d7018ad264ab3a85c8ecf9ddd", + "blk.4.attn_output.weight": "a012f5bee3520cd4ce51f0076c132ebc3653309f304032ad051aa308f55f36de", + "blk.4.attn_q.weight": "3c8d607e447f5ef21e73af71e3c0d32fae16f91f31faae34ff06912cf9cb68fa", + "blk.4.attn_v.weight": "49f6c81a634ce46d71c2350206ecbd231b1732af96e4e4e67693c41a07e007d8", + "blk.4.ffn_down.weight": "e89504f311a4a34dc819a67b761022f14d71c43df3ead4f892c87aaa8e9f0adf", + "blk.4.ffn_gate.weight": "18b22f079a2fbaefe3572eec61fdcd996fd747724e2f0ff4f08cfcb43eb7bfb6", + "blk.4.ffn_norm.weight": "22415a492c168a0878912b05c854a631228b01c3ea8842e1d75989ec46c18a65", + "blk.4.ffn_up.weight": "f57379eae2874d8853f14ddf0f0fcc4ff1338574d5ed5d7e88331d5fb84f5642", + "blk.5.attn_k.weight": "d627af853c40bddf9762ce3988008c1ff17f2686fa8f73a0b5da38010147c316", + "blk.5.attn_norm.weight": "9ce01092c7f7f1c3ef72d6b794da12d77aa1f6a24fb96ba1b9bd5a0bcc3e2443", + "blk.5.attn_output.weight": "0388da8064c4b6b795ce2d8079e8a36535e82b2c9cf794e38ce8ae460aae726d", + "blk.5.attn_q.weight": "039b7ce1c909761fdf475c06cf14cabe5a90199282c89e4dcf460e95a4b6275d", + "blk.5.attn_v.weight": "c47bfd8d2496bdb6e00e03b903e15fd0ee806a515094ec257e43cc433147ab7e", + "blk.5.ffn_down.weight": "1d62e6708974bae318cbf00a8bf621d9ba0537e549ce4710a536520a8d14168e", + "blk.5.ffn_gate.weight": "8b42b1b11c92db19985094cbb50434e3a7c9cfea71ee6f21ea79eae7c49284a5", + "blk.5.ffn_norm.weight": "e0bc520f1505e687ec391d632a381d38d8ebcdec19f614a11a2000ab573e8b7b", + "blk.5.ffn_up.weight": "8cdcd17d2ea89bb9ab902dbc6bf3f827fa4ee029c6bf19eecbdefd146d8b6f2f", + "blk.6.attn_k.weight": "5dc6bcff89794d1756bf57ec665b58622d9352130d31082a6c66e1a079f99932", + "blk.6.attn_norm.weight": "13b26008abe0f119b5104b9d78ebd5e797d3cdd68122b93d73a3b4831a54d085", + "blk.6.attn_output.weight": "f5a49917ea70c3fb311ccfffbfafa63ab18416a5d55e5429b70ce8bfba57c075", + "blk.6.attn_q.weight": "d9c2f652c87dbd09ec3822e12876648fa32e86553ac25afab723b1cd9f8cef90", + "blk.6.attn_v.weight": "5ecc5fe67609a35151011cb526f45c56fc0a999079ae0ff37c755ca03c68c555", + "blk.6.ffn_down.weight": "0ec125ae0ecb2d9277fdb1b04f17efee94e37d0ae37311057c212ca2db3fe6d1", + "blk.6.ffn_gate.weight": "fa4d6d38355ee8aa3b80b476d65ae7e343c9b7770d7b097fc848ee8a6e091d1f", + "blk.6.ffn_norm.weight": "30e8f7defc627532e1739dc76d31223d45767391a431f925b63dabe334b0f392", + "blk.6.ffn_up.weight": "6b97cc32b290fa9087806b5d65aa6dc1760737730c8c71394cc4f30c2157f9ab", + "blk.7.attn_k.weight": "0231cb127cb7c3714cd72b8f39343891d7715a9bab2237ade9e7bc5f4ed2e68a", + "blk.7.attn_norm.weight": "7c3187f07eead7d219d98ab2daf87905e88d5f1ace109b6f5fa55dce3914981f", + "blk.7.attn_output.weight": "2f30ad972c284ae7c8eb0482053433495ebe8fe9c5ee2c28b4bc4ed1f33050fe", + "blk.7.attn_q.weight": "3a2b4b8d61cc9956d304fa9f82a9e65b4bb9fda2196670b16df7e0d8c43eff2c", + "blk.7.attn_v.weight": "d2aab97d0dcf0f61dd2f32848f7a8a99c423a4948a660a660a03a546972b8db8", + "blk.7.ffn_down.weight": "2270d520468c5549cd30023ff9c452a277058310104c4239a616373fc5a94387", + "blk.7.ffn_gate.weight": "4134a3ef71b3eac8f76b6f1a2e58625b3bae48081f175994bc3ed7d8b0d4f2d0", + "blk.7.ffn_norm.weight": "42df4abd4b8769b16f3930068f96960af1b061f1aeb7505384f272233b2badff", + "blk.7.ffn_up.weight": "c920549054ec16ff8c73a72f5d837cf4e11885e44db57c1c1c584c18fbd7a9a5", + "blk.8.attn_k.weight": "01c609bd3bf31ce65688f1f640ee413740e821330134d4ed1877a3065d1527d5", + "blk.8.attn_norm.weight": "48857411f769b00290f4e4f2e593e092781fdc2503f80c1e3eeda1b85a20f74d", + "blk.8.attn_output.weight": "90fb273f8df83744554bd59236515c16c5a5a698ca3fbedc17cc89ddcee354ff", + "blk.8.attn_q.weight": "ade617ac4653c7f00593dbb51837a468afef20a14eaab3780fb96ac3d6714369", + "blk.8.attn_v.weight": "c2c37496494864fee5c527d1fe1f88529d31c73f9cbd02ef9b2e9b23611ea50f", + "blk.8.ffn_down.weight": "2da58572e9ad79087c03cbb0c23c9ef69f93ec221fd5fe4ed92fb93871d23ffa", + "blk.8.ffn_gate.weight": "4483294e628edaa4901708e73e92c917bdd93b780fa01aa74aed57166f2bbf0a", + "blk.8.ffn_norm.weight": "c0cbb7a4f8123b62f0c4652a687f3b394802bc32870dc446eefb709e42043a7f", + "blk.8.ffn_up.weight": "9eaf8a2060cb9224cd585997cd671866c4051ad885c2c6d9fdc7056c2a5c0d89", + "blk.9.attn_k.weight": "5dd36c45fbc9c50fd35c36cd75576288506971eac5c5311d4f5c16ef60099645", + "blk.9.attn_norm.weight": "3c8ca64f2f75ed7c8fc1da010c23be787648139a96ca0ef3ad10be7b14942b8d", + "blk.9.attn_output.weight": "6277e1f833024f53c409be919ec76d34464a78b278c8f9dbf79e777746e3b995", + "blk.9.attn_q.weight": "87352b70d9e328c2d51d59090cf5ea5a046529864a890d0bc8986447a0a5c006", + "blk.9.attn_v.weight": "2efdf01161d7a82a9117cc2d87d37dba5ffefcf730781cb94fcc95130e48ff9e", + "blk.9.ffn_down.weight": "e7658a2ca984961c7ace16acb679387bedb1fef656b5330bbbf588db19673a75", + "blk.9.ffn_gate.weight": "773cd330d4ff5d64be8af00adf2e2722fae4e33fc26bb9d03549f6f4b3b0fe57", + "blk.9.ffn_norm.weight": "c8b86cd5c43b332f72060b807091c33a258e5dac01358ff4733b916cd34c9c97", + "blk.9.ffn_up.weight": "d8cc3bcff18bd46124ba2aa7caacc71220b44eeef6fccb993b4c6cb53e8f2c3a", + "blk.10.attn_k.weight": "964bdf3b4e77b915a216f750ff7b0f2eb1dd6bfa071358aef21010b90111044d", + "blk.10.attn_norm.weight": "59ed411d91d14775764eb514acb0895a75a10cbbfbc1c15d453bc50f8046cb7f", + "blk.10.attn_output.weight": "4d35a2a44cfe4ac0a83fd3ab0dcf1f5a0bf54cdb3b7be9fc353ed32c8a3eb81c", + "blk.10.attn_q.weight": "defff5339450dd881ac352f5c459293f39e07b9619ebd10ed632d79a3f310278", + "blk.10.attn_v.weight": "b9803e8d6a54acea58f662d4c0a5c8ebdf986676de7dfe12d4b288937881ce93", + "blk.10.ffn_down.weight": "eba856be64e4be20b92fb4639a783454dd92427250759df92a337e39f1971c08", + "blk.10.ffn_gate.weight": "2d5c509b066584db4de3632b01234e86edcde35409c5ebce18957dc80fe465e3", + "blk.10.ffn_norm.weight": "ecb9a8679945ff0273856624ce435dd250ffe5a440ea0861a5c84f0e4c44d2c6", + "blk.10.ffn_up.weight": "e76ec7e993f399af02958778c643aa78368e3067846714165eb5aba9d5f547f5", + "blk.11.attn_k.weight": "29c6d1f34bd3ba2f0904e57b32a5bf8dcb2834d439159a33edf234ce0b775677", + "blk.11.attn_norm.weight": "b5817b275149cd2abe18a6a10e19854605fc58fd364666744362ceee8cfe49f4", + "blk.11.attn_output.weight": "1e05653220e237cbe0cc770033e183c9a0eed5680510997409b16186c6691950", + "blk.11.attn_q.weight": "03db725ae669151e4d536e50285b3b047ad097f52475df208ed3e790e31a44be", + "blk.11.attn_v.weight": "27cdf1d4e971326c451a4615a0b79a8c7fe9508f9b76c0d52fa01971fc7eb403", + "blk.11.ffn_down.weight": "176938cd7c2966094f614cace8ba568b10532e45a0d438f80eccd19b6c2a7f87", + "blk.11.ffn_gate.weight": "9782339915dd6fa70013628a01524ee1d01ad8beab04068da7ac6a5ee7603a60", + "blk.11.ffn_norm.weight": "8245f6391e3be97811c0ff27f0d8f484ecc82a468a837c893f059745bfcd95eb", + "blk.11.ffn_up.weight": "15616ddde096d0d25e906375c548b6de4bd5576d1f6b68eefdc29f14e183af42", + "blk.12.attn_k.weight": "66dd21604993edd1b1fe547bcaa06f5bb7e31c9204902d147a227e4badf7feec", + "blk.12.attn_norm.weight": "23a69f85dd8a0904b9839cc5d0afcda299b74e82ae2642106224a1c820f2b761", + "blk.12.attn_output.weight": "4a98d132e376beb274a39d4ea9b6a1b870ad5c66625439d7ff6f45c229c3ca04", + "blk.12.attn_q.weight": "1c6c309d63afcfde32fe37257e300a78e25d01117e33490801107c0e75d1ea66", + "blk.12.attn_v.weight": "723d9e4ebe4e2b1974afa01d8f512b52933698fa36717dd47b37b07760c50a10", + "blk.12.ffn_down.weight": "00e0fb09e1f1fbbf3803f1dee373eaae7a93756b6e13063ab77f9927bc6f996a", + "blk.12.ffn_gate.weight": "89159f7f97aefb1e100107e3ac2d694e1008ad873f79bb953d60c2c1bb22724d", + "blk.12.ffn_norm.weight": "5f70aebd0e43a39d6373d8658cc670c13aadd7818831d3d84f761d5f688442f0", + "blk.12.ffn_up.weight": "faec21b446f061eb4dca561a3180712724347b77a71eb312e7afe9be9e89fa04", + "blk.13.attn_k.weight": "3d440825d19eac3b1753b34d94fee2b3a3cb6636c10b2703ffcf688d3c1eded3", + "blk.13.attn_norm.weight": "47b575e57e410738ad13fd3c74bb49c06b3d31030910834ece509cd1a5c6d9be", + "blk.13.attn_output.weight": "05436d8e613f4475741c1798a7c371b53d61b229507fa04fe23c504ba1f0e12a", + "blk.13.attn_q.weight": "002b5024ce520da41256e3ded5cdc60e5ae07ad9b202cb19d76ab511efd02b1b", + "blk.13.attn_v.weight": "c1f2d6763587c50312cee0d7140fa2c7ee326f5b172bc99b2d8946e08329cabd", + "blk.13.ffn_down.weight": "b5c4e0d8a3ff96cd76a135e415b89f02d28c28f7f3c16a36af31ef0ab8773da5", + "blk.13.ffn_gate.weight": "ae06e9e3d2e1f64c7ad23a4009dc904c2eccd7241f9f91c4974ab2504f116be0", + "blk.13.ffn_norm.weight": "e44a22321bcbcb4a3c345b504e939e8071370f54a8cd702fabdb40b97e0d7683", + "blk.13.ffn_up.weight": "7e6f366d538e21ad431264b12c011892d0be9dfe4c4da9f730af677f920641ba", + "blk.14.attn_k.weight": "95492d6417952ec24b2cab87bceb750fc7e95ac6b1944fc328a3852d980164be", + "blk.14.attn_norm.weight": "6b7b09e1c51addcdbb160ea59edf032531421c520ec5645fe1ff9ca4180cef54", + "blk.14.attn_output.weight": "75887474e4d72c218e6ab0f69f1bf3ec3dc414d51b36fc59df00cdb23421bb6a", + "blk.14.attn_q.weight": "940e33f76e48c21215d19e8a21234c8246d4d084381a7d9806aecb24b071d5bd", + "blk.14.attn_v.weight": "c58601cf5a9833f80f7f9a5b2656e8eab5eb133211446ebd48f8be15fed4ebb9", + "blk.14.ffn_down.weight": "f9f886e7f9b2a54d717b08947a25a0a93e8c2a5b8bcd5a907c06817c8ee3ac11", + "blk.14.ffn_gate.weight": "727ed0ee68594a3f59d704ed3240b6929f083b9c36650fb848d182315737245c", + "blk.14.ffn_norm.weight": "bd2471008ff1b2bae9aa26bea019393fb2bbc5b9493b8cec3ebd2c280fca24ca", + "blk.14.ffn_up.weight": "b006446769f51e4f93b503c4727deae897bc1fc7f4fad49f85024b63c4548d38", + "blk.15.attn_k.weight": "23bb70f9035356624039547a603e46be7d1e4403616eafc2451cc09c5373d522", + "blk.15.attn_norm.weight": "718cb371ca052eeb3bfac6ac506abb887df125271821fd171797a7f2d8dd6313", + "blk.15.attn_output.weight": "c76a2695a204b43a8e5acfa5720590b5d449a9ad9e082cbe3e80fab5903ea16a", + "blk.15.attn_q.weight": "2b3e4037b9e91bdd26d6e8d904cf39f948192dcf09bb6445cb55ca058d4f4626", + "blk.15.attn_v.weight": "7c15e89b6acafc8619e86aa9d412f5893ab17843ff2cfaf40eea9637b24910c6", + "blk.15.ffn_down.weight": "e16fd4bdc6d1c1209c6b633454df4992870c8cefb2cb0e8c92a7e489e9fb5d19", + "blk.15.ffn_gate.weight": "95a46bea366c260337c537fde06b4cbeaeec52484a69c3390bb1d178eb0525c9", + "blk.15.ffn_norm.weight": "37730293f704da265dc6d1896b3be00c39c0a41dab07f573af39dc30a481d623", + "blk.15.ffn_up.weight": "ba74a199da2d0875d7410824238c4ffafbda3993568812284a72b8800df91f15", + "blk.16.attn_k.weight": "f58f79a2a91c9a763adefce0c53a71eb5ce6bd8442f4af554b04b58083bff27e", + "blk.16.attn_norm.weight": "0c16e41b95e81978e0e0e3b338e2afe2d297426578cacee94de15df74e94eaad", + "blk.16.attn_output.weight": "ead22fc337514e4add49aee19720008558e52090466866e849671953a1fccba4", + "blk.16.attn_q.weight": "ef59c4e8fe8918c1add43d7e9c6fb3ef799dd3e1bdd731ec7b6a4a6f97c86048", + "blk.16.attn_v.weight": "902e6b84c2b64241470b13e6f412f859f66b4b223bcfb9c15d5cb1106b07ef3b", + "blk.16.ffn_down.weight": "2ad6e9eb4d8372c32a554395d460d17cfb02d6dbcb757cc962b6bfa36db4f5ee", + "blk.16.ffn_gate.weight": "825b2d50fcce3dbe6a5d8d8a50a95466f83ca4a10343efe67894c20b4628fb15", + "blk.16.ffn_norm.weight": "3bf6ac90befb0e17e077c8ea9454a8485a30f89f2d761ec7751b60c90aed1af9", + "blk.16.ffn_up.weight": "9fbdd08739b32411f5ab0252174d386bab19eb0b17884862f760429b7d41d78c", + "blk.17.attn_k.weight": "4033398718bf3674830ed1b73071ed8482b6dd4ef27f31a6c5fbb998321b6c07", + "blk.17.attn_norm.weight": "714f2e8ac9592966a0f1c02ee979eee8f84586405b992e8ee9543e840199ffa1", + "blk.17.attn_output.weight": "b6bbb618597d767b8f535117be68f92911e4a71d4eb4d8b5d943444151445ece", + "blk.17.attn_q.weight": "b84a0dc00ceb515faa2628125dcec502eed923077b21cfe900a4ff16c2e5f9ed", + "blk.17.attn_v.weight": "4387c7d6a17da9cc7a6bca8f4a75618b20407d570792056283a8e93b6ec65f18", + "blk.17.ffn_down.weight": "47db95c6f1e12b399c3eaf9ddba261782dd71173dd163b52af96541cf87b5196", + "blk.17.ffn_gate.weight": "59abaded0aedfd12f01df81f7a811e84db6a227f51b60abe9a247ca726e87392", + "blk.17.ffn_norm.weight": "b7e86445be5c7b722e01ddb98d5c7527ca86cb827ce0354f2c269e0f2558751e", + "blk.17.ffn_up.weight": "8e31c293bac649d2f60da4b3fc4a3acdce1111ec6058d8805eeeb242443011de", + "blk.18.attn_k.weight": "5ce762ab7b032511c131df81093b587871718c7097f79d8e07d707571f18a47b", + "blk.18.attn_norm.weight": "1f52cdc7af1f4dc1f0ef6ad1ad02e18cda32133654e57cfa9c72ada9c0b1d995", + "blk.18.attn_output.weight": "6486957f30bf8a88516e25772c6650f98b13923f490a2865a8752e36439d1cfa", + "blk.18.attn_q.weight": "93621c8abf69d2ca29c5207180eb628fb2b544d89de6c4a7fb0699be95534899", + "blk.18.attn_v.weight": "11604083b5a74828ac1d226af015ad5dc0215a1fdca44fa7131c2163c02d8156", + "blk.18.ffn_down.weight": "8f9997feb94385f106915df810239c9753b31efda2bf14bdf18a9fbbeec8233d", + "blk.18.ffn_gate.weight": "427c213b3a4e94af703429daf2f65766f70424d8230c123e7e712a18bceb5ecb", + "blk.18.ffn_norm.weight": "c45d305c4ea6a54013ba112f12dafaade064a32cf01317373464a3618d8ba44a", + "blk.18.ffn_up.weight": "a2811f2e73ac9eb9cce91a21a454e84e230a155244e2cd73f2c12aad3c9b8cfd", + "blk.19.attn_k.weight": "b2daed159925eac58c291e2f1e2000beed21002b03c9e1bc7e7a52e22240666c", + "blk.19.attn_norm.weight": "6307306ede2ab5bffa1bcac3f8b139354678c0376b1d9f5530c1fcb4268cfeb4", + "blk.19.attn_output.weight": "ebb98218b2a9c84d3fb6baeb02c5df264b7ab80d994d1098ba1cd47aa398effe", + "blk.19.attn_q.weight": "4f10df2ad09177e7528e9456039b670d07db22940a49417101b725d239c16724", + "blk.19.attn_v.weight": "30f1efc5114badaeaafa91fa466dc7fa14b1616db433c6f563ab851f7333a5dd", + "blk.19.ffn_down.weight": "be5ec7fe6b48855cd0015b0e430d1b70c620de87a7ff188c7c1afef546d7b6bd", + "blk.19.ffn_gate.weight": "10dffea4213881f8a9b583ee0fd370e033756d32255ed15053f794375b9400e9", + "blk.19.ffn_norm.weight": "e75cd24ade45dca78fdb0cbcaaa2d4a17d83a5a73dcc94ce0ec2d68fbdb2a881", + "blk.19.ffn_up.weight": "63e81bdb951410ffa81bcfba1b94a679ec9ebae59cd1623ce2651ed5d4c78bfd", + "blk.20.attn_k.weight": "c2fc5ad39e9bdd45e73c6e54aecc474388d944c4be1ee1921b7fcd035bad02e0", + "blk.20.attn_norm.weight": "aaa9169171937bdce20c1f057e94e9252f221cabacf1ced12e11b9586f23d308", + "blk.20.attn_output.weight": "a9f4fb496e4bc053e3f6cf2e72e22d4cd2b545ef6c32f7e782c2ef6ebcc21d4b", + "blk.20.attn_q.weight": "5a07ac619ed251494170b213921ef3fcc4c2712839da262516d9d5b8ea1ff185", + "blk.20.attn_v.weight": "d6689473105d241eacb17f09f06000ee237336916cf5ec4f48271c5b41bcb8e7", + "blk.20.ffn_down.weight": "74be38db51df736f26ede7c6b52ea787e385f181cb66231e2cced4556a25c9b8", + "blk.20.ffn_gate.weight": "ea91e06dc3d051c0ba0243b5a8bb40edbf254eadfb54fda7247e05cfdd88cbe2", + "blk.20.ffn_norm.weight": "5fbd357b3d6f44a7a91e8a4fc246b24303891b7957e0f3c32818ae5dc16ddd8d", + "blk.20.ffn_up.weight": "fe3290333e056af4ed12942ac72aeba97a6b562e2db05e79cd35dd07eab5b101", + "blk.21.attn_k.weight": "201ec6ee95f06ea5eb80fe86fd07bd016d3ae9ab6abd25d631834414e14a010e", + "blk.21.attn_norm.weight": "ea8154f93e06485828475a00b98cc397ac84768dd70e06ecc0c075b5712d7276", + "blk.21.attn_output.weight": "9f8af74d531478fd304723fd8e4e01578db598441b80dc7c960cb801dbbc501e", + "blk.21.attn_q.weight": "277de9953a8d3cff894ffd06c15ad0ee1407e319df0c1a693d4f45fa9c74ac7f", + "blk.21.attn_v.weight": "6bfdc16cfb898909b7788ddd39dd04b928f31d6732772195d53c558004638dca", + "blk.21.ffn_down.weight": "173877146cb94801157796ee9e5eecf3f46acb3b5e797f90b83a3fc22395eb30", + "blk.21.ffn_gate.weight": "53146713e2ca1be80496024077a028f6b6d749b02e71003c349e113b436f48f4", + "blk.21.ffn_norm.weight": "b28b97e18ab20a5c553ba422f7d7f6014f5902f1d62a69abd20d9fe19a5f9462", + "blk.21.ffn_up.weight": "5c39d0ac4d602b8ec8909dade93b2efcd6b6d9d84a19b252d76bb66dcfaab87c", + "blk.22.attn_k.weight": "01f26272c82917a87a3ccf922fa1d521a952b05de878241b7efe3525b617ac87", + "blk.22.attn_norm.weight": "5ffc96249d8873b506e9eb7158bdfd07fa1429e53c1951430ca7505d25f11c76", + "blk.22.attn_output.weight": "9c2201569358f720244b9c9497e4da02585a167b1414c8a506b85ad75ba990d0", + "blk.22.attn_q.weight": "906036eb4ddf027f6d920f9356a6a2a5e529b96f4e1231a0496d46b4434a5842", + "blk.22.attn_v.weight": "30ede8b0d166003a4b8a81fc99437f557719fc36e5c4dd510c9f161f36a47e73", + "blk.22.ffn_down.weight": "d04c164beabab30e1837b843e18852260efccfbb9d96a34ddd816e6fb3ba23c5", + "blk.22.ffn_gate.weight": "19c889db6b19179f0a62d5981a1506592c65de83760d67afbe00d202202750a8", + "blk.22.ffn_norm.weight": "4885eff2d851b32dbd306bd632c725857e6d164f0fa8b3d5857e572e6ef98ee9", + "blk.22.ffn_up.weight": "365594d8db8e95cf87cc33ac23947942dc326110175cc8ec5a07b5c7059089a7", + "blk.23.attn_k.weight": "badfea1569da0fc6ab817c5727ca3a69b07d9cfd622fb8be5e66678d5b3f7ae2", + "blk.23.attn_norm.weight": "8968f78a379ac3ca5458b4ed4251e8d9112aca6d6dd1ef6440b4bb0b380375a4", + "blk.23.attn_output.weight": "93e43393c03956287b1fe31e9735ff1cfe84f4ae56b83dbaebe96275e4e11831", + "blk.23.attn_q.weight": "aaff73c725a8700ae66bf26ac8869dfe96738eff23a8ff340de2ab53400a5795", + "blk.23.attn_v.weight": "3a86a8dcf14a746ed1411f5a7e634064bc4dfd6511c24cfeccfb2c9ebb6b4101", + "blk.23.ffn_down.weight": "d4da6f37bd7ef69bb203f7b0dd59f50bce37432c70627e6cf274ab81548af5cf", + "blk.23.ffn_gate.weight": "5b6072936c4a693923bb4e3d1473fd45545cb02fc07799aca458ef0449a04061", + "blk.23.ffn_norm.weight": "cd76e37025f84773180298ddb15e0d4ba9cfc7d832e19c791049daa47c6d9c10", + "blk.23.ffn_up.weight": "cde43b99b83124a13b2e4753d12674b3a61dfb34c04703007ced3e8e2aee1801", + "blk.24.attn_k.weight": "457379edc4cce4cbbe107385079019bc922264fdfc7bd1d1ae84343a81460c66", + "blk.24.attn_norm.weight": "0ce0dfab2edeede5da419fa7833db78e36222cf25c358d08f3ec664310f031fb", + "blk.24.attn_output.weight": "0cf91c2fd40c204d2fd4b9c85b69281e5ad4ea8442972fcd44b5fc8e835ffdf8", + "blk.24.attn_q.weight": "87ede30c09eafec6a4e6285674c1bc4637140b168b2da4ed34f36fdb6e176cc9", + "blk.24.attn_v.weight": "4c0b078b2798ca35d6d2c2258fe499820d2bc88700654ba4016e4b028f563590", + "blk.24.ffn_down.weight": "cdb8540c32b1ab988f984484928d39f6841f2131c1cebe90ad9456737fccbcaf", + "blk.24.ffn_gate.weight": "da2e0e913648b5526bd2bbb344038dd067639343aed3b413662b064b0db7556e", + "blk.24.ffn_norm.weight": "8940bd781c610d75eb2be63cfc8d869a3af05e53c963dc7fd4c6f653df5a80ab", + "blk.24.ffn_up.weight": "90cbac2a58801abe11ed6c24560aa4acb949f79429f2aa8ff129ac05868bb87d", + "blk.25.attn_k.weight": "90607131e36998e990ce718ad05cbecd1bcaed010931401ce6baa3b0d93ebce6", + "blk.25.attn_norm.weight": "fbf679c85656c04a6cf8fedd5412c1ace22960e6c2d47f2d43997827811fbb97", + "blk.25.attn_output.weight": "08412724ee7a2086514406e6f68fb9f622e10bac25b0c373b294709f4b09bd2b", + "blk.25.attn_q.weight": "9c1238e98a2747654a0d4371d3e7ea8b979867f609dc42482544f25591e85c7f", + "blk.25.attn_v.weight": "a57796a535c6cb09581cbafd6a91dc14adc8cca2a2465a7ffd0aec546cd84074", + "blk.25.ffn_down.weight": "f7e34e8a6391b480da08b52640613ccadce268373934b409759743a1735b74d6", + "blk.25.ffn_gate.weight": "b8d0b2f4612678b5ce42bd4a683f8024514b75fb5ebf6b22c600811e95582ee4", + "blk.25.ffn_norm.weight": "cde1fdba2369d315f3c6940a997c471ec891924e642505db580d732763bd7b75", + "blk.25.ffn_up.weight": "72e700c32ac8b9c47559c2222e45888a480b527ea512075423c5dc01678e2bb3", + "blk.26.attn_k.weight": "6ac83b3414ae75bf3a9055c32e49d2c40fe611ab21f8444f03d2f465d18122c9", + "blk.26.attn_norm.weight": "55f9d6dc9d75973dc75136ecb9d991b4398097ac133070873fb96ec76a6f60bc", + "blk.26.attn_output.weight": "ebc4fcbd15b33263e50ed2ad45740867cce15bc90e1216623babcb1820734509", + "blk.26.attn_q.weight": "080f057521073e412936fe3fee64fd574c8128fa4a148b879d3e598fe4954581", + "blk.26.attn_v.weight": "0fa2830d6746487ac91b243716e4302361f891e4e008eddd14abec47c7809d5e", + "blk.26.ffn_down.weight": "cb2ab8af1653adc57111ada49d2825c6995e338c8208455b92de10e580f60f31", + "blk.26.ffn_gate.weight": "231ce30966086bce2dc0e0afd34a22a1958cfda7a57c41b3b8e9444c5dfde8a6", + "blk.26.ffn_norm.weight": "35d959d25d17b00617590f5d5831bf705c385c51e46297a14375a700effca6af", + "blk.26.ffn_up.weight": "367680c8d332538b467d1ef87cfeb36cc5c6af564c5023c5fb50e728e3438287", + "blk.27.attn_k.weight": "0bfcb351c6d17aeac5b55a915074fbdf00f11c4bda98babb196ac8804805746b", + "blk.27.attn_norm.weight": "5d598a88c2e75ba59dd7ba4fee940bdec92d72038f1286536d2dfb71d008a09c", + "blk.27.attn_output.weight": "23a9da7347336479f6a10ded14cb3f46e06b5bd56dc4b0fbc526c688552ec840", + "blk.27.attn_q.weight": "b83319dba9055f069208e9c9d66da08bc6874f23e575288fcd81697d1777aa54", + "blk.27.attn_v.weight": "36ed34ccb2f36fdf16b2c2dd225a98ea6b7b0e376e7791191136ccd7bd7a4add", + "blk.27.ffn_down.weight": "5488e1d3a58c71b5e9ddda430540b4776b268cfe1457cbc1c2622dedd9e4526e", + "blk.27.ffn_gate.weight": "4ff48011ee0bac39af704849d9132a2410392c87a509c684f2062f6b76b498fb", + "blk.27.ffn_norm.weight": "32afe99675983da3de2961d1b5ca41c98970a356823597fe29e91f6e86abf0e8", + "blk.27.ffn_up.weight": "1eae3088a75629571fdbf6a20f141bc2bb2ed3f5ba2b9fd1d949f80695e442a1", + "blk.28.attn_k.weight": "c4e80af714962d6f9040d2c09f316f4a1cbc3a2e994e19902d7c653cf3c73dba", + "blk.28.attn_norm.weight": "c1ecf85dedc1c83d5d402bb7c94fb8b9c11f1a3e5f64e7680f80912d4a560794", + "blk.28.attn_output.weight": "72ba47c061b21f5ebc5213a455eaf6fc49c8f8e04ff9ce37e6ed4921b629161d", + "blk.28.attn_q.weight": "c4abc47234307f44b8ca789aa6668e298158fa4b459b2c1e84bd581806591cc1", + "blk.28.attn_v.weight": "aeba950799d4950e491ad0fcbe30334e39b8975177990a2cb339031c45ac153c", + "blk.28.ffn_down.weight": "4e84ce382a37b994fb8608df451a60040559e3f4f3241c3b3cb8989a3ed50d83", + "blk.28.ffn_gate.weight": "04df157acdc8e8534ad60acc2d2a4dd3a7a6610f6382535ec728994fa6f83f83", + "blk.28.ffn_norm.weight": "4d0386dae2bd1c1a9d0f9730718333e3a486c3bc6a5c5d482193c75d39832c80", + "blk.28.ffn_up.weight": "fec60bb0a3daf182a14bd8311fe6dd1e3fd020c5fc273e2549cdb1a2d6b79b05", + "blk.29.attn_k.weight": "b0532a263aa5a4e2a7a80adc83fc5dec974493bd18da7f953e7ebfc3f3a19aae", + "blk.29.attn_norm.weight": "593fc3b4000c35b7a59dace09ca1756c08be0105b2edd354a0e1c16c82898859", + "blk.29.attn_output.weight": "315b896f9f0cbacd0ca8937384c3a3a227efa908cb8c3a9125ec00c480e32b9b", + "blk.29.attn_q.weight": "d482d45386d4ad3394f08e9dff233ee3a70d0427d65c0b8fa05905da7e25ca53", + "blk.29.attn_v.weight": "cd3b5a6e2852da796902930a6a84bc87fc6a7c7bf51f8fc23758d12a39013b36", + "blk.29.ffn_down.weight": "5b3dba6f9753bd1b1ebcba65ef5373dd62c38e755c44b7231b95d93d45761f89", + "blk.29.ffn_gate.weight": "8610d9d2db15c256243ffcca3ffd31786d0ada0af0e7c7aa3fd20524370ab036", + "blk.29.ffn_norm.weight": "1a2ef2d38b7ac3e51190b9ccb8b6552ba83ab290e523356a7f851ddb35dedca2", + "blk.29.ffn_up.weight": "a5fdd15811bde16dc27677cf1a4c97daab4c28cb12a9530f1a0e573134fdb69c", + "blk.30.attn_k.weight": "1efeb0b5f4b45a85cdf47300f892ac77ac1f38000ec3653565d1303d1fb8c743", + "blk.30.attn_norm.weight": "c73934c182c7fe80838ec1d0b92f50a583f75f7a3d78d822f009b58ad2c80e65", + "blk.30.attn_output.weight": "3a0fd89de2d274614750345d827a9c886a4f97b343a13cdf680390505df596a3", + "blk.30.attn_q.weight": "711e113362bdb067db843c66236704eb1cd3fc5f40e3767143e96d510686ef4e", + "blk.30.attn_v.weight": "82b12a9a74fd3d91b73cc2e841e2b3f0a5197ccd2998afa17020995f880d2267", + "blk.30.ffn_down.weight": "af9f4b1287c0d824ae22d6e335d19e04a70135b835be7caa2435f1d85e931993", + "blk.30.ffn_gate.weight": "e2ab3e6f15f5c50fca66c084cb6a57a2b6b82406d65150e82ea0437b93dd9a46", + "blk.30.ffn_norm.weight": "c1b9c325c83f00e177386a4d7e769945f2995e60950c4a576c0a2c4ab9703d04", + "blk.30.ffn_up.weight": "9b94a21efd419715d82071b490d3b635cf1e8da080620dcc39e5bde976d7e9a6", + "blk.31.attn_k.weight": "0db0d82e3ddcc2c06209f5f013e1d72a84a996c40bf00186be485b909cc268e8", + "blk.31.attn_norm.weight": "2b8b7239471f57140c5cdfe06bd224a4f6326282f99736e44fba4c7b120ac101", + "blk.31.attn_output.weight": "a310b048840cc3ff2be4b84796340e8e2cdf05ec89d14bd3655c109b2bfa9fcd", + "blk.31.attn_q.weight": "f45e0cd95645175ea82813455356d171838539bc3f7676d877c698f2af0a0eda", + "blk.31.attn_v.weight": "8bde008e809112aa7e7c23e9c3099087bcc557313b01306c87efa0a4a30805ba", + "blk.31.ffn_down.weight": "8266fec7e203fbfad7033120861e44984581ff8b6851d01dfb7b81c5d8fa90ec", + "blk.31.ffn_gate.weight": "b73bc0aa5baf006d9ef6403104891b8133671b0992398fe038380b67e0d7e2cf", + "blk.31.ffn_norm.weight": "9c62cc27a7b6017c1df8ad49bff249a8245e8895c6754f402cd44623fda83268", + "blk.31.ffn_up.weight": "5b970a4694ea3171a0167f6e1636d9f00268bc1c9640430ffc35218494884adb", + "output.weight": "74fa0ef08c57a30e633e7117b1e9c805f833e2e5e21434bc79ddf9c92c6d7330", + "output_norm.weight": "59b8a59fd3fbf39353506116e43e5e76edd0cbf2a2873d869da4cf27a04997c3" +} diff --git a/convert/testdata/Mixtral-8x7B-Instruct-v0.1.json b/convert/testdata/Mixtral-8x7B-Instruct-v0.1.json new file mode 100644 index 00000000..a1596532 --- /dev/null +++ b/convert/testdata/Mixtral-8x7B-Instruct-v0.1.json @@ -0,0 +1,348 @@ +{ + "general.architecture": "llama", + "general.file_type": "1", + "general.quantization_version": "2", + "llama.block_count": "32", + "llama.context_length": "32768", + "llama.embedding_length": "4096", + "llama.feed_forward_length": "14336", + "llama.rope.dimension_count": "128", + "llama.rope.freq_base": "1e+06", + "llama.attention.head_count": "32", + "llama.attention.head_count_kv": "8", + "llama.attention.layer_norm_rms_epsilon": "1e-05", + "llama.expert_count": "8", + "llama.expert_used_count": "2", + "tokenizer.ggml.model": "llama", + "tokenizer.ggml.add_bos_token": "true", + "tokenizer.ggml.add_eos_token": "false", + "tokenizer.ggml.bos_token_id": "1", + "tokenizer.ggml.eos_token_id": "2", + "tokenizer.ggml.unknown_token_id": "0", + "tokenizer.ggml.scores": "e3d3eea80bb41a1213f2d0aa3e8a38581d1f19323be77dbd779c9c7e3b72e676", + "tokenizer.ggml.token_type": "6040635e6bd38d98af06698feb75c1802bad35180ee6ae0a503e38c0f60fd71e", + "tokenizer.ggml.tokens": "604ac4bfbd019e430d7b6cdf18c6c0cd5b967900601f0307f714ec7773aa5ca6", + "token_embd.weight": "1d1d1d39a867d5a4bfb32792a47247d2638c10c95a6259391d02843583505cc4", + "blk.0.ffn_gate_exps.weight": "2e5cd43ac3f26c44f071926ff6c3f239ecc52a34bc9a5b5906d3d4c1bf2fbbfa", + "blk.0.ffn_down_exps.weight": "a4dfc7e7c96e7402eb70279601675b956bb7331da8101e63fe5c0a611b6972e5", + "blk.0.ffn_up_exps.weight": "2d5d87b378b2319c344ed2c642598b6f7cb6beeb582a8ea51abc9ae690d473c3", + "blk.0.ffn_gate_inp.weight": "a46aaf5aba7401ce6e41f158242b4879d34901661f3ede85496cbd0ce79d6314", + "blk.0.attn_norm.weight": "3fe37d913bdd2b65076bcdd6efe64a37b0b03cacbb1b80b9f7089068aa35f38c", + "blk.0.ffn_norm.weight": "5e14308a3c894734eb204c8f558bdc817e94bbd5b4e9cb4094e91ba388c8f7f2", + "blk.0.attn_k.weight": "73d943dcac0911e87bd771f4aa1c901e1bfe1aed293af06e1a67812159859f67", + "blk.0.attn_output.weight": "4c5f754c855e262e8d4c94c6fbbb57af06399dc0e170d7d99a1a17fc9aab9227", + "blk.0.attn_q.weight": "d6fd7403c873d49c05f6f03208f30d99ad34cb3b71c9990c47334d502a8e4c7b", + "blk.0.attn_v.weight": "cf17cf64b2d683bd9de6cebaf60e5c264df6fdc38fe719dde9d54c80334f6366", + "blk.1.ffn_gate_inp.weight": "0d524de81cd915816b4e714bf595ad6946a9130b3de731cd89428b2781230809", + "blk.1.attn_k.weight": "2ea47f412992b374c70674730fe84700e0c8cce177086ce9b6635e42408964bd", + "blk.1.attn_output.weight": "b4b2520794d54113e86c8ff678eacfc62e35be4395a594a6c8c22b4383ebcc0c", + "blk.1.attn_q.weight": "5db930c98c4f91f6eab57eb974c72210b158e366d23d6d2890b2759c053bee33", + "blk.1.attn_v.weight": "079bdde09668394bf7af9f8bc175017b4f48f0ab64e6dd855a4d7561d1693c0f", + "blk.1.ffn_gate_exps.weight": "146a62de19f9ab093deb101f9640534ffc3dc40d69f508be12fc0475d01b0c7a", + "blk.1.ffn_down_exps.weight": "949da94a3c0f375160672a979e85f7def284264b10d48d038238aad5f5ece793", + "blk.1.ffn_up_exps.weight": "7016a3f467d9e3f2f4b4019579ed86b757469cd367f2b225483305376b4bb3c1", + "blk.1.attn_norm.weight": "1614d1e6ed537737275eb888666c7bac533f4eefbe73dec92b591045ca9e1afd", + "blk.1.ffn_norm.weight": "405a455fa7d1ec36894652ceb554bbcb09a07fd6405f42741e66dc4a4665c19c", + "blk.2.ffn_gate_exps.weight": "90d5003fc7421f44220c0842d43128955e91488f6f785fe570b62d81b719e964", + "blk.2.ffn_down_exps.weight": "ecdc2b5a8b504ef0a7833acff47d69b0c1fa9c22126de1bb120ff5e48c3d6e2c", + "blk.2.ffn_up_exps.weight": "2cbd9485a32460d315eb50a2f3b00863fd77245bfe885b7565efac1cdb1f191e", + "blk.2.ffn_gate_inp.weight": "0d0a17a1a2c7a61f2cca49ecbb479154dc93a870873257bc4f225e7607f2e2c2", + "blk.2.attn_norm.weight": "b2e4c5a977f87a6f880896bd73596234c9b83622fa0d7add5892501e3155913c", + "blk.2.ffn_norm.weight": "0ab875b4280afa922376cfc7b9aa3f7071c9432ea1254091ce7de3749df0e8e6", + "blk.2.attn_k.weight": "bb884af51fb51550acfef54ccf1b58ce8284e587806e6a2f88c8265e1ad05a5e", + "blk.2.attn_output.weight": "0f03099ba1ef342ea61af9cd71d028123bbd8b1dd7d7fd9b509aef77815427d9", + "blk.2.attn_q.weight": "8fad0d29eb4c9d24e564774ee3316b9eb7a4c4985e4567111d2c836c830f6cf3", + "blk.2.attn_v.weight": "fe04c847ff677632401a94e7b6b6fdca60391ab21cb23bd791533115de6303a1", + "blk.3.ffn_gate_inp.weight": "29e3aaa724590c070e614af8288939603d2641b0ef11e8c0f476bebb2776673c", + "blk.3.attn_k.weight": "231cc5631def10f7f292d8862d6125ff555164cd70480ac76362149fad204497", + "blk.3.attn_output.weight": "86467a605c62852e05fda1a7ef43150df2cf715fe59785dbcba09f1c27cfa086", + "blk.3.attn_q.weight": "901822402453922225c2d6ac79616691d48217635d5ff7338daa971d5ddee210", + "blk.3.attn_v.weight": "27030784f44375720df2f090933645a31a022d3fb3b14573e5ca0b78f44070c1", + "blk.3.ffn_gate_exps.weight": "231ba59cc0b988d125d77bf627aa3f04636684870af88f081f3944b48a160d86", + "blk.3.ffn_down_exps.weight": "530c3ab44ae4d66e8afa4d10c153ba5dfcdfb7321989a988e62e9d12e7234625", + "blk.3.ffn_up_exps.weight": "b85c2d4d9d11332e702b3c0a6610d4f525f9a93e5d12f5c7c55c592c40755e75", + "blk.3.attn_norm.weight": "05dbb6d88cfa6b199f9d705ccbda97c0ef13f9ec875c595398a1a42d009a4555", + "blk.3.ffn_norm.weight": "6880b1c27d46969ce36fac049c05dc8b89e4bb47dc89df357e32df7e18fc512e", + "blk.4.ffn_gate_exps.weight": "a883b4f225b760c5a2f6605dc5e2167ab85bb398c70bf64ceb539fcbd6128dcd", + "blk.4.ffn_down_exps.weight": "d291bb656aae77947d4b525e2819bf4112afece53ff31de9dab999af1f65f9c4", + "blk.4.ffn_up_exps.weight": "38592afb8ba3dcfb26970f906174f7d3fa62da44fa4be4fc6912a19030ea9164", + "blk.4.ffn_gate_inp.weight": "1596cb74e8fd6c3080b937b06468bb397b0dbb661e6d180a6bcbdc43e8bfd0c6", + "blk.4.attn_norm.weight": "f90c83c5ff4366281d283384efc941620542b9cfdea160d678dc54a75e33f758", + "blk.4.ffn_norm.weight": "d28d8c49d1746b7cc085562d1074905fd14023844de823dc4fb22202bb280790", + "blk.4.attn_k.weight": "792bbf412cc357140fdaba543e547a9b2f7582919e307bbd9a80c7d6d8f5f1f9", + "blk.4.attn_output.weight": "d98e4a062d2631d9c315f1990d5f6ca9a88e7e0e46387f611ccb0353f876aa12", + "blk.4.attn_q.weight": "1a11a55a91d9f748a72176ff6b1c174844df406e00d1b66b9aa64dc6ee4bcd1d", + "blk.4.attn_v.weight": "04cb3c02b12a6313c7ac7044513441083d534fb4c5a3f63bbaa58f7edbd2fadb", + "blk.5.ffn_gate_inp.weight": "cbd5cdf015d33a2da6703eb74c22fcb97581fb9175435173b6dc4f9e8364320d", + "blk.5.attn_k.weight": "4fdf3405e4d657403f5647b51233521310ee984b4b81bbcd901cb3e6ab76b7ff", + "blk.5.attn_output.weight": "4a25662c46979a29600ed77e1907cf81fb16ef30e724c155444e54ccb76af481", + "blk.5.attn_q.weight": "e2acb30e30b97300039bb20ad0878f05159d5657fa811748a51d5b6fb35d631e", + "blk.5.attn_v.weight": "306504b6a26aa123c63dbbed3f4ced0ed2ee8fb6a30bf0093539b817539f5ece", + "blk.5.ffn_gate_exps.weight": "7e34df9b9944dbeea5e8565786d3aa6937314a4b87acd4d0874687877c5a39fd", + "blk.5.ffn_down_exps.weight": "c4b7a57a42b5ac0a8ae27dcd5cb2646d7a7cc7123126d44a56ab128e85f60b13", + "blk.5.ffn_up_exps.weight": "09d47593b6dd6c664a9155bff02fc2eb7ac4a70219a88162d05c802a01d3c6ba", + "blk.5.attn_norm.weight": "58804a036d6ac4c1fe357b8b6a97a5c37cae1c2f06ee0086c041d449c1c6ef6a", + "blk.5.ffn_norm.weight": "d872dee6789f0826211aa46ca9d0869e3e96bcace9e77d6559a7b6f3e524f3ca", + "blk.6.ffn_gate_inp.weight": "fb1eae732e974d6c1d020a5b4ef98c5f33016f984701bcea656f999a99daad66", + "blk.6.attn_k.weight": "55e9c59c5051ab5519b3a7962e1b5fa96a3c0251cb6200dc2f177885ad2de470", + "blk.6.attn_output.weight": "f3c834a8d0027370350e2b6294d95434d31432e57be6313b013c15a56303d61c", + "blk.6.attn_q.weight": "efaefe5f11c2140dc7cb532b0832c2a0b363a165cbda21f00fadae77efca377b", + "blk.6.attn_v.weight": "900bd734d75616d846a90a121c97e081c956a3d1ab012f66dd0bc62c43e1ec3c", + "blk.6.ffn_gate_exps.weight": "312a99661b1468fcaed2474621116f1681432755e973f3ee79d01912974fd424", + "blk.6.ffn_down_exps.weight": "ac9cd7db67a2ef0d2b5def86873673d05e48d49d147dd944469dbb8e2d4c46f6", + "blk.6.ffn_up_exps.weight": "57613e7e09579400a1a09fee4445acfbfe83f2f327fdf317877787d96ada6b84", + "blk.6.attn_norm.weight": "0e8801e09885c633bc01a9a5b85d4e878d30158a4eb41a937dc5b760ebd044cb", + "blk.6.ffn_norm.weight": "b8c58062ac93072f878446b0e7f958c737aa47fb769fc3a8f593133d12db2dd1", + "blk.7.ffn_gate_exps.weight": "1ef611732ff13edfa8d30981ed9dac00c15ceba9fc012ed0b199e9280a849948", + "blk.7.ffn_down_exps.weight": "856c6811945c7b0fa461ca17811cfa43436b4cdf5326bad23cbc30883486d7cc", + "blk.7.ffn_up_exps.weight": "6725e3e33994302ee13fa5ec163631ce2dcaa08aadde8fc166c2265d4561c5c5", + "blk.7.ffn_gate_inp.weight": "36b49d7f80c1003dc392b2c1b9960cd49889dd69e77b26b9e4b13d01f3d0a32a", + "blk.7.attn_norm.weight": "7a0ec49acc5e20ee71c6f80ca02f4f1e564c485e0ae0621309e7c2eb0c616cf0", + "blk.7.ffn_norm.weight": "eeae035c39ab6e64bc06a4baa1bf6e50d4c8b8797cb0ad8abd48be86974802c0", + "blk.7.attn_k.weight": "e8f78c1def01a7a38d2d9bf7becb17755e28fefe4927856f7890fbee52840187", + "blk.7.attn_output.weight": "5367f05ac3bb49ef8745ba5902e1bdd4442415a3ebff2c7e1a3918d7be6fe948", + "blk.7.attn_q.weight": "37c95fc5acc55a4f6e5f02cab9be60e4fe54c08b65f98f4455741b4aa542ff4e", + "blk.7.attn_v.weight": "c89f1343486ba55814233511e94090f7365662a8a4214aa4c278cdadc79196c2", + "blk.8.ffn_gate_inp.weight": "4e239afe8c7afb8de3a005757c887cf14b1622ca2d224227591cb0e5301f4c17", + "blk.8.attn_k.weight": "2ad0229f30fdcc1e85ce64e00d8f75902238294844a81d5af43e14ba75c02983", + "blk.8.attn_output.weight": "2e44a4722acb3b521b81d0b910f8ca2f6c286d874a92ddd02150566454061699", + "blk.8.attn_q.weight": "1cd2b09cb2f43e08de776b5f7eac197a5a6d4ffdfd52b21baa36319450147bd0", + "blk.8.attn_v.weight": "5a22c57ebfd33ac500cbcfd321d5b5b1783f8728801db6f3f8bed51c7183e4db", + "blk.8.ffn_gate_exps.weight": "91063fe56cb4f3ff3b41052bb5046fcf8ef61516a603ee90aab893a9d68c15a7", + "blk.8.ffn_down_exps.weight": "d4c3abc8f1d1b462f67f70bd8f404b3fcf45dceeaa8527fa120527254c383c90", + "blk.8.ffn_up_exps.weight": "76a1a1f08ec577716a2e7027b45293e9205751126424f1bebe1de89c78f087d5", + "blk.8.attn_norm.weight": "f980d774da39eb76c52358afac3e38cb4c81cb323deaabbe5c41822e3f17a98e", + "blk.8.ffn_norm.weight": "1c937658cf90f1a85db9a5f26e077730fdd4b694607dbeeb825c5fb2bc407e0b", + "blk.9.ffn_gate_exps.weight": "a2532471ecb7896d5c78e5a34e10cfaf4125265e1595166c8d0d0dfbe2a3187f", + "blk.9.ffn_down_exps.weight": "b47921a28412d48fee450b8b9d97cee42344a2e69f06d407fd9523d7adf13333", + "blk.9.ffn_up_exps.weight": "7c461bd1b2a73b439cff6a10d94afa01e8b06f7e6f09d9a6f28e3876aef48bce", + "blk.9.ffn_gate_inp.weight": "1648dfb08b5c06d7953a5a97ecb764995fae9487fb729a1c867023b2538149d0", + "blk.9.attn_norm.weight": "8635db0f299882a63b7cfcd1d4259c9e53fab22c31d3d054de36b1001380b31b", + "blk.9.ffn_norm.weight": "f9309aa323062d174c463613afef9b0a33501b510bfaa58a8e0e866d12ffef3c", + "blk.9.attn_k.weight": "dfe62030441e947a588512d18d9c6e4ed72c2f71c227d622c095e4263b23dadf", + "blk.9.attn_output.weight": "1977beb75c6349c50ba7dd3865d7c0a9c5c5ddc854413147b0eec98ac4fda351", + "blk.9.attn_q.weight": "eb132596719605cd6bd1782487f121994629e115190edd69240b12af66e734f5", + "blk.9.attn_v.weight": "9e708f15d332d7c5187b0693b1a977eb30a2fa10bf7df48ed9d7537c0aa6ed99", + "blk.10.ffn_gate_inp.weight": "97503a5d166c1925f9b65c0eed980753d411714d66896f3d0fad5286c7aba702", + "blk.10.attn_k.weight": "1ebdd222336bd25b48df1b138cdbe09021c4a5562ea7cb78cadd1255d2be3a39", + "blk.10.attn_output.weight": "5e98faa38e9d514b9057e1c8342c509cbe1083defd518e506f6bad89117d1f5a", + "blk.10.attn_q.weight": "3323a26c87d936d1dd87c577d0b763459fced726679612c874b3de5fc6d969c5", + "blk.10.attn_v.weight": "d5fa73cb56aca388e205f44455e4b4f676fdc12ed7fac4542fbb3b41ecea59ad", + "blk.10.ffn_gate_exps.weight": "225021b53782800906cd13b70be3a4161e8b300b97f984a959ccad6a6e8adcbd", + "blk.10.ffn_down_exps.weight": "f08eb91526bd22f5fd0402fe925d6141cdbb308a1ced0330858d0c85c71f5ef3", + "blk.10.ffn_up_exps.weight": "a9f688350c3b53eaada5103b5848bd9a3d7d6b327a70fa16c24bf28ece933eac", + "blk.10.attn_norm.weight": "5ba426c9dfc79805015ccd76cd1068b0ad3bb7a8453e14bb1d35486f122d8f95", + "blk.10.ffn_norm.weight": "98891d6acbc3986b2581b7a3af9f5946a392d9188972c6a8b15d4e745a4f2482", + "blk.11.ffn_gate_inp.weight": "b2365a60566e7dace892e1cb0e62eb73ce387352601723e847052b34874feaa6", + "blk.11.attn_k.weight": "0efbc1d1430505543ff71532a4fcda821aeac616ef6c1dca40e00d4f2ff70bea", + "blk.11.attn_output.weight": "3d5bd4d9a41236f30d4293edb9ae27beaa113ffb31b4fbfadff3a4c370dfd3e6", + "blk.11.attn_q.weight": "aa11e9db14dd9c77951511443077c2a1a78070753d7bd3d9811038473f69e325", + "blk.11.attn_v.weight": "5adc567f377aa11d1763d35f50e53fb2896a8b03b623ac36acc45efa2486d512", + "blk.11.ffn_gate_exps.weight": "71d07d982aabfab9eed3c733d49c20f023bf475368fc71db5084d91beadc4b47", + "blk.11.ffn_down_exps.weight": "9a06e61461e48b3925a9f7d9cca634d048c8b62163d7bc5c43e35899f959319e", + "blk.11.ffn_up_exps.weight": "bc05494d0dcec61021b3ac0c5bc1bf502736cadf48224e213bc139d562699a89", + "blk.11.attn_norm.weight": "a5758a10bdd0404ae1470e8e9db903985d4d07f60553c5001a5e7b660d4f7ada", + "blk.11.ffn_norm.weight": "814ae037563aad3771787316bec4806c95bf6f5991dd6474b4b1e5cc13dc18ee", + "blk.12.ffn_gate_exps.weight": "3a68b831ba1606fb9ef6dffed4732032447ecef23ea563ff4e79317586c7eb49", + "blk.12.ffn_down_exps.weight": "268b25e13f4b7beab08686e83705a41b21d15251809ee4784526f78a580da829", + "blk.12.ffn_up_exps.weight": "9105751a5b5b42ca2614d0456f24f779d2e2ac8cdff0f96842aa7ae2b70f341e", + "blk.12.ffn_gate_inp.weight": "d0de1558cc1d458c5c504f63ddc59785c323df7330474bb0644c346104b40a3a", + "blk.12.attn_norm.weight": "859a4c8113678e2e202d10299850e0cfb52eb11ea50bcbf4fe3ff39bdd394154", + "blk.12.ffn_norm.weight": "7fbf4c459c1760218877e9ee3f5ad49e960956a4369bcfe96c143f04ff9ddf97", + "blk.12.attn_k.weight": "0a7e254fdf3730a57372b6ff421a613eabaea68cdefd64800857941411318374", + "blk.12.attn_output.weight": "ceb763fc15d88af149d8fb78e82db2b7dab3aeae584af8cf7611a12356a397e5", + "blk.12.attn_q.weight": "a43402d23c46cb2d3cb3c2a98c81b19d10026b7e6742370fed6b2880b6e049b5", + "blk.12.attn_v.weight": "3bc24f2c0480ce91ef72993ee8f1cf962f7359e12183424583ffa1246bf3db52", + "blk.13.ffn_gate_inp.weight": "a6d68c82bfe66d8bab68f980f5f18268a9e2c0cd6b8832ed39010e0de198ae05", + "blk.13.attn_k.weight": "0166c39546b37dc2e01b2b396ba43e183f797dd04eaa51a6d103d8b58ee4bace", + "blk.13.attn_output.weight": "2ce5eb198deab9557475a58b69b11e9874b547e05c23f223c6e42fa35ddca069", + "blk.13.attn_q.weight": "745c1bbdf434284a7fae98f45e821c076dd9c2a2467dba6a9d8cf0041e419dbc", + "blk.13.attn_v.weight": "9ece68d5ac64d1421ea7aa32e1cff9cc1fecf5175f4c4da858dd31d8633e3337", + "blk.13.ffn_gate_exps.weight": "ccfdcb4670b131689de12d396a010b5ea737795cf5c15a14a304d720b3c7c899", + "blk.13.ffn_down_exps.weight": "8b8fb328664764f1aaa5cbdec336d5654e981e965a02ef622bde5f07ea1c164d", + "blk.13.ffn_up_exps.weight": "d2ace0236c2fb3365fdc85499d676a7f65813c48e5085348b1df1799922766ec", + "blk.13.attn_norm.weight": "1ed29d7d89ce52d7cb4d57e895ff7115430466e917136c049c385c030ed44e9c", + "blk.13.ffn_norm.weight": "a194fc542597a4dcfdfaec5e3cba2a2b2b21b21edfc87c39c0d7f7651355bc4d", + "blk.14.ffn_gate_exps.weight": "a625e3574e5e740e7f8e2f9c40390f2f382c720aab5b10534e298002dd8d1fb9", + "blk.14.ffn_down_exps.weight": "bc366f015b83c865946afd74c8a884943e0ea2c671314a0b7bb72f21a44d2f78", + "blk.14.ffn_up_exps.weight": "ee3199bf2086de77b49f57f487676be8ee70e102a2fb5a5ef8ddbbc28a9eff41", + "blk.14.ffn_gate_inp.weight": "2b437870c850fa2e2044d032bb02908af634356e37466fdae260b933e48ee8b4", + "blk.14.attn_norm.weight": "cd8344d193a1cbd42bd898e17f4bcb1ca0b2918420fbdafa9249a6f2b7f4ae06", + "blk.14.ffn_norm.weight": "70eec40374e558fed5b07257283cf36342b6b0129285a00007deb59c32c9f7c8", + "blk.14.attn_k.weight": "4053bdb507e0543d724b632570bac86b31707696d90a0db44c49b2a082e0d599", + "blk.14.attn_output.weight": "0182632cb0e06a07241b8293d25d109fbc1862e1e337d435f908e8681e2eb1ab", + "blk.14.attn_q.weight": "ffc7794a4c1b6f793c842dba969435330a7a80b9212e457b4b2ac33e68b41241", + "blk.14.attn_v.weight": "6411805292d528e61bbaad8f9aab9dd073529a17946c057fb06864fad9cf3211", + "blk.15.ffn_gate_inp.weight": "77d0744567c76e6abb67f81ba9c715b2b544841186d5b948309571eff213bafb", + "blk.15.attn_k.weight": "1f7957954ea4c6521c257b35a360e868ffa02bdb3de91f146d5e06bb4a545c98", + "blk.15.attn_output.weight": "d7809d36bd8d3342240c46fd87bcc7f9821a222f48d9a95e45ae50460265d3cf", + "blk.15.attn_q.weight": "25f509313ae4d8401b871904059f472a26f5714e7c791c725de77a1a522c976e", + "blk.15.attn_v.weight": "96fedf5a591fc0f020e6de10fd72ff12b3ef9cf70cd21dabaa0d3e7b06f54e73", + "blk.15.ffn_gate_exps.weight": "8f950d976b2fd9a3d213b84123cf114c1377efde9352767fb2ddee89e177c8ef", + "blk.15.ffn_down_exps.weight": "6fd09d1557bb94b06efbd4f6a1ca4be532a202ba290e9315bc8da3d12a5c4c4a", + "blk.15.ffn_up_exps.weight": "cbeb59ae7b0266a928dc7e3a6e70a9330b92f9ee1b17ee1ed91022108204a33c", + "blk.15.attn_norm.weight": "2005330911ac2edc7b6d27aca021c67d30d16eb632e49b1a13f30fdb2717aed0", + "blk.15.ffn_norm.weight": "0e9198f3b548eb78acc8961f2b3350d238d26cec110933ba753a8cf0035c501c", + "blk.16.ffn_gate_inp.weight": "a41d1f99d739c8b150c3945b6949763988d0c6a4c5a2b5855592ca1a48ed23d5", + "blk.16.attn_k.weight": "b624e2ec88c2d3047f60530fb87e72cb4a5e655a9663f6f3e9b09e5ad32cddaa", + "blk.16.attn_output.weight": "687759ea75e45108526ffc1573d6fdf084728079bfc2dc89b9979e76280f43c4", + "blk.16.attn_q.weight": "beff3a45c7e9ec82ffc6d3c701126be28654d10aabd747d03441210491fd31b6", + "blk.16.attn_v.weight": "43a349b13f0b9d040cacecd942bcb168c030fef8c75c987d59a4fce6c14e855b", + "blk.16.ffn_gate_exps.weight": "793406d6c13d727c82bb7b692ca98d65ca975baee69fc57be5378d77c5a19b62", + "blk.16.ffn_down_exps.weight": "9bad3dd150d0230404b7f886ac7ff8803225757e813f195cdb26bad245243b4d", + "blk.16.ffn_up_exps.weight": "7449d663023fea3496475bf0a9c1de7272ad0ce9adcb3265e8e424badaa674dc", + "blk.16.attn_norm.weight": "a424ce34c195a401df1ce37ac4f2794e8a6720b1ee8acb21428e2b68c65e0125", + "blk.16.ffn_norm.weight": "405a68bb8e16e1064df2de55ca3cd9ceddda1d9fc0af007a9bd7cad4b2676248", + "blk.17.ffn_gate_exps.weight": "97c6e5321491ca5dc039ee88da0eb0e78f347372785411809af84b3298cb19dd", + "blk.17.ffn_down_exps.weight": "1617ac19788a1be19bac69277408761e6bdf5719d63a8c7fea14d41cc27641b5", + "blk.17.ffn_up_exps.weight": "4ead1c365f112581c10610ea3f63d2a1474311d2503d2060fed4b458ef337f5d", + "blk.17.ffn_gate_inp.weight": "ed4b3393f2523f2b5e0fc7680a1caa2842e605728a529b5af68a7fa8d7abf940", + "blk.17.attn_norm.weight": "beac17ef86a7fb2b5840cc72f7a95a5e3d6bd24e7fa698e0b0ebb9bdac45c561", + "blk.17.ffn_norm.weight": "81cb58ec6d6dc02a0b4ede10adc336dc865fa76f982d4eab0e4a37b40f5b0fac", + "blk.17.attn_k.weight": "eab569e5ea8c8b05e5a6a209fba031129453c2e28181eee3e736b3b04b36bbec", + "blk.17.attn_output.weight": "f85b70f01438ce8fe5d10599b113f30bf18dee2bbae0657d3eba295870001db3", + "blk.17.attn_q.weight": "887ceebfbf6a2b94b43d2df4439ac3a5bbc29311d4b28addc04d525546032047", + "blk.17.attn_v.weight": "2df9414d65014c06a93da22ba3a668be7b83e2e8008e98d7771f7dfebed98298", + "blk.18.ffn_gate_inp.weight": "9b07741a0950fc667e5fd25937e33bc22e1f764f80eb4ff3119f005327ae0f6e", + "blk.18.attn_k.weight": "8649598dbb63938744c39bcda5ce8c31773e29c573be8d4d2c114f5030f8d3e8", + "blk.18.attn_output.weight": "f8e391adb92622298ca834d5d1eda48b69c3b1c51c5a584ef6c54a725c298d75", + "blk.18.attn_q.weight": "84bf8708a2eed618f48f69c178ed7dd11fa4c468102376e72e910ebd037d131f", + "blk.18.attn_v.weight": "31db3cd773f09548c2c1b1eac2718e46364a7810970fe9c433fad9d8de5397eb", + "blk.18.ffn_gate_exps.weight": "be2a2ba378002f1b61f86c273a69eede9b93786d5ce96b4fee1861f730dca4c4", + "blk.18.ffn_down_exps.weight": "d35196159e37705db50a5343e3989f7335477f1a4add67ef42ad64a638cd07ae", + "blk.18.ffn_up_exps.weight": "c6ceedd86e97913a6dcadc838e7abb762d629fb8dd55f15cf02fd9bd66d2ba78", + "blk.18.attn_norm.weight": "41f0b1ad83d6e3cb9fbe0d27878c2e7ad4a351b9f554a6bc9117c01745cdf6e5", + "blk.18.ffn_norm.weight": "96646204bd0d82f25dc77faba4dbd86b1332e449313e6684e00122da8be99057", + "blk.19.ffn_gate_exps.weight": "c6eb7f61e7938bda0492dbc05e51e8f631c99224fe18e99861fc4fc53ba9e9ff", + "blk.19.ffn_down_exps.weight": "4384803da3a3a3d44120d7dd192fe2c9bbd9a1a0cb492dbec1fdd7565230f1e8", + "blk.19.ffn_up_exps.weight": "22d73de2fbb8bb0f1bd2caf17fad8a355c47d914143f7f6e6d0128f66f074a60", + "blk.19.ffn_gate_inp.weight": "9a0cc4a2301a5634022fbce41189021bf0d1a961792d2d9330fd35556d18e5bd", + "blk.19.attn_norm.weight": "c5cc56ec5df9a1f7d5ad71fbda49f1433132e58895d45cb44c73420bd61ebd6b", + "blk.19.ffn_norm.weight": "77e17de741742ef2482fc7872fd423c8e3c1454dc4d2be89ee939084b6d78bc0", + "blk.19.attn_k.weight": "a92ea36ce2e3569656306aeefb835ccd5d1b03b33a86e0d3d030644cc923b813", + "blk.19.attn_output.weight": "5e2a912b37855f84ea964907a1a86d609cbdd79efa0c93c3e8e2fc07caf7c226", + "blk.19.attn_q.weight": "4ef3a5913292ac3c1a6fd3e9e53d011021f2b41d0276cf849706d1ca925cf7a7", + "blk.19.attn_v.weight": "42981b75b68ae852cee638b5433605c147da4392aaa6d7a06e756115b0171f39", + "blk.20.ffn_gate_inp.weight": "71381b9879a7c80b9f7b475abc0aa31b8cd71ccc00856ebe89764a2acb9df2dc", + "blk.20.attn_k.weight": "1928b7ebc054eb3967929ed6fb446314d5352f4aaf8b475ce55c6345019f2ea4", + "blk.20.attn_output.weight": "6071ecd9ca91af0d2ba93fef4a1a56f3b243dd70f862a21a2d164d56f386043b", + "blk.20.attn_q.weight": "002e95042a40f36ceed5829e3d0c8072e5f5e4ee86a089e2902b2348fed24dd5", + "blk.20.attn_v.weight": "42f509cdb1c0e298f89f896e349be86952c5168e49b3f83bb17badbcb7596d57", + "blk.20.ffn_gate_exps.weight": "a684a3ffe4b0a57c819a5fa9cb3521de223f392732927271e97ce925b6e33765", + "blk.20.ffn_down_exps.weight": "e3081a7bc7ba750d8a4886bc8ca4f231b55db4ca082b54b4106c7531964725cb", + "blk.20.ffn_up_exps.weight": "fad0fd5eca36ab154788da28be8ec25bb5d6db06c9d133db89e96df358a2f6a2", + "blk.20.attn_norm.weight": "c3e3f2429715ae95e884ef1246b0b461b23c5cc0ed08beecf70a14cddd184820", + "blk.20.ffn_norm.weight": "ff31f609dda65ca496b0584fabea6550e42edd05ebf229812aa6b7bb5ede15e6", + "blk.21.ffn_gate_exps.weight": "366f09ef0ecfb86808eb3296cc9abdb957951d27f6533c03f1422b54061da660", + "blk.21.ffn_down_exps.weight": "3fc495947d27fcca7fc0893c8a96e5d48ba27b2c8c58f8fcfb8dcfcd5539741c", + "blk.21.ffn_up_exps.weight": "6713ed51410bcc8283cbb001c4ad784098f25701e8021f4fa4f411e186859c4a", + "blk.21.ffn_gate_inp.weight": "6d4c92c01ec801647134d907bf1108878156df266a6107abc10526332b328b93", + "blk.21.attn_norm.weight": "27605719ae2df24f4f2e85a730927cab20367631612cb501631f6bbf38eb1209", + "blk.21.ffn_norm.weight": "ca80ee8177db185b15a4a378c1cb6f7143c76546a7f1726bda23f329323d4ffa", + "blk.21.attn_k.weight": "9e49f743d4a5bda9b4bd9c40c2ca37cdae5aec7e54cb193897ac8b4945ada14d", + "blk.21.attn_output.weight": "ab923540879753feaed152f5950f69cdd83d8f2413ca873f5f038b63ab0aea12", + "blk.21.attn_q.weight": "62617fc3f1c9d2aa672a4d91a121c7a91b92d145b65e75f0b06b4bb7c825dc36", + "blk.21.attn_v.weight": "15f8b2e72f8e8e992f2f6b3e93238a9d7be7bd6136f91c9d04b4b4cd0cd60369", + "blk.22.ffn_gate_inp.weight": "3ddb1773d9257b68add7a2a4e94dad25ed926803e02707863dd742ab9b2dc179", + "blk.22.attn_k.weight": "680e45a9e8d5feddee5266e119dc053bf80718fa9af1cf6803e6f493b265f1eb", + "blk.22.attn_output.weight": "0d5fae3402fb2c5aa3a860010e3973fc8e3168d1015f7a76b7b2964681693206", + "blk.22.attn_q.weight": "eee7e3d426ab533bd18d62c9aa142eedbde394bed07db58313e0fccc82a23237", + "blk.22.attn_v.weight": "26b5be1fe3c2b6824c5a648a3e4bdf17691904526fca158fbc3ebb627b67e2f4", + "blk.22.ffn_gate_exps.weight": "32ab7a7735313d60f6a75229b1aeee940b6aee176c9648536bf5921b0dc2929a", + "blk.22.ffn_down_exps.weight": "67590808f6a67777d3eb7976c31fe616d388b98fecbb12253b72d1241d70753f", + "blk.22.ffn_up_exps.weight": "fc245c0183e6d90829ff5e71a4ec93e4860b3d4c1a17b9dda2fb64f5f5c9ed32", + "blk.22.attn_norm.weight": "128e99d206d4d6724758ec97468af767fa0aea592149c324b731659c1e74a1a8", + "blk.22.ffn_norm.weight": "e45f498033f0cffa15da0eff2c47b4472e43fcf8921729fc4eeb2e3a6b3c78e2", + "blk.23.ffn_gate_inp.weight": "d63e686f5325fbc89fa242c2c52a3b8ff54f867dca914c9ae6eea13e9d6f46e5", + "blk.23.attn_k.weight": "f71f5a577f46ea12b1818f3a5ff4b85ddc45f9a2afb0fa2e041d71a3e31c6779", + "blk.23.attn_output.weight": "92b13563c1e0eac0d748fb67b235dfd7a64c8f16e2dafb316885744582e23b4b", + "blk.23.attn_q.weight": "2f9b9c35dc4f912f3f51c06e2d68f417b51a0de0a84aac530a64f9d3d7b0a2dd", + "blk.23.attn_v.weight": "268e40813806e74a5c364b19556d087bf8374e76e7b6fcf55c381eb7da13ccd1", + "blk.23.ffn_gate_exps.weight": "12f857e7a7ce228afac34d99b602c8d6fe96984f2a21118f459a58cb767ee65e", + "blk.23.ffn_down_exps.weight": "cdb082c16599c3bb36a28066dcc122d9529b54fa91b6cf0153437ec960a5e16d", + "blk.23.ffn_up_exps.weight": "f4b99f6f44d7b8b5a305894e88633bf5938fc1f6303a2b2092399da9c8b64d7c", + "blk.23.attn_norm.weight": "a691392210383915916b4d3886d5e4d56e7855e27e37e414fbd73bf66b3712e6", + "blk.23.ffn_norm.weight": "0c3dc72f667e5ae19b69bfa9f2bd2a01a57681f89ef9527bad4eb0d8c7b70da8", + "blk.24.ffn_gate_exps.weight": "86baca2a3157994df7fd8ced5e08436d5c1810dc29c0715637c36de723e0e7d1", + "blk.24.ffn_down_exps.weight": "ac5d559562b35c34993e34b071f66d15c65be5907797078c2d2a49aba54e3192", + "blk.24.ffn_up_exps.weight": "fce0a099cf09777f44fbab3606ceb75f7fae6f0b80725f9e871654b8cdf9262a", + "blk.24.ffn_gate_inp.weight": "e7c6800c0cfc56b565b2d35ad6f1dbfdb70dd0b05b338bc8da2286ffc3678d79", + "blk.24.attn_norm.weight": "dc6cc18ec52d102d015153c4a1132f9d7a504e29cbdec81c5edbf3b9e65815e1", + "blk.24.ffn_norm.weight": "480d5a1397af5e0e657f1e67d20ec0cdef5724e71246a326843321b87ffabd33", + "blk.24.attn_k.weight": "338c0597954a9b95a782545b2fe36469553e73f86ae2d2b5697767b28e1c7daa", + "blk.24.attn_output.weight": "a77d23b79933c67e52f1eef7f83a3dff4f767ce0bbcc39572f8cec4acd457643", + "blk.24.attn_q.weight": "45c9478593002be1998e96e70668aafa2dd3972380fbc1df12fb05c24ba959e0", + "blk.24.attn_v.weight": "515729420885408a6a9614bc27cda393ed907521318d14d21335d39a3eff0b61", + "blk.25.ffn_gate_inp.weight": "aae4ac40e9ab3925241f9d784b54b38851d9bc999a6c3bc03fc3f17c9b28a67c", + "blk.25.attn_k.weight": "4ab4808d02396c35b00b426f536015673b71c17ae6cd55bbc2e6bfe7a4c59d0c", + "blk.25.attn_output.weight": "1990bb982b77e0c947cd1a8ef0b36227ee1259e6dbbc2829e5c136edf88675eb", + "blk.25.attn_q.weight": "a1490f3048e8c0ec8784f8550c43adf5cc8d0f2f90131c934713fe4b1b015bd7", + "blk.25.attn_v.weight": "f15e53c6d45b3b6f58808fa968425d65e0b26b7f9b268127a77abb1227c67431", + "blk.25.ffn_gate_exps.weight": "656662447ff54f56ee80f78a1b9483f7efdc40f7375d0cd8a9c72ccf21f77e7b", + "blk.25.ffn_down_exps.weight": "db06f101bccbaef19cced0f6c185166e18202465f4a42cddfd535fbe5cbabb4a", + "blk.25.ffn_up_exps.weight": "584a7b02456f27fe1d8d3c7ccd21d426b6ea887795a3ed77f704596a1e3841d7", + "blk.25.attn_norm.weight": "8f0f3597982930fd237e9d609776c64f2b909a455b21678f83a7ebd4bbb83e64", + "blk.25.ffn_norm.weight": "3e7079c32582afba0c55e032f254adc18d2997705eec860185e9a6dd3d82f07e", + "blk.26.ffn_gate_exps.weight": "e70341691b583b86489812b29b77aa41eb658b1865733d6118da54c66e3bfcc6", + "blk.26.ffn_down_exps.weight": "5c1b812d11dfb064af816ced5ab6463bf9722eefdfc341b8a93705d5038fd781", + "blk.26.ffn_up_exps.weight": "e18118362ae54ef7432781c83884f9fb230a9d934e342aabeda8822ea5f71fb6", + "blk.26.ffn_gate_inp.weight": "cd1c5f6710166b9567c6b74c97b2348b191c60aa860958c6bc264ab095261dff", + "blk.26.attn_norm.weight": "71d087531af2520bda2e676c489e8529cef5db8aeea1eec0a937a8b4f2fa2e54", + "blk.26.ffn_norm.weight": "7f704e936fda28eb5c2cc339f0f6a5f78170b5aa43c01265b21668870d819c82", + "blk.26.attn_k.weight": "1cc62a0ce0ae251275d898c52c4a9fba5995fca10955d2011d10dd1a59e1afb8", + "blk.26.attn_output.weight": "636e881b1505f9cef656a4be98bec6a4765321d51f9bf1dac8933397cf44b765", + "blk.26.attn_q.weight": "89a3c4d202d7d6adebb9e0c1bcfd8b775f6456386f1be25e86e43acc949c1e16", + "blk.26.attn_v.weight": "ff2cc963b597cdf1a21703f3e7022af3bb4c65a34a19e19d9309a7c5e198b5bd", + "blk.27.ffn_gate_inp.weight": "6150139498fefe380bb99d11e72028da47a15ecb73dfc5b2774f726f4bed8f9e", + "blk.27.attn_k.weight": "f286eb9e5c56c7b801a497aedc40158c2a27877d7f9fb59b3fc67834798902d2", + "blk.27.attn_output.weight": "5dc3d3a05f9f7729509147fd09c16fb53f85f520cdab5cb69abf4bae3fd460c7", + "blk.27.attn_q.weight": "8462e40f86b24251960d6f35a9ea99b8793a01937faf1aec2859f2e5395dbb61", + "blk.27.attn_v.weight": "bac1a99e38e25953f8315f7212eb9777dc216cadb09b959977885ae62724ceca", + "blk.27.ffn_gate_exps.weight": "6a15eca7f0f6ecfd93db2e55c63875348ec4a78c4ff643ec46df9e958c0101e4", + "blk.27.ffn_down_exps.weight": "2e1c91247c4359e2073a8e5f26fd7f6426da7be3ed5bc65dcfff701f0a5022b2", + "blk.27.ffn_up_exps.weight": "65d6f5c553c9332085eae4aeadf25090b5d7768212ea7b08ed698102c21b29a1", + "blk.27.attn_norm.weight": "7fab8ae63ec8e91ce625cd130ab96d8427dad3a7413bb21b25ec5f408c5b9f5a", + "blk.27.ffn_norm.weight": "532720546b0fdcd423a02ca6e3e9d8aacb84b1b3e8269968f88a47fe2a69bab4", + "blk.28.ffn_gate_inp.weight": "a305ea58d98962d9dcf0c53ad2389b7acc8936fb35a0e3fc9410e7767cd49dea", + "blk.28.attn_k.weight": "8315e8a2e4f78dfdf36d4fc18fffc74bc95fe42c3ae4f9af2b6c874612c0f71b", + "blk.28.attn_output.weight": "9b5fdedd32d39ef46a22cca7cd5355d7b93bd07ea305f466a8aad6ca5a4f3778", + "blk.28.attn_q.weight": "4e8fb96997c30e231c437130f410d7c91d541a816f6c568b5f3bfdb4b8dece74", + "blk.28.attn_v.weight": "1fec739cf3bd7b4913f72ca358d4cf31391c304de44ac0ae31ecb825beaa7cfd", + "blk.28.ffn_gate_exps.weight": "9f259789d535e09268266b9a8020f32d6a6779966c909d91d3a10574f06238a2", + "blk.28.ffn_down_exps.weight": "516d3f8abaedb01b9916a4b67d4672159769138ef2850158bc1b32c41e31f0e8", + "blk.28.ffn_up_exps.weight": "f2f1d88d2c31ed588806fb5ad981d68f5134d7284c4fc022fd018de2eef437fc", + "blk.28.attn_norm.weight": "960fd005598deadaebd969996f4367a9dbfad90539a863674fe95730935acc64", + "blk.28.ffn_norm.weight": "e1993b37ced93d4049e9af2c47b0d9207d8f7e6f2cc3a52f57bef30bc806d805", + "blk.29.ffn_gate_exps.weight": "58927146338f443513337476b3cd30e6341742f096c2beb5890d400f10121298", + "blk.29.ffn_down_exps.weight": "03a3386e4f0b75a28c5608e23b2de8f0de25f21954e4aa7fc343431bde9db07e", + "blk.29.ffn_up_exps.weight": "6916b7490a7ae7b04a5d81cc1e7ac9b20c483434f3b186b12d87fe176bf1567b", + "blk.29.ffn_gate_inp.weight": "98e710e467a3d567abe4ce29d78b8e8dc033148762290c0c5e1ae4d78efd8c78", + "blk.29.attn_norm.weight": "4e64cb307d37be20d55f38c94faf7e451d11df5e60df347906cbaf9c5441be71", + "blk.29.ffn_norm.weight": "696c23a52f742679bd44440d687a4c44b4302d57f1e9dc5610d23374336187e7", + "blk.29.attn_k.weight": "e85253652fd6120c623634ba66b725bf7cd491318b54ccdad2c7df8851d64c0a", + "blk.29.attn_output.weight": "4f650a71efb150d1f24cd4d114d4187bf570ac424da3b92ea6455abdf1aea705", + "blk.29.attn_q.weight": "69fa7da901026ebcbbbc848455b425458b7e3295007d7fc093acf4b38e2166ea", + "blk.29.attn_v.weight": "17e2e7590b317b21f106de546aafd955579703d1e95d6aea044ee72ec3a514c9", + "blk.30.ffn_gate_inp.weight": "3a03284b4aa60d59d4a2ec86253469b61fc656372afca427cb77a5332fbcc62c", + "blk.30.attn_k.weight": "d518cfd0db9708e769eb1399e87ee49357dc54d5afdbac3d4c0ca46c64e789eb", + "blk.30.attn_output.weight": "9b44378714d784c5ef9ab604359091baca4e0ec222afa139b7f840eaefb371fd", + "blk.30.attn_q.weight": "cbb95365bbfbcad0c9cd99b4eebb5a5d32de68ce08e4063b5ec3e792b7548044", + "blk.30.attn_v.weight": "e7985c04fe1740e35a9598f43b67b0922b4fc2d00b68a92a9f917b82c3248de1", + "blk.30.ffn_gate_exps.weight": "8ac4bbd07935d98f895ba94dc174e5ad5046c3c222b53729d60f987c05e7eb70", + "blk.30.ffn_down_exps.weight": "dd672cc71e82abf05064a18121b8e55fe1a4f19bc1d7cb9a142f4add54bc336e", + "blk.30.ffn_up_exps.weight": "12282f664a2a12aa25e2deac58946108715ebb978bafed5274cef24569107646", + "blk.30.attn_norm.weight": "1a33458fee054c6c9c896a4bb0a4e1fbfa0293b2408c7dd2b81d692e966e7273", + "blk.30.ffn_norm.weight": "311e33b68051f507f1478ed8f2693fddb846170ddb7285a91be43f795c2ce31e", + "blk.31.ffn_gate_exps.weight": "8af43d9867a51cd8392fb48b981b0ceee0ae979c491c07d711b3b56b5162c786", + "blk.31.ffn_down_exps.weight": "5579cb7758c1600b19d1f540deffe081b575962e37437b3b2efb2fb0a2924e40", + "blk.31.ffn_up_exps.weight": "f2e7c005276b3a001fb40753f027fa10b4d5a346f43cf4b4bbdeec6e74e1cf6a", + "blk.31.ffn_gate_inp.weight": "89885dc0e30b6b16a90c0331d7fa3174671e941364e8102d934f02132237e61b", + "blk.31.attn_norm.weight": "99e4e9bf86a9edf8c404153a7e8a82324ba79da462622196e2faba161bd95172", + "blk.31.ffn_norm.weight": "55335997cf6de781bf332b943de96ff4646966b05d9fee86b76ea897e27b6ca7", + "blk.31.attn_k.weight": "cee570762b78da6316b637892cc4b080e40f57af5551ffb1866b9a8e80e96628", + "blk.31.attn_output.weight": "fa321ff55ec7819ead7b819fd45215262f39744569765ba2113c989c03588802", + "blk.31.attn_q.weight": "9e2c409b878f8a2a1436874abf428fceb1c534b21f9ad4dd6f532b8a469007f0", + "blk.31.attn_v.weight": "a845d0be68ba537b4a775bfba4d897faf7c82a811a2612b0b7420cc4f3574cb8", + "output.weight": "16101cbb74b54cda9ebc07ca3c762e3263a56efb3cc011156184b95807d7cf13", + "output_norm.weight": "d7aa61585baedd60157aafe157930785742c55989c288573566a971b02423564" +} diff --git a/convert/testdata/gemma-2b-it.json b/convert/testdata/gemma-2b-it.json new file mode 100644 index 00000000..0482f1e1 --- /dev/null +++ b/convert/testdata/gemma-2b-it.json @@ -0,0 +1,188 @@ +{ + "general.architecture": "gemma", + "general.file_type": "1", + "general.quantization_version": "2", + "gemma.block_count": "18", + "gemma.context_length": "8192", + "gemma.embedding_length": "2048", + "gemma.feed_forward_length": "16384", + "gemma.attention.head_count": "8", + "gemma.attention.head_count_kv": "1", + "gemma.attention.key_length": "256", + "gemma.attention.value_length": "256", + "gemma.attention.layer_norm_rms_epsilon": "1e-06", + "tokenizer.ggml.model": "llama", + "tokenizer.ggml.add_bos_token": "true", + "tokenizer.ggml.add_eos_token": "false", + "tokenizer.ggml.bos_token_id": "2", + "tokenizer.ggml.eos_token_id": "1", + "tokenizer.ggml.padding_token_id": "0", + "tokenizer.ggml.unknown_token_id": "3", + "tokenizer.ggml.scores": "0872465d173867d755d3ee728f882b9dc2057a0bfd596fe1e3d131522f1250d8", + "tokenizer.ggml.token_type": "485e40bf3d715a4764818fc097d6a2a41db872d82ee714bc500872a3437ff48d", + "tokenizer.ggml.tokens": "c6e66de1841f04de8b8d236d461ab720a4c9b9b5414dc293a09c6e10eab45fda", + "token_embd.weight": "17b87ab2c01c80657855a5413d0457b4a041afaeda0cc785080e44e2f04acf07", + "blk.0.attn_k.weight": "28ac0da05754ad2714ae95da28a5ad191192140b30b8fd22d108d4700c9d989f", + "blk.0.attn_norm.weight": "3f9d5675d1ab0eb8a816719dac9fab81f2e95c52be02c34263339acbc087febb", + "blk.0.attn_output.weight": "703295c2c63990ff896778685c678f145298886f680f3ed5dc2a7ad54c293265", + "blk.0.attn_q.weight": "69c2d0e4870e9d722a190d356203c9605575a16863466c3d1747966ef1cf5791", + "blk.0.attn_v.weight": "95219c9c07b5ffe9a9a01e456d845eef2b11f4fc12c93dbbba479db395444c13", + "blk.0.ffn_down.weight": "a2feb5eb3d572c57c5bafbf0ab506862df1160fe40965dcfe4b9fd855c08bed7", + "blk.0.ffn_gate.weight": "fcca072c445c31f4dc4d5dfaa785b1bdf7271342442099b74fd17268b5829fbf", + "blk.0.ffn_norm.weight": "7621f95dbd245cade6fffd6b08797d69d8e3954e960f0b5551b90d967ab95448", + "blk.0.ffn_up.weight": "14a9bcdd451403c67136391e1b6e53b3b1830f00199bd911dbcc56d8749c14f4", + "blk.1.attn_k.weight": "c70f73c5df20579cb44d971164b48b5f0d8d5abdb38b381e7a8b880ba12aa406", + "blk.1.attn_norm.weight": "88b6b91f93a1ef83425a7c7dc2a2fbd3b22704a04c64a80061df376ac8c33626", + "blk.1.attn_output.weight": "f031a537490c452be3b3bb51e6b7949a636405756e160976a1c070a792ea00ee", + "blk.1.attn_q.weight": "bdb23214b1cf9cfd30f863a0a5868e52c6809d93b7e8f44df096a94204d9896a", + "blk.1.attn_v.weight": "e9bbc0b05f2c872fb1403f8f938cd1612b502229ee401f12593b1164c61acc00", + "blk.1.ffn_down.weight": "5ff53811038b661a7b8f2bfdf213bebfb185ec1a6060b662f063714f33584d79", + "blk.1.ffn_gate.weight": "205085c8c951a5c7543b1495183cd96028fb49f67464b3e9862a2693a6077a33", + "blk.1.ffn_norm.weight": "798f354fc85afce9625f5d10093a585a966831698a0560e6c9b97ce659eb4b22", + "blk.1.ffn_up.weight": "db92dc5684cb6e90940e13f4d1da555ed20ba4f8cab1e990ddfd7553e2e91315", + "blk.2.attn_k.weight": "ef5ce360c4eed6d00d03ca4761e0f8e4b0af4509978468314be14f3d46621044", + "blk.2.attn_norm.weight": "6dadbc05dbd0d3fabb4216affa60a3de1378a82d2859dc90b338cbe70f50d455", + "blk.2.attn_output.weight": "6bbf87a966f691bbfd7c8d25629aa4e6710107bd431a667434861febb391edc5", + "blk.2.attn_q.weight": "4e575c09ae2de417ce9057ce8b073680e860a24aae13a472b68f101b760752e5", + "blk.2.attn_v.weight": "cd33f7f01141e9439afdaf2ea1aaced9feaa335e32a58daa136ebd555d4d96f4", + "blk.2.ffn_down.weight": "b970ff1b0b6494165defe2fbfa1d31425766ed71e64de9ec4e66ac3955c8bc5f", + "blk.2.ffn_gate.weight": "dbb3e1360402e0e369b101995bb686b73f95d4a7673f061be85d64d15dfb0061", + "blk.2.ffn_norm.weight": "bfb7980105d8ac9647710454f57a5cdac50598a0f6f4884e16f1d94b00844687", + "blk.2.ffn_up.weight": "50ef89339b275a438b664686f6227dd9b6e43853ed6856ec9e33ef4bbd90bda1", + "blk.3.attn_k.weight": "be942ea98151434eebcd2c1da4b00e0146152fe524a530689b1fd491cb833d21", + "blk.3.attn_norm.weight": "0df2f218daf609c289fb7c60c5f375fa99c0d4e04381ad5a494a19144edd8e20", + "blk.3.attn_output.weight": "c2184aaf86aa2cb8f47be49f60b165834e97205f39c6ee1dfd19fd4411a156ce", + "blk.3.attn_q.weight": "4f86e2a0a4221c1c84ff9c409ac89893cb95d7208cf65bf1e98e24e01125f991", + "blk.3.attn_v.weight": "abfdb8a60c349dadde641d1afc9542025e24fbf41a3238bfa9675e0b1f1e4b68", + "blk.3.ffn_down.weight": "58821a8d87008d47d122427911c6fad5272aca70c448bbae223256a74bacd07e", + "blk.3.ffn_gate.weight": "776e051f1a0ddd5c4934e69186683a75ca9a3c8c0f61911bba321fed1dd287d2", + "blk.3.ffn_norm.weight": "7f380f29335e28be90bfcfae6f6d69fdf5751211b36d2dd62aa5541ed113e4f2", + "blk.3.ffn_up.weight": "fc5ae8d488894cbd4951059675468d227da27871d26e925c9941863841c097ee", + "blk.4.attn_k.weight": "14833b078cc4c5137bdd5fdc0538047974ca147a99b0282e1b144440c78bc1db", + "blk.4.attn_norm.weight": "0a69957d4a15599fb80ad4753558020804925221457d9a5052926754d3768065", + "blk.4.attn_output.weight": "887a49b6130fb6297cf10767207c3dd97191b2cf63723449af9c27bca8dbeda0", + "blk.4.attn_q.weight": "51fd577b76764824dd6f0d4891c137ebe4736f591b5ca2793c5fff2be49abbde", + "blk.4.attn_v.weight": "1a623c43cf9c509d1b7ea0d1a5c04d0af4809665f9f9e93b7d6dba8c5df178fa", + "blk.4.ffn_down.weight": "5d61e8856d8941d2b1fd138116d015f63840d0fa1e31e20e20a5ceca1536ceec", + "blk.4.ffn_gate.weight": "06640f7273764f8ca5df7e386547417916b6cd7d565a8343153113239a94b0a1", + "blk.4.ffn_norm.weight": "91a6c6c41b894228e361435ecbc5058dca34d4911a23da5b56de219299c964d3", + "blk.4.ffn_up.weight": "d016dac1055e36d6a10b6317e57f98a904709ea892ef3194342f4d2f6326561e", + "blk.5.attn_k.weight": "987146afe124131500808cc0da33c06d207433656d41df6e6d8c99118a83bac5", + "blk.5.attn_norm.weight": "6b354938966f2608a2fb8d0f5b363ed0d8b0967c2ec8d0abd5c625b413042ded", + "blk.5.attn_output.weight": "cdcbfe02c6ff79d5326882b017a02099f5af71beedf6b1b3eb4de01e3a844536", + "blk.5.attn_q.weight": "b910d0cff781d3efb42eab0a302f46f286b2de717079175680d5b42bf8c309c8", + "blk.5.attn_v.weight": "66d3a279f747412f9f4b0e8abad44540c122ab2e811a7ee74c1f33bc36caade9", + "blk.5.ffn_down.weight": "c9b0efd2212981f16d956d8571f054b68780ad01f4917033647e359b557a4653", + "blk.5.ffn_gate.weight": "fe96b94109ca141c01f6a04788e20783019ca6ec334aa1f3134810bdb499e557", + "blk.5.ffn_norm.weight": "aa7b016e832e7055a36c6e20de58ea1936f995f390401fff1c5fc65906064e49", + "blk.5.ffn_up.weight": "555ce27c4873d3375394f38ad3b45e3d8848f9d5642dc1602383d0f0a33c2a14", + "blk.6.attn_k.weight": "88280d461db324c4f36475ce396793063e61a27283ec64511b0480890fb5b3b4", + "blk.6.attn_norm.weight": "af8f460c411f660d33196286d208f1845fd5a2b45f7b56549a4df31e7515447a", + "blk.6.attn_output.weight": "dd9996fb0a256e8375ad3917705258a33fce006bcea0f536caae420a77974d8b", + "blk.6.attn_q.weight": "7a4841541191e037cfb9b07930c4d8cab451809658b182f0ada6ccde9615c003", + "blk.6.attn_v.weight": "ae81e6a592b64d701a9d40233e986039a56cba8d8d24f61aea93c6393cf3078a", + "blk.6.ffn_down.weight": "622dd1ce1706355cbc659a8ab2c4509678ffe0f3ad34258e5e25ed2a5d951bcd", + "blk.6.ffn_gate.weight": "8389a735c0bd5591010f8ced9805a2a12c749f6df0d3c18ad4d05c2a302e7168", + "blk.6.ffn_norm.weight": "621f5346400382474d61358397bd58fb1459b07c53e376e4bca15e08b3f9b3fb", + "blk.6.ffn_up.weight": "8d834e4c42f13c251dfee36cf89e12f1bd400680d00d5c2e6cac0459e9ce2f7f", + "blk.7.attn_k.weight": "8bd0412de65a3e64901ef8fe6a28c95e116bf39dc9aa22f0126b9d36688e5ea7", + "blk.7.attn_norm.weight": "056d8e56be4e87d6dc6f900762f0dc6fde07bfdc50dd85bfc510415e2bba3f3d", + "blk.7.attn_output.weight": "27972eda51da53d416ff95aed78149a2c5a287b47d2cd46f2f544ca692ecb3bb", + "blk.7.attn_q.weight": "41eca977b9371f7932800c11a9c45b931310196919e2a0651b847703b180fc7f", + "blk.7.attn_v.weight": "13c74fd7e07f08883a09fb070a1fe5bbdd2341b4cb8d1cac07c4b637049b5774", + "blk.7.ffn_down.weight": "9e75db42468800849a9a7da603d0072c5e86c8ed2b4d8b20a312a51fb86a7a10", + "blk.7.ffn_gate.weight": "db6bdc3117f910088aaf7db51f2da63ea5bd933de36af5599c215bfb26f7db2b", + "blk.7.ffn_norm.weight": "48bb82b49bfc8679a1e77f282ee182d952db7a3c11be7ef9a102ee2ddd8011e2", + "blk.7.ffn_up.weight": "feebea87175817a0f3585ec0af09dc873d94c203581ae97a712eb356d3b49efe", + "blk.8.attn_k.weight": "d5640ad71b6af68d88e17bf8e7fc26c907d2262605457a84247dd9afc2884d69", + "blk.8.attn_norm.weight": "75b850c481a69083ae09d0207ba7317b37c735a39fcf5fef5400e6c84fb1257f", + "blk.8.attn_output.weight": "cbd669dbdea2bdd90f9f0cc97566b3dffff3c56cecb4f47290ceef30da83b2d6", + "blk.8.attn_q.weight": "9edcb63087a431bac361822497e6ecdaa06d9ea4a1a754e36da7ba9f8db81c7c", + "blk.8.attn_v.weight": "3fb72c2c4f95a83626aa3e30062f9450b09ab37c7871e229f18bbc5cf744633c", + "blk.8.ffn_down.weight": "bd69d2c9172974fff154441b237b4787fb53b2d185325442d5048130ef5bc4ef", + "blk.8.ffn_gate.weight": "d04689c80553edd011d1cbaa5d570fffa7fa91e88b66cf1352d89ab60b72f908", + "blk.8.ffn_norm.weight": "e49984183b735b7f2c4e4730c289eed9394056d2e283a00fd83ea0915df31a73", + "blk.8.ffn_up.weight": "8fe62a1ce8e847e567add6c6f6bf2922bc467495b5eb4c116b3cb85b85b3b211", + "blk.9.attn_k.weight": "d90904959e5004cf0d6e729c6bff18cc33c094798b802473c1ec55ab8d276183", + "blk.9.attn_norm.weight": "79277f290cc07411115d8fa138045edf4a17b3416ab2145409cbe8ab829fd4ee", + "blk.9.attn_output.weight": "5a21bf2e1f09a81405025f96d4153ffb630158e17269cff8ffff935c38ceb1a7", + "blk.9.attn_q.weight": "51b1d0febc3b350945be4504f55afa4347517bde0f710e1a4b88e6b17e71e7c7", + "blk.9.attn_v.weight": "aab7e1db0a8b50a03036356791ffce736ab010d15674c96eaef8049d80076054", + "blk.9.ffn_down.weight": "cbf43ec84becb40c9359a181ab0e641fd7faae7d34b549501f7cfb7afdc3d764", + "blk.9.ffn_gate.weight": "dce0e8661c778327bed7f03b6790d26710764188aed9dc746e6e05863891fa57", + "blk.9.ffn_norm.weight": "6d41642104f995c77bf31122b13237caebda3e7fcccb1367ce91db36b015e923", + "blk.9.ffn_up.weight": "82fe4c67bf24e7b2d6f6e05f7b1234c2bf90c3932951091a9066211b8e15ecbb", + "blk.10.attn_k.weight": "f6a9ed8fd8d3229b5d03175c413ffc56a07f2ce7236271986361dd3d8993f9aa", + "blk.10.attn_norm.weight": "cebbef89f0326ca8e02df3867a571e4d61c20c2a12f295f98ae590d62bc86010", + "blk.10.attn_output.weight": "34f5efb86accb4f06347d83a32558ea8eab3039d128969161a741ebacbb656ff", + "blk.10.attn_q.weight": "1e0efe27df2d5d50f7157253ba2cfd436d6781c3dc78ca176d0c16a210b5b763", + "blk.10.attn_v.weight": "8f085bf50a2b0f83cd6cdda3c8ef5a9e204a36348ed95871aac725d1f68640cf", + "blk.10.ffn_down.weight": "bf3b3cb4cace435809ac7b4cc933f20853af12f1f272d3dcefe7f19c0f203b8b", + "blk.10.ffn_gate.weight": "d3df7a1413b1c5adf1a1dcda9e5225a15c89874bae53bb6137ad1ea42fca2d34", + "blk.10.ffn_norm.weight": "a1da603b0480471b5ed8e862148cecd5fed918f8304d6933ab0bdb25b8d2fb8f", + "blk.10.ffn_up.weight": "bffbba605922e972dc47dda88a0b4659aa52236c76e5fe861a949e6d9a367492", + "blk.11.attn_k.weight": "9f31c63d66cd32c29b1eb8bb829d0c8525ce2ae936e0eefdaab6335a2d12a3df", + "blk.11.attn_norm.weight": "0bde1a266d8b2e8f202bb7e2e88b19147ca83021901f6d3cae77a4df5548c754", + "blk.11.attn_output.weight": "e10725c7cf746ed4a7e472cf7aea6cb564e5db6a1d5197adc980d650a387ccea", + "blk.11.attn_q.weight": "05ee758a7d065802630f8c65dca424364c1c8825e389aa33f9405c45e8a50cce", + "blk.11.attn_v.weight": "0c3ae7090f11775d24c51120db6e305db6aff706493e7ee123dcab74485ba789", + "blk.11.ffn_down.weight": "7ba40b8e12c09c5fb2006b77a771cb01ce894e88a3b3e1877f927a5b89c91709", + "blk.11.ffn_gate.weight": "db76388a023b98097972d354ba1c6a5e26efdeb1c596b9c28bf2cd8f6596975e", + "blk.11.ffn_norm.weight": "a38c3ae1b89a68ddc7b72c99c5b28be7fe3787c4fad9904d0c43d64eaf00c474", + "blk.11.ffn_up.weight": "13c8142f9cf1eddc658babf978daf3515c4ccc45f849f3e7e3930aa18a8480a0", + "blk.12.attn_k.weight": "f03241c36ac87cb57429a2ef22186b8d7d0b590a8b173beb01fa13d93772f3b1", + "blk.12.attn_norm.weight": "4568f654e6d65104d586e7c16ba960c83428698ce103022b7e0be15e2884e13b", + "blk.12.attn_output.weight": "04867603f82f91e41306e09b33ecda0104b3ee4834061f2c0bbdc8da33c72509", + "blk.12.attn_q.weight": "70fe04b9a8e08b6100cc8d6b58bf4cbbad15ca1de82d63baca5d352ba6c4cbae", + "blk.12.attn_v.weight": "15cb28db61a86c98687991d7e611bc92a1fcc6007f3432149cfb5fe518a4f65e", + "blk.12.ffn_down.weight": "6d10c790a4e3dc44c2dc36d96251ae97cdf30a4fa04d4c43e31bfbd038e6a7b7", + "blk.12.ffn_gate.weight": "3462a2d8f6b4743b25e24da51b90018ac2858d05ac7e582bcb69063cfdac1104", + "blk.12.ffn_norm.weight": "1f96392c1faa34e34ae5dea55a6a86c5aa4c79758952075d53d28de89dd88456", + "blk.12.ffn_up.weight": "d22eacc612a7411953d948483c5fb201e11722955ee0754da866e7bec578ac6d", + "blk.13.attn_k.weight": "5864977e6b733ea942647d6feed5c76156c48c200649c22e4e11b9e5860e57f3", + "blk.13.attn_norm.weight": "87e053535144723db4145aa5402acc54331b7696752d852bb9fc542ff33f0fb5", + "blk.13.attn_output.weight": "078145f5ad83f8b14f97a869346f7fd1583b24d1e3edadaa95d3da4242973f8f", + "blk.13.attn_q.weight": "3b8caf35504cbc4d1a7dd6e011a95760703b7f71e2218b030b1254f811362dd7", + "blk.13.attn_v.weight": "4fdf8365a603e043e5b40c4a21c84ac167f9be62794178f9d8a608dfe5653bf9", + "blk.13.ffn_down.weight": "a07d3abbfcacf48ba028df2cab895be32cc15022d23389a745286e79c1b1d1fd", + "blk.13.ffn_gate.weight": "1d2ab39666aa2909acc96787432a3ed13b19d25170f74665fadff9b17bbaffb1", + "blk.13.ffn_norm.weight": "4f2e809fda5f3eadf52578ee50e0ba36e53be91e55dce418c12dfe595f5f18e7", + "blk.13.ffn_up.weight": "8783d2720c2c37ca176a5801e0b3ef1f9cc9cf3ef1cd37af423aaf6b2a27e2bd", + "blk.14.attn_k.weight": "ce9428e2b55d43ae0c6690dbd56182f99adc427694ba8236b405cc8ea5035e86", + "blk.14.attn_norm.weight": "6abb35f9db8251d6ae954bda147c6ada2371b0574d11702e828f3c6ac99b7cc0", + "blk.14.attn_output.weight": "fe3880916d0ceb5bff672c88bbefb7060a545be609bf049beb2024b38221836d", + "blk.14.attn_q.weight": "7c8ad81be6f4a350931fd108b5f7c9e366e8c26ef62d1d85ffef5dca8fd893f8", + "blk.14.attn_v.weight": "e4bdedffacbebe38567a0734dfd67db90e911d9a9669fcde9a7c4ad8a0066c52", + "blk.14.ffn_down.weight": "ef6694dff1e05820aac0cd2b22f39ac7788b4967afc9250775575554c66aab2c", + "blk.14.ffn_gate.weight": "db63c4179e2db704bc505e2b4696e055b593e295a1b7c4c586fc793bdd5aab19", + "blk.14.ffn_norm.weight": "2796a62d832a9710148f95d533320492a33e712b2e5218659c548705bd11684d", + "blk.14.ffn_up.weight": "3f78c78d8c2d54df45f799d4ff902316628af296834afe4ceed63d4a324ff03e", + "blk.15.attn_k.weight": "6e810ee3859e07695645ee0c9a5efc7962668984a5f0a9325f47e462743b447c", + "blk.15.attn_norm.weight": "0956b576ae96db0b28cb09f761f801cfd9281432284664f0fe181c8d9c55d1ec", + "blk.15.attn_output.weight": "03a17f7e94208177aace5cc41b7f54670ba57873b7274ff6e23caf58cce110ca", + "blk.15.attn_q.weight": "b8edafe7d2216a6f8b4ae4905a906475490e6ea418f6e1d3cec563dbdc6fab91", + "blk.15.attn_v.weight": "f8ae8cae0f4cfa34a459824eba57350c3c248104ba5607e7d9dc7d7c39aaf4a6", + "blk.15.ffn_down.weight": "8d02eb439da852246d2ca67e9b7b6de0b090b80744355e64728a23e41926505b", + "blk.15.ffn_gate.weight": "ed5bf361c67db8731f186b775826f21c33bdb521111fd2d922539719a770239f", + "blk.15.ffn_norm.weight": "5942ca3c73209ac9a0c8bfd9b4aab7f7be7aee9aa12d9c35833493b44af76767", + "blk.15.ffn_up.weight": "f4bebf4ad99ec5f911327dec347be6c595814885309c7bc5647ce28c7f4d1cf5", + "blk.16.attn_k.weight": "756a534c19364448e0958b8948fe33891c6ccda0fbb4dfa2024e1f532a87804b", + "blk.16.attn_norm.weight": "386b7b9e4e6509f6af9c022d942b6c6c6cc136aeed8751ecb037c74d7c4bfb93", + "blk.16.attn_output.weight": "3ba1a766a25830b84d7c22178203635f9c5624caad290bc5e5d73da5d5e7a2ec", + "blk.16.attn_q.weight": "d39b0c91e1fda7685d50a0f7cc8d18c44b5bdc90a142c7fda0bc329cca1afa74", + "blk.16.attn_v.weight": "98b33fcb0ee3483cff1b06ecb44d7b7ffb4d34c268248e4d73dfdf82b2065b2f", + "blk.16.ffn_down.weight": "14006f5e4acb2f9416271ae562e299359cd2585739c7fc77ccbca54495563948", + "blk.16.ffn_gate.weight": "12f8abae2d301d8f88bedb6af98b1daecc7b0b8d05148594f931f30958d77aca", + "blk.16.ffn_norm.weight": "129a15a046ee96d06de288bd43c80f77a6b0fb3a159c7367154c6e4aaf362672", + "blk.16.ffn_up.weight": "b4a5911a45f3871ef1d4efb7dc7108645a564b70f818eccf45beebef2e844ee9", + "blk.17.attn_k.weight": "5e1bfcff0146ebdde3817b656952892eb671e14e75afc92fa53f84f8eecbec4c", + "blk.17.attn_norm.weight": "60bc988fab7c4b29ee9de599df41a8de00caa94fcd74677da011fac82f60f465", + "blk.17.attn_output.weight": "ba49b40d6a0b5685f749c24b0edbed3adc44dbe13b5d5e5fa1e56169fc746555", + "blk.17.attn_q.weight": "82bb415d24efcd14d03ace03f907bb70db6a204c76a0bdd1892e0fba165db87d", + "blk.17.attn_v.weight": "73dbe54beb91a899884e275ea81ffc5187a20cb7d5b68d5c299b783096999d94", + "blk.17.ffn_down.weight": "7c086166241e0664f8963fd1ca4ed74c737abfb2525ec20f8435821ff50158f3", + "blk.17.ffn_gate.weight": "51a32f78244d42a539f619c5ce661db9e6cf41636280a826d439b5444edcd28c", + "blk.17.ffn_norm.weight": "c4bb247fccd1ecc84875028af63dd20aaf5cbd17eb94a9bc36679c09285dccab", + "blk.17.ffn_up.weight": "b5886182790bc6fbadd63de9bc4ffee416f3b69a66280d197ab8c18edf769abf", + "output_norm.weight": "481f3097d0a20412e35b3a739b1b958487bcd41ff67744baa3c9acbddd2ee4d4" +} diff --git a/convert/tokenizer.go b/convert/tokenizer.go index fd6df5f5..0d42a6d8 100644 --- a/convert/tokenizer.go +++ b/convert/tokenizer.go @@ -3,19 +3,150 @@ package convert import ( "cmp" "crypto/sha256" + "encoding/hex" "encoding/json" + "errors" "fmt" + "io/fs" "log/slog" "os" "slices" +) - "golang.org/x/exp/maps" +const ( + _ int32 = iota + tokenTypeNormal + tokenTypeUnknown + tokenTypeControl + tokenTypeUserDefined + tokenTypeUnused + tokenTypeByte ) type Tokenizer struct { - Version string `json:"version"` - AddedTokens []Token `json:"added_tokens"` - Model TokenizerModel `json:"model"` + *Vocabulary + SpecialVocabulary []*SpecialVocabulary + Merges []string + + Pre string + Template string +} + +func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error) { + v, err := parseVocabulary(fsys) + if err != nil { + return nil, err + } + + t := &Tokenizer{ + Vocabulary: v, + Pre: "default", + } + + addedTokens := make(map[string]token) + if f, err := fsys.Open("tokenizer.json"); errors.Is(err, os.ErrNotExist) { + } else if err != nil { + return nil, err + } else { + defer f.Close() + + var tt tokenizer + if err := json.NewDecoder(f).Decode(&tt); err != nil { + return nil, err + } + + for _, t := range tt.AddedTokens { + addedTokens[t.Content] = t + } + + t.Merges = tt.Model.Merges + + sha256sum := sha256.New() + for _, pt := range tt.PreTokenizer.PreTokenizers { + switch pt.Type { + case "Split": + if pt.Pattern.Regex != "" { + // create a checksum of all Split pretokenizers which should be sufficient + // to identify the pretokenizer + sha256sum.Write([]byte(pt.Pattern.Regex)) + } + } + } + + switch digest := hex.EncodeToString(sha256sum.Sum(nil)); digest { + case "d98f9631be1e9607a9848c26c1f9eac1aa9fc21ac6ba82a2fc0741af9780a48f": + t.Pre = "llama-bpe" + case "03df5c5863ad70781dcfdef491ead25140f895fe8010964be0daefe27be32b02": + t.Pre = "deepseek-llm" + case "21cde974d587f0d54dc8d56b183cc1e6239600172035c68fbd6d4b9f8da0576e": + t.Pre = "deepseek-coder" + case "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855": + // noop, empty pretokenizer + default: + slog.Warn("unknown pretokenizer, using default", "digest", digest) + } + } + + if f, err := fsys.Open("tokenizer_config.json"); errors.Is(err, os.ErrNotExist) { + } else if err != nil { + return nil, err + } else { + defer f.Close() + + var p map[string]json.RawMessage + if err := json.NewDecoder(f).Decode(&p); err != nil { + return nil, err + } + + if template, ok := p["chat_template"]; ok { + if err := json.Unmarshal(template, &t.Template); err != nil { + return nil, err + } + } + + for _, st := range specialTokenTypes { + sv := SpecialVocabulary{Type: st} + if bts, ok := p[fmt.Sprintf("add_%s_token", st)]; ok { + if err := json.Unmarshal(bts, &sv.AddToken); err != nil { + return nil, err + } + } + + if bts, ok := p[fmt.Sprintf("%s_token", st)]; ok { + var content string + if err := json.Unmarshal(bts, &content); err != nil { + var mm map[string]any + if err := json.Unmarshal(bts, &mm); err != nil { + continue + } + + content, ok = mm["content"].(string) + if !ok { + continue + } + } + + sv.Content = content + } + + if id, ok := addedTokens[sv.Content]; ok { + sv.ID = id.ID + t.SpecialVocabulary = append(t.SpecialVocabulary, &sv) + } + } + } + + return t, nil +} + +type tokenizer struct { + Version string `json:"version"` + AddedTokens []token `json:"added_tokens"` + Model struct { + Type string `json:"type"` + Vocab map[string]int `json:"vocab"` + Merges []string `json:"merges"` + } `json:"model"` PreTokenizer struct { PreTokenizers []struct { @@ -27,80 +158,108 @@ type Tokenizer struct { } `json:"pre_tokenizer"` } -type TokenizerModel struct { - Type string `json:"type"` - Vocab map[string]int `json:"vocab"` - Merges []string `json:"merges"` - Tokens []Token -} - -type Token struct { +type token struct { ID int `json:"id"` Content string `json:"content"` Special bool `json:"special"` UserDefined bool } -func (t *Token) Type() int32 { - switch { - case t.Special: - return tokenTypeControl - case t.UserDefined: - return tokenTypeUserDefined - default: - return tokenTypeNormal - } +type Vocabulary struct { + Model string + Tokens []string + Scores []float32 + Types []int32 } -func (t *Tokenizer) maxID() int { - return max( - slices.Max(maps.Values(t.Model.Vocab)), - slices.MaxFunc(t.AddedTokens, func(a, b Token) int { - return cmp.Compare(a.ID, b.ID) - }).ID, - ) -} - -func parseTokens(dirpath string) (pre string, tokens []Token, merges []string, err error) { - f, err := os.Open(dirpath) +func parseVocabularyFromTokenizer(fsys fs.FS) (*Vocabulary, error) { + f, err := fsys.Open("tokenizer.json") if err != nil { - panic(err) + return nil, err } defer f.Close() - var t Tokenizer + var t tokenizer if err := json.NewDecoder(f).Decode(&t); err != nil { - return "", nil, nil, err + return nil, err } - tokens = make([]Token, t.maxID()+1) + var tokens []token for k, v := range t.Model.Vocab { - tokens[v] = Token{ID: v, Content: k, Special: false, UserDefined: false} + tokens = append(tokens, token{ + ID: v, + Content: k, + }) } - for _, v := range t.AddedTokens { - v.UserDefined = true - tokens[v.ID] = v + for _, t := range t.AddedTokens { + t.UserDefined = true + tokens = append(tokens, t) } - sha256sum := sha256.New() - for _, pt := range t.PreTokenizer.PreTokenizers { - if pt.Type == "Split" && pt.Pattern.Regex != "" { - sha256sum.Write([]byte(pt.Pattern.Regex)) + slices.SortFunc(tokens, func(i, j token) int { + return cmp.Compare(i.ID, j.ID) + }) + + v := Vocabulary{Model: "gpt2"} + for _, t := range tokens { + v.Tokens = append(v.Tokens, t.Content) + v.Scores = append(v.Scores, float32(t.ID)) + + switch { + case t.Special: + v.Types = append(v.Types, tokenTypeControl) + case t.UserDefined: + v.Types = append(v.Types, tokenTypeUserDefined) + default: + v.Types = append(v.Types, tokenTypeNormal) } } - switch digest := fmt.Sprintf("%x", sha256sum.Sum(nil)); digest { - case "d98f9631be1e9607a9848c26c1f9eac1aa9fc21ac6ba82a2fc0741af9780a48f": - pre = "llama-bpe" - case "03df5c5863ad70781dcfdef491ead25140f895fe8010964be0daefe27be32b02": - pre = "deepseek-llm" - case "21cde974d587f0d54dc8d56b183cc1e6239600172035c68fbd6d4b9f8da0576e": - pre = "deepseek-coder" - default: - slog.Warn("unknown pretokenizer, using default", "digest", digest) - pre = "default" + return &v, nil +} + +func parseVocabulary(fsys fs.FS) (*Vocabulary, error) { + patterns := []struct { + Pattern string + Func func(fs.FS) (*Vocabulary, error) + }{ + {"tokenizer.model", parseSentencePiece}, + {"tokenizer.json", parseVocabularyFromTokenizer}, } - return pre, tokens, t.Model.Merges, nil + for _, pattern := range patterns { + if _, err := fs.Stat(fsys, pattern.Pattern); errors.Is(err, os.ErrNotExist) { + continue + } else if err != nil { + return nil, err + } + + return pattern.Func(fsys) + } + + return nil, errors.New("unknown tensor format") +} + +type SpecialVocabulary struct { + Type string + ID int + Content string + AddToken bool +} + +func (sv SpecialVocabulary) Key() string { + switch t := sv.Type; t { + case "bos", "eos", "cls", "mask": + return t + case "unk": + return "unknown" + case "sep": + //nolint:misspell // this is an upstream typo + return "seperator" + case "pad": + return "padding" + } + + panic("unknown special vocabulary type") } diff --git a/convert/tokenizer_spm.go b/convert/tokenizer_spm.go new file mode 100644 index 00000000..babf702c --- /dev/null +++ b/convert/tokenizer_spm.go @@ -0,0 +1,83 @@ +package convert + +import ( + "cmp" + "encoding/json" + "errors" + "fmt" + "io/fs" + "os" + "slices" + + "google.golang.org/protobuf/proto" + + "github.com/ollama/ollama/convert/sentencepiece" +) + +func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) { + bts, err := fs.ReadFile(fsys, "tokenizer.model") + if err != nil { + return nil, err + } + + var spm sentencepiece.ModelProto + if err := proto.Unmarshal(bts, &spm); err != nil { + return nil, err + } + + v := Vocabulary{Model: "llama"} + for _, piece := range spm.GetPieces() { + v.Tokens = append(v.Tokens, piece.GetPiece()) + v.Scores = append(v.Scores, piece.GetScore()) + + switch t := piece.GetType(); t { + case sentencepiece.ModelProto_SentencePiece_UNKNOWN, + sentencepiece.ModelProto_SentencePiece_CONTROL, + sentencepiece.ModelProto_SentencePiece_UNUSED, + sentencepiece.ModelProto_SentencePiece_BYTE: + v.Types = append(v.Types, int32(t)) + default: + v.Types = append(v.Types, int32(sentencepiece.ModelProto_SentencePiece_NORMAL)) + } + } + + f, err := fsys.Open("added_tokens.json") + if errors.Is(err, os.ErrNotExist) { + return &v, nil + } else if err != nil { + return nil, err + } + defer f.Close() + + var atm map[string]int + if err := json.NewDecoder(f).Decode(&atm); err != nil { + return nil, err + } + + type t struct { + id int + content string + } + + var ts []t + for content, id := range atm { + ts = append(ts, t{id, content}) + } + + slices.SortFunc(ts, func(i, j t) int { + return cmp.Compare(i.id, j.id) + }) + + n := len(v.Tokens) + for i, t := range ts { + if t.id != i+n { + return nil, fmt.Errorf("invalid token id: %d", t.id) + } + + v.Tokens = append(v.Tokens, t.content) + v.Scores = append(v.Scores, -1000.0) + v.Types = append(v.Types, tokenTypeUserDefined) + } + + return &v, nil +} diff --git a/convert/torch.go b/convert/torch.go deleted file mode 100644 index 55414adc..00000000 --- a/convert/torch.go +++ /dev/null @@ -1,287 +0,0 @@ -package convert - -import ( - "encoding/binary" - "encoding/json" - "fmt" - "io" - "log/slog" - "os" - "path/filepath" - "regexp" - "strings" - - "github.com/nlpodyssey/gopickle/pytorch" - "github.com/nlpodyssey/gopickle/types" - "github.com/x448/float16" - - "github.com/ollama/ollama/llm" -) - -type torchWriterTo struct { - t *llm.Tensor - - params *Params - bo ByteOrder - - storage pytorch.StorageInterface - repacker func(string, []float32, []uint64) ([]float32, error) -} - -type TorchFormat struct{} - -func (tf *TorchFormat) GetTensors(dirpath string, params *Params) ([]llm.Tensor, error) { - slog.Debug("getting torch tensors") - - var files []string - if pt, _ := filepath.Glob(filepath.Join(dirpath, "consolidated*.pth")); len(pt) > 0 { - files = append(files, pt...) - } else if pt, _ := filepath.Glob(filepath.Join(dirpath, "pytorch_model*.pth")); len(pt) > 0 { - files = append(files, pt...) - } - - var offset uint64 - var tensors []llm.Tensor - for _, fn := range files { - m, err := pytorch.Load(fn) - if err != nil { - slog.Error(fmt.Sprintf("error unpickling: %q", err)) - return []llm.Tensor{}, err - } - - for _, k := range m.(*types.Dict).Keys() { - if strings.HasSuffix(k.(string), "self_attn.rotary_emb.inv_freq") { - continue - } - - t, _ := m.(*types.Dict).Get(k) - tshape := t.(*pytorch.Tensor).Size - - var size uint64 - var kind uint32 - switch len(tshape) { - case 0: - continue - case 1: - // convert to float32 - kind = 0 - size = uint64(tshape[0] * 4) - case 2: - // convert to float16 - kind = 1 - size = uint64(tshape[0] * tshape[1] * 2) - } - - ggufName, err := tf.GetLayerName(k.(string)) - if err != nil { - slog.Error(err.Error()) - return nil, err - } - slog.Debug(fmt.Sprintf("'%35s': '%30s' %10d [%#v]", k.(string), ggufName, size, tshape)) - - shape := []uint64{0, 0, 0, 0} - for i := range tshape { - shape[i] = uint64(tshape[i]) - } - - tensor := llm.Tensor{ - Name: ggufName, - Kind: kind, - Offset: offset, // calculate the offset - Shape: shape, - } - - tensor.WriterTo = torchWriterTo{ - t: &tensor, - params: params, - bo: params.ByteOrder, - storage: t.(*pytorch.Tensor).Source, - } - - tensors = append(tensors, tensor) - offset += size - } - } - - return tensors, nil -} - -func getAltParams(dirpath string) (*Params, error) { - f, err := os.Open(filepath.Join(dirpath, "params.json")) - if err != nil { - slog.Error("no params.json") - return nil, err - } - defer f.Close() - - type TorchParams struct { - HiddenSize int `json:"dim"` - AttentionHeads int `json:"n_heads"` - KeyValHeads int `json:"n_kv_heads"` - HiddenLayers int `json:"n_layers"` - RopeTheta float64 `json:"rope_theta"` - NormEPS float64 `json:"norm_eps"` - } - - var tparams TorchParams - - d := json.NewDecoder(f) - err = d.Decode(&tparams) - if err != nil { - return nil, err - } - - params := &Params{ - Architectures: []string{"LlamaForCausalLM"}, - HiddenSize: tparams.HiddenSize, - AttentionHeads: tparams.AttentionHeads, - KeyValHeads: tparams.KeyValHeads, - HiddenLayers: tparams.HiddenLayers, - NormEPS: tparams.NormEPS, - } - - switch { - case tparams.RopeTheta == 1000000: - // Codellama - params.ContextSize = 16384 - case tparams.NormEPS == 1e-06: - // llama2 - slog.Debug("Found llama2 - setting context size to 4096") - params.ContextSize = 4096 - default: - params.ContextSize = 2048 - } - - params.ByteOrder = binary.LittleEndian - return params, nil -} - -func (m *TorchFormat) GetParams(dirpath string) (*Params, error) { - f, err := os.Open(filepath.Join(dirpath, "config.json")) - if err != nil { - if os.IsNotExist(err) { - // try params.json instead - return getAltParams(dirpath) - } else { - return nil, err - } - } - - var params Params - d := json.NewDecoder(f) - err = d.Decode(¶ms) - if err != nil { - return nil, err - } - - params.ByteOrder = binary.LittleEndian - return ¶ms, nil -} - -func (m *TorchFormat) GetLayerName(n string) (string, error) { - directMap := map[string]string{ - "tok_embeddings.weight": "token_embd.weight", - "output.weight": "output.weight", - "norm.weight": "output_norm.weight", - "rope.freqs": "rope_freqs.weight", - "model.embed_tokens.weight": "token_embd.weight", - "lm_head.weight": "output.weight", - "model.norm.weight": "output_norm.weight", - } - - lMap := map[string]string{ - "layers.(\\d+).attention_norm.weight": "blk.$1.attn_norm.weight", - "layers.(\\d+).attention_output_norm.weight": "blk.$1.attn_norm.weight", - "layers.(\\d+).feed_forward.w2.weight": "blk.$1.ffn_down.weight", - "layers.(\\d+).feed_forward.w1.weight": "blk.$1.ffn_gate.weight", - "layers.(\\d+).feed_forward.w3.weight": "blk.$1.ffn_up.weight", - "layers.(\\d+).ffn_norm.weight": "blk.$1.ffn_norm.weight", - "layers.(\\d+).attention.wk.weight": "blk.$1.attn_k.weight", - "layers.(\\d+).attention.wo.weight": "blk.$1.attn_output.weight", - "layers.(\\d+).attention.wq.weight": "blk.$1.attn_q.weight", - "layers.(\\d+).attention.wv.weight": "blk.$1.attn_v.weight", - "model.layers.(\\d+).input_layernorm.weight": "blk.$1.attn_norm.weight", - "model.layers.(\\d+).mlp.down_proj.weight": "blk.$1.ffn_down.weight", - "model.layers.(\\d+).mlp.gate_proj.weight": "blk.$1.ffn_gate.weight", - "model.layers.(\\d+).mlp.up_proj.weight": "blk.$1.ffn_up.weight", - "model.layers.(\\d+).post_attention_layernorm.weight": "blk.$1.ffn_norm.weight", - "model.layers.(\\d+).self_attn.k_proj.weight": "blk.$1.attn_k.weight", - "model.layers.(\\d+).self_attn.o_proj.weight": "blk.$1.attn_output.weight", - "model.layers.(\\d+).self_attn.q_proj.weight": "blk.$1.attn_q.weight", - "model.layers.(\\d+).self_attn.v_proj.weight": "blk.$1.attn_v.weight", - } - - v, ok := directMap[n] - if ok { - return v, nil - } - - // quick hack to rename the layers to gguf format - for k, v := range lMap { - re := regexp.MustCompile(k) - newName := re.ReplaceAllString(n, v) - if newName != n { - return newName, nil - } - } - - return "", fmt.Errorf("couldn't find a layer name for '%s'", n) -} - -func (r torchWriterTo) WriteTo(w io.Writer) (n int64, err error) { - var f32s []float32 - switch s := r.storage.(type) { - case *pytorch.FloatStorage: - f32s = s.Data - case *pytorch.HalfStorage: - f32s = s.Data - case *pytorch.BFloat16Storage: - f32s = s.Data - default: - return 0, fmt.Errorf("unknown data type: %T", s) - } - - if r.repacker != nil { - f32s, err = r.repacker(r.t.Name, f32s, r.t.Shape) - if err != nil { - return 0, err - } - } - - switch r.t.Kind { - case 0: - return 0, binary.Write(w, r.bo, f32s) - case 1: - f16s := make([]uint16, len(f32s)) - for i := range f32s { - f16s[i] = float16.Fromfloat32(f32s[i]).Bits() - } - - return 0, binary.Write(w, r.bo, f16s) - default: - return 0, fmt.Errorf("unknown storage type: %d", r.t.Kind) - } -} - -func (m *TorchFormat) GetModelArch(name, dirPath string, params *Params) (ModelArch, error) { - switch len(params.Architectures) { - case 0: - return nil, fmt.Errorf("No architecture specified to convert") - case 1: - switch params.Architectures[0] { - case "LlamaForCausalLM": - return &LlamaModel{ - ModelData{ - Name: name, - Path: dirPath, - Params: params, - Format: m, - }, - }, nil - default: - return nil, fmt.Errorf("Models based on '%s' are not yet supported", params.Architectures[0]) - } - } - - return nil, fmt.Errorf("Unknown error") -} diff --git a/docs/api.md b/docs/api.md index c577bb1a..c0202ef3 100644 --- a/docs/api.md +++ b/docs/api.md @@ -40,6 +40,7 @@ Generate a response for a given prompt with a provided model. This is a streamin - `model`: (required) the [model name](#model-names) - `prompt`: the prompt to generate a response for +- `suffix`: the text after the model response - `images`: (optional) a list of base64-encoded images (for multimodal models such as `llava`) Advanced parameters (optional): @@ -57,7 +58,8 @@ Advanced parameters (optional): Enable JSON mode by setting the `format` parameter to `json`. This will structure the response as a valid JSON object. See the JSON mode [example](#request-json-mode) below. -> Note: it's important to instruct the model to use JSON in the `prompt`. Otherwise, the model may generate large amounts whitespace. +> [!IMPORTANT] +> It's important to instruct the model to use JSON in the `prompt`. Otherwise, the model may generate large amounts whitespace. ### Examples @@ -148,8 +150,44 @@ If `stream` is set to `false`, the response will be a single JSON object: } ``` +#### Request (with suffix) + +##### Request + +```shell +curl http://localhost:11434/api/generate -d '{ + "model": "codellama:code", + "prompt": "def compute_gcd(a, b):", + "suffix": " return result", + "options": { + "temperature": 0 + }, + "stream": false +}' +``` + +##### Response + +```json +{ + "model": "codellama:code", + "created_at": "2024-07-22T20:47:51.147561Z", + "response": "\n if a == 0:\n return b\n else:\n return compute_gcd(b % a, a)\n\ndef compute_lcm(a, b):\n result = (a * b) / compute_gcd(a, b)\n", + "done": true, + "done_reason": "stop", + "context": [...], + "total_duration": 1162761250, + "load_duration": 6683708, + "prompt_eval_count": 17, + "prompt_eval_duration": 201222000, + "eval_count": 63, + "eval_duration": 953997000 +} +``` + #### Request (JSON mode) +> [!IMPORTANT] > When `format` is set to `json`, the output will always be a well-formed JSON object. It's important to also instruct the model to respond in JSON. ##### Request @@ -298,6 +336,7 @@ curl http://localhost:11434/api/generate -d '{ "num_predict": 100, "top_k": 20, "top_p": 0.9, + "min_p": 0.0, "tfs_z": 0.5, "typical_p": 0.7, "repeat_last_n": 33, @@ -380,12 +419,14 @@ Generate the next message in a chat with a provided model. This is a streaming e - `model`: (required) the [model name](#model-names) - `messages`: the messages of the chat, this can be used to keep a chat memory +- `tools`: tools for the model to use if supported. Requires `stream` to be set to `false` The `message` object has the following fields: -- `role`: the role of the message, either `system`, `user` or `assistant` +- `role`: the role of the message, either `system`, `user`, `assistant`, or `tool` - `content`: the content of the message - `images` (optional): a list of images to include in the message (for multimodal models such as `llava`) +- `tool_calls` (optional): a list of tools the model wants to use Advanced parameters (optional): @@ -546,7 +587,7 @@ Final response: ##### Request -Send a chat message with a conversation history. +Send a chat message with images. The images should be provided as an array, with the individual images encoded in Base64. ```shell curl http://localhost:11434/api/chat -d '{ @@ -622,6 +663,79 @@ curl http://localhost:11434/api/chat -d '{ } ``` +#### Chat request (with tools) + +##### Request + +``` +curl http://localhost:11434/api/chat -d '{ + "model": "mistral", + "messages": [ + { + "role": "user", + "content": "What is the weather today in Paris?" + } + ], + "stream": false, + "tools": [ + { + "type": "function", + "function": { + "name": "get_current_weather", + "description": "Get the current weather for a location", + "parameters": { + "type": "object", + "properties": { + "location": { + "type": "string", + "description": "The location to get the weather for, e.g. San Francisco, CA" + }, + "format": { + "type": "string", + "description": "The format to return the weather in, e.g. 'celsius' or 'fahrenheit'", + "enum": ["celsius", "fahrenheit"] + } + }, + "required": ["location", "format"] + } + } + } + ] +}' +``` + +##### Response + +```json +{ + "model": "mistral:7b-instruct-v0.3-q4_K_M", + "created_at": "2024-07-22T20:33:28.123648Z", + "message": { + "role": "assistant", + "content": "", + "tool_calls": [ + { + "function": { + "name": "get_current_weather", + "arguments": { + "format": "celsius", + "location": "Paris, FR" + } + } + } + ] + }, + "done_reason": "stop", + "done": true, + "total_duration": 885095291, + "load_duration": 3753500, + "prompt_eval_count": 122, + "prompt_eval_duration": 328493000, + "eval_count": 33, + "eval_duration": 552222000 +} +``` + ## Create a Model ```shell @@ -1026,7 +1140,7 @@ If `stream` is set to `false`, then the response is a single JSON object: ## Generate Embeddings ```shell -POST /api/embeddings +POST /api/embed ``` Generate embeddings from a model @@ -1034,10 +1148,11 @@ Generate embeddings from a model ### Parameters - `model`: name of model to generate embeddings from -- `prompt`: text to generate embeddings for +- `input`: text or list of text to generate embeddings for Advanced parameters: +- `truncate`: truncates the end of each input to fit within context length. Returns error if `false` and context length is exceeded. Defaults to `true` - `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature` - `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`) @@ -1046,9 +1161,9 @@ Advanced parameters: #### Request ```shell -curl http://localhost:11434/api/embeddings -d '{ +curl http://localhost:11434/api/embed -d '{ "model": "all-minilm", - "prompt": "Here is an article about llamas..." + "input": "Why is the sky blue?" }' ``` @@ -1056,10 +1171,35 @@ curl http://localhost:11434/api/embeddings -d '{ ```json { - "embedding": [ - 0.5670403838157654, 0.009260174818336964, 0.23178744316101074, -0.2916173040866852, -0.8924556970596313, - 0.8785552978515625, -0.34576427936553955, 0.5742510557174683, -0.04222835972905159, -0.137906014919281 - ] + "model": "all-minilm", + "embeddings": [[ + 0.010071029, -0.0017594862, 0.05007221, 0.04692972, 0.054916814, + 0.008599704, 0.105441414, -0.025878139, 0.12958129, 0.031952348 + ]] +} +``` + +#### Request (Multiple input) + +```shell +curl http://localhost:11434/api/embed -d '{ + "model": "all-minilm", + "input": ["Why is the sky blue?", "Why is the grass green?"] +}' +``` + +#### Response + +```json +{ + "model": "all-minilm", + "embeddings": [[ + 0.010071029, -0.0017594862, 0.05007221, 0.04692972, 0.054916814, + 0.008599704, 0.105441414, -0.025878139, 0.12958129, 0.031952348 + ],[ + -0.0098027075, 0.06042469, 0.025257962, -0.006364387, 0.07272725, + 0.017194884, 0.09032035, -0.051705178, 0.09951512, 0.09072481 + ]] } ``` @@ -1106,3 +1246,45 @@ A single JSON object will be returned. ] } ``` + +## Generate Embedding + +> Note: this endpoint has been superseded by `/api/embed` + +```shell +POST /api/embeddings +``` + +Generate embeddings from a model + +### Parameters + +- `model`: name of model to generate embeddings from +- `prompt`: text to generate embeddings for + +Advanced parameters: + +- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature` +- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`) + +### Examples + +#### Request + +```shell +curl http://localhost:11434/api/embeddings -d '{ + "model": "all-minilm", + "prompt": "Here is an article about llamas..." +}' +``` + +#### Response + +```json +{ + "embedding": [ + 0.5670403838157654, 0.009260174818336964, 0.23178744316101074, -0.2916173040866852, -0.8924556970596313, + 0.8785552978515625, -0.34576427936553955, 0.5742510557174683, -0.04222835972905159, -0.137906014919281 + ] +} +``` diff --git a/docs/docker.md b/docs/docker.md index 0b58562b..a34c3291 100644 --- a/docs/docker.md +++ b/docs/docker.md @@ -63,7 +63,7 @@ docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 114 Now you can run a model: ``` -docker exec -it ollama ollama run llama3 +docker exec -it ollama ollama run llama3.1 ``` ### Try different models diff --git a/docs/faq.md b/docs/faq.md index da1848f7..324116d1 100644 --- a/docs/faq.md +++ b/docs/faq.md @@ -227,7 +227,7 @@ curl http://localhost:11434/api/chat -d '{"model": "mistral"}' To preload a model using the CLI, use the command: ```shell -ollama run llama3 "" +ollama run llama3.1 "" ``` ## How do I keep a model loaded in memory or make it unload immediately? @@ -272,4 +272,8 @@ The following server settings may be used to adjust how Ollama handles concurren - `OLLAMA_NUM_PARALLEL` - The maximum number of parallel requests each model will process at the same time. The default will auto-select either 4 or 1 based on available memory. - `OLLAMA_MAX_QUEUE` - The maximum number of requests Ollama will queue when busy before rejecting additional requests. The default is 512 -Note: Windows with Radeon GPUs currently default to 1 model maximum due to limitations in ROCm v5.7 for available VRAM reporting. Once ROCm v6.2 is available, Windows Radeon will follow the defaults above. You may enable concurrent model loads on Radeon on Windows, but ensure you don't load more models than will fit into your GPUs VRAM. \ No newline at end of file +Note: Windows with Radeon GPUs currently default to 1 model maximum due to limitations in ROCm v5.7 for available VRAM reporting. Once ROCm v6.2 is available, Windows Radeon will follow the defaults above. You may enable concurrent model loads on Radeon on Windows, but ensure you don't load more models than will fit into your GPUs VRAM. + +## How does Ollama load models on multiple GPUs? + +Installing multiple GPUs of the same brand can be a great way to increase your available VRAM to load larger models. When you load a new model, Ollama evaluates the required VRAM for the model against what is currently available. If the model will entirely fit on any single GPU, Ollama will load the model on that GPU. This typically provides the best performance as it reduces the amount of data transfering across the PCI bus during inference. If the model does not fit entirely on one GPU, then it will be spread across all the available GPUs. \ No newline at end of file diff --git a/docs/modelfile.md b/docs/modelfile.md index 21ee1826..852bf96c 100644 --- a/docs/modelfile.md +++ b/docs/modelfile.md @@ -1,6 +1,7 @@ # Ollama Model File -> Note: `Modelfile` syntax is in development +> [!NOTE] +> `Modelfile` syntax is in development A model file is the blueprint to create and share models with Ollama. @@ -140,6 +141,7 @@ PARAMETER | num_predict | Maximum number of tokens to predict when generating text. (Default: 128, -1 = infinite generation, -2 = fill context) | int | num_predict 42 | | top_k | Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40) | int | top_k 40 | | top_p | Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9) | float | top_p 0.9 | +| min_p | Alternative to the top_p, and aims to ensure a balance of quality and variety. The parameter *p* represents the minimum probability for a token to be considered, relative to the probability of the most likely token. For example, with *p*=0.05 and the most likely token having a probability of 0.9, logits with a value less than 0.045 are filtered out. (Default: 0.0) | float | min_p 0.05 | ### TEMPLATE diff --git a/docs/openai.md b/docs/openai.md index 248ba74a..b4443cb0 100644 --- a/docs/openai.md +++ b/docs/openai.md @@ -27,6 +27,15 @@ chat_completion = client.chat.completions.create( ], model='llama3', ) + +list_completion = client.models.list() + +model = client.models.retrieve("llama3") + +embeddings = client.embeddings.create( + model="all-minilm", + input=["why is the sky blue?", "why is the grass green?"] +) ``` ### OpenAI JavaScript library @@ -45,6 +54,15 @@ const chatCompletion = await openai.chat.completions.create({ messages: [{ role: 'user', content: 'Say this is a test' }], model: 'llama3', }) + +const listCompletion = await openai.models.list() + +const model = await openai.models.retrieve("llama3"); + +const embedding = await openai.embeddings.create({ + model: "all-minilm", + input: ["why is the sky blue?", "why is the grass green?"], +}); ``` ### `curl` @@ -66,6 +84,16 @@ curl http://localhost:11434/v1/chat/completions \ ] }' +curl http://localhost:11434/v1/models + +curl http://localhost:11434/v1/models/llama3 + +curl http://localhost:11434/v1/embeddings \ + -H "Content-Type: application/json" \ + -d '{ + "model": "all-minilm", + "input": ["why is the sky blue?", "why is the grass green?"] + }' ``` ## Endpoints @@ -78,8 +106,8 @@ curl http://localhost:11434/v1/chat/completions \ - [x] Streaming - [x] JSON mode - [x] Reproducible outputs +- [x] Tools (streaming support coming soon) - [ ] Vision -- [ ] Function calling - [ ] Logprobs #### Supported request fields @@ -97,12 +125,40 @@ curl http://localhost:11434/v1/chat/completions \ - [x] `temperature` - [x] `top_p` - [x] `max_tokens` -- [ ] `logit_bias` -- [ ] `tools` +- [x] `tools` - [ ] `tool_choice` +- [ ] `logit_bias` - [ ] `user` - [ ] `n` +### `/v1/models` + +#### Notes + +- `created` corresponds to when the model was last modified +- `owned_by` corresponds to the ollama username, defaulting to `"library"` + +### `/v1/models/{model}` + +#### Notes + +- `created` corresponds to when the model was last modified +- `owned_by` corresponds to the ollama username, defaulting to `"library"` + +### `/v1/embeddings` + +#### Supported request fields + +- [x] `model` +- [x] `input` + - [x] string + - [x] array of strings + - [ ] array of tokens + - [ ] array of token arrays +- [ ] `encoding format` +- [ ] `dimensions` +- [ ] `user` + ## Models Before using a model, pull it locally `ollama pull`: diff --git a/docs/template.md b/docs/template.md new file mode 100644 index 00000000..f6ce06ba --- /dev/null +++ b/docs/template.md @@ -0,0 +1,173 @@ +# Template + +Ollama provides a powerful templating engine backed by Go's built-in templating engine to construct prompts for your large language model. This feature is a valuable tool to get the most out of your models. + +## Basic Template Structure + +A basic Go template consists of three main parts: + +* **Layout**: The overall structure of the template. +* **Variables**: Placeholders for dynamic data that will be replaced with actual values when the template is rendered. +* **Functions**: Custom functions or logic that can be used to manipulate the template's content. + +Here's an example of a simple chat template: + +```gotmpl +{{- range .Messages }} +{{ .Role }}: {{ .Content }} +{{- end }} +``` + +In this example, we have: + +* A basic messages structure (layout) +* Three variables: `Messages`, `Role`, and `Content` (variables) +* A custom function (action) that iterates over an array of items (`range .Messages`) and displays each item + +## Adding templates to your model + +By default, models imported into Ollama have a default template of `{{ .Prompt }}`, i.e. user inputs are sent verbatim to the LLM. This is appropriate for text or code completion models but lacks essential markers for chat or instruction models. + +Omitting a template in these models puts the responsibility of correctly templating input onto the user. Adding a template allows users to easily get the best results from the model. + +To add templates in your model, you'll need to add a `TEMPLATE` command to the Modelfile. Here's an example using Meta's Llama 3. + +```dockerfile +FROM llama3 + +TEMPLATE """{{- if .System }}<|start_header_id|>system<|end_header_id|> + +{{ .System }}<|eot_id|> +{{- end }} +{{- range .Messages }}<|start_header_id|>{{ .Role }}<|end_header_id|> + +{{ .Content }}<|eot_id|> +{{- end }}<|start_header_id|>assistant<|end_header_id|> + +""" +``` + +## Variables + +`System` (string): system prompt + +`Prompt` (string): user prompt + +`Response` (string): assistant response + +`Suffix` (string): text inserted after the assistant's response + +`Messages` (list): list of messages + +`Messages[].Role` (string): role which can be one of `system`, `user`, `assistant`, or `tool` + +`Messages[].Content` (string): message content + +`Messages[].ToolCalls` (list): list of tools the model wants to call + +`Messages[].ToolCalls[].Function` (object): function to call + +`Messages[].ToolCalls[].Function.Name` (string): function name + +`Messages[].ToolCalls[].Function.Arguments` (map): mapping of argument name to argument value + +`Tools` (list): list of tools the model can access + +`Tools[].Type` (string): schema type. `type` is always `function` + +`Tools[].Function` (object): function definition + +`Tools[].Function.Name` (string): function name + +`Tools[].Function.Description` (string): function description + +`Tools[].Function.Parameters` (object): function parameters + +`Tools[].Function.Parameters.Type` (string): schema type. `type` is always `object` + +`Tools[].Function.Parameters.Required` (list): list of required properties + +`Tools[].Function.Parameters.Properties` (map): mapping of property name to property definition + +`Tools[].Function.Parameters.Properties[].Type` (string): property type + +`Tools[].Function.Parameters.Properties[].Description` (string): property description + +`Tools[].Function.Parameters.Properties[].Enum` (list): list of valid values + +## Tips and Best Practices + +Keep the following tips and best practices in mind when working with Go templates: + +* **Be mindful of dot**: Control flow structures like `range` and `with` changes the value `.` +* **Out-of-scope variables**: Use `$.` to reference variables not currently in scope, starting from the root +* **Whitespace control**: Use `-` to trim leading (`{{-`) and trailing (`-}}`) whitespace + +## Examples + +### Example Messages + +#### ChatML + +ChatML is a popular template format. It can be used for models such as Databrick's DBRX, Intel's Neural Chat, and Microsoft's Orca 2. + +```gotmpl +{{- if .System }}<|im_start|>system +{{ .System }}<|im_end|> +{{ end }} +{{- range .Messages }}<|im_start|>{{ .Role }} +{{ .Content }}<|im_end|> +{{ end }}<|im_start|>assistant +{{ else }} +{{ if .System }}<|im_start|>system +{{ .System }}<|im_end|> +``` + +### Example Tools + +Tools support can be added to a model by adding a `{{ .Tools }}` node to the template. This feature is useful for models trained to call external tools and can a powerful tool for retrieving real-time data or performing complex tasks. + +#### Mistral + +Mistral v0.3 and Mixtral 8x22B supports tool calling. + +```gotmpl +{{- range $index, $_ := .Messages }} +{{- if eq .Role "user" }} +{{- if and (le (len (slice $.Messages $index)) 2) $.Tools }}[AVAILABLE_TOOLS] {{ json $.Tools }}[/AVAILABLE_TOOLS] +{{- end }}[INST] {{ if and (eq (len (slice $.Messages $index)) 1) $.System }}{{ $.System }} + +{{ end }}{{ .Content }}[/INST] +{{- else if eq .Role "assistant" }} +{{- if .Content }} {{ .Content }} +{{- else if .ToolCalls }}[TOOL_CALLS] [ +{{- range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ json .Function.Arguments }}} +{{- end }}] +{{- end }} +{{- else if eq .Role "tool" }}[TOOL_RESULTS] {"content": {{ .Content }}}[/TOOL_RESULTS] +{{- end }} +{{- end }} +``` + +### Example Fill-in-Middle + +Fill-in-middle support can be added to a model by adding a `{{ .Suffix }}` node to the template. This feature is useful for models that are trained to generate text in the middle of user input, such as code completion models. + +#### CodeLlama + +CodeLlama [7B](https://ollama.com/library/codellama:7b-code) and [13B](https://ollama.com/library/codellama:13b-code) code completion models support fill-in-middle. + +```gotmpl +
 {{ .Prompt }} {{ .Suffix }} 
+```
+
+> [!NOTE]
+> CodeLlama 34B and 70B code completion and all instruct and Python fine-tuned models do not support fill-in-middle.
+
+#### Codestral
+
+Codestral [22B](https://ollama.com/library/codestral:22b) supports fill-in-middle.
+
+```gotmpl
+[SUFFIX]{{ .Suffix }}[PREFIX] {{ .Prompt }}
+```
diff --git a/docs/tutorials/langchainjs.md b/docs/tutorials/langchainjs.md
index 4d60afb6..f925869b 100644
--- a/docs/tutorials/langchainjs.md
+++ b/docs/tutorials/langchainjs.md
@@ -15,7 +15,7 @@ import { Ollama } from "@langchain/community/llms/ollama";
 
 const ollama = new Ollama({
   baseUrl: "http://localhost:11434",
-  model: "llama3",
+  model: "llama3.1",
 });
 
 const answer = await ollama.invoke(`why is the sky blue?`);
@@ -23,7 +23,7 @@ const answer = await ollama.invoke(`why is the sky blue?`);
 console.log(answer);
 ```
 
-That will get us the same thing as if we ran `ollama run llama3 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
+That will get us the same thing as if we ran `ollama run llama3.1 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
 
 ```bash
 npm install cheerio
diff --git a/docs/windows.md b/docs/windows.md
index 69c2aa6d..dbfc1440 100644
--- a/docs/windows.md
+++ b/docs/windows.md
@@ -23,6 +23,8 @@ Logs will often be helpful in diagnosing the problem (see
 * NVIDIA 452.39 or newer Drivers if you have an NVIDIA card
 * AMD Radeon Driver https://www.amd.com/en/support if you have a Radeon card
 
+Ollama uses unicode characters for progress indication, which may render as unknown squares in some older terminal fonts in Windows 10. If you see this, try changing your terminal font settings.
+
 ## API Access
 
 Here's a quick example showing API access from `powershell`
diff --git a/envconfig/config.go b/envconfig/config.go
index 62d661eb..b82b773d 100644
--- a/envconfig/config.go
+++ b/envconfig/config.go
@@ -1,11 +1,11 @@
 package envconfig
 
 import (
-	"errors"
 	"fmt"
 	"log/slog"
 	"math"
 	"net"
+	"net/url"
 	"os"
 	"path/filepath"
 	"runtime"
@@ -14,309 +14,16 @@ import (
 	"time"
 )
 
-type OllamaHost struct {
-	Scheme string
-	Host   string
-	Port   string
-}
-
-func (o OllamaHost) String() string {
-	return fmt.Sprintf("%s://%s:%s", o.Scheme, o.Host, o.Port)
-}
-
-var ErrInvalidHostPort = errors.New("invalid port specified in OLLAMA_HOST")
-
-var (
-	// Set via OLLAMA_ORIGINS in the environment
-	AllowOrigins []string
-	// Set via OLLAMA_DEBUG in the environment
-	Debug bool
-	// Experimental flash attention
-	FlashAttention bool
-	// Set via OLLAMA_HOST in the environment
-	Host *OllamaHost
-	// Set via OLLAMA_KEEP_ALIVE in the environment
-	KeepAlive time.Duration
-	// Set via OLLAMA_LLM_LIBRARY in the environment
-	LLMLibrary string
-	// Set via OLLAMA_MAX_LOADED_MODELS in the environment
-	MaxRunners int
-	// Set via OLLAMA_MAX_QUEUE in the environment
-	MaxQueuedRequests int
-	// Set via OLLAMA_MAX_VRAM in the environment
-	MaxVRAM uint64
-	// Set via OLLAMA_MODELS in the environment
-	ModelsDir string
-	// Set via OLLAMA_NOHISTORY in the environment
-	NoHistory bool
-	// Set via OLLAMA_NOPRUNE in the environment
-	NoPrune bool
-	// Set via OLLAMA_NUM_PARALLEL in the environment
-	NumParallel int
-	// Set via OLLAMA_RUNNERS_DIR in the environment
-	RunnersDir string
-	// Set via OLLAMA_SCHED_SPREAD in the environment
-	SchedSpread bool
-	// Set via OLLAMA_TMPDIR in the environment
-	TmpDir string
-	// Set via OLLAMA_INTEL_GPU in the environment
-	IntelGpu bool
-
-	// Set via CUDA_VISIBLE_DEVICES in the environment
-	CudaVisibleDevices string
-	// Set via HIP_VISIBLE_DEVICES in the environment
-	HipVisibleDevices string
-	// Set via ROCR_VISIBLE_DEVICES in the environment
-	RocrVisibleDevices string
-	// Set via GPU_DEVICE_ORDINAL in the environment
-	GpuDeviceOrdinal string
-	// Set via HSA_OVERRIDE_GFX_VERSION in the environment
-	HsaOverrideGfxVersion string
-)
-
-type EnvVar struct {
-	Name        string
-	Value       any
-	Description string
-}
-
-func AsMap() map[string]EnvVar {
-	ret := map[string]EnvVar{
-		"OLLAMA_DEBUG":             {"OLLAMA_DEBUG", Debug, "Show additional debug information (e.g. OLLAMA_DEBUG=1)"},
-		"OLLAMA_FLASH_ATTENTION":   {"OLLAMA_FLASH_ATTENTION", FlashAttention, "Enabled flash attention"},
-		"OLLAMA_HOST":              {"OLLAMA_HOST", Host, "IP Address for the ollama server (default 127.0.0.1:11434)"},
-		"OLLAMA_KEEP_ALIVE":        {"OLLAMA_KEEP_ALIVE", KeepAlive, "The duration that models stay loaded in memory (default \"5m\")"},
-		"OLLAMA_LLM_LIBRARY":       {"OLLAMA_LLM_LIBRARY", LLMLibrary, "Set LLM library to bypass autodetection"},
-		"OLLAMA_MAX_LOADED_MODELS": {"OLLAMA_MAX_LOADED_MODELS", MaxRunners, "Maximum number of loaded models per GPU"},
-		"OLLAMA_MAX_QUEUE":         {"OLLAMA_MAX_QUEUE", MaxQueuedRequests, "Maximum number of queued requests"},
-		"OLLAMA_MAX_VRAM":          {"OLLAMA_MAX_VRAM", MaxVRAM, "Maximum VRAM"},
-		"OLLAMA_MODELS":            {"OLLAMA_MODELS", ModelsDir, "The path to the models directory"},
-		"OLLAMA_NOHISTORY":         {"OLLAMA_NOHISTORY", NoHistory, "Do not preserve readline history"},
-		"OLLAMA_NOPRUNE":           {"OLLAMA_NOPRUNE", NoPrune, "Do not prune model blobs on startup"},
-		"OLLAMA_NUM_PARALLEL":      {"OLLAMA_NUM_PARALLEL", NumParallel, "Maximum number of parallel requests"},
-		"OLLAMA_ORIGINS":           {"OLLAMA_ORIGINS", AllowOrigins, "A comma separated list of allowed origins"},
-		"OLLAMA_RUNNERS_DIR":       {"OLLAMA_RUNNERS_DIR", RunnersDir, "Location for runners"},
-		"OLLAMA_SCHED_SPREAD":      {"OLLAMA_SCHED_SPREAD", SchedSpread, "Always schedule model across all GPUs"},
-		"OLLAMA_TMPDIR":            {"OLLAMA_TMPDIR", TmpDir, "Location for temporary files"},
-	}
-	if runtime.GOOS != "darwin" {
-		ret["CUDA_VISIBLE_DEVICES"] = EnvVar{"CUDA_VISIBLE_DEVICES", CudaVisibleDevices, "Set which NVIDIA devices are visible"}
-		ret["HIP_VISIBLE_DEVICES"] = EnvVar{"HIP_VISIBLE_DEVICES", HipVisibleDevices, "Set which AMD devices are visible"}
-		ret["ROCR_VISIBLE_DEVICES"] = EnvVar{"ROCR_VISIBLE_DEVICES", RocrVisibleDevices, "Set which AMD devices are visible"}
-		ret["GPU_DEVICE_ORDINAL"] = EnvVar{"GPU_DEVICE_ORDINAL", GpuDeviceOrdinal, "Set which AMD devices are visible"}
-		ret["HSA_OVERRIDE_GFX_VERSION"] = EnvVar{"HSA_OVERRIDE_GFX_VERSION", HsaOverrideGfxVersion, "Override the gfx used for all detected AMD GPUs"}
-		ret["OLLAMA_INTEL_GPU"] = EnvVar{"OLLAMA_INTEL_GPU", IntelGpu, "Enable experimental Intel GPU detection"}
-	}
-	return ret
-}
-
-func Values() map[string]string {
-	vals := make(map[string]string)
-	for k, v := range AsMap() {
-		vals[k] = fmt.Sprintf("%v", v.Value)
-	}
-	return vals
-}
-
-var defaultAllowOrigins = []string{
-	"localhost",
-	"127.0.0.1",
-	"0.0.0.0",
-}
-
-// Clean quotes and spaces from the value
-func clean(key string) string {
-	return strings.Trim(os.Getenv(key), "\"' ")
-}
-
-func init() {
-	// default values
-	NumParallel = 0 // Autoselect
-	MaxRunners = 0  // Autoselect
-	MaxQueuedRequests = 512
-	KeepAlive = 5 * time.Minute
-
-	LoadConfig()
-}
-
-func LoadConfig() {
-	if debug := clean("OLLAMA_DEBUG"); debug != "" {
-		d, err := strconv.ParseBool(debug)
-		if err == nil {
-			Debug = d
-		} else {
-			Debug = true
-		}
-	}
-
-	if fa := clean("OLLAMA_FLASH_ATTENTION"); fa != "" {
-		d, err := strconv.ParseBool(fa)
-		if err == nil {
-			FlashAttention = d
-		}
-	}
-
-	RunnersDir = clean("OLLAMA_RUNNERS_DIR")
-	if runtime.GOOS == "windows" && RunnersDir == "" {
-		// On Windows we do not carry the payloads inside the main executable
-		appExe, err := os.Executable()
-		if err != nil {
-			slog.Error("failed to lookup executable path", "error", err)
-		}
-
-		cwd, err := os.Getwd()
-		if err != nil {
-			slog.Error("failed to lookup working directory", "error", err)
-		}
-
-		var paths []string
-		for _, root := range []string{filepath.Dir(appExe), cwd} {
-			paths = append(paths,
-				root,
-				filepath.Join(root, "windows-"+runtime.GOARCH),
-				filepath.Join(root, "dist", "windows-"+runtime.GOARCH),
-			)
-		}
-
-		// Try a few variations to improve developer experience when building from source in the local tree
-		for _, p := range paths {
-			candidate := filepath.Join(p, "ollama_runners")
-			_, err := os.Stat(candidate)
-			if err == nil {
-				RunnersDir = candidate
-				break
-			}
-		}
-		if RunnersDir == "" {
-			slog.Error("unable to locate llm runner directory.  Set OLLAMA_RUNNERS_DIR to the location of 'ollama_runners'")
-		}
-	}
-
-	TmpDir = clean("OLLAMA_TMPDIR")
-
-	userLimit := clean("OLLAMA_MAX_VRAM")
-	if userLimit != "" {
-		avail, err := strconv.ParseUint(userLimit, 10, 64)
-		if err != nil {
-			slog.Error("invalid setting, ignoring", "OLLAMA_MAX_VRAM", userLimit, "error", err)
-		} else {
-			MaxVRAM = avail
-		}
-	}
-
-	LLMLibrary = clean("OLLAMA_LLM_LIBRARY")
-
-	if onp := clean("OLLAMA_NUM_PARALLEL"); onp != "" {
-		val, err := strconv.Atoi(onp)
-		if err != nil {
-			slog.Error("invalid setting, ignoring", "OLLAMA_NUM_PARALLEL", onp, "error", err)
-		} else {
-			NumParallel = val
-		}
-	}
-
-	if nohistory := clean("OLLAMA_NOHISTORY"); nohistory != "" {
-		NoHistory = true
-	}
-
-	if spread := clean("OLLAMA_SCHED_SPREAD"); spread != "" {
-		s, err := strconv.ParseBool(spread)
-		if err == nil {
-			SchedSpread = s
-		} else {
-			SchedSpread = true
-		}
-	}
-
-	if noprune := clean("OLLAMA_NOPRUNE"); noprune != "" {
-		NoPrune = true
-	}
-
-	if origins := clean("OLLAMA_ORIGINS"); origins != "" {
-		AllowOrigins = strings.Split(origins, ",")
-	}
-	for _, allowOrigin := range defaultAllowOrigins {
-		AllowOrigins = append(AllowOrigins,
-			fmt.Sprintf("http://%s", allowOrigin),
-			fmt.Sprintf("https://%s", allowOrigin),
-			fmt.Sprintf("http://%s", net.JoinHostPort(allowOrigin, "*")),
-			fmt.Sprintf("https://%s", net.JoinHostPort(allowOrigin, "*")),
-		)
-	}
-
-	AllowOrigins = append(AllowOrigins,
-		"app://*",
-		"file://*",
-		"tauri://*",
-	)
-
-	maxRunners := clean("OLLAMA_MAX_LOADED_MODELS")
-	if maxRunners != "" {
-		m, err := strconv.Atoi(maxRunners)
-		if err != nil {
-			slog.Error("invalid setting, ignoring", "OLLAMA_MAX_LOADED_MODELS", maxRunners, "error", err)
-		} else {
-			MaxRunners = m
-		}
-	}
-
-	if onp := os.Getenv("OLLAMA_MAX_QUEUE"); onp != "" {
-		p, err := strconv.Atoi(onp)
-		if err != nil || p <= 0 {
-			slog.Error("invalid setting, ignoring", "OLLAMA_MAX_QUEUE", onp, "error", err)
-		} else {
-			MaxQueuedRequests = p
-		}
-	}
-
-	ka := clean("OLLAMA_KEEP_ALIVE")
-	if ka != "" {
-		loadKeepAlive(ka)
-	}
-
-	var err error
-	ModelsDir, err = getModelsDir()
-	if err != nil {
-		slog.Error("invalid setting", "OLLAMA_MODELS", ModelsDir, "error", err)
-	}
-
-	Host, err = getOllamaHost()
-	if err != nil {
-		slog.Error("invalid setting", "OLLAMA_HOST", Host, "error", err, "using default port", Host.Port)
-	}
-
-	if set, err := strconv.ParseBool(clean("OLLAMA_INTEL_GPU")); err == nil {
-		IntelGpu = set
-	}
-
-	CudaVisibleDevices = clean("CUDA_VISIBLE_DEVICES")
-	HipVisibleDevices = clean("HIP_VISIBLE_DEVICES")
-	RocrVisibleDevices = clean("ROCR_VISIBLE_DEVICES")
-	GpuDeviceOrdinal = clean("GPU_DEVICE_ORDINAL")
-	HsaOverrideGfxVersion = clean("HSA_OVERRIDE_GFX_VERSION")
-}
-
-func getModelsDir() (string, error) {
-	if models, exists := os.LookupEnv("OLLAMA_MODELS"); exists {
-		return models, nil
-	}
-	home, err := os.UserHomeDir()
-	if err != nil {
-		return "", err
-	}
-	return filepath.Join(home, ".ollama", "models"), nil
-}
-
-func getOllamaHost() (*OllamaHost, error) {
+// Host returns the scheme and host. Host can be configured via the OLLAMA_HOST environment variable.
+// Default is scheme "http" and host "127.0.0.1:11434"
+func Host() *url.URL {
 	defaultPort := "11434"
 
-	hostVar := os.Getenv("OLLAMA_HOST")
-	hostVar = strings.TrimSpace(strings.Trim(strings.TrimSpace(hostVar), "\"'"))
-
-	scheme, hostport, ok := strings.Cut(hostVar, "://")
+	s := strings.TrimSpace(Var("OLLAMA_HOST"))
+	scheme, hostport, ok := strings.Cut(s, "://")
 	switch {
 	case !ok:
-		scheme, hostport = "http", hostVar
+		scheme, hostport = "http", s
 	case scheme == "http":
 		defaultPort = "80"
 	case scheme == "https":
@@ -336,38 +43,242 @@ func getOllamaHost() (*OllamaHost, error) {
 		}
 	}
 
-	if portNum, err := strconv.ParseInt(port, 10, 32); err != nil || portNum > 65535 || portNum < 0 {
-		return &OllamaHost{
+	if n, err := strconv.ParseInt(port, 10, 32); err != nil || n > 65535 || n < 0 {
+		slog.Warn("invalid port, using default", "port", port, "default", defaultPort)
+		return &url.URL{
 			Scheme: scheme,
-			Host:   host,
-			Port:   defaultPort,
-		}, ErrInvalidHostPort
+			Host:   net.JoinHostPort(host, defaultPort),
+		}
 	}
 
-	return &OllamaHost{
+	return &url.URL{
 		Scheme: scheme,
-		Host:   host,
-		Port:   port,
-	}, nil
+		Host:   net.JoinHostPort(host, port),
+	}
 }
 
-func loadKeepAlive(ka string) {
-	v, err := strconv.Atoi(ka)
+// Origins returns a list of allowed origins. Origins can be configured via the OLLAMA_ORIGINS environment variable.
+func Origins() (origins []string) {
+	if s := Var("OLLAMA_ORIGINS"); s != "" {
+		origins = strings.Split(s, ",")
+	}
+
+	for _, origin := range []string{"localhost", "127.0.0.1", "0.0.0.0"} {
+		origins = append(origins,
+			fmt.Sprintf("http://%s", origin),
+			fmt.Sprintf("https://%s", origin),
+			fmt.Sprintf("http://%s", net.JoinHostPort(origin, "*")),
+			fmt.Sprintf("https://%s", net.JoinHostPort(origin, "*")),
+		)
+	}
+
+	origins = append(origins,
+		"app://*",
+		"file://*",
+		"tauri://*",
+	)
+
+	return origins
+}
+
+// Models returns the path to the models directory. Models directory can be configured via the OLLAMA_MODELS environment variable.
+// Default is $HOME/.ollama/models
+func Models() string {
+	if s := Var("OLLAMA_MODELS"); s != "" {
+		return s
+	}
+
+	home, err := os.UserHomeDir()
 	if err != nil {
-		d, err := time.ParseDuration(ka)
-		if err == nil {
-			if d < 0 {
-				KeepAlive = time.Duration(math.MaxInt64)
+		panic(err)
+	}
+
+	return filepath.Join(home, ".ollama", "models")
+}
+
+// KeepAlive returns the duration that models stay loaded in memory. KeepAlive can be configured via the OLLAMA_KEEP_ALIVE environment variable.
+// Negative values are treated as infinite. Zero is treated as no keep alive.
+// Default is 5 minutes.
+func KeepAlive() (keepAlive time.Duration) {
+	keepAlive = 5 * time.Minute
+	if s := Var("OLLAMA_KEEP_ALIVE"); s != "" {
+		if d, err := time.ParseDuration(s); err == nil {
+			keepAlive = d
+		} else if n, err := strconv.ParseInt(s, 10, 64); err == nil {
+			keepAlive = time.Duration(n) * time.Second
+		}
+	}
+
+	if keepAlive < 0 {
+		return time.Duration(math.MaxInt64)
+	}
+
+	return keepAlive
+}
+
+func Bool(k string) func() bool {
+	return func() bool {
+		if s := Var(k); s != "" {
+			b, err := strconv.ParseBool(s)
+			if err != nil {
+				return true
+			}
+
+			return b
+		}
+
+		return false
+	}
+}
+
+var (
+	// Debug enabled additional debug information.
+	Debug = Bool("OLLAMA_DEBUG")
+	// FlashAttention enables the experimental flash attention feature.
+	FlashAttention = Bool("OLLAMA_FLASH_ATTENTION")
+	// NoHistory disables readline history.
+	NoHistory = Bool("OLLAMA_NOHISTORY")
+	// NoPrune disables pruning of model blobs on startup.
+	NoPrune = Bool("OLLAMA_NOPRUNE")
+	// SchedSpread allows scheduling models across all GPUs.
+	SchedSpread = Bool("OLLAMA_SCHED_SPREAD")
+	// IntelGPU enables experimental Intel GPU detection.
+	IntelGPU = Bool("OLLAMA_INTEL_GPU")
+)
+
+func String(s string) func() string {
+	return func() string {
+		return Var(s)
+	}
+}
+
+var (
+	LLMLibrary = String("OLLAMA_LLM_LIBRARY")
+	TmpDir     = String("OLLAMA_TMPDIR")
+
+	CudaVisibleDevices    = String("CUDA_VISIBLE_DEVICES")
+	HipVisibleDevices     = String("HIP_VISIBLE_DEVICES")
+	RocrVisibleDevices    = String("ROCR_VISIBLE_DEVICES")
+	GpuDeviceOrdinal      = String("GPU_DEVICE_ORDINAL")
+	HsaOverrideGfxVersion = String("HSA_OVERRIDE_GFX_VERSION")
+)
+
+func RunnersDir() (p string) {
+	if p := Var("OLLAMA_RUNNERS_DIR"); p != "" {
+		return p
+	}
+
+	if runtime.GOOS != "windows" {
+		return
+	}
+
+	defer func() {
+		if p == "" {
+			slog.Error("unable to locate llm runner directory. Set OLLAMA_RUNNERS_DIR to the location of 'ollama_runners'")
+		}
+	}()
+
+	// On Windows we do not carry the payloads inside the main executable
+	exe, err := os.Executable()
+	if err != nil {
+		return
+	}
+
+	cwd, err := os.Getwd()
+	if err != nil {
+		return
+	}
+
+	var paths []string
+	for _, root := range []string{filepath.Dir(exe), cwd} {
+		paths = append(paths,
+			root,
+			filepath.Join(root, "windows-"+runtime.GOARCH),
+			filepath.Join(root, "dist", "windows-"+runtime.GOARCH),
+		)
+	}
+
+	// Try a few variations to improve developer experience when building from source in the local tree
+	for _, path := range paths {
+		candidate := filepath.Join(path, "ollama_runners")
+		if _, err := os.Stat(candidate); err == nil {
+			p = candidate
+			break
+		}
+	}
+
+	return p
+}
+
+func Uint(key string, defaultValue uint) func() uint {
+	return func() uint {
+		if s := Var(key); s != "" {
+			if n, err := strconv.ParseUint(s, 10, 64); err != nil {
+				slog.Warn("invalid environment variable, using default", "key", key, "value", s, "default", defaultValue)
 			} else {
-				KeepAlive = d
+				return uint(n)
 			}
 		}
-	} else {
-		d := time.Duration(v) * time.Second
-		if d < 0 {
-			KeepAlive = time.Duration(math.MaxInt64)
-		} else {
-			KeepAlive = d
-		}
+
+		return defaultValue
 	}
 }
+
+var (
+	// NumParallel sets the number of parallel model requests. NumParallel can be configured via the OLLAMA_NUM_PARALLEL environment variable.
+	NumParallel = Uint("OLLAMA_NUM_PARALLEL", 0)
+	// MaxRunners sets the maximum number of loaded models. MaxRunners can be configured via the OLLAMA_MAX_LOADED_MODELS environment variable.
+	MaxRunners = Uint("OLLAMA_MAX_LOADED_MODELS", 0)
+	// MaxQueue sets the maximum number of queued requests. MaxQueue can be configured via the OLLAMA_MAX_QUEUE environment variable.
+	MaxQueue = Uint("OLLAMA_MAX_QUEUE", 512)
+	// MaxVRAM sets a maximum VRAM override in bytes. MaxVRAM can be configured via the OLLAMA_MAX_VRAM environment variable.
+	MaxVRAM = Uint("OLLAMA_MAX_VRAM", 0)
+)
+
+type EnvVar struct {
+	Name        string
+	Value       any
+	Description string
+}
+
+func AsMap() map[string]EnvVar {
+	ret := map[string]EnvVar{
+		"OLLAMA_DEBUG":             {"OLLAMA_DEBUG", Debug(), "Show additional debug information (e.g. OLLAMA_DEBUG=1)"},
+		"OLLAMA_FLASH_ATTENTION":   {"OLLAMA_FLASH_ATTENTION", FlashAttention(), "Enabled flash attention"},
+		"OLLAMA_HOST":              {"OLLAMA_HOST", Host(), "IP Address for the ollama server (default 127.0.0.1:11434)"},
+		"OLLAMA_KEEP_ALIVE":        {"OLLAMA_KEEP_ALIVE", KeepAlive(), "The duration that models stay loaded in memory (default \"5m\")"},
+		"OLLAMA_LLM_LIBRARY":       {"OLLAMA_LLM_LIBRARY", LLMLibrary(), "Set LLM library to bypass autodetection"},
+		"OLLAMA_MAX_LOADED_MODELS": {"OLLAMA_MAX_LOADED_MODELS", MaxRunners(), "Maximum number of loaded models per GPU"},
+		"OLLAMA_MAX_QUEUE":         {"OLLAMA_MAX_QUEUE", MaxQueue(), "Maximum number of queued requests"},
+		"OLLAMA_MODELS":            {"OLLAMA_MODELS", Models(), "The path to the models directory"},
+		"OLLAMA_NOHISTORY":         {"OLLAMA_NOHISTORY", NoHistory(), "Do not preserve readline history"},
+		"OLLAMA_NOPRUNE":           {"OLLAMA_NOPRUNE", NoPrune(), "Do not prune model blobs on startup"},
+		"OLLAMA_NUM_PARALLEL":      {"OLLAMA_NUM_PARALLEL", NumParallel(), "Maximum number of parallel requests"},
+		"OLLAMA_ORIGINS":           {"OLLAMA_ORIGINS", Origins(), "A comma separated list of allowed origins"},
+		"OLLAMA_RUNNERS_DIR":       {"OLLAMA_RUNNERS_DIR", RunnersDir(), "Location for runners"},
+		"OLLAMA_SCHED_SPREAD":      {"OLLAMA_SCHED_SPREAD", SchedSpread(), "Always schedule model across all GPUs"},
+		"OLLAMA_TMPDIR":            {"OLLAMA_TMPDIR", TmpDir(), "Location for temporary files"},
+	}
+	if runtime.GOOS != "darwin" {
+		ret["CUDA_VISIBLE_DEVICES"] = EnvVar{"CUDA_VISIBLE_DEVICES", CudaVisibleDevices(), "Set which NVIDIA devices are visible"}
+		ret["HIP_VISIBLE_DEVICES"] = EnvVar{"HIP_VISIBLE_DEVICES", HipVisibleDevices(), "Set which AMD devices are visible"}
+		ret["ROCR_VISIBLE_DEVICES"] = EnvVar{"ROCR_VISIBLE_DEVICES", RocrVisibleDevices(), "Set which AMD devices are visible"}
+		ret["GPU_DEVICE_ORDINAL"] = EnvVar{"GPU_DEVICE_ORDINAL", GpuDeviceOrdinal(), "Set which AMD devices are visible"}
+		ret["HSA_OVERRIDE_GFX_VERSION"] = EnvVar{"HSA_OVERRIDE_GFX_VERSION", HsaOverrideGfxVersion(), "Override the gfx used for all detected AMD GPUs"}
+		ret["OLLAMA_INTEL_GPU"] = EnvVar{"OLLAMA_INTEL_GPU", IntelGPU(), "Enable experimental Intel GPU detection"}
+	}
+	return ret
+}
+
+func Values() map[string]string {
+	vals := make(map[string]string)
+	for k, v := range AsMap() {
+		vals[k] = fmt.Sprintf("%v", v.Value)
+	}
+	return vals
+}
+
+// Var returns an environment variable stripped of leading and trailing quotes or spaces
+func Var(key string) string {
+	return strings.Trim(strings.TrimSpace(os.Getenv(key)), "\"'")
+}
diff --git a/envconfig/config_test.go b/envconfig/config_test.go
index a5d73fd7..92a500f1 100644
--- a/envconfig/config_test.go
+++ b/envconfig/config_test.go
@@ -1,87 +1,234 @@
 package envconfig
 
 import (
-	"fmt"
 	"math"
-	"net"
 	"testing"
 	"time"
 
-	"github.com/stretchr/testify/assert"
-	"github.com/stretchr/testify/require"
+	"github.com/google/go-cmp/cmp"
 )
 
-func TestConfig(t *testing.T) {
-	Debug = false // Reset whatever was loaded in init()
-	t.Setenv("OLLAMA_DEBUG", "")
-	LoadConfig()
-	require.False(t, Debug)
-	t.Setenv("OLLAMA_DEBUG", "false")
-	LoadConfig()
-	require.False(t, Debug)
-	t.Setenv("OLLAMA_DEBUG", "1")
-	LoadConfig()
-	require.True(t, Debug)
-	t.Setenv("OLLAMA_FLASH_ATTENTION", "1")
-	LoadConfig()
-	require.True(t, FlashAttention)
-	t.Setenv("OLLAMA_KEEP_ALIVE", "")
-	LoadConfig()
-	require.Equal(t, 5*time.Minute, KeepAlive)
-	t.Setenv("OLLAMA_KEEP_ALIVE", "3")
-	LoadConfig()
-	require.Equal(t, 3*time.Second, KeepAlive)
-	t.Setenv("OLLAMA_KEEP_ALIVE", "1h")
-	LoadConfig()
-	require.Equal(t, 1*time.Hour, KeepAlive)
-	t.Setenv("OLLAMA_KEEP_ALIVE", "-1s")
-	LoadConfig()
-	require.Equal(t, time.Duration(math.MaxInt64), KeepAlive)
-	t.Setenv("OLLAMA_KEEP_ALIVE", "-1")
-	LoadConfig()
-	require.Equal(t, time.Duration(math.MaxInt64), KeepAlive)
-}
-
-func TestClientFromEnvironment(t *testing.T) {
-	type testCase struct {
+func TestHost(t *testing.T) {
+	cases := map[string]struct {
 		value  string
 		expect string
-		err    error
+	}{
+		"empty":               {"", "127.0.0.1:11434"},
+		"only address":        {"1.2.3.4", "1.2.3.4:11434"},
+		"only port":           {":1234", ":1234"},
+		"address and port":    {"1.2.3.4:1234", "1.2.3.4:1234"},
+		"hostname":            {"example.com", "example.com:11434"},
+		"hostname and port":   {"example.com:1234", "example.com:1234"},
+		"zero port":           {":0", ":0"},
+		"too large port":      {":66000", ":11434"},
+		"too small port":      {":-1", ":11434"},
+		"ipv6 localhost":      {"[::1]", "[::1]:11434"},
+		"ipv6 world open":     {"[::]", "[::]:11434"},
+		"ipv6 no brackets":    {"::1", "[::1]:11434"},
+		"ipv6 + port":         {"[::1]:1337", "[::1]:1337"},
+		"extra space":         {" 1.2.3.4 ", "1.2.3.4:11434"},
+		"extra quotes":        {"\"1.2.3.4\"", "1.2.3.4:11434"},
+		"extra space+quotes":  {" \" 1.2.3.4 \" ", "1.2.3.4:11434"},
+		"extra single quotes": {"'1.2.3.4'", "1.2.3.4:11434"},
+		"http":                {"http://1.2.3.4", "1.2.3.4:80"},
+		"http port":           {"http://1.2.3.4:4321", "1.2.3.4:4321"},
+		"https":               {"https://1.2.3.4", "1.2.3.4:443"},
+		"https port":          {"https://1.2.3.4:4321", "1.2.3.4:4321"},
 	}
 
-	hostTestCases := map[string]*testCase{
-		"empty":               {value: "", expect: "127.0.0.1:11434"},
-		"only address":        {value: "1.2.3.4", expect: "1.2.3.4:11434"},
-		"only port":           {value: ":1234", expect: ":1234"},
-		"address and port":    {value: "1.2.3.4:1234", expect: "1.2.3.4:1234"},
-		"hostname":            {value: "example.com", expect: "example.com:11434"},
-		"hostname and port":   {value: "example.com:1234", expect: "example.com:1234"},
-		"zero port":           {value: ":0", expect: ":0"},
-		"too large port":      {value: ":66000", err: ErrInvalidHostPort},
-		"too small port":      {value: ":-1", err: ErrInvalidHostPort},
-		"ipv6 localhost":      {value: "[::1]", expect: "[::1]:11434"},
-		"ipv6 world open":     {value: "[::]", expect: "[::]:11434"},
-		"ipv6 no brackets":    {value: "::1", expect: "[::1]:11434"},
-		"ipv6 + port":         {value: "[::1]:1337", expect: "[::1]:1337"},
-		"extra space":         {value: " 1.2.3.4 ", expect: "1.2.3.4:11434"},
-		"extra quotes":        {value: "\"1.2.3.4\"", expect: "1.2.3.4:11434"},
-		"extra space+quotes":  {value: " \" 1.2.3.4 \" ", expect: "1.2.3.4:11434"},
-		"extra single quotes": {value: "'1.2.3.4'", expect: "1.2.3.4:11434"},
-	}
-
-	for k, v := range hostTestCases {
-		t.Run(k, func(t *testing.T) {
-			t.Setenv("OLLAMA_HOST", v.value)
-			LoadConfig()
-
-			oh, err := getOllamaHost()
-			if err != v.err {
-				t.Fatalf("expected %s, got %s", v.err, err)
-			}
-
-			if err == nil {
-				host := net.JoinHostPort(oh.Host, oh.Port)
-				assert.Equal(t, v.expect, host, fmt.Sprintf("%s: expected %s, got %s", k, v.expect, host))
+	for name, tt := range cases {
+		t.Run(name, func(t *testing.T) {
+			t.Setenv("OLLAMA_HOST", tt.value)
+			if host := Host(); host.Host != tt.expect {
+				t.Errorf("%s: expected %s, got %s", name, tt.expect, host.Host)
+			}
+		})
+	}
+}
+
+func TestOrigins(t *testing.T) {
+	cases := []struct {
+		value  string
+		expect []string
+	}{
+		{"", []string{
+			"http://localhost",
+			"https://localhost",
+			"http://localhost:*",
+			"https://localhost:*",
+			"http://127.0.0.1",
+			"https://127.0.0.1",
+			"http://127.0.0.1:*",
+			"https://127.0.0.1:*",
+			"http://0.0.0.0",
+			"https://0.0.0.0",
+			"http://0.0.0.0:*",
+			"https://0.0.0.0:*",
+			"app://*",
+			"file://*",
+			"tauri://*",
+		}},
+		{"http://10.0.0.1", []string{
+			"http://10.0.0.1",
+			"http://localhost",
+			"https://localhost",
+			"http://localhost:*",
+			"https://localhost:*",
+			"http://127.0.0.1",
+			"https://127.0.0.1",
+			"http://127.0.0.1:*",
+			"https://127.0.0.1:*",
+			"http://0.0.0.0",
+			"https://0.0.0.0",
+			"http://0.0.0.0:*",
+			"https://0.0.0.0:*",
+			"app://*",
+			"file://*",
+			"tauri://*",
+		}},
+		{"http://172.16.0.1,https://192.168.0.1", []string{
+			"http://172.16.0.1",
+			"https://192.168.0.1",
+			"http://localhost",
+			"https://localhost",
+			"http://localhost:*",
+			"https://localhost:*",
+			"http://127.0.0.1",
+			"https://127.0.0.1",
+			"http://127.0.0.1:*",
+			"https://127.0.0.1:*",
+			"http://0.0.0.0",
+			"https://0.0.0.0",
+			"http://0.0.0.0:*",
+			"https://0.0.0.0:*",
+			"app://*",
+			"file://*",
+			"tauri://*",
+		}},
+		{"http://totally.safe,http://definitely.legit", []string{
+			"http://totally.safe",
+			"http://definitely.legit",
+			"http://localhost",
+			"https://localhost",
+			"http://localhost:*",
+			"https://localhost:*",
+			"http://127.0.0.1",
+			"https://127.0.0.1",
+			"http://127.0.0.1:*",
+			"https://127.0.0.1:*",
+			"http://0.0.0.0",
+			"https://0.0.0.0",
+			"http://0.0.0.0:*",
+			"https://0.0.0.0:*",
+			"app://*",
+			"file://*",
+			"tauri://*",
+		}},
+	}
+	for _, tt := range cases {
+		t.Run(tt.value, func(t *testing.T) {
+			t.Setenv("OLLAMA_ORIGINS", tt.value)
+
+			if diff := cmp.Diff(Origins(), tt.expect); diff != "" {
+				t.Errorf("%s: mismatch (-want +got):\n%s", tt.value, diff)
+			}
+		})
+	}
+}
+
+func TestBool(t *testing.T) {
+	cases := map[string]bool{
+		"":      false,
+		"true":  true,
+		"false": false,
+		"1":     true,
+		"0":     false,
+		// invalid values
+		"random":    true,
+		"something": true,
+	}
+
+	for k, v := range cases {
+		t.Run(k, func(t *testing.T) {
+			t.Setenv("OLLAMA_BOOL", k)
+			if b := Bool("OLLAMA_BOOL")(); b != v {
+				t.Errorf("%s: expected %t, got %t", k, v, b)
+			}
+		})
+	}
+}
+
+func TestUint(t *testing.T) {
+	cases := map[string]uint{
+		"0":    0,
+		"1":    1,
+		"1337": 1337,
+		// default values
+		"":       11434,
+		"-1":     11434,
+		"0o10":   11434,
+		"0x10":   11434,
+		"string": 11434,
+	}
+
+	for k, v := range cases {
+		t.Run(k, func(t *testing.T) {
+			t.Setenv("OLLAMA_UINT", k)
+			if i := Uint("OLLAMA_UINT", 11434)(); i != v {
+				t.Errorf("%s: expected %d, got %d", k, v, i)
+			}
+		})
+	}
+}
+
+func TestKeepAlive(t *testing.T) {
+	cases := map[string]time.Duration{
+		"":       5 * time.Minute,
+		"1s":     time.Second,
+		"1m":     time.Minute,
+		"1h":     time.Hour,
+		"5m0s":   5 * time.Minute,
+		"1h2m3s": 1*time.Hour + 2*time.Minute + 3*time.Second,
+		"0":      time.Duration(0),
+		"60":     60 * time.Second,
+		"120":    2 * time.Minute,
+		"3600":   time.Hour,
+		"-0":     time.Duration(0),
+		"-1":     time.Duration(math.MaxInt64),
+		"-1m":    time.Duration(math.MaxInt64),
+		// invalid values
+		" ":   5 * time.Minute,
+		"???": 5 * time.Minute,
+		"1d":  5 * time.Minute,
+		"1y":  5 * time.Minute,
+		"1w":  5 * time.Minute,
+	}
+
+	for tt, expect := range cases {
+		t.Run(tt, func(t *testing.T) {
+			t.Setenv("OLLAMA_KEEP_ALIVE", tt)
+			if actual := KeepAlive(); actual != expect {
+				t.Errorf("%s: expected %s, got %s", tt, expect, actual)
+			}
+		})
+	}
+}
+
+func TestVar(t *testing.T) {
+	cases := map[string]string{
+		"value":       "value",
+		" value ":     "value",
+		" 'value' ":   "value",
+		` "value" `:   "value",
+		" ' value ' ": " value ",
+		` " value " `: " value ",
+	}
+
+	for k, v := range cases {
+		t.Run(k, func(t *testing.T) {
+			t.Setenv("OLLAMA_VAR", k)
+			if s := Var("OLLAMA_VAR"); s != v {
+				t.Errorf("%s: expected %q, got %q", k, v, s)
 			}
 		})
 	}
diff --git a/examples/go-chat/main.go b/examples/go-chat/main.go
index 5266f03e..7663fb8f 100644
--- a/examples/go-chat/main.go
+++ b/examples/go-chat/main.go
@@ -35,7 +35,7 @@ func main() {
 
 	ctx := context.Background()
 	req := &api.ChatRequest{
-		Model:    "llama3",
+		Model:    "llama3.1",
 		Messages: messages,
 	}
 
diff --git a/examples/go-generate-streaming/main.go b/examples/go-generate-streaming/main.go
index 49403351..3acfb22a 100644
--- a/examples/go-generate-streaming/main.go
+++ b/examples/go-generate-streaming/main.go
@@ -16,7 +16,7 @@ func main() {
 
 	// By default, GenerateRequest is streaming.
 	req := &api.GenerateRequest{
-		Model:  "gemma",
+		Model:  "gemma2",
 		Prompt: "how many planets are there?",
 	}
 
diff --git a/examples/go-generate/main.go b/examples/go-generate/main.go
index 50fbf64b..2fe28742 100644
--- a/examples/go-generate/main.go
+++ b/examples/go-generate/main.go
@@ -15,7 +15,7 @@ func main() {
 	}
 
 	req := &api.GenerateRequest{
-		Model:  "gemma",
+		Model:  "gemma2",
 		Prompt: "how many planets are there?",
 
 		// set streaming to false
diff --git a/examples/go-http-generate/README.md b/examples/go-http-generate/README.md
deleted file mode 100644
index e69de29b..00000000
diff --git a/examples/langchain-python-rag-document/README.md b/examples/langchain-python-rag-document/README.md
index 20a73a88..e2f3bc02 100644
--- a/examples/langchain-python-rag-document/README.md
+++ b/examples/langchain-python-rag-document/README.md
@@ -4,6 +4,14 @@ This example provides an interface for asking questions to a PDF document.
 
 ## Setup
 
+1. Ensure you have the `llama3.1` model installed:
+
+```
+ollama pull llama3.1
+```
+
+2. Install the Python Requirements.
+
 ```
 pip install -r requirements.txt
 ```
diff --git a/examples/langchain-python-rag-document/main.py b/examples/langchain-python-rag-document/main.py
index 3ed9499f..6f7cec9b 100644
--- a/examples/langchain-python-rag-document/main.py
+++ b/examples/langchain-python-rag-document/main.py
@@ -51,7 +51,7 @@ while True:
         template=template,
     )
 
-    llm = Ollama(model="llama3:8b", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
+    llm = Ollama(model="llama3.1", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
     qa_chain = RetrievalQA.from_chain_type(
         llm,
         retriever=vectorstore.as_retriever(),
diff --git a/examples/langchain-python-rag-websummary/README.md b/examples/langchain-python-rag-websummary/README.md
index 3f3b9873..29c706a3 100644
--- a/examples/langchain-python-rag-websummary/README.md
+++ b/examples/langchain-python-rag-websummary/README.md
@@ -4,10 +4,10 @@ This example summarizes the website, [https://ollama.com/blog/run-llama2-uncenso
 
 ## Running the Example
 
-1. Ensure you have the `llama2` model installed:
+1. Ensure you have the `llama3.1` model installed:
 
    ```bash
-   ollama pull llama2
+   ollama pull llama3.1
    ```
 
 2. Install the Python Requirements.
diff --git a/examples/langchain-python-rag-websummary/main.py b/examples/langchain-python-rag-websummary/main.py
index d1b05ba8..77b09fbb 100644
--- a/examples/langchain-python-rag-websummary/main.py
+++ b/examples/langchain-python-rag-websummary/main.py
@@ -5,8 +5,8 @@ from langchain.chains.summarize import load_summarize_chain
 loader = WebBaseLoader("https://ollama.com/blog/run-llama2-uncensored-locally")
 docs = loader.load()
 
-llm = Ollama(model="llama3")
+llm = Ollama(model="llama3.1")
 chain = load_summarize_chain(llm, chain_type="stuff")
 
-result = chain.invoke(docs) 
+result = chain.invoke(docs)
 print(result)
diff --git a/examples/langchain-python-simple/README.md b/examples/langchain-python-simple/README.md
index d4102dec..60db2c8c 100644
--- a/examples/langchain-python-simple/README.md
+++ b/examples/langchain-python-simple/README.md
@@ -4,10 +4,10 @@ This example is a basic "hello world" of using LangChain with Ollama.
 
 ## Running the Example
 
-1. Ensure you have the `llama3` model installed:
+1. Ensure you have the `llama3.1` model installed:
 
    ```bash
-   ollama pull llama3
+   ollama pull llama3.1
    ```
 
 2. Install the Python Requirements.
diff --git a/examples/langchain-python-simple/main.py b/examples/langchain-python-simple/main.py
index 7cb65286..a7ed81d6 100644
--- a/examples/langchain-python-simple/main.py
+++ b/examples/langchain-python-simple/main.py
@@ -1,6 +1,6 @@
 from langchain.llms import Ollama
 
 input = input("What is your question?")
-llm = Ollama(model="llama3")
+llm = Ollama(model="llama3.1")
 res = llm.predict(input)
 print (res)
diff --git a/examples/modelfile-mario/Modelfile b/examples/modelfile-mario/Modelfile
index 33d5952b..a3747086 100644
--- a/examples/modelfile-mario/Modelfile
+++ b/examples/modelfile-mario/Modelfile
@@ -1,4 +1,4 @@
-FROM llama3
+FROM llama3.1
 PARAMETER temperature 1
 SYSTEM """
 You are Mario from super mario bros, acting as an assistant.
diff --git a/examples/modelfile-mario/readme.md b/examples/modelfile-mario/readme.md
index e4f0d417..c3f34197 100644
--- a/examples/modelfile-mario/readme.md
+++ b/examples/modelfile-mario/readme.md
@@ -2,12 +2,12 @@
 
 # Example character: Mario
 
-This example shows how to create a basic character using Llama3 as the base model.
+This example shows how to create a basic character using Llama3.1 as the base model.
 
 To run this example:
 
 1. Download the Modelfile
-2. `ollama pull llama3` to get the base model used in the model file.
+2. `ollama pull llama3.1` to get the base model used in the model file.
 3. `ollama create NAME -f ./Modelfile`
 4. `ollama run NAME`
 
@@ -18,7 +18,7 @@ Ask it some questions like "Who are you?" or "Is Peach in trouble again?"
 What the model file looks like:
 
 ```
-FROM llama3
+FROM llama3.1
 PARAMETER temperature 1
 SYSTEM """
 You are Mario from Super Mario Bros, acting as an assistant.
diff --git a/examples/python-dockerit/dockerit.py b/examples/python-dockerit/dockerit.py
index b013102f..6a288d90 100644
--- a/examples/python-dockerit/dockerit.py
+++ b/examples/python-dockerit/dockerit.py
@@ -4,7 +4,7 @@ imageName = input("Enter the name of the image: ")
 client = docker.from_env()
 s = requests.Session()
 output=""
-with s.post('http://localhost:11434/api/generate', json={'model': 'dockerit', 'prompt': inputDescription}, stream=True) as r:
+with s.post('http://localhost:11434/api/generate', json={'model': 'mattw/dockerit', 'prompt': inputDescription}, stream=True) as r:
   for line in r.iter_lines():
     if line:
       j = json.loads(line)
diff --git a/examples/python-json-datagenerator/predefinedschema.py b/examples/python-json-datagenerator/predefinedschema.py
index 1fd54892..68090ad7 100644
--- a/examples/python-json-datagenerator/predefinedschema.py
+++ b/examples/python-json-datagenerator/predefinedschema.py
@@ -2,7 +2,7 @@ import requests
 import json
 import random
 
-model = "llama3"
+model = "llama3.1"
 template = {
   "firstName": "",
   "lastName": "",
diff --git a/examples/python-json-datagenerator/randomaddresses.py b/examples/python-json-datagenerator/randomaddresses.py
index 72b1fefb..878c9803 100644
--- a/examples/python-json-datagenerator/randomaddresses.py
+++ b/examples/python-json-datagenerator/randomaddresses.py
@@ -12,7 +12,7 @@ countries = [
     "France",
 ]
 country = random.choice(countries)
-model = "llama3"
+model = "llama3.1"
 
 prompt = f"generate one realistically believable sample data set of a persons first name, last name, address in {country}, and phone number. Do not use common names. Respond using JSON. Key names should have no backslashes, values should use plain ascii with no special characters."
 
diff --git a/examples/python-json-datagenerator/readme.md b/examples/python-json-datagenerator/readme.md
index 88357044..5b444dff 100644
--- a/examples/python-json-datagenerator/readme.md
+++ b/examples/python-json-datagenerator/readme.md
@@ -6,10 +6,10 @@ There are two python scripts in this example. `randomaddresses.py` generates ran
 
 ## Running the Example
 
-1. Ensure you have the `llama3` model installed:
+1. Ensure you have the `llama3.1` model installed:
 
    ```bash
-   ollama pull llama3
+   ollama pull llama3.1
    ```
 
 2. Install the Python Requirements.
diff --git a/examples/python-simplechat/client.py b/examples/python-simplechat/client.py
index f82a16b3..85043d5f 100644
--- a/examples/python-simplechat/client.py
+++ b/examples/python-simplechat/client.py
@@ -2,7 +2,7 @@ import json
 import requests
 
 # NOTE: ollama must be running for this to work, start the ollama app or run `ollama serve`
-model = "llama3"  # TODO: update this for whatever model you wish to use
+model = "llama3.1"  # TODO: update this for whatever model you wish to use
 
 
 def chat(messages):
diff --git a/examples/python-simplechat/readme.md b/examples/python-simplechat/readme.md
index dd2576bc..4c2ded4d 100644
--- a/examples/python-simplechat/readme.md
+++ b/examples/python-simplechat/readme.md
@@ -4,10 +4,10 @@ The **chat** endpoint is one of two ways to generate text from an LLM with Ollam
 
 ## Running the Example
 
-1. Ensure you have the `llama3` model installed:
+1. Ensure you have the `llama3.1` model installed:
 
    ```bash
-   ollama pull llama3
+   ollama pull llama3.1
    ```
 
 2. Install the Python Requirements.
diff --git a/examples/typescript-simplechat/client.ts b/examples/typescript-simplechat/client.ts
index a1e0eea3..8ad113b1 100644
--- a/examples/typescript-simplechat/client.ts
+++ b/examples/typescript-simplechat/client.ts
@@ -1,6 +1,6 @@
 import * as readline from "readline";
 
-const model = "llama3";
+const model = "llama3.1";
 type Message = {
   role: "assistant" | "user" | "system";
   content: string;
diff --git a/gpu/amd_linux.go b/gpu/amd_linux.go
index 15b6fc61..1ad4b906 100644
--- a/gpu/amd_linux.go
+++ b/gpu/amd_linux.go
@@ -10,6 +10,7 @@ import (
 	"path/filepath"
 	"regexp"
 	"slices"
+	"sort"
 	"strconv"
 	"strings"
 
@@ -60,9 +61,9 @@ func AMDGetGPUInfo() []RocmGPUInfo {
 
 	// Determine if the user has already pre-selected which GPUs to look at, then ignore the others
 	var visibleDevices []string
-	hipVD := envconfig.HipVisibleDevices   // zero based index only
-	rocrVD := envconfig.RocrVisibleDevices // zero based index or UUID, but consumer cards seem to not support UUID
-	gpuDO := envconfig.GpuDeviceOrdinal    // zero based index
+	hipVD := envconfig.HipVisibleDevices()   // zero based index only
+	rocrVD := envconfig.RocrVisibleDevices() // zero based index or UUID, but consumer cards seem to not support UUID
+	gpuDO := envconfig.GpuDeviceOrdinal()    // zero based index
 	switch {
 	// TODO is this priorty order right?
 	case hipVD != "":
@@ -75,13 +76,27 @@ func AMDGetGPUInfo() []RocmGPUInfo {
 		visibleDevices = strings.Split(gpuDO, ",")
 	}
 
-	gfxOverride := envconfig.HsaOverrideGfxVersion
+	gfxOverride := envconfig.HsaOverrideGfxVersion()
 	var supported []string
 	libDir := ""
 
 	// The amdgpu driver always exposes the host CPU(s) first, but we have to skip them and subtract
 	// from the other IDs to get alignment with the HIP libraries expectations (zero is the first GPU, not the CPU)
 	matches, _ := filepath.Glob(GPUPropertiesFileGlob)
+	sort.Slice(matches, func(i, j int) bool {
+		// /sys/class/kfd/kfd/topology/nodes//properties
+		a, err := strconv.ParseInt(filepath.Base(filepath.Dir(matches[i])), 10, 64)
+		if err != nil {
+			slog.Debug("parse err", "error", err, "match", matches[i])
+			return false
+		}
+		b, err := strconv.ParseInt(filepath.Base(filepath.Dir(matches[j])), 10, 64)
+		if err != nil {
+			slog.Debug("parse err", "error", err, "match", matches[i])
+			return false
+		}
+		return a < b
+	})
 	cpuCount := 0
 	for _, match := range matches {
 		slog.Debug("evaluating amdgpu node " + match)
diff --git a/gpu/amd_windows.go b/gpu/amd_windows.go
index 20aed447..a170dfdc 100644
--- a/gpu/amd_windows.go
+++ b/gpu/amd_windows.go
@@ -53,7 +53,7 @@ func AMDGetGPUInfo() []RocmGPUInfo {
 	}
 
 	var supported []string
-	gfxOverride := envconfig.HsaOverrideGfxVersion
+	gfxOverride := envconfig.HsaOverrideGfxVersion()
 	if gfxOverride == "" {
 		supported, err = GetSupportedGFX(libDir)
 		if err != nil {
diff --git a/gpu/assets.go b/gpu/assets.go
index 073d2e81..39ff7c21 100644
--- a/gpu/assets.go
+++ b/gpu/assets.go
@@ -26,7 +26,7 @@ func PayloadsDir() (string, error) {
 	defer lock.Unlock()
 	var err error
 	if payloadsDir == "" {
-		runnersDir := envconfig.RunnersDir
+		runnersDir := envconfig.RunnersDir()
 
 		if runnersDir != "" {
 			payloadsDir = runnersDir
@@ -35,7 +35,7 @@ func PayloadsDir() (string, error) {
 
 		// The remainder only applies on non-windows where we still carry payloads in the main executable
 		cleanupTmpDirs()
-		tmpDir := envconfig.TmpDir
+		tmpDir := envconfig.TmpDir()
 		if tmpDir == "" {
 			tmpDir, err = os.MkdirTemp("", "ollama")
 			if err != nil {
@@ -105,7 +105,7 @@ func cleanupTmpDirs() {
 func Cleanup() {
 	lock.Lock()
 	defer lock.Unlock()
-	runnersDir := envconfig.RunnersDir
+	runnersDir := envconfig.RunnersDir()
 	if payloadsDir != "" && runnersDir == "" && runtime.GOOS != "windows" {
 		// We want to fully clean up the tmpdir parent of the payloads dir
 		tmpDir := filepath.Clean(filepath.Join(payloadsDir, ".."))
diff --git a/gpu/gpu.go b/gpu/gpu.go
index 6e25cb46..acab1c8d 100644
--- a/gpu/gpu.go
+++ b/gpu/gpu.go
@@ -230,8 +230,8 @@ func GetGPUInfo() GpuInfoList {
 
 		// On windows we bundle the nvidia library one level above the runner dir
 		depPath := ""
-		if runtime.GOOS == "windows" && envconfig.RunnersDir != "" {
-			depPath = filepath.Join(filepath.Dir(envconfig.RunnersDir), "cuda")
+		if runtime.GOOS == "windows" && envconfig.RunnersDir() != "" {
+			depPath = filepath.Join(filepath.Dir(envconfig.RunnersDir()), "cuda")
 		}
 
 		// Load ALL libraries
@@ -302,12 +302,12 @@ func GetGPUInfo() GpuInfoList {
 		}
 
 		// Intel
-		if envconfig.IntelGpu {
+		if envconfig.IntelGPU() {
 			oHandles = initOneAPIHandles()
 			// On windows we bundle the oneapi library one level above the runner dir
 			depPath = ""
-			if runtime.GOOS == "windows" && envconfig.RunnersDir != "" {
-				depPath = filepath.Join(filepath.Dir(envconfig.RunnersDir), "oneapi")
+			if runtime.GOOS == "windows" && envconfig.RunnersDir() != "" {
+				depPath = filepath.Join(filepath.Dir(envconfig.RunnersDir()), "oneapi")
 			}
 
 			for d := range oHandles.oneapi.num_drivers {
@@ -611,7 +611,7 @@ func LoadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string) {
 }
 
 func getVerboseState() C.uint16_t {
-	if envconfig.Debug {
+	if envconfig.Debug() {
 		return C.uint16_t(1)
 	}
 	return C.uint16_t(0)
diff --git a/integration/basic_test.go b/integration/basic_test.go
index 6e632a1c..8e35b5c5 100644
--- a/integration/basic_test.go
+++ b/integration/basic_test.go
@@ -45,14 +45,7 @@ func TestUnicodeModelDir(t *testing.T) {
 	defer os.RemoveAll(modelDir)
 	slog.Info("unicode", "OLLAMA_MODELS", modelDir)
 
-	oldModelsDir := os.Getenv("OLLAMA_MODELS")
-	if oldModelsDir == "" {
-		defer os.Unsetenv("OLLAMA_MODELS")
-	} else {
-		defer os.Setenv("OLLAMA_MODELS", oldModelsDir)
-	}
-	err = os.Setenv("OLLAMA_MODELS", modelDir)
-	require.NoError(t, err)
+	t.Setenv("OLLAMA_MODELS", modelDir)
 
 	ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
 	defer cancel()
diff --git a/integration/concurrency_test.go b/integration/concurrency_test.go
index d66ba9f0..81d0b587 100644
--- a/integration/concurrency_test.go
+++ b/integration/concurrency_test.go
@@ -5,14 +5,16 @@ package integration
 import (
 	"context"
 	"log/slog"
-	"os"
 	"strconv"
 	"sync"
 	"testing"
 	"time"
 
-	"github.com/ollama/ollama/api"
 	"github.com/stretchr/testify/require"
+
+	"github.com/ollama/ollama/api"
+	"github.com/ollama/ollama/envconfig"
+	"github.com/ollama/ollama/format"
 )
 
 func TestMultiModelConcurrency(t *testing.T) {
@@ -69,7 +71,7 @@ func TestIntegrationConcurrentPredictOrcaMini(t *testing.T) {
 	reqLimit := len(req)
 	iterLimit := 5
 
-	vram := os.Getenv("OLLAMA_MAX_VRAM")
+	vram := os.Getenv("OLLAMA_MAX_VRAM") // TODO - discover actual VRAM
 	if vram != "" {
 		max, err := strconv.ParseUint(vram, 10, 64)
 		require.NoError(t, err)
@@ -106,13 +108,16 @@ func TestIntegrationConcurrentPredictOrcaMini(t *testing.T) {
 
 // Stress the system if we know how much VRAM it has, and attempt to load more models than will fit
 func TestMultiModelStress(t *testing.T) {
-	vram := os.Getenv("OLLAMA_MAX_VRAM")
-	if vram == "" {
+	s := os.Getenv("OLLAMA_MAX_VRAM") // TODO - discover actual VRAM
+	if s == "" {
 		t.Skip("OLLAMA_MAX_VRAM not specified, can't pick the right models for the stress test")
 	}
-	max, err := strconv.ParseUint(vram, 10, 64)
-	require.NoError(t, err)
-	const MB = uint64(1024 * 1024)
+
+	maxVram, err := strconv.ParseUint(s, 10, 64)
+	if err != nil {
+		t.Fatal(err)
+	}
+
 	type model struct {
 		name string
 		size uint64 // Approximate amount of VRAM they typically use when fully loaded in VRAM
@@ -121,83 +126,82 @@ func TestMultiModelStress(t *testing.T) {
 	smallModels := []model{
 		{
 			name: "orca-mini",
-			size: 2992 * MB,
+			size: 2992 * format.MebiByte,
 		},
 		{
 			name: "phi",
-			size: 2616 * MB,
+			size: 2616 * format.MebiByte,
 		},
 		{
 			name: "gemma:2b",
-			size: 2364 * MB,
+			size: 2364 * format.MebiByte,
 		},
 		{
 			name: "stable-code:3b",
-			size: 2608 * MB,
+			size: 2608 * format.MebiByte,
 		},
 		{
 			name: "starcoder2:3b",
-			size: 2166 * MB,
+			size: 2166 * format.MebiByte,
 		},
 	}
 	mediumModels := []model{
 		{
 			name: "llama2",
-			size: 5118 * MB,
+			size: 5118 * format.MebiByte,
 		},
 		{
 			name: "mistral",
-			size: 4620 * MB,
+			size: 4620 * format.MebiByte,
 		},
 		{
 			name: "orca-mini:7b",
-			size: 5118 * MB,
+			size: 5118 * format.MebiByte,
 		},
 		{
 			name: "dolphin-mistral",
-			size: 4620 * MB,
+			size: 4620 * format.MebiByte,
 		},
 		{
 			name: "gemma:7b",
-			size: 5000 * MB,
+			size: 5000 * format.MebiByte,
+		},
+		{
+			name: "codellama:7b",
+			size: 5118 * format.MebiByte,
 		},
-		// TODO - uncomment this once #3565 is merged and this is rebased on it
-		// {
-		// 	name: "codellama:7b",
-		// 	size: 5118 * MB,
-		// },
 	}
 
 	// These seem to be too slow to be useful...
 	// largeModels := []model{
 	// 	{
 	// 		name: "llama2:13b",
-	// 		size: 7400 * MB,
+	// 		size: 7400 * format.MebiByte,
 	// 	},
 	// 	{
 	// 		name: "codellama:13b",
-	// 		size: 7400 * MB,
+	// 		size: 7400 * format.MebiByte,
 	// 	},
 	// 	{
 	// 		name: "orca-mini:13b",
-	// 		size: 7400 * MB,
+	// 		size: 7400 * format.MebiByte,
 	// 	},
 	// 	{
 	// 		name: "gemma:7b",
-	// 		size: 5000 * MB,
+	// 		size: 5000 * format.MebiByte,
 	// 	},
 	// 	{
 	// 		name: "starcoder2:15b",
-	// 		size: 9100 * MB,
+	// 		size: 9100 * format.MebiByte,
 	// 	},
 	// }
 
 	var chosenModels []model
 	switch {
-	case max < 10000*MB:
+	case maxVram < 10000*format.MebiByte:
 		slog.Info("selecting small models")
 		chosenModels = smallModels
-	// case max < 30000*MB:
+	// case maxVram < 30000*format.MebiByte:
 	default:
 		slog.Info("selecting medium models")
 		chosenModels = mediumModels
@@ -226,15 +230,15 @@ func TestMultiModelStress(t *testing.T) {
 	}
 
 	var wg sync.WaitGroup
-	consumed := uint64(256 * MB) // Assume some baseline usage
+	consumed := uint64(256 * format.MebiByte) // Assume some baseline usage
 	for i := 0; i < len(req); i++ {
 		// Always get at least 2 models, but dont' overshoot VRAM too much or we'll take too long
-		if i > 1 && consumed > max {
-			slog.Info("achieved target vram exhaustion", "count", i, "vramMB", max/1024/1024, "modelsMB", consumed/1024/1024)
+		if i > 1 && consumed > vram {
+			slog.Info("achieved target vram exhaustion", "count", i, "vram", format.HumanBytes2(vram), "models", format.HumanBytes2(consumed))
 			break
 		}
 		consumed += chosenModels[i].size
-		slog.Info("target vram", "count", i, "vramMB", max/1024/1024, "modelsMB", consumed/1024/1024)
+		slog.Info("target vram", "count", i, "vram", format.HumanBytes2(vram), "models", format.HumanBytes2(consumed))
 
 		wg.Add(1)
 		go func(i int) {
diff --git a/integration/embed_test.go b/integration/embed_test.go
index aeafa57b..10333d5d 100644
--- a/integration/embed_test.go
+++ b/integration/embed_test.go
@@ -4,12 +4,45 @@ package integration
 
 import (
 	"context"
+	"math"
 	"testing"
 	"time"
 
 	"github.com/ollama/ollama/api"
 )
 
+func floatsEqual32(a, b float32) bool {
+	return math.Abs(float64(a-b)) <= 1e-4
+}
+
+func floatsEqual64(a, b float64) bool {
+	return math.Abs(a-b) <= 1e-4
+}
+
+func TestAllMiniLMEmbeddings(t *testing.T) {
+	ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
+	defer cancel()
+
+	req := api.EmbeddingRequest{
+		Model:  "all-minilm",
+		Prompt: "why is the sky blue?",
+	}
+
+	res, err := embeddingTestHelper(ctx, t, req)
+
+	if err != nil {
+		t.Fatalf("error: %v", err)
+	}
+
+	if len(res.Embedding) != 384 {
+		t.Fatalf("expected 384 floats, got %d", len(res.Embedding))
+	}
+
+	if !floatsEqual64(res.Embedding[0], 0.06642947345972061) {
+		t.Fatalf("expected 0.06642947345972061, got %.16f", res.Embedding[0])
+	}
+}
+
 func TestAllMiniLMEmbed(t *testing.T) {
 	ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
 	defer cancel()
@@ -33,8 +66,12 @@ func TestAllMiniLMEmbed(t *testing.T) {
 		t.Fatalf("expected 384 floats, got %d", len(res.Embeddings[0]))
 	}
 
-	if res.Embeddings[0][0] != 0.010071031 {
-		t.Fatalf("expected 0.010071031, got %f", res.Embeddings[0][0])
+	if !floatsEqual32(res.Embeddings[0][0], 0.010071031) {
+		t.Fatalf("expected 0.010071031, got %.8f", res.Embeddings[0][0])
+	}
+
+	if res.PromptEvalCount != 8 {
+		t.Fatalf("expected 8 prompt tokens, got %d", res.PromptEvalCount)
 	}
 }
 
@@ -61,12 +98,16 @@ func TestAllMiniLMBatchEmbed(t *testing.T) {
 		t.Fatalf("expected 384 floats, got %d", len(res.Embeddings[0]))
 	}
 
-	if res.Embeddings[0][0] != 0.010071031 || res.Embeddings[1][0] != -0.009802706 {
-		t.Fatalf("expected 0.010071031 and -0.009802706, got %f and %f", res.Embeddings[0][0], res.Embeddings[1][0])
+	if !floatsEqual32(res.Embeddings[0][0], 0.010071031) || !floatsEqual32(res.Embeddings[1][0], -0.009802706) {
+		t.Fatalf("expected 0.010071031 and -0.009802706, got %.8f and %.8f", res.Embeddings[0][0], res.Embeddings[1][0])
+	}
+
+	if res.PromptEvalCount != 16 {
+		t.Fatalf("expected 16 prompt tokens, got %d", res.PromptEvalCount)
 	}
 }
 
-func TestAllMiniLmEmbedTruncate(t *testing.T) {
+func TestAllMiniLMEmbedTruncate(t *testing.T) {
 	ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
 	defer cancel()
 
@@ -135,6 +176,22 @@ func TestAllMiniLmEmbedTruncate(t *testing.T) {
 	}
 }
 
+func embeddingTestHelper(ctx context.Context, t *testing.T, req api.EmbeddingRequest) (*api.EmbeddingResponse, error) {
+	client, _, cleanup := InitServerConnection(ctx, t)
+	defer cleanup()
+	if err := PullIfMissing(ctx, client, req.Model); err != nil {
+		t.Fatalf("failed to pull model %s: %v", req.Model, err)
+	}
+
+	response, err := client.Embeddings(ctx, &req)
+
+	if err != nil {
+		return nil, err
+	}
+
+	return response, nil
+}
+
 func embedTestHelper(ctx context.Context, t *testing.T, req api.EmbedRequest) (*api.EmbedResponse, error) {
 	client, _, cleanup := InitServerConnection(ctx, t)
 	defer cleanup()
diff --git a/integration/max_queue_test.go b/integration/max_queue_test.go
index dfa5eae0..b06197e1 100644
--- a/integration/max_queue_test.go
+++ b/integration/max_queue_test.go
@@ -5,7 +5,6 @@ package integration
 import (
 	"context"
 	"errors"
-	"fmt"
 	"log/slog"
 	"os"
 	"strconv"
@@ -14,8 +13,10 @@ import (
 	"testing"
 	"time"
 
-	"github.com/ollama/ollama/api"
 	"github.com/stretchr/testify/require"
+
+	"github.com/ollama/ollama/api"
+	"github.com/ollama/ollama/envconfig"
 )
 
 func TestMaxQueue(t *testing.T) {
@@ -27,13 +28,10 @@ func TestMaxQueue(t *testing.T) {
 	// Note: This test can be quite slow when running in CPU mode, so keep the threadCount low unless your on GPU
 	// Also note that by default Darwin can't sustain > ~128 connections without adjusting limits
 	threadCount := 32
-	mq := os.Getenv("OLLAMA_MAX_QUEUE")
-	if mq != "" {
-		var err error
-		threadCount, err = strconv.Atoi(mq)
-		require.NoError(t, err)
+	if maxQueue := envconfig.MaxQueue(); maxQueue != 0 {
+		threadCount = maxQueue
 	} else {
-		os.Setenv("OLLAMA_MAX_QUEUE", fmt.Sprintf("%d", threadCount))
+		t.Setenv("OLLAMA_MAX_QUEUE", strconv.Itoa(threadCount))
 	}
 
 	req := api.GenerateRequest{
diff --git a/llm/ext_server/server.cpp b/llm/ext_server/server.cpp
index e8a076c4..d72bb1b1 100644
--- a/llm/ext_server/server.cpp
+++ b/llm/ext_server/server.cpp
@@ -41,6 +41,7 @@
 
 #if defined(_WIN32)
 #include 
+#include 
 #endif
 
 #include 
@@ -1220,6 +1221,7 @@ struct llama_server_context
                 res.result_json = json
                 {
                     {"embedding", std::vector(embd, embd + n_embd)},
+                    {"timings",             slot.get_formated_timings()},
                 };
             }
         }
@@ -2437,15 +2439,6 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, g
             params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
             params.use_mmap = false;
         }
-        else if (arg == "--lora-base")
-        {
-            if (++i >= argc)
-            {
-                invalid_param = true;
-                break;
-            }
-            params.lora_base = argv[i];
-        }
         else if (arg == "-v" || arg == "--verbose")
         {
             server_verbose = true;
@@ -2737,6 +2730,9 @@ int wmain(int argc, wchar_t **wargv) {
     for (int i = 0; i < argc; ++i) {
         argv[i] = wchar_to_char(wargv[i]);
     }
+
+    // Adjust error mode to avoid error dialog after we start.
+    SetErrorMode(SEM_FAILCRITICALERRORS);
 #else
 int main(int argc, char **argv) {
 #endif
@@ -3208,11 +3204,15 @@ int main(int argc, char **argv) {
 
                     responses = result.result_json.value("results", std::vector{result.result_json});
                     json embeddings = json::array();
+
+                    int prompt_n = 0;
                     for (auto & elem : responses) {
                         embeddings.push_back(elem.at("embedding"));
+                        prompt_n += elem.at("timings").at("prompt_n").get();
                     }
+
                     // send the result
-                    json embedding_res = json{{"embedding", embeddings}};
+                    json embedding_res = json{{"embedding", embeddings}, {"prompt_n", prompt_n}};
                     return res.set_content(embedding_res.dump(), "application/json; charset=utf-8");
                 }
             });
diff --git a/llm/ggla.go b/llm/ggla.go
index 34c4f6ca..831f6071 100644
--- a/llm/ggla.go
+++ b/llm/ggla.go
@@ -36,6 +36,8 @@ type ggla struct {
 
 	kv      KV
 	tensors []*Tensor
+
+	tensorOffset uint64
 }
 
 func newGGLA(container *containerGGLA) *ggla {
@@ -50,7 +52,10 @@ func (llm *ggla) KV() KV {
 }
 
 func (llm *ggla) Tensors() Tensors {
-	return llm.tensors
+	return Tensors{
+		Items:  llm.tensors,
+		Offset: llm.tensorOffset,
+	}
 }
 
 func (llm *ggla) decode(rs io.ReadSeeker) (retErr error) {
@@ -66,6 +71,13 @@ func (llm *ggla) decode(rs io.ReadSeeker) (retErr error) {
 	}
 	llm.kv["alpha"] = alpha
 
+	offset, err := rs.Seek(0, io.SeekCurrent)
+	if err != nil {
+		return err
+	}
+
+	llm.tensorOffset = uint64(offset)
+
 	for {
 		var dims uint32
 		if err := binary.Read(rs, binary.LittleEndian, &dims); err != nil {
diff --git a/llm/ggml.go b/llm/ggml.go
index fddb5039..d7f2eef7 100644
--- a/llm/ggml.go
+++ b/llm/ggml.go
@@ -112,11 +112,14 @@ func (kv KV) ChatTemplate() string {
 	return s
 }
 
-type Tensors []*Tensor
+type Tensors struct {
+	Items  []*Tensor
+	Offset uint64
+}
 
 func (ts Tensors) Layers() map[string]Layer {
 	layers := make(map[string]Layer)
-	for _, t := range ts {
+	for _, t := range ts.Items {
 		parts := strings.Split(t.Name, ".")
 		if parts[0] == "blk" {
 			// join first and second part, e.g. blk.%d
diff --git a/llm/gguf.go b/llm/gguf.go
index a8427aed..98158313 100644
--- a/llm/gguf.go
+++ b/llm/gguf.go
@@ -2,11 +2,16 @@ package llm
 
 import (
 	"bytes"
+	"cmp"
 	"encoding/binary"
 	"encoding/json"
 	"fmt"
 	"io"
+	"log/slog"
+	"slices"
 	"strings"
+
+	"golang.org/x/exp/maps"
 )
 
 type containerGGUF struct {
@@ -88,7 +93,8 @@ type gguf struct {
 	kv      KV
 	tensors []*Tensor
 
-	parameters uint64
+	parameters   uint64
+	tensorOffset uint64
 
 	scratch [16 << 10]byte
 }
@@ -100,16 +106,15 @@ func newGGUF(container *containerGGUF) *gguf {
 	}
 }
 
-func NewGGUFV3(bo binary.ByteOrder) *gguf {
-	return newGGUF(&containerGGUF{ByteOrder: bo, Version: 3})
-}
-
 func (llm *gguf) KV() KV {
 	return llm.kv
 }
 
 func (llm *gguf) Tensors() Tensors {
-	return llm.tensors
+	return Tensors{
+		Items:  llm.tensors,
+		Offset: llm.tensorOffset,
+	}
 }
 
 func (llm *gguf) numTensor() uint64 {
@@ -199,7 +204,7 @@ func (llm *gguf) Decode(rs io.ReadSeeker) error {
 			return fmt.Errorf("failed to read tensor dimensions: %w", err)
 		}
 
-		shape := [4]uint64{1, 1, 1, 1}
+		shape := make([]uint64, dims)
 		for i := 0; uint32(i) < dims; i++ {
 			shape[i], err = readGGUF[uint64](llm, rs)
 			if err != nil {
@@ -236,13 +241,21 @@ func (llm *gguf) Decode(rs io.ReadSeeker) error {
 		alignment = 32
 	}
 
+	offset, err := rs.Seek(0, io.SeekCurrent)
+	if err != nil {
+		return err
+	}
+
+	padding := ggufPadding(offset, int64(alignment))
+	llm.tensorOffset = uint64(offset + padding)
+
 	for _, tensor := range llm.tensors {
 		offset, err := rs.Seek(0, io.SeekCurrent)
 		if err != nil {
 			return fmt.Errorf("failed to get current offset: %w", err)
 		}
 
-		padding := llm.padding(offset, int64(alignment))
+		padding := ggufPadding(offset, int64(alignment))
 		if _, err := rs.Seek(padding, io.SeekCurrent); err != nil {
 			return fmt.Errorf("failed to seek to init padding: %w", err)
 		}
@@ -261,12 +274,12 @@ func readGGUF[T any](llm *gguf, r io.Reader) (T, error) {
 	return t, err
 }
 
-func writeGGUF[V any](llm *gguf, w io.Writer, t uint32, v V) error {
-	if err := binary.Write(w, llm.ByteOrder, t); err != nil {
+func writeGGUF[V any](w io.Writer, t uint32, v V) error {
+	if err := binary.Write(w, binary.LittleEndian, t); err != nil {
 		return err
 	}
 
-	return binary.Write(w, llm.ByteOrder, v)
+	return binary.Write(w, binary.LittleEndian, v)
 }
 
 func readGGUFV1String(llm *gguf, r io.Reader) (string, error) {
@@ -330,12 +343,12 @@ func readGGUFString(llm *gguf, r io.Reader) (string, error) {
 	return string(buf), nil
 }
 
-func writeGGUFString(llm *gguf, w io.Writer, s string) error {
-	if err := binary.Write(w, llm.ByteOrder, ggufTypeString); err != nil {
+func writeGGUFString(w io.Writer, s string) error {
+	if err := binary.Write(w, binary.LittleEndian, ggufTypeString); err != nil {
 		return err
 	}
 
-	if err := binary.Write(w, llm.ByteOrder, uint64(len(s))); err != nil {
+	if err := binary.Write(w, binary.LittleEndian, uint64(len(s))); err != nil {
 		return err
 	}
 
@@ -476,216 +489,72 @@ func readGGUFArray(llm *gguf, r io.Reader) (*array, error) {
 	return a, nil
 }
 
-func writeGGUFArray[S ~[]E, E any](llm *gguf, w io.Writer, t uint32, s S) error {
-	if err := binary.Write(w, llm.ByteOrder, ggufTypeArray); err != nil {
+// writeGGUFArray writes a slice s of type E to the write with a gguf type of t
+func writeGGUFArray[S ~[]E, E any](w io.Writer, t uint32, s S) error {
+	if err := binary.Write(w, binary.LittleEndian, ggufTypeArray); err != nil {
 		return err
 	}
 
-	if err := binary.Write(w, llm.ByteOrder, t); err != nil {
+	if err := binary.Write(w, binary.LittleEndian, t); err != nil {
 		return err
 	}
 
-	if err := binary.Write(w, llm.ByteOrder, uint64(len(s))); err != nil {
+	if err := binary.Write(w, binary.LittleEndian, uint64(len(s))); err != nil {
 		return err
 	}
 
-	for _, e := range s {
-		if err := binary.Write(w, llm.ByteOrder, e); err != nil {
-			return err
-		}
-	}
-
-	return nil
+	return binary.Write(w, binary.LittleEndian, s)
 }
 
-var ggufKVOrder = map[string][]string{
-	"llama": {
-		"general.architecture",
-		"general.name",
-		"llama.vocab_size",
-		"llama.context_length",
-		"llama.embedding_length",
-		"llama.block_count",
-		"llama.feed_forward_length",
-		"llama.attention.head_count",
-		"llama.attention.head_count_kv",
-		"llama.attention.layer_norm_rms_epsilon",
-		"llama.rope.freq_base",
-		"llama.rope.dimension_count",
-		"llama.expert_count",
-		"llama.expert_used_count",
-		"gemma.context_length",
-		"gemma.embedding_length",
-		"gemma.block_count",
-		"gemma.feed_forward_length",
-		"gemma.attention.head_count",
-		"gemma.attention.head_count_kv",
-		"gemma.attention.layer_norm_rms_epsilon",
-		"gemma.attention.key_length",
-		"gemma.attention.value_length",
-		"general.file_type",
-		"tokenizer.ggml.pre",
-		"tokenizer.ggml.model",
-		"tokenizer.ggml.tokens",
-		"tokenizer.ggml.scores",
-		"tokenizer.ggml.merges",
-		"tokenizer.ggml.token_type",
-		"tokenizer.ggml.bos_token_id",
-		"tokenizer.ggml.eos_token_id",
-		"tokenizer.ggml.unknown_token_id",
-		"tokenizer.ggml.padding_token_id",
-		"tokenizer.ggml.add_bos_token",
-		"tokenizer.ggml.add_eos_token",
-		"tokenizer.chat_template",
-		"bert.pooling_type",
-	},
-}
-
-func (llm *gguf) Encode(ws io.WriteSeeker, kv KV, tensors []Tensor) error {
-	switch llm.Version {
-	case 3:
-		llm.V3.NumTensor = uint64(len(tensors))
-		llm.V3.NumKV = uint64(len(kv))
-	default:
-		return fmt.Errorf("not implemented: ggufv%d", llm.Version)
-	}
-
-	if err := binary.Write(ws, llm.ByteOrder, []byte("GGUF")); err != nil {
+func WriteGGUF(ws io.WriteSeeker, kv KV, ts []Tensor) error {
+	if err := binary.Write(ws, binary.LittleEndian, []byte("GGUF")); err != nil {
 		return err
 	}
 
-	if err := binary.Write(ws, llm.ByteOrder, llm.Version); err != nil {
+	if err := binary.Write(ws, binary.LittleEndian, uint32(3)); err != nil {
 		return err
 	}
 
-	if err := binary.Write(ws, llm.ByteOrder, llm.numTensor()); err != nil {
+	if err := binary.Write(ws, binary.LittleEndian, uint64(len(ts))); err != nil {
 		return err
 	}
 
-	if err := binary.Write(ws, llm.ByteOrder, llm.numKV()); err != nil {
+	if err := binary.Write(ws, binary.LittleEndian, uint64(len(kv))); err != nil {
 		return err
 	}
 
-	kvCheck := make(map[string]bool)
-	for k := range kv {
-		kvCheck[k] = false
-	}
+	keys := maps.Keys(kv)
+	slices.Sort(keys)
 
-	for _, k := range ggufKVOrder["llama"] {
-		v, ok := kv[k]
-		if !ok {
-			continue
-		}
-		kvCheck[k] = true
-
-		if err := binary.Write(ws, llm.ByteOrder, uint64(len(k))); err != nil {
-			return err
-		}
-
-		if err := binary.Write(ws, llm.ByteOrder, []byte(k)); err != nil {
-			return err
-		}
-
-		var err error
-		switch v := v.(type) {
-		case uint32:
-			err = writeGGUF(llm, ws, ggufTypeUint32, v)
-		case float32:
-			err = writeGGUF(llm, ws, ggufTypeFloat32, v)
-		case bool:
-			err = writeGGUF(llm, ws, ggufTypeBool, v)
-		case string:
-			err = writeGGUFString(llm, ws, v)
-		case []int32:
-			err = writeGGUFArray(llm, ws, ggufTypeInt32, v)
-		case []uint32:
-			err = writeGGUFArray(llm, ws, ggufTypeUint32, v)
-		case []float32:
-			err = writeGGUFArray(llm, ws, ggufTypeFloat32, v)
-		case []string:
-			if err := binary.Write(ws, llm.ByteOrder, ggufTypeArray); err != nil {
-				return err
-			}
-
-			if err := binary.Write(ws, llm.ByteOrder, ggufTypeString); err != nil {
-				return err
-			}
-
-			if err := binary.Write(ws, llm.ByteOrder, uint64(len(v))); err != nil {
-				return err
-			}
-
-			for _, e := range v {
-				if err := binary.Write(ws, llm.ByteOrder, uint64(len(e))); err != nil {
-					return err
-				}
-
-				if err := binary.Write(ws, llm.ByteOrder, []byte(e)); err != nil {
-					return err
-				}
-			}
-		default:
-			return fmt.Errorf("improper type for '%s'", k)
-		}
-		if err != nil {
+	for _, key := range keys {
+		if err := ggufWriteKV(ws, key, kv[key]); err != nil {
 			return err
 		}
 	}
 
-	for k, v := range kvCheck {
-		if !v {
-			return fmt.Errorf("Didn't know how to write kv %s", k)
+	slices.SortFunc(ts, func(a, b Tensor) int {
+		var i, j int
+		if n, err := fmt.Sscanf(a.Name, "blk.%d", &i); err != nil || n != 1 {
+			return cmp.Compare(a.Name, b.Name)
+		} else if n, err := fmt.Sscanf(b.Name, "blk.%d", &j); err != nil || n != 1 {
+			return cmp.Compare(a.Name, b.Name)
 		}
-	}
 
-	for _, tensor := range tensors {
-		if err := binary.Write(ws, llm.ByteOrder, uint64(len(tensor.Name))); err != nil {
-			return err
-		}
-
-		if err := binary.Write(ws, llm.ByteOrder, []byte(tensor.Name)); err != nil {
-			return err
-		}
-
-		var dims int
-		for cnt := range len(tensor.Shape) {
-			if tensor.Shape[cnt] > 0 {
-				dims++
-			}
-		}
-
-		if err := binary.Write(ws, llm.ByteOrder, uint32(dims)); err != nil {
-			return err
-		}
-
-		for i := range dims {
-			if err := binary.Write(ws, llm.ByteOrder, tensor.Shape[dims-1-i]); err != nil {
-				return err
-			}
-		}
-
-		if err := binary.Write(ws, llm.ByteOrder, tensor.Kind); err != nil {
-			return err
-		}
-
-		if err := binary.Write(ws, llm.ByteOrder, tensor.Offset); err != nil {
+		return cmp.Compare(i, j)
+	})
+
+	var s uint64
+	for _, t := range ts {
+		t.Offset = s
+		if err := ggufWriteTensorInfo(ws, t); err != nil {
 			return err
 		}
+		s += t.Size()
 	}
 
 	var alignment int64 = 32
-	for _, tensor := range tensors {
-		offset, err := ws.Seek(0, io.SeekCurrent)
-		if err != nil {
-			return err
-		}
-
-		padding := llm.padding(offset, alignment)
-		if err := binary.Write(ws, llm.ByteOrder, bytes.Repeat([]byte{0}, int(padding))); err != nil {
-			return err
-		}
-
-		if _, err := tensor.WriteTo(ws); err != nil {
+	for _, t := range ts {
+		if err := ggufWriteTensor(ws, t, alignment); err != nil {
 			return err
 		}
 	}
@@ -693,6 +562,102 @@ func (llm *gguf) Encode(ws io.WriteSeeker, kv KV, tensors []Tensor) error {
 	return nil
 }
 
-func (gguf) padding(offset, align int64) int64 {
+func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
+	slog.Debug(k, "type", fmt.Sprintf("%T", v))
+	if err := binary.Write(ws, binary.LittleEndian, uint64(len(k))); err != nil {
+		return err
+	}
+
+	if err := binary.Write(ws, binary.LittleEndian, []byte(k)); err != nil {
+		return err
+	}
+
+	var err error
+	switch v := v.(type) {
+	case uint32:
+		err = writeGGUF(ws, ggufTypeUint32, v)
+	case float32:
+		err = writeGGUF(ws, ggufTypeFloat32, v)
+	case bool:
+		err = writeGGUF(ws, ggufTypeBool, v)
+	case string:
+		err = writeGGUFString(ws, v)
+	case []int32:
+		err = writeGGUFArray(ws, ggufTypeInt32, v)
+	case []uint32:
+		err = writeGGUFArray(ws, ggufTypeUint32, v)
+	case []float32:
+		err = writeGGUFArray(ws, ggufTypeFloat32, v)
+	case []string:
+		if err := binary.Write(ws, binary.LittleEndian, ggufTypeArray); err != nil {
+			return err
+		}
+
+		if err := binary.Write(ws, binary.LittleEndian, ggufTypeString); err != nil {
+			return err
+		}
+
+		if err := binary.Write(ws, binary.LittleEndian, uint64(len(v))); err != nil {
+			return err
+		}
+
+		for _, e := range v {
+			if err := binary.Write(ws, binary.LittleEndian, uint64(len(e))); err != nil {
+				return err
+			}
+
+			if err := binary.Write(ws, binary.LittleEndian, []byte(e)); err != nil {
+				return err
+			}
+		}
+	default:
+		return fmt.Errorf("improper type for '%s'", k)
+	}
+
+	return err
+}
+
+func ggufWriteTensorInfo(ws io.WriteSeeker, t Tensor) error {
+	slog.Debug(t.Name, "kind", t.Kind, "shape", t.Shape, "offset", t.Offset)
+	if err := binary.Write(ws, binary.LittleEndian, uint64(len(t.Name))); err != nil {
+		return err
+	}
+
+	if err := binary.Write(ws, binary.LittleEndian, []byte(t.Name)); err != nil {
+		return err
+	}
+
+	if err := binary.Write(ws, binary.LittleEndian, uint32(len(t.Shape))); err != nil {
+		return err
+	}
+
+	for i := range len(t.Shape) {
+		if err := binary.Write(ws, binary.LittleEndian, t.Shape[len(t.Shape)-i-1]); err != nil {
+			return err
+		}
+	}
+
+	if err := binary.Write(ws, binary.LittleEndian, t.Kind); err != nil {
+		return err
+	}
+
+	return binary.Write(ws, binary.LittleEndian, t.Offset)
+}
+
+func ggufWriteTensor(ws io.WriteSeeker, t Tensor, alignment int64) error {
+	offset, err := ws.Seek(0, io.SeekCurrent)
+	if err != nil {
+		return err
+	}
+
+	if err := binary.Write(ws, binary.LittleEndian, bytes.Repeat([]byte{0}, int(ggufPadding(offset, alignment)))); err != nil {
+		return err
+	}
+
+	_, err = t.WriteTo(ws)
+	return err
+}
+
+func ggufPadding(offset, align int64) int64 {
 	return (align - offset%align) % align
 }
diff --git a/llm/llama.cpp b/llm/llama.cpp
index a8db2a9c..6eeaeba1 160000
--- a/llm/llama.cpp
+++ b/llm/llama.cpp
@@ -1 +1 @@
-Subproject commit a8db2a9ce64cd4417f6a312ab61858f17f0f8584
+Subproject commit 6eeaeba126ff701f3e8f79f246805b7023709972
diff --git a/llm/llm_darwin_amd64.go b/llm/llm_darwin_amd64.go
index 3093e1ad..60eed719 100644
--- a/llm/llm_darwin_amd64.go
+++ b/llm/llm_darwin_amd64.go
@@ -2,7 +2,10 @@ package llm
 
 import (
 	"embed"
+	"syscall"
 )
 
 //go:embed build/darwin/x86_64/*/bin/*
 var libEmbed embed.FS
+
+var LlamaServerSysProcAttr = &syscall.SysProcAttr{}
diff --git a/llm/llm_darwin_arm64.go b/llm/llm_darwin_arm64.go
index 928f0b82..20ce8552 100644
--- a/llm/llm_darwin_arm64.go
+++ b/llm/llm_darwin_arm64.go
@@ -2,7 +2,10 @@ package llm
 
 import (
 	"embed"
+	"syscall"
 )
 
 //go:embed build/darwin/arm64/*/bin/*
 var libEmbed embed.FS
+
+var LlamaServerSysProcAttr = &syscall.SysProcAttr{}
diff --git a/llm/llm_linux.go b/llm/llm_linux.go
index c2c5c4cb..928b4e79 100644
--- a/llm/llm_linux.go
+++ b/llm/llm_linux.go
@@ -1,6 +1,11 @@
 package llm
 
-import "embed"
+import (
+	"embed"
+	"syscall"
+)
 
 //go:embed build/linux/*/*/bin/*
 var libEmbed embed.FS
+
+var LlamaServerSysProcAttr = &syscall.SysProcAttr{}
diff --git a/llm/llm_windows.go b/llm/llm_windows.go
index e44f4b95..763cccf9 100644
--- a/llm/llm_windows.go
+++ b/llm/llm_windows.go
@@ -1,6 +1,20 @@
 package llm
 
-import "embed"
+import (
+	"embed"
+	"syscall"
+)
 
 // unused on windows
 var libEmbed embed.FS
+
+const CREATE_DEFAULT_ERROR_MODE = 0x04000000
+
+var LlamaServerSysProcAttr = &syscall.SysProcAttr{
+	// Wire up the default error handling logic If for some reason a DLL is
+	// missing in the path this will pop up a GUI Dialog explaining the fault so
+	// the user can either fix their PATH, or report a bug. Without this
+	// setting, the process exits immediately with a generic exit status but no
+	// way to (easily) figure out what the actual missing DLL was.
+	CreationFlags: CREATE_DEFAULT_ERROR_MODE,
+}
diff --git a/llm/memory_test.go b/llm/memory_test.go
index f972f927..3220c8df 100644
--- a/llm/memory_test.go
+++ b/llm/memory_test.go
@@ -2,25 +2,23 @@ package llm
 
 import (
 	"bytes"
-	"encoding/binary"
 	"fmt"
 	"os"
 	"testing"
 
 	"github.com/ollama/ollama/api"
-	"github.com/ollama/ollama/envconfig"
 	"github.com/ollama/ollama/gpu"
 	"github.com/stretchr/testify/assert"
 	"github.com/stretchr/testify/require"
 )
 
 func TestEstimateGPULayers(t *testing.T) {
-	envconfig.Debug = true
+	t.Setenv("OLLAMA_DEBUG", "1")
+
 	modelName := "dummy"
 	f, err := os.CreateTemp(t.TempDir(), modelName)
 	require.NoError(t, err)
 	defer f.Close()
-	gguf := NewGGUFV3(binary.LittleEndian)
 	inputLayerCount := 5
 
 	tensors := []Tensor{
@@ -32,7 +30,7 @@ func TestEstimateGPULayers(t *testing.T) {
 		{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
 	}
 	assert.Len(t, tensors, inputLayerCount+1)
-	err = gguf.Encode(f, KV{
+	err = WriteGGUF(f, KV{
 		"general.architecture":          "llama",
 		"general.name":                  "name",
 		"llama.context_length":          uint32(32),
diff --git a/llm/patches/05-default-pretokenizer.diff b/llm/patches/05-default-pretokenizer.diff
index 341a6f59..0d40fc3c 100644
--- a/llm/patches/05-default-pretokenizer.diff
+++ b/llm/patches/05-default-pretokenizer.diff
@@ -1,8 +1,8 @@
 diff --git a/src/llama.cpp b/src/llama.cpp
-index 2b9ace28..172640e2 100644
+index a207451f..2ddf431d 100644
 --- a/src/llama.cpp
 +++ b/src/llama.cpp
-@@ -5357,16 +5357,7 @@ static void llm_load_vocab(
+@@ -5347,16 +5347,7 @@ static void llm_load_vocab(
          if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
              vocab.tokenizer_add_space_prefix = false;
              vocab.tokenizer_clean_spaces = true;
@@ -20,9 +20,9 @@ index 2b9ace28..172640e2 100644
                  vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
              } else if (
                      tokenizer_pre == "llama3"   ||
-@@ -5439,7 +5430,8 @@ static void llm_load_vocab(
-                 tokenizer_pre == "jais") {
-                 vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_JAIS;
+@@ -5443,7 +5434,8 @@ static void llm_load_vocab(
+                 tokenizer_pre == "codeshell") {
+                 vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_CODESHELL;
              } else {
 -                throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
 +                LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__);
diff --git a/llm/patches/07-embeddings.diff b/llm/patches/06-embeddings.diff
similarity index 100%
rename from llm/patches/07-embeddings.diff
rename to llm/patches/06-embeddings.diff
diff --git a/llm/patches/06-qwen2.diff b/llm/patches/06-qwen2.diff
deleted file mode 100644
index 1c7109f6..00000000
--- a/llm/patches/06-qwen2.diff
+++ /dev/null
@@ -1,13 +0,0 @@
-diff --git a/src/llama.cpp b/src/llama.cpp
-index 40d2ec2c..f34eb79a 100644
---- a/src/llama.cpp
-+++ b/src/llama.cpp
-@@ -6943,7 +6943,7 @@ static struct ggml_tensor * llm_build_kqv(
-         struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
-         cb(kq, "kq", il);
- 
--        if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
-+        if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_QWEN2) {
-             // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
-             // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
-             ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
diff --git a/llm/patches/08-clip-unicode.diff b/llm/patches/07-clip-unicode.diff
similarity index 100%
rename from llm/patches/08-clip-unicode.diff
rename to llm/patches/07-clip-unicode.diff
diff --git a/llm/patches/09-pooling.diff b/llm/patches/08-pooling.diff
similarity index 100%
rename from llm/patches/09-pooling.diff
rename to llm/patches/08-pooling.diff
diff --git a/llm/patches/09-lora.diff b/llm/patches/09-lora.diff
new file mode 100644
index 00000000..10c66d1d
--- /dev/null
+++ b/llm/patches/09-lora.diff
@@ -0,0 +1,358 @@
+diff --git a/common/common.cpp b/common/common.cpp
+index dbb724fb..c26fe6ee 100644
+--- a/common/common.cpp
++++ b/common/common.cpp
+@@ -2087,14 +2087,27 @@ std::tuple llama_init_from_gpt_par
+     for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
+         const std::string & lora_adapter = std::get<0>(params.lora_adapter[i]);
+         float lora_scale = std::get<1>(params.lora_adapter[i]);
++
++        // try to load as gguf
+         auto adapter = llama_lora_adapter_init(model, lora_adapter.c_str());
+         if (adapter == nullptr) {
+-            fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
+-            llama_free(lctx);
+-            llama_free_model(model);
+-            return std::make_tuple(nullptr, nullptr);
++            fprintf(stderr, "%s: error: failed to apply lora adapter, trying ggla\n", __func__);
++
++            // if that fails, try loading as ggla for compatibility
++            int err = llama_model_apply_lora_from_file(model,
++                                                    lora_adapter.c_str(),
++                                                    lora_scale,
++                                                    nullptr,
++                                                    params.n_threads);
++            if (err != 0) {
++                fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
++                llama_free(lctx);
++                llama_free_model(model);
++                return std::make_tuple(nullptr, nullptr);
++            }
++        } else {
++            llama_lora_adapter_set(lctx, adapter, lora_scale);
+         }
+-        llama_lora_adapter_set(lctx, adapter, lora_scale);
+     }
+ 
+     if (params.ignore_eos) {
+diff --git a/include/llama.h b/include/llama.h
+index 93fd77ca..b0fb37a6 100644
+--- a/include/llama.h
++++ b/include/llama.h
+@@ -1160,6 +1160,20 @@ extern "C" {
+ 
+     LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
+ 
++    // Apply a LoRA adapter to a loaded model
++    // path_base_model is the path to a higher quality model to use as a base for
++    // the layers modified by the adapter. Can be NULL to use the current loaded model.
++    // The model needs to be reloaded before applying a new adapter, otherwise the adapter
++    // will be applied on top of the previous one
++    // Returns 0 on success
++    LLAMA_API int32_t llama_model_apply_lora_from_file(
++            const struct llama_model * model,
++                            const char * path_lora,
++                                float   scale,
++                            const char * path_base_model,
++                                int32_t   n_threads);
++
++
+ #ifdef __cplusplus
+ }
+ #endif
+diff --git a/src/llama.cpp b/src/llama.cpp
+index 80a0dd0f..9d7b0e17 100644
+--- a/src/llama.cpp
++++ b/src/llama.cpp
+@@ -21880,3 +21880,290 @@ static void llama_log_callback_default(ggml_log_level level, const char * text,
+     fputs(text, stderr);
+     fflush(stderr);
+ }
++
++static int llama_apply_lora_from_file_internal(
++    const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
++) {
++    LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
++
++    const int64_t t_start_lora_us = ggml_time_us();
++
++    llama_file fin(path_lora, "rb");
++
++    // verify magic and version
++    {
++        uint32_t magic = fin.read_u32();
++        if (magic != LLAMA_FILE_MAGIC_GGLA) {
++            LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
++            return 1;
++        }
++
++        uint32_t format_version = fin.read_u32();
++        if (format_version != 1) {
++            LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
++            return 1;
++        }
++    }
++
++    int32_t lora_r = fin.read_u32();
++    int32_t lora_alpha = fin.read_u32();
++    float scaling = scale * (float)lora_alpha / (float)lora_r;
++
++    LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
++
++    // load base model
++    std::unique_ptr ml;
++    if (path_base_model) {
++        LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
++        ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
++        ml->init_mappings(/*prefetch*/ false); // no prefetching
++    }
++
++    struct tensor_meta {
++        std::string name;
++        ggml_type type;
++        int32_t ne[2];
++        size_t offset;
++    };
++    std::map tensor_meta_map;
++
++    // load all tensor meta
++    while (true) {
++        if (fin.tell() == fin.size) {
++            // eof
++            break;
++        }
++
++        int32_t n_dims;
++        int32_t name_len;
++        int32_t ftype;
++
++        fin.read_raw(&n_dims, sizeof(n_dims));
++        fin.read_raw(&name_len, sizeof(name_len));
++        fin.read_raw(&ftype, sizeof(ftype));
++
++        if (n_dims != 1 && n_dims != 2) {
++            LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
++            return 1;
++        }
++
++        int32_t ne[2] = { 1, 1 };
++        for (int i = 0; i < n_dims; ++i) {
++            fin.read_raw(&ne[i], sizeof(ne[i]));
++        }
++
++        std::string name;
++        {
++            GGML_ASSERT(name_len < GGML_MAX_NAME);
++            char buf[GGML_MAX_NAME];
++            fin.read_raw(buf, name_len);
++            name = std::string(buf, name_len);
++        }
++
++        // check for lora suffix
++        std::string lora_suffix;
++        if (name.length() > 6) {
++            lora_suffix = name.substr(name.length() - 6);
++        }
++        if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
++            LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
++            return 1;
++        }
++
++        // tensor type
++        ggml_type wtype;
++        switch (ftype) {
++            case 0: wtype = GGML_TYPE_F32;  break;
++            case 1: wtype = GGML_TYPE_F16;  break;
++            default:
++                    {
++                        LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
++                                __func__, ftype);
++                        return 1;
++                    }
++        }
++
++        // data offset
++        size_t offset = fin.tell();
++        offset = (offset + 31) & -32;
++
++        // skip tensor data
++        fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
++
++        tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
++    }
++
++    bool warned = false;
++    int n_tensors = 0;
++
++    // apply
++    ggml_backend_t backend_cpu = ggml_backend_cpu_init();
++    if (backend_cpu == nullptr) {
++        LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
++        return 1;
++    }
++    ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
++
++    std::vector> read_buf;
++    for (const auto & it : model.tensors_by_name) {
++        const std::string & base_name = it.first;
++        ggml_tensor * model_t = it.second;
++
++        if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
++            tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
++            continue;
++        }
++
++        tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
++        tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
++
++        ggml_init_params lora_init_params = {
++            /* .mem_size   */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
++            /* .mem_buffer */ nullptr,
++            /* .no_alloc   */ true,
++        };
++        ggml_context * lora_ctx = ggml_init(lora_init_params);
++        if (lora_ctx == nullptr) {
++            LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
++            ggml_backend_free(backend_cpu);
++            return 1;
++        }
++
++        // create tensors
++        ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
++        ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
++        ggml_set_name(loraA, metaA.name.c_str());
++        ggml_set_name(loraB, metaB.name.c_str());
++
++        ggml_tensor * base_t;
++        if (ml) {
++            if (!ml->get_tensor_meta(base_name.c_str())) {
++                LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
++                return 1;
++            }
++            base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
++        } else {
++            base_t = ggml_dup_tensor(lora_ctx, model_t);
++        }
++        ggml_set_name(base_t, base_name.c_str());
++
++        // allocate in backend buffer
++        ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
++        if (lora_buf == nullptr) {
++            LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
++            return 1;
++        }
++
++        // load tensor data
++        auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
++            read_buf.resize(ggml_nbytes(tensor));
++            fin.seek(tensor_meta.offset, SEEK_SET);
++            fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
++            ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
++        };
++        load_tensor(metaA, loraA);
++        load_tensor(metaB, loraB);
++
++        // load base model tensor data
++        if (ml) {
++            ml->load_data_for(base_t);
++        } else {
++            ggml_backend_tensor_copy(model_t, base_t);
++        }
++
++        if (ggml_is_quantized(base_t->type) && !warned) {
++            LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
++                            "use a f16 or f32 base model with --lora-base\n", __func__);
++            warned = true;
++        }
++
++        if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
++            LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
++                            " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
++            ggml_free(lora_ctx);
++            ggml_backend_buffer_free(lora_buf);
++            ggml_backend_free(backend_cpu);
++            return 1;
++        }
++
++        auto build_lora_graph = [&]() {
++            // w = w + BA*s
++            ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
++            ggml_set_name(BA, "BA");
++
++            if (scaling != 1.0f) {
++                BA = ggml_scale(lora_ctx, BA, scaling);
++                ggml_set_name(BA, "BA_scaled");
++            }
++
++            ggml_tensor * r;
++            r = ggml_add_inplace(lora_ctx, base_t, BA);
++            ggml_set_name(r, "r_add");
++
++            if (base_t->type != model_t->type) {
++                // convert the result to the model type
++                r = ggml_cast(lora_ctx, r, model_t->type);
++                ggml_set_name(r, "r_cast");
++            }
++
++            return r;
++        };
++
++        ggml_cgraph * gf = ggml_new_graph(lora_ctx);
++        ggml_tensor * r = build_lora_graph();
++        ggml_build_forward_expand(gf, r);
++
++        ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
++        if (graph_buf == nullptr) {
++            LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
++            ggml_free(lora_ctx);
++            ggml_backend_buffer_free(lora_buf);
++            ggml_backend_free(backend_cpu);
++            return 1;
++        }
++
++        ggml_backend_graph_compute(backend_cpu, gf);
++
++        ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
++
++#if 0
++        // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
++        //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
++
++        // sched compute
++        ggml_build_forward_expand(gf, build_graph());
++        ggml_backend_sched_init_measure(sched, gf);
++
++        // create the graph again, since the previous one was destroyed by the measure
++        ggml_graph_clear(gf);
++        ggml_build_forward_expand(gf, build_graph());
++        ggml_backend_sched_graph_compute(sched, gf);
++        ggml_backend_sched_free(sched);
++#endif
++
++        ggml_backend_buffer_free(lora_buf);
++        ggml_backend_buffer_free(graph_buf);
++        ggml_free(lora_ctx);
++
++        n_tensors++;
++        if (n_tensors % 4 == 0) {
++            LLAMA_LOG_INFO(".");
++        }
++    }
++
++    ggml_backend_free(backend_cpu);
++
++    const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
++    LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
++
++    return 0;
++}
++
++int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
++    try {
++        return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
++    } catch (const std::exception & err) {
++        LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
++        return 1;
++    }
++}
+\ No newline at end of file
diff --git a/llm/patches/10-params.diff b/llm/patches/10-params.diff
new file mode 100644
index 00000000..56699b8e
--- /dev/null
+++ b/llm/patches/10-params.diff
@@ -0,0 +1,20 @@
+diff --git a/src/llama.cpp b/src/llama.cpp
+index a207451f..fba6b175 100644
+--- a/src/llama.cpp
++++ b/src/llama.cpp
+@@ -4969,6 +4969,7 @@ static void llm_load_hparams(
+                 hparams.attn_soft_cap = true;
+ 
+                 switch (hparams.n_layer) {
++                    case 26: model.type = e_model::MODEL_2B; break;
+                     case 42: model.type = e_model::MODEL_9B; break;
+                     case 46: model.type = e_model::MODEL_27B; break;
+                     default: model.type = e_model::MODEL_UNKNOWN;
+@@ -11736,6 +11737,7 @@ struct llm_build_context {
+ 
+                 // ref: https://github.com/google/gemma_pytorch/commit/03e657582d17cb5a8617ebf333c1c16f3694670e
+                 switch (model.type) {
++                    case e_model::MODEL_2B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k))); break;
+                     case e_model::MODEL_9B:  Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));   break;
+                     case e_model::MODEL_27B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd / n_head))); break;
+                     default: GGML_ABORT("fatal error");
diff --git a/llm/patches/10-tekken.diff b/llm/patches/10-tekken.diff
deleted file mode 100644
index 56a583e0..00000000
--- a/llm/patches/10-tekken.diff
+++ /dev/null
@@ -1,43 +0,0 @@
-diff --git a/include/llama.h b/include/llama.h
-index bb4b05ba..a92174e0 100644
---- a/include/llama.h
-+++ b/include/llama.h
-@@ -92,6 +92,7 @@ extern "C" {
-         LLAMA_VOCAB_PRE_TYPE_CHATGLM4       = 17,
-         LLAMA_VOCAB_PRE_TYPE_VIKING         = 18,
-         LLAMA_VOCAB_PRE_TYPE_JAIS           = 19,
-+        LLAMA_VOCAB_PRE_TYPE_TEKKEN         = 20,
-     };
- 
-     // note: these values should be synchronized with ggml_rope
-diff --git a/src/llama.cpp b/src/llama.cpp
-index 18364976..435b6fe5 100644
---- a/src/llama.cpp
-+++ b/src/llama.cpp
-@@ -5429,6 +5429,12 @@ static void llm_load_vocab(
-             } else if (
-                 tokenizer_pre == "jais") {
-                 vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_JAIS;
-+            } else if (
-+                tokenizer_pre == "tekken") {
-+                vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_TEKKEN;
-+                vocab.tokenizer_clean_spaces = false;
-+                vocab.tokenizer_ignore_merges = true;
-+                vocab.tokenizer_add_bos = true;
-             } else {
-                 LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__);
-                 vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
-@@ -15448,6 +15454,13 @@ struct llm_tokenizer_bpe {
-                     " ?[^(\\s|.,!?…。,、।۔،)]+",
-                 };
-                 break;
-+            case LLAMA_VOCAB_PRE_TYPE_TEKKEN:
-+                    // original regex from tokenizer.json
-+                    // "[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
-+                regex_exprs = {
-+                    "[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
-+                };
-+                break;
-             default:
-                 // default regex for BPE tokenization pre-processing
-                 regex_exprs = {
diff --git a/llm/patches/11-embd_kv.diff b/llm/patches/11-embd_kv.diff
deleted file mode 100644
index ad17a700..00000000
--- a/llm/patches/11-embd_kv.diff
+++ /dev/null
@@ -1,19 +0,0 @@
-diff --git a/src/llama.cpp b/src/llama.cpp
-index 2b9ace28..e60d3d8d 100644
---- a/src/llama.cpp
-+++ b/src/llama.cpp
-@@ -6052,10 +6052,10 @@ static bool llm_load_tensors(
- 
-                         layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- 
--                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
--                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
--                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
--                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
-+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd,  n_embd_head_k * n_head});
-+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa});
-+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa});
-+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
- 
-                         // optional bias tensors
-                         layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd},     llama_model_loader::TENSOR_NOT_REQUIRED);
diff --git a/llm/patches/11-phi3-sliding-window.diff b/llm/patches/11-phi3-sliding-window.diff
new file mode 100644
index 00000000..fde3dd21
--- /dev/null
+++ b/llm/patches/11-phi3-sliding-window.diff
@@ -0,0 +1,43 @@
+From 6eedae4cf2fcc8015dac79cb3f28f61fcabacab2 Mon Sep 17 00:00:00 2001
+From: Michael Yang 
+Date: Wed, 31 Jul 2024 14:57:04 -0700
+Subject: [PATCH] phi3 sliding window
+
+---
+ src/llama.cpp | 6 +++---
+ 1 file changed, 3 insertions(+), 3 deletions(-)
+
+diff --git a/src/llama.cpp b/src/llama.cpp
+index a207451f..f2872d4e 100644
+--- a/src/llama.cpp
++++ b/src/llama.cpp
+@@ -4893,7 +4893,7 @@ static void llm_load_hparams(
+             } break;
+         case LLM_ARCH_PHI3:
+             {
+-                ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
++                ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
+                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+ 
+                 switch (hparams.n_layer) {
+@@ -10762,7 +10762,7 @@ struct llm_build_context {
+         struct ggml_tensor * inp_pos = build_inp_pos();
+ 
+         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+-        struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa();
++        struct ggml_tensor * KQ_mask = hparams.n_swa > 0 ? build_inp_KQ_mask_swa() : build_inp_KQ_mask();
+ 
+         for (int il = 0; il < n_layer; ++il) {
+             auto residual = inpL;
+@@ -10820,7 +10820,7 @@ struct llm_build_context {
+ 
+                 cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                         model.layers[il].wo, model.layers[il].bo,
+-                        Kcur, Vcur, Qcur, KQ_mask_swa, n_tokens, kv_head, n_kv, 1.0f, cb, il);
++                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
+             }
+ 
+             if (il == n_layer - 1) {
+-- 
+2.45.2
+
diff --git a/llm/server.go b/llm/server.go
index ba7eab03..7fadb0c9 100644
--- a/llm/server.go
+++ b/llm/server.go
@@ -33,7 +33,7 @@ type LlamaServer interface {
 	Ping(ctx context.Context) error
 	WaitUntilRunning(ctx context.Context) error
 	Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error
-	Embed(ctx context.Context, input []string) ([][]float32, error)
+	Embed(ctx context.Context, input []string) (*EmbedResponse, error)
 	Tokenize(ctx context.Context, content string) ([]int, error)
 	Detokenize(ctx context.Context, tokens []int) (string, error)
 	Close() error
@@ -163,7 +163,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
 	} else {
 		servers = serversForGpu(gpus[0]) // All GPUs in the list are matching Library and Variant
 	}
-	demandLib := envconfig.LLMLibrary
+	demandLib := envconfig.LLMLibrary()
 	if demandLib != "" {
 		serverPath := availableServers[demandLib]
 		if serverPath == "" {
@@ -195,7 +195,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
 		params = append(params, "--n-gpu-layers", fmt.Sprintf("%d", opts.NumGPU))
 	}
 
-	if envconfig.Debug {
+	if envconfig.Debug() {
 		params = append(params, "--verbose")
 	}
 
@@ -221,7 +221,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
 		params = append(params, "--memory-f32")
 	}
 
-	flashAttnEnabled := envconfig.FlashAttention
+	flashAttnEnabled := envconfig.FlashAttention()
 
 	for _, g := range gpus {
 		// only cuda (compute capability 7+) and metal support flash attention
@@ -346,6 +346,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
 		s.cmd.Env = os.Environ()
 		s.cmd.Stdout = os.Stdout
 		s.cmd.Stderr = s.status
+		s.cmd.SysProcAttr = LlamaServerSysProcAttr
 
 		envWorkarounds := [][2]string{}
 		for _, gpu := range gpus {
@@ -381,7 +382,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
 		}
 
 		slog.Info("starting llama server", "cmd", s.cmd.String())
-		if envconfig.Debug {
+		if envconfig.Debug() {
 			filteredEnv := []string{}
 			for _, ev := range s.cmd.Env {
 				if strings.HasPrefix(ev, "CUDA_") ||
@@ -417,7 +418,17 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
 
 		// reap subprocess when it exits
 		go func() {
-			s.done <- s.cmd.Wait()
+			err := s.cmd.Wait()
+			// Favor a more detailed message over the process exit status
+			if err != nil && s.status != nil && s.status.LastErrMsg != "" {
+				slog.Debug("llama runner terminated", "error", err)
+				if strings.Contains(s.status.LastErrMsg, "unknown model") {
+					s.status.LastErrMsg = "this model is not supported by your version of Ollama. You may need to upgrade"
+				}
+				s.done <- fmt.Errorf(s.status.LastErrMsg)
+			} else {
+				s.done <- err
+			}
 		}()
 
 		return s, nil
@@ -580,14 +591,7 @@ func (s *llmServer) WaitUntilRunning(ctx context.Context) error {
 			slog.Warn("client connection closed before server finished loading, aborting load")
 			return fmt.Errorf("timed out waiting for llama runner to start: %w", ctx.Err())
 		case err := <-s.done:
-			msg := ""
-			if s.status != nil && s.status.LastErrMsg != "" {
-				msg = s.status.LastErrMsg
-			}
-			if strings.Contains(msg, "unknown model") {
-				return fmt.Errorf("this model is not supported by your version of Ollama. You may need to upgrade")
-			}
-			return fmt.Errorf("llama runner process has terminated: %v %s", err, msg)
+			return fmt.Errorf("llama runner process has terminated: %w", err)
 		default:
 		}
 		if time.Now().After(stallTimer) {
@@ -723,6 +727,7 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
 		"temperature":       req.Options.Temperature,
 		"top_k":             req.Options.TopK,
 		"top_p":             req.Options.TopP,
+		"min_p":             req.Options.MinP,
 		"tfs_z":             req.Options.TFSZ,
 		"typical_p":         req.Options.TypicalP,
 		"repeat_last_n":     req.Options.RepeatLastN,
@@ -874,10 +879,11 @@ type EmbedRequest struct {
 }
 
 type EmbedResponse struct {
-	Embedding [][]float32 `json:"embedding"`
+	Embedding       [][]float32 `json:"embedding"`
+	PromptEvalCount int         `json:"prompt_n"`
 }
 
-func (s *llmServer) Embed(ctx context.Context, input []string) ([][]float32, error) {
+func (s *llmServer) Embed(ctx context.Context, input []string) (*EmbedResponse, error) {
 	if err := s.sem.Acquire(ctx, 1); err != nil {
 		slog.Error("Failed to acquire semaphore", "error", err)
 		return nil, err
@@ -919,12 +925,12 @@ func (s *llmServer) Embed(ctx context.Context, input []string) ([][]float32, err
 		return nil, fmt.Errorf("%s", body)
 	}
 
-	var embedding EmbedResponse
-	if err := json.Unmarshal(body, &embedding); err != nil {
+	var e EmbedResponse
+	if err := json.Unmarshal(body, &e); err != nil {
 		return nil, fmt.Errorf("unmarshal tokenize response: %w", err)
 	}
 
-	return embedding.Embedding, nil
+	return &e, nil
 }
 
 type TokenizeRequest struct {
diff --git a/macapp/src/app.tsx b/macapp/src/app.tsx
index ab17df60..a627e63d 100644
--- a/macapp/src/app.tsx
+++ b/macapp/src/app.tsx
@@ -19,7 +19,7 @@ export default function () {
   const [step, setStep] = useState(Step.WELCOME)
   const [commandCopied, setCommandCopied] = useState(false)
 
-  const command = 'ollama run llama3'
+  const command = 'ollama run llama3.1'
 
   return (
     
diff --git a/openai/openai.go b/openai/openai.go index de6f4bd5..e66d9416 100644 --- a/openai/openai.go +++ b/openai/openai.go @@ -164,9 +164,15 @@ type ListCompletion struct { } type EmbeddingList struct { - Object string `json:"object"` - Data []Embedding `json:"data"` - Model string `json:"model"` + Object string `json:"object"` + Data []Embedding `json:"data"` + Model string `json:"model"` + Usage EmbeddingUsage `json:"usage,omitempty"` +} + +type EmbeddingUsage struct { + PromptTokens int `json:"prompt_tokens"` + TotalTokens int `json:"total_tokens"` } func NewError(code int, message string) ErrorResponse { @@ -218,6 +224,9 @@ func toChatCompletion(id string, r api.ChatResponse) ChatCompletion { Index: 0, Message: Message{Role: r.Message.Role, Content: r.Message.Content, ToolCalls: toolCalls}, FinishReason: func(reason string) *string { + if len(toolCalls) > 0 { + reason = "tool_calls" + } if len(reason) > 0 { return &reason } @@ -329,6 +338,10 @@ func toEmbeddingList(model string, r api.EmbedResponse) EmbeddingList { Object: "list", Data: data, Model: model, + Usage: EmbeddingUsage{ + PromptTokens: r.PromptEvalCount, + TotalTokens: r.PromptEvalCount, + }, } } diff --git a/parser/parser_test.go b/parser/parser_test.go index 2b5c4c88..48044bc0 100644 --- a/parser/parser_test.go +++ b/parser/parser_test.go @@ -451,6 +451,7 @@ func TestParseFileParameters(t *testing.T) { "num_predict 1": {"num_predict", "1"}, "top_k 1": {"top_k", "1"}, "top_p 1.0": {"top_p", "1.0"}, + "min_p 0.05": {"min_p", "0.05"}, "tfs_z 1.0": {"tfs_z", "1.0"}, "typical_p 1.0": {"typical_p", "1.0"}, "repeat_last_n 1": {"repeat_last_n", "1"}, diff --git a/scripts/install.sh b/scripts/install.sh index 2a06c350..aa8b3e5e 100644 --- a/scripts/install.sh +++ b/scripts/install.sh @@ -198,19 +198,29 @@ if check_gpu lspci amdgpu || check_gpu lshw amdgpu; then exit 0 fi +CUDA_REPO_ERR_MSG="NVIDIA GPU detected, but your OS and Architecture are not supported by NVIDIA. Please install the CUDA driver manually https://docs.nvidia.com/cuda/cuda-installation-guide-linux/" # ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-7-centos-7 # ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-8-rocky-8 # ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-9-rocky-9 # ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#fedora install_cuda_driver_yum() { status 'Installing NVIDIA repository...' + case $PACKAGE_MANAGER in yum) $SUDO $PACKAGE_MANAGER -y install yum-utils - $SUDO $PACKAGE_MANAGER-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo + if curl -I --silent --fail --location "https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo" >/dev/null ; then + $SUDO $PACKAGE_MANAGER-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo + else + error $CUDA_REPO_ERR_MSG + fi ;; dnf) - $SUDO $PACKAGE_MANAGER config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo + if curl -I --silent --fail --location "https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo" >/dev/null ; then + $SUDO $PACKAGE_MANAGER config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo + else + error $CUDA_REPO_ERR_MSG + fi ;; esac @@ -235,7 +245,11 @@ install_cuda_driver_yum() { # ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#debian install_cuda_driver_apt() { status 'Installing NVIDIA repository...' - curl -fsSL -o $TEMP_DIR/cuda-keyring.deb https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-keyring_1.1-1_all.deb + if curl -I --silent --fail --location "https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-keyring_1.1-1_all.deb" >/dev/null ; then + curl -fsSL -o $TEMP_DIR/cuda-keyring.deb https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-keyring_1.1-1_all.deb + else + error $CUDA_REPO_ERR_MSG + fi case $1 in debian) diff --git a/server/auth.go b/server/auth.go index e92a5b65..dcef5bf9 100644 --- a/server/auth.go +++ b/server/auth.go @@ -67,7 +67,7 @@ func getAuthorizationToken(ctx context.Context, challenge registryChallenge) (st headers.Add("Authorization", signature) - response, err := makeRequest(ctx, http.MethodGet, redirectURL, headers, nil, nil) + response, err := makeRequest(ctx, http.MethodGet, redirectURL, headers, nil, ®istryOptions{}) if err != nil { return "", err } diff --git a/server/download.go b/server/download.go index d93cd3b4..10074554 100644 --- a/server/download.go +++ b/server/download.go @@ -8,6 +8,7 @@ import ( "io" "log/slog" "math" + "math/rand/v2" "net/http" "net/url" "os" @@ -43,21 +44,53 @@ type blobDownload struct { context.CancelFunc - done bool + done chan struct{} err error references atomic.Int32 } type blobDownloadPart struct { - N int - Offset int64 - Size int64 - Completed int64 - lastUpdated time.Time + N int + Offset int64 + Size int64 + Completed atomic.Int64 + + lastUpdatedMu sync.Mutex + lastUpdated time.Time *blobDownload `json:"-"` } +type jsonBlobDownloadPart struct { + N int + Offset int64 + Size int64 + Completed int64 +} + +func (p *blobDownloadPart) MarshalJSON() ([]byte, error) { + return json.Marshal(jsonBlobDownloadPart{ + N: p.N, + Offset: p.Offset, + Size: p.Size, + Completed: p.Completed.Load(), + }) +} + +func (p *blobDownloadPart) UnmarshalJSON(b []byte) error { + var j jsonBlobDownloadPart + if err := json.Unmarshal(b, &j); err != nil { + return err + } + *p = blobDownloadPart{ + N: j.N, + Offset: j.Offset, + Size: j.Size, + } + p.Completed.Store(j.Completed) + return nil +} + const ( numDownloadParts = 64 minDownloadPartSize int64 = 100 * format.MegaByte @@ -71,7 +104,7 @@ func (p *blobDownloadPart) Name() string { } func (p *blobDownloadPart) StartsAt() int64 { - return p.Offset + p.Completed + return p.Offset + p.Completed.Load() } func (p *blobDownloadPart) StopsAt() int64 { @@ -81,7 +114,9 @@ func (p *blobDownloadPart) StopsAt() int64 { func (p *blobDownloadPart) Write(b []byte) (n int, err error) { n = len(b) p.blobDownload.Completed.Add(int64(n)) + p.lastUpdatedMu.Lock() p.lastUpdated = time.Now() + p.lastUpdatedMu.Unlock() return n, nil } @@ -91,6 +126,8 @@ func (b *blobDownload) Prepare(ctx context.Context, requestURL *url.URL, opts *r return err } + b.done = make(chan struct{}) + for _, partFilePath := range partFilePaths { part, err := b.readPart(partFilePath) if err != nil { @@ -98,7 +135,7 @@ func (b *blobDownload) Prepare(ctx context.Context, requestURL *url.URL, opts *r } b.Total += part.Size - b.Completed.Add(part.Completed) + b.Completed.Add(part.Completed.Load()) b.Parts = append(b.Parts, part) } @@ -138,9 +175,36 @@ func (b *blobDownload) Prepare(ctx context.Context, requestURL *url.URL, opts *r } func (b *blobDownload) Run(ctx context.Context, requestURL *url.URL, opts *registryOptions) { + defer close(b.done) b.err = b.run(ctx, requestURL, opts) } +func newBackoff(maxBackoff time.Duration) func(ctx context.Context) error { + var n int + return func(ctx context.Context) error { + if ctx.Err() != nil { + return ctx.Err() + } + + n++ + + // n^2 backoff timer is a little smoother than the + // common choice of 2^n. + d := min(time.Duration(n*n)*10*time.Millisecond, maxBackoff) + // Randomize the delay between 0.5-1.5 x msec, in order + // to prevent accidental "thundering herd" problems. + d = time.Duration(float64(d) * (rand.Float64() + 0.5)) + t := time.NewTimer(d) + defer t.Stop() + select { + case <-ctx.Done(): + return ctx.Err() + case <-t.C: + return nil + } + } +} + func (b *blobDownload) run(ctx context.Context, requestURL *url.URL, opts *registryOptions) error { defer blobDownloadManager.Delete(b.Digest) ctx, b.CancelFunc = context.WithCancel(ctx) @@ -153,11 +217,57 @@ func (b *blobDownload) run(ctx context.Context, requestURL *url.URL, opts *regis _ = file.Truncate(b.Total) + directURL, err := func() (*url.URL, error) { + ctx, cancel := context.WithTimeout(ctx, 30*time.Second) + defer cancel() + + backoff := newBackoff(10 * time.Second) + for { + // shallow clone opts to be used in the closure + // without affecting the outer opts. + newOpts := new(registryOptions) + *newOpts = *opts + + newOpts.CheckRedirect = func(req *http.Request, via []*http.Request) error { + if len(via) > 10 { + return errors.New("maxium redirects exceeded (10) for directURL") + } + + // if the hostname is the same, allow the redirect + if req.URL.Hostname() == requestURL.Hostname() { + return nil + } + + // stop at the first redirect that is not + // the same hostname as the original + // request. + return http.ErrUseLastResponse + } + + resp, err := makeRequestWithRetry(ctx, http.MethodGet, requestURL, nil, nil, newOpts) + if err != nil { + slog.Warn("failed to get direct URL; backing off and retrying", "err", err) + if err := backoff(ctx); err != nil { + return nil, err + } + continue + } + defer resp.Body.Close() + if resp.StatusCode != http.StatusTemporaryRedirect { + return nil, fmt.Errorf("unexpected status code %d", resp.StatusCode) + } + return resp.Location() + } + }() + if err != nil { + return err + } + g, inner := errgroup.WithContext(ctx) g.SetLimit(numDownloadParts) for i := range b.Parts { part := b.Parts[i] - if part.Completed == part.Size { + if part.Completed.Load() == part.Size { continue } @@ -165,7 +275,7 @@ func (b *blobDownload) run(ctx context.Context, requestURL *url.URL, opts *regis var err error for try := 0; try < maxRetries; try++ { w := io.NewOffsetWriter(file, part.StartsAt()) - err = b.downloadChunk(inner, requestURL, w, part, opts) + err = b.downloadChunk(inner, directURL, w, part) switch { case errors.Is(err, context.Canceled), errors.Is(err, syscall.ENOSPC): // return immediately if the context is canceled or the device is out of space @@ -206,29 +316,31 @@ func (b *blobDownload) run(ctx context.Context, requestURL *url.URL, opts *regis return err } - b.done = true return nil } -func (b *blobDownload) downloadChunk(ctx context.Context, requestURL *url.URL, w io.Writer, part *blobDownloadPart, opts *registryOptions) error { +func (b *blobDownload) downloadChunk(ctx context.Context, requestURL *url.URL, w io.Writer, part *blobDownloadPart) error { g, ctx := errgroup.WithContext(ctx) g.Go(func() error { - headers := make(http.Header) - headers.Set("Range", fmt.Sprintf("bytes=%d-%d", part.StartsAt(), part.StopsAt()-1)) - resp, err := makeRequestWithRetry(ctx, http.MethodGet, requestURL, headers, nil, opts) + req, err := http.NewRequestWithContext(ctx, http.MethodGet, requestURL.String(), nil) + if err != nil { + return err + } + req.Header.Set("Range", fmt.Sprintf("bytes=%d-%d", part.StartsAt(), part.StopsAt()-1)) + resp, err := http.DefaultClient.Do(req) if err != nil { return err } defer resp.Body.Close() - n, err := io.CopyN(w, io.TeeReader(resp.Body, part), part.Size-part.Completed) + n, err := io.CopyN(w, io.TeeReader(resp.Body, part), part.Size-part.Completed.Load()) if err != nil && !errors.Is(err, context.Canceled) && !errors.Is(err, io.ErrUnexpectedEOF) { // rollback progress b.Completed.Add(-n) return err } - part.Completed += n + part.Completed.Add(n) if err := b.writePart(part.Name(), part); err != nil { return err } @@ -242,15 +354,21 @@ func (b *blobDownload) downloadChunk(ctx context.Context, requestURL *url.URL, w for { select { case <-ticker.C: - if part.Completed >= part.Size { + if part.Completed.Load() >= part.Size { return nil } - if !part.lastUpdated.IsZero() && time.Since(part.lastUpdated) > 5*time.Second { + part.lastUpdatedMu.Lock() + lastUpdated := part.lastUpdated + part.lastUpdatedMu.Unlock() + + if !lastUpdated.IsZero() && time.Since(lastUpdated) > 5*time.Second { const msg = "%s part %d stalled; retrying. If this persists, press ctrl-c to exit, then 'ollama pull' to find a faster connection." slog.Info(fmt.Sprintf(msg, b.Digest[7:19], part.N)) // reset last updated + part.lastUpdatedMu.Lock() part.lastUpdated = time.Time{} + part.lastUpdatedMu.Unlock() return errPartStalled } case <-ctx.Done(): @@ -315,6 +433,8 @@ func (b *blobDownload) Wait(ctx context.Context, fn func(api.ProgressResponse)) ticker := time.NewTicker(60 * time.Millisecond) for { select { + case <-b.done: + return b.err case <-ticker.C: fn(api.ProgressResponse{ Status: fmt.Sprintf("pulling %s", b.Digest[7:19]), @@ -322,10 +442,6 @@ func (b *blobDownload) Wait(ctx context.Context, fn func(api.ProgressResponse)) Total: b.Total, Completed: b.Completed.Load(), }) - - if b.done || b.err != nil { - return b.err - } case <-ctx.Done(): return ctx.Err() } diff --git a/server/images.go b/server/images.go index 574dec19..5f3eee88 100644 --- a/server/images.go +++ b/server/images.go @@ -54,6 +54,8 @@ type registryOptions struct { Username string Password string Token string + + CheckRedirect func(req *http.Request, via []*http.Request) error } type Model struct { @@ -68,7 +70,7 @@ type Model struct { License []string Digest string Options map[string]interface{} - Messages []Message + Messages []api.Message Template *template.Template } @@ -182,18 +184,13 @@ func (m *Model) String() string { for _, msg := range m.Messages { modelfile.Commands = append(modelfile.Commands, parser.Command{ Name: "message", - Args: fmt.Sprintf("%s %s", msg.Role, msg.Content), + Args: fmt.Sprintf("%s: %s", msg.Role, msg.Content), }) } return modelfile.String() } -type Message struct { - Role string `json:"role"` - Content string `json:"content"` -} - type ConfigV2 struct { ModelFormat string `json:"model_format"` ModelFamily string `json:"model_family"` @@ -644,7 +641,7 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio return err } - if !envconfig.NoPrune && old != nil { + if !envconfig.NoPrune() && old != nil { if err := old.RemoveLayers(); err != nil { return err } @@ -883,7 +880,7 @@ func PullModel(ctx context.Context, name string, regOpts *registryOptions, fn fu // build deleteMap to prune unused layers deleteMap := make(map[string]struct{}) - if !envconfig.NoPrune { + if !envconfig.NoPrune() { manifest, _, err = GetManifest(mp) if err != nil && !errors.Is(err, os.ErrNotExist) { return err @@ -1131,7 +1128,9 @@ func makeRequest(ctx context.Context, method string, requestURL *url.URL, header req.ContentLength = contentLength } - resp, err := http.DefaultClient.Do(req) + resp, err := (&http.Client{ + CheckRedirect: regOpts.CheckRedirect, + }).Do(req) if err != nil { return nil, err } diff --git a/server/manifest_test.go b/server/manifest_test.go index ca6c3d2e..a4af5d5e 100644 --- a/server/manifest_test.go +++ b/server/manifest_test.go @@ -7,7 +7,6 @@ import ( "slices" "testing" - "github.com/ollama/ollama/envconfig" "github.com/ollama/ollama/types/model" ) @@ -108,7 +107,6 @@ func TestManifests(t *testing.T) { t.Run(n, func(t *testing.T) { d := t.TempDir() t.Setenv("OLLAMA_MODELS", d) - envconfig.LoadConfig() for _, p := range wants.ps { createManifest(t, d, p) diff --git a/server/model.go b/server/model.go index a084dd8c..f2946a0b 100644 --- a/server/model.go +++ b/server/model.go @@ -81,112 +81,43 @@ func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressRe return layers, nil } -func extractFromZipFile(p string, file *os.File, fn func(api.ProgressResponse)) error { - stat, err := file.Stat() - if err != nil { - return err - } - - r, err := zip.NewReader(file, stat.Size()) - if err != nil { - return err - } - - fn(api.ProgressResponse{Status: "unpacking model metadata"}) - for _, f := range r.File { - if !filepath.IsLocal(f.Name) { - return fmt.Errorf("%w: %s", zip.ErrInsecurePath, f.Name) - } - - n := filepath.Join(p, f.Name) - if err := os.MkdirAll(filepath.Dir(n), 0o750); err != nil { - return err - } - - // TODO(mxyng): this should not write out all files to disk - outfile, err := os.Create(n) - if err != nil { - return err - } - defer outfile.Close() - - infile, err := f.Open() - if err != nil { - return err - } - defer infile.Close() - - if _, err = io.Copy(outfile, infile); err != nil { - return err - } - - if err := outfile.Close(); err != nil { - return err - } - - if err := infile.Close(); err != nil { - return err - } - } - - return nil -} - -func parseFromZipFile(_ context.Context, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) { - tempDir, err := os.MkdirTemp(filepath.Dir(file.Name()), "") - if err != nil { - return nil, err - } - defer os.RemoveAll(tempDir) - - if err := extractFromZipFile(tempDir, file, fn); err != nil { - return nil, err - } - - mf, err := convert.GetModelFormat(tempDir) +func parseFromZipFile(_ context.Context, f *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) { + fi, err := f.Stat() if err != nil { return nil, err } - params, err := mf.GetParams(tempDir) + r, err := zip.NewReader(f, fi.Size()) if err != nil { return nil, err } - mArch, err := mf.GetModelArch("", tempDir, params) + p, err := os.MkdirTemp(filepath.Dir(f.Name()), "") if err != nil { return nil, err } - - fn(api.ProgressResponse{Status: "processing tensors"}) - if err := mArch.GetTensors(); err != nil { - return nil, err - } - - if err := mArch.LoadVocab(); err != nil { - return nil, err - } + defer os.RemoveAll(p) fn(api.ProgressResponse{Status: "converting model"}) - // TODO(mxyng): this should write directly into a layer // e.g. NewLayer(arch.Reader(), "application/vnd.ollama.image.model") - temp, err := os.CreateTemp(tempDir, "fp16") + t, err := os.CreateTemp(p, "fp16") if err != nil { return nil, err } - defer temp.Close() - defer os.Remove(temp.Name()) + defer t.Close() + defer os.Remove(t.Name()) - if err = mArch.WriteGGUF(temp); err != nil { + fn(api.ProgressResponse{Status: "converting model"}) + if err := convert.Convert(convert.NewZipReader(r, p, 32<<20), t); err != nil { return nil, err } - if _, err := temp.Seek(0, io.SeekStart); err != nil { + if _, err := t.Seek(0, io.SeekStart); err != nil { return nil, err } - layer, err := NewLayer(temp, "application/vnd.ollama.image.model") + layer, err := NewLayer(t, "application/vnd.ollama.image.model") if err != nil { return nil, err } @@ -263,13 +194,27 @@ func detectChatTemplate(layers []*layerGGML) ([]*layerGGML, error) { if t, err := template.Named(s); err != nil { slog.Debug("template detection", "error", err) } else { - tmpl, err := NewLayer(t.Reader(), "application/vnd.ollama.image.template") + layer, err := NewLayer(t.Reader(), "application/vnd.ollama.image.template") if err != nil { return nil, err } - tmpl.status = fmt.Sprintf("using autodetected template %s", t.Name) - layers = append(layers, &layerGGML{tmpl, nil}) + layer.status = fmt.Sprintf("using autodetected template %s", t.Name) + layers = append(layers, &layerGGML{layer, nil}) + + if t.Parameters != nil { + var b bytes.Buffer + if err := json.NewEncoder(&b).Encode(t.Parameters); err != nil { + return nil, err + } + + layer, err := NewLayer(&b, "application/vnd.ollama.image.params") + if err != nil { + return nil, err + } + + layers = append(layers, &layerGGML{layer, nil}) + } } } } @@ -344,6 +289,10 @@ func (m *Model) parseToolCalls(s string) ([]api.ToolCall, bool) { } } + if name == "" || arguments == "" { + return nil, false + } + var objs []map[string]any for offset := 0; offset < len(s); { var obj map[string]any @@ -361,23 +310,40 @@ func (m *Model) parseToolCalls(s string) ([]api.ToolCall, bool) { return nil, false } else { offset += int(decoder.InputOffset()) - objs = append(objs, obj) + + // collect all nested objects + var collect func(any) []map[string]any + collect = func(obj any) (all []map[string]any) { + switch o := obj.(type) { + case map[string]any: + all = append(all, o) + for _, v := range o { + all = append(all, collect(v)...) + } + case []any: + for _, v := range o { + all = append(all, collect(v)...) + } + } + + return all + } + objs = append(objs, collect(obj)...) } } var toolCalls []api.ToolCall for _, kv := range objs { - var call api.ToolCall - for k, v := range kv { - switch k { - case name: - call.Function.Name = v.(string) - case arguments: - call.Function.Arguments = v.(map[string]any) - } + n, nok := kv[name].(string) + a, aok := kv[arguments].(map[string]any) + if nok && aok { + toolCalls = append(toolCalls, api.ToolCall{ + Function: api.ToolCallFunction{ + Name: n, + Arguments: a, + }, + }) } - - toolCalls = append(toolCalls, call) } return toolCalls, len(toolCalls) > 0 diff --git a/server/model_test.go b/server/model_test.go index 7c826b06..0a2225d5 100644 --- a/server/model_test.go +++ b/server/model_test.go @@ -1,16 +1,11 @@ package server import ( - "archive/zip" "bytes" "encoding/json" - "errors" "fmt" - "io" "os" "path/filepath" - "slices" - "strings" "testing" "github.com/google/go-cmp/cmp" @@ -18,103 +13,6 @@ import ( "github.com/ollama/ollama/template" ) -func createZipFile(t *testing.T, name string) *os.File { - t.Helper() - - f, err := os.CreateTemp(t.TempDir(), "") - if err != nil { - t.Fatal(err) - } - - zf := zip.NewWriter(f) - defer zf.Close() - - zh, err := zf.CreateHeader(&zip.FileHeader{Name: name}) - if err != nil { - t.Fatal(err) - } - - if _, err := io.Copy(zh, bytes.NewReader([]byte(""))); err != nil { - t.Fatal(err) - } - - return f -} - -func TestExtractFromZipFile(t *testing.T) { - cases := []struct { - name string - expect []string - err error - }{ - { - name: "good", - expect: []string{"good"}, - }, - { - name: strings.Join([]string{"path", "..", "to", "good"}, string(os.PathSeparator)), - expect: []string{filepath.Join("to", "good")}, - }, - { - name: strings.Join([]string{"path", "..", "to", "..", "good"}, string(os.PathSeparator)), - expect: []string{"good"}, - }, - { - name: strings.Join([]string{"path", "to", "..", "..", "good"}, string(os.PathSeparator)), - expect: []string{"good"}, - }, - { - name: strings.Join([]string{"..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "bad"}, string(os.PathSeparator)), - err: zip.ErrInsecurePath, - }, - { - name: strings.Join([]string{"path", "..", "..", "to", "bad"}, string(os.PathSeparator)), - err: zip.ErrInsecurePath, - }, - } - - for _, tt := range cases { - t.Run(tt.name, func(t *testing.T) { - f := createZipFile(t, tt.name) - defer f.Close() - - tempDir := t.TempDir() - if err := extractFromZipFile(tempDir, f, func(api.ProgressResponse) {}); !errors.Is(err, tt.err) { - t.Fatal(err) - } - - var matches []string - if err := filepath.Walk(tempDir, func(p string, fi os.FileInfo, err error) error { - if err != nil { - return err - } - - if !fi.IsDir() { - matches = append(matches, p) - } - - return nil - }); err != nil { - t.Fatal(err) - } - - var actual []string - for _, match := range matches { - rel, err := filepath.Rel(tempDir, match) - if err != nil { - t.Error(err) - } - - actual = append(actual, rel) - } - - if !slices.Equal(actual, tt.expect) { - t.Fatalf("expected %d files, got %d", len(tt.expect), len(matches)) - } - }) - } -} - func readFile(t *testing.T, base, name string) *bytes.Buffer { t.Helper() @@ -166,6 +64,7 @@ The temperature in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.`, {"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}} {"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}} `, true}, + {"xlam", `{"tool_calls": [{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]}`, true}, } var tools []api.Tool diff --git a/server/modelpath.go b/server/modelpath.go index 3fdb4238..354eeed7 100644 --- a/server/modelpath.go +++ b/server/modelpath.go @@ -105,9 +105,7 @@ func (mp ModelPath) GetShortTagname() string { // GetManifestPath returns the path to the manifest file for the given model path, it is up to the caller to create the directory if it does not exist. func (mp ModelPath) GetManifestPath() (string, error) { - dir := envconfig.ModelsDir - - return filepath.Join(dir, "manifests", mp.Registry, mp.Namespace, mp.Repository, mp.Tag), nil + return filepath.Join(envconfig.Models(), "manifests", mp.Registry, mp.Namespace, mp.Repository, mp.Tag), nil } func (mp ModelPath) BaseURL() *url.URL { @@ -118,9 +116,7 @@ func (mp ModelPath) BaseURL() *url.URL { } func GetManifestPath() (string, error) { - dir := envconfig.ModelsDir - - path := filepath.Join(dir, "manifests") + path := filepath.Join(envconfig.Models(), "manifests") if err := os.MkdirAll(path, 0o755); err != nil { return "", err } @@ -129,8 +125,6 @@ func GetManifestPath() (string, error) { } func GetBlobsPath(digest string) (string, error) { - dir := envconfig.ModelsDir - // only accept actual sha256 digests pattern := "^sha256[:-][0-9a-fA-F]{64}$" re := regexp.MustCompile(pattern) @@ -140,7 +134,7 @@ func GetBlobsPath(digest string) (string, error) { } digest = strings.ReplaceAll(digest, ":", "-") - path := filepath.Join(dir, "blobs", digest) + path := filepath.Join(envconfig.Models(), "blobs", digest) dirPath := filepath.Dir(path) if digest == "" { dirPath = path diff --git a/server/modelpath_test.go b/server/modelpath_test.go index 6c4dfbee..849e0fa7 100644 --- a/server/modelpath_test.go +++ b/server/modelpath_test.go @@ -7,8 +7,6 @@ import ( "github.com/stretchr/testify/assert" "github.com/stretchr/testify/require" - - "github.com/ollama/ollama/envconfig" ) func TestGetBlobsPath(t *testing.T) { @@ -63,7 +61,6 @@ func TestGetBlobsPath(t *testing.T) { for _, tc := range tests { t.Run(tc.name, func(t *testing.T) { t.Setenv("OLLAMA_MODELS", dir) - envconfig.LoadConfig() got, err := GetBlobsPath(tc.digest) diff --git a/server/routes.go b/server/routes.go index ec0ba575..ff3a0113 100644 --- a/server/routes.go +++ b/server/routes.go @@ -164,17 +164,6 @@ func (s *Server) GenerateHandler(c *gin.Context) { } } - var b bytes.Buffer - if req.Context != nil { - s, err := r.Detokenize(c.Request.Context(), req.Context) - if err != nil { - c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()}) - return - } - - b.WriteString(s) - } - var values template.Values if req.Suffix != "" { values.Prompt = prompt @@ -187,6 +176,10 @@ func (s *Server) GenerateHandler(c *gin.Context) { msgs = append(msgs, api.Message{Role: "system", Content: m.System}) } + if req.Context == nil { + msgs = append(msgs, m.Messages...) + } + for _, i := range images { msgs = append(msgs, api.Message{Role: "user", Content: fmt.Sprintf("[img-%d]", i.ID)}) } @@ -194,6 +187,16 @@ func (s *Server) GenerateHandler(c *gin.Context) { values.Messages = append(msgs, api.Message{Role: "user", Content: req.Prompt}) } + var b bytes.Buffer + if req.Context != nil { + s, err := r.Detokenize(c.Request.Context(), req.Context) + if err != nil { + c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()}) + return + } + b.WriteString(s) + } + if err := tmpl.Execute(&b, values); err != nil { c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()}) return @@ -243,7 +246,7 @@ func (s *Server) GenerateHandler(c *gin.Context) { ch <- gin.H{"error": err.Error()} return } - res.Context = append(req.Context, tokens...) + res.Context = tokens } } @@ -284,6 +287,7 @@ func (s *Server) GenerateHandler(c *gin.Context) { } func (s *Server) EmbedHandler(c *gin.Context) { + checkpointStart := time.Now() var req api.EmbedRequest err := c.ShouldBindJSON(&req) switch { @@ -332,6 +336,8 @@ func (s *Server) EmbedHandler(c *gin.Context) { return } + checkpointLoaded := time.Now() + kvData, err := getKVData(m.ModelPath, false) if err != nil { c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()}) @@ -370,13 +376,16 @@ func (s *Server) EmbedHandler(c *gin.Context) { return } - for i, e := range embeddings { - embeddings[i] = normalize(e) + for i, e := range embeddings.Embedding { + embeddings.Embedding[i] = normalize(e) } resp := api.EmbedResponse{ - Model: req.Model, - Embeddings: embeddings, + Model: req.Model, + Embeddings: embeddings.Embedding, + TotalDuration: time.Since(checkpointStart), + LoadDuration: checkpointLoaded.Sub(checkpointStart), + PromptEvalCount: embeddings.PromptEvalCount, } c.JSON(http.StatusOK, resp) } @@ -428,9 +437,9 @@ func (s *Server) EmbeddingsHandler(c *gin.Context) { return } - embedding := make([]float64, len(embeddings[0])) + embedding := make([]float64, len(embeddings.Embedding[0])) - for i, v := range embeddings[0] { + for i, v := range embeddings.Embedding[0] { embedding[i] = float64(v) } @@ -609,12 +618,11 @@ func (s *Server) CreateModelHandler(c *gin.Context) { defer cancel() quantization := cmp.Or(r.Quantize, r.Quantization) - if err := CreateModel(ctx, name, filepath.Dir(r.Path), strings.ToUpper(quantization), f, fn); err != nil { - if errors.Is(err, errBadTemplate) { - ch <- gin.H{"error": err.Error(), "status": http.StatusBadRequest} - } + if err := CreateModel(ctx, name, filepath.Dir(r.Path), strings.ToUpper(quantization), f, fn); errors.Is(err, errBadTemplate) { + ch <- gin.H{"error": err.Error(), "status": http.StatusBadRequest} + } else if err != nil { ch <- gin.H{"error": err.Error()} - } + } }() if r.Stream != nil && !*r.Stream { @@ -1048,7 +1056,7 @@ func (s *Server) GenerateRoutes() http.Handler { for _, prop := range openAIProperties { config.AllowHeaders = append(config.AllowHeaders, "x-stainless-"+prop) } - config.AllowOrigins = envconfig.AllowOrigins + config.AllowOrigins = envconfig.Origins() r := gin.Default() r.Use( @@ -1093,7 +1101,7 @@ func (s *Server) GenerateRoutes() http.Handler { func Serve(ln net.Listener) error { level := slog.LevelInfo - if envconfig.Debug { + if envconfig.Debug() { level = slog.LevelDebug } @@ -1121,7 +1129,7 @@ func Serve(ln net.Listener) error { return err } - if !envconfig.NoPrune { + if !envconfig.NoPrune() { // clean up unused layers and manifests if err := PruneLayers(); err != nil { return err @@ -1324,11 +1332,12 @@ func (s *Server) ChatHandler(c *gin.Context) { return } + msgs := append(m.Messages, req.Messages...) if req.Messages[0].Role != "system" && m.System != "" { - req.Messages = append([]api.Message{{Role: "system", Content: m.System}}, req.Messages...) + msgs = append([]api.Message{{Role: "system", Content: m.System}}, msgs...) } - prompt, images, err := chatPrompt(c.Request.Context(), m, r.Tokenize, opts, req.Messages, req.Tools) + prompt, images, err := chatPrompt(c.Request.Context(), m, r.Tokenize, opts, msgs, req.Tools) if err != nil { c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()}) return diff --git a/server/routes_create_test.go b/server/routes_create_test.go index 3234ea5e..9b7009df 100644 --- a/server/routes_create_test.go +++ b/server/routes_create_test.go @@ -2,7 +2,6 @@ package server import ( "bytes" - "encoding/binary" "encoding/json" "fmt" "io" @@ -15,7 +14,6 @@ import ( "github.com/gin-gonic/gin" "github.com/ollama/ollama/api" - "github.com/ollama/ollama/envconfig" "github.com/ollama/ollama/llm" ) @@ -30,7 +28,7 @@ func createBinFile(t *testing.T, kv map[string]any, ti []llm.Tensor) string { } defer f.Close() - if err := llm.NewGGUFV3(binary.LittleEndian).Encode(f, kv, ti); err != nil { + if err := llm.WriteGGUF(f, kv, ti); err != nil { t.Fatal(err) } @@ -89,7 +87,6 @@ func TestCreateFromBin(t *testing.T) { p := t.TempDir() t.Setenv("OLLAMA_MODELS", p) - envconfig.LoadConfig() var s Server w := createRequest(t, s.CreateModelHandler, api.CreateRequest{ @@ -117,7 +114,6 @@ func TestCreateFromModel(t *testing.T) { p := t.TempDir() t.Setenv("OLLAMA_MODELS", p) - envconfig.LoadConfig() var s Server w := createRequest(t, s.CreateModelHandler, api.CreateRequest{ @@ -160,7 +156,6 @@ func TestCreateRemovesLayers(t *testing.T) { p := t.TempDir() t.Setenv("OLLAMA_MODELS", p) - envconfig.LoadConfig() var s Server w := createRequest(t, s.CreateModelHandler, api.CreateRequest{ @@ -209,7 +204,6 @@ func TestCreateUnsetsSystem(t *testing.T) { p := t.TempDir() t.Setenv("OLLAMA_MODELS", p) - envconfig.LoadConfig() var s Server w := createRequest(t, s.CreateModelHandler, api.CreateRequest{ @@ -267,7 +261,6 @@ func TestCreateMergeParameters(t *testing.T) { p := t.TempDir() t.Setenv("OLLAMA_MODELS", p) - envconfig.LoadConfig() var s Server w := createRequest(t, s.CreateModelHandler, api.CreateRequest{ @@ -372,7 +365,6 @@ func TestCreateReplacesMessages(t *testing.T) { p := t.TempDir() t.Setenv("OLLAMA_MODELS", p) - envconfig.LoadConfig() var s Server w := createRequest(t, s.CreateModelHandler, api.CreateRequest{ @@ -450,7 +442,6 @@ func TestCreateTemplateSystem(t *testing.T) { p := t.TempDir() t.Setenv("OLLAMA_MODELS", p) - envconfig.LoadConfig() var s Server w := createRequest(t, s.CreateModelHandler, api.CreateRequest{ @@ -534,7 +525,6 @@ func TestCreateLicenses(t *testing.T) { p := t.TempDir() t.Setenv("OLLAMA_MODELS", p) - envconfig.LoadConfig() var s Server w := createRequest(t, s.CreateModelHandler, api.CreateRequest{ @@ -582,7 +572,6 @@ func TestCreateDetectTemplate(t *testing.T) { p := t.TempDir() t.Setenv("OLLAMA_MODELS", p) - envconfig.LoadConfig() var s Server t.Run("matched", func(t *testing.T) { @@ -599,9 +588,10 @@ func TestCreateDetectTemplate(t *testing.T) { } checkFileExists(t, filepath.Join(p, "blobs", "*"), []string{ + filepath.Join(p, "blobs", "sha256-0d79f567714c62c048378f2107fb332dabee0135d080c302d884317da9433cc5"), filepath.Join(p, "blobs", "sha256-553c4a3f747b3d22a4946875f1cc8ed011c2930d83f864a0c7265f9ec0a20413"), filepath.Join(p, "blobs", "sha256-c608dc615584cd20d9d830363dabf8a4783ae5d34245c3d8c115edb3bc7b28e4"), - filepath.Join(p, "blobs", "sha256-f836ee110db21567f826332e4cedd746c06d10664fd5a9ea3659e3683a944510"), + filepath.Join(p, "blobs", "sha256-ea34c57ba5b78b740aafe2aeb74dc6507fc3ad14170b64c26a04fb9e36c88d75"), }) }) diff --git a/server/routes_delete_test.go b/server/routes_delete_test.go index 33a97a73..2354d730 100644 --- a/server/routes_delete_test.go +++ b/server/routes_delete_test.go @@ -10,7 +10,6 @@ import ( "github.com/gin-gonic/gin" "github.com/ollama/ollama/api" - "github.com/ollama/ollama/envconfig" "github.com/ollama/ollama/types/model" ) @@ -19,7 +18,6 @@ func TestDelete(t *testing.T) { p := t.TempDir() t.Setenv("OLLAMA_MODELS", p) - envconfig.LoadConfig() var s Server diff --git a/server/routes_list_test.go b/server/routes_list_test.go index c2d9c113..29e3214c 100644 --- a/server/routes_list_test.go +++ b/server/routes_list_test.go @@ -9,14 +9,12 @@ import ( "github.com/gin-gonic/gin" "github.com/ollama/ollama/api" - "github.com/ollama/ollama/envconfig" ) func TestList(t *testing.T) { gin.SetMode(gin.TestMode) t.Setenv("OLLAMA_MODELS", t.TempDir()) - envconfig.LoadConfig() expectNames := []string{ "mistral:7b-instruct-q4_0", diff --git a/server/routes_test.go b/server/routes_test.go index 97786ba2..17da2305 100644 --- a/server/routes_test.go +++ b/server/routes_test.go @@ -19,7 +19,6 @@ import ( "github.com/stretchr/testify/require" "github.com/ollama/ollama/api" - "github.com/ollama/ollama/envconfig" "github.com/ollama/ollama/llm" "github.com/ollama/ollama/openai" "github.com/ollama/ollama/parser" @@ -347,7 +346,6 @@ func Test_Routes(t *testing.T) { } t.Setenv("OLLAMA_MODELS", t.TempDir()) - envconfig.LoadConfig() s := &Server{} router := s.GenerateRoutes() @@ -378,7 +376,6 @@ func Test_Routes(t *testing.T) { func TestCase(t *testing.T) { t.Setenv("OLLAMA_MODELS", t.TempDir()) - envconfig.LoadConfig() cases := []string{ "mistral", @@ -458,7 +455,6 @@ func TestCase(t *testing.T) { func TestShow(t *testing.T) { t.Setenv("OLLAMA_MODELS", t.TempDir()) - envconfig.LoadConfig() var s Server diff --git a/server/sched.go b/server/sched.go index 2daed3ab..700642c6 100644 --- a/server/sched.go +++ b/server/sched.go @@ -5,9 +5,11 @@ import ( "errors" "fmt" "log/slog" + "os" "reflect" "runtime" "sort" + "strconv" "strings" "sync" "time" @@ -59,11 +61,12 @@ var defaultParallel = 4 var ErrMaxQueue = fmt.Errorf("server busy, please try again. maximum pending requests exceeded") func InitScheduler(ctx context.Context) *Scheduler { + maxQueue := envconfig.MaxQueue() sched := &Scheduler{ - pendingReqCh: make(chan *LlmRequest, envconfig.MaxQueuedRequests), - finishedReqCh: make(chan *LlmRequest, envconfig.MaxQueuedRequests), - expiredCh: make(chan *runnerRef, envconfig.MaxQueuedRequests), - unloadedCh: make(chan interface{}, envconfig.MaxQueuedRequests), + pendingReqCh: make(chan *LlmRequest, maxQueue), + finishedReqCh: make(chan *LlmRequest, maxQueue), + expiredCh: make(chan *runnerRef, maxQueue), + unloadedCh: make(chan interface{}, maxQueue), loaded: make(map[string]*runnerRef), newServerFn: llm.NewLlamaServer, getGpuFn: gpu.GetGPUInfo, @@ -126,7 +129,7 @@ func (s *Scheduler) processPending(ctx context.Context) { slog.Debug("pending request cancelled or timed out, skipping scheduling") continue } - numParallel := envconfig.NumParallel + numParallel := int(envconfig.NumParallel()) // TODO (jmorganca): multimodal models don't support parallel yet // see https://github.com/ollama/ollama/issues/4165 if len(pending.model.ProjectorPaths) > 0 && numParallel != 1 { @@ -148,7 +151,7 @@ func (s *Scheduler) processPending(ctx context.Context) { pending.useLoadedRunner(runner, s.finishedReqCh) break } - } else if envconfig.MaxRunners > 0 && loadedCount >= envconfig.MaxRunners { + } else if envconfig.MaxRunners() > 0 && loadedCount >= int(envconfig.MaxRunners()) { slog.Debug("max runners achieved, unloading one to make room", "runner_count", loadedCount) runnerToExpire = s.findRunnerToUnload() } else { @@ -161,7 +164,7 @@ func (s *Scheduler) processPending(ctx context.Context) { gpus = s.getGpuFn() } - if envconfig.MaxRunners <= 0 { + if envconfig.MaxRunners() <= 0 { // No user specified MaxRunners, so figure out what automatic setting to use // If all GPUs have reliable free memory reporting, defaultModelsPerGPU * the number of GPUs // if any GPU has unreliable free memory reporting, 1x the number of GPUs @@ -173,11 +176,13 @@ func (s *Scheduler) processPending(ctx context.Context) { } } if allReliable { - envconfig.MaxRunners = defaultModelsPerGPU * len(gpus) + // HACK + os.Setenv("OLLAMA_MAX_LOADED_MODELS", strconv.Itoa(defaultModelsPerGPU*len(gpus))) slog.Debug("updating default concurrency", "OLLAMA_MAX_LOADED_MODELS", envconfig.MaxRunners, "gpu_count", len(gpus)) } else { + // HACK + os.Setenv("OLLAMA_MAX_LOADED_MODELS", strconv.Itoa(len(gpus))) slog.Info("one or more GPUs detected that are unable to accurately report free memory - disabling default concurrency") - envconfig.MaxRunners = len(gpus) } } @@ -212,9 +217,12 @@ func (s *Scheduler) processPending(ctx context.Context) { } else if loadedCount == 0 { // No models loaded. Load the model but prefer the best fit. slog.Debug("loading first model", "model", pending.model.ModelPath) - g := pickBestFitGPUs(pending, ggml, gpus, &numParallel) + g := pickBestFullFitByLibrary(pending, ggml, gpus, &numParallel) if g != nil { gpus = g + } else { + // Only allow partial loads when this is the first model + gpus = pickBestPartialFitByLibrary(pending, ggml, gpus, &numParallel) } s.loadFn(pending, ggml, gpus, numParallel) break @@ -231,7 +239,7 @@ func (s *Scheduler) processPending(ctx context.Context) { // Update free memory from currently loaded models s.updateFreeSpace(availGpus) - fitGpus := pickBestFitGPUs(pending, ggml, availGpus, &numParallel) + fitGpus := pickBestFullFitByLibrary(pending, ggml, availGpus, &numParallel) if fitGpus != nil { slog.Debug("new model fits with existing models, loading") s.loadFn(pending, ggml, fitGpus, numParallel) @@ -401,7 +409,7 @@ func (s *Scheduler) load(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, if numParallel < 1 { numParallel = 1 } - sessionDuration := envconfig.KeepAlive + sessionDuration := envconfig.KeepAlive() if req.sessionDuration != nil { sessionDuration = req.sessionDuration.Duration } @@ -668,11 +676,12 @@ func (a ByDuration) Less(i, j int) bool { // func (a BySize) Swap(i, j int) { a[i], a[j] = a[j], a[i] } // func (a BySize) Less(i, j int) bool { return a[i].estimatedVRAM < a[j].estimatedVRAM } -// pickBestFitGPUs will try to find the optimal placement of the model in the available GPUs where the model fully fits +// pickBestFullFitByLibrary will try to find the optimal placement of the model in the available GPUs where the model fully fits +// The list of GPUs returned will always be the same brand (library) // If the model can not be fit fully within the available GPU(s) nil is returned // If numParallel is <= 0, this will attempt try to optimize parallism based on available VRAM, and adjust // opts.NumCtx accordingly -func pickBestFitGPUs(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel *int) gpu.GpuInfoList { +func pickBestFullFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel *int) gpu.GpuInfoList { var estimatedVRAM uint64 var numParallelToTry []int @@ -695,7 +704,7 @@ func pickBestFitGPUs(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numP // First attempt to fit the model into a single GPU for _, p := range numParallelToTry { req.opts.NumCtx = req.origNumCtx * p - if !envconfig.SchedSpread { + if !envconfig.SchedSpread() { for _, g := range sgl { if ok, estimatedVRAM = llm.PredictServerFit([]gpu.GpuInfo{g}, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok { slog.Info("new model will fit in available VRAM in single GPU, loading", "model", req.model.ModelPath, "gpu", g.ID, "parallel", p, "available", g.FreeMemory, "required", format.HumanBytes2(estimatedVRAM)) @@ -723,6 +732,25 @@ func pickBestFitGPUs(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numP return nil } +// If multiple Libraries are detected, pick the Library which loads the most layers for the model +func pickBestPartialFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel *int) gpu.GpuInfoList { + *numParallel = 1 + byLibrary := gpus.ByLibrary() + if len(byLibrary) <= 1 { + return gpus + } + var bestEstimate uint64 + var bestFit int + for i, gl := range byLibrary { + _, estimatedVRAM := llm.PredictServerFit(gl, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts) + if estimatedVRAM > bestEstimate { + bestEstimate = estimatedVRAM + bestFit = i + } + } + return byLibrary[bestFit] +} + // findRunnerToUnload finds a runner to unload to make room for a new model func (s *Scheduler) findRunnerToUnload() *runnerRef { s.loadedMu.Lock() diff --git a/server/sched_test.go b/server/sched_test.go index 9ddd1fab..80395714 100644 --- a/server/sched_test.go +++ b/server/sched_test.go @@ -3,7 +3,6 @@ package server import ( "bytes" "context" - "encoding/binary" "fmt" "log/slog" "os" @@ -12,7 +11,6 @@ import ( "github.com/ollama/ollama/api" "github.com/ollama/ollama/app/lifecycle" - "github.com/ollama/ollama/envconfig" "github.com/ollama/ollama/format" "github.com/ollama/ollama/gpu" "github.com/ollama/ollama/llm" @@ -115,8 +113,7 @@ func newScenarioRequest(t *testing.T, ctx context.Context, modelName string, est require.NoError(t, err) defer f.Close() - gguf := llm.NewGGUFV3(binary.LittleEndian) - err = gguf.Encode(f, llm.KV{ + require.NoError(t, llm.WriteGGUF(f, llm.KV{ "general.architecture": "llama", "general.name": "name", "llama.context_length": uint32(32), @@ -130,7 +127,7 @@ func newScenarioRequest(t *testing.T, ctx context.Context, modelName string, est }, []llm.Tensor{ {Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))}, {Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))}, - }) + })) require.NoError(t, err) fname := f.Name() @@ -272,7 +269,7 @@ func TestRequestsMultipleLoadedModels(t *testing.T) { c.req.opts.NumGPU = 0 // CPU load, will be allowed d := newScenarioRequest(t, ctx, "ollama-model-3c", 30, nil) // Needs prior unloaded - envconfig.MaxRunners = 1 + t.Setenv("OLLAMA_MAX_LOADED_MODELS", "1") s.newServerFn = a.newServer slog.Info("a") s.pendingReqCh <- a.req @@ -291,7 +288,7 @@ func TestRequestsMultipleLoadedModels(t *testing.T) { require.Len(t, s.loaded, 1) s.loadedMu.Unlock() - envconfig.MaxRunners = 0 + t.Setenv("OLLAMA_MAX_LOADED_MODELS", "0") s.newServerFn = b.newServer slog.Info("b") s.pendingReqCh <- b.req @@ -362,7 +359,7 @@ func TestGetRunner(t *testing.T) { a := newScenarioRequest(t, ctx, "ollama-model-1a", 10, &api.Duration{Duration: 2 * time.Millisecond}) b := newScenarioRequest(t, ctx, "ollama-model-1b", 10, &api.Duration{Duration: 2 * time.Millisecond}) c := newScenarioRequest(t, ctx, "ollama-model-1c", 10, &api.Duration{Duration: 2 * time.Millisecond}) - envconfig.MaxQueuedRequests = 1 + t.Setenv("OLLAMA_MAX_QUEUE", "1") s := InitScheduler(ctx) s.getGpuFn = getGpuFn s.getCpuFn = getCpuFn @@ -666,11 +663,50 @@ func TestAlreadyCanceled(t *testing.T) { require.Empty(t, scenario1a.req.successCh) } +func TestHomogeneousGPUs(t *testing.T) { + ctx, done := context.WithTimeout(context.Background(), 100*time.Millisecond) + defer done() + s := InitScheduler(ctx) + + s.getGpuFn = func() gpu.GpuInfoList { + // Set memory values to require the model to be spread + gpus := []gpu.GpuInfo{ + {Library: "cuda"}, + {Library: "rocm"}, + } + gpus[0].TotalMemory = 1 * format.GibiByte + gpus[0].FreeMemory = 256 * format.MebiByte + gpus[1].TotalMemory = 1 * format.GibiByte + gpus[1].FreeMemory = 256 * format.MebiByte + return gpus + } + s.getCpuFn = getCpuFn + a := newScenarioRequest(t, ctx, "ollama-model-1", 10, &api.Duration{Duration: 5 * time.Millisecond}) + s.newServerFn = func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) { + require.Len(t, gpus, 1) + return a.newServer(gpus, model, ggml, adapters, projectors, opts, numParallel) + } + slog.Info("a") + s.pendingReqCh <- a.req + require.Len(t, s.pendingReqCh, 1) + s.Run(ctx) + select { + case resp := <-a.req.successCh: + require.Equal(t, resp.llama, a.srv) + require.Empty(t, s.pendingReqCh) + require.Empty(t, a.req.errCh) + case err := <-a.req.errCh: + t.Fatal(err.Error()) + case <-ctx.Done(): + t.Fatal("timeout") + } +} + type mockLlm struct { pingResp error waitResp error completionResp error - embedResp [][]float32 + embedResp *llm.EmbedResponse embedRespErr error tokenizeResp []int tokenizeRespErr error @@ -688,7 +724,7 @@ func (s *mockLlm) WaitUntilRunning(ctx context.Context) error { return s.waitRes func (s *mockLlm) Completion(ctx context.Context, req llm.CompletionRequest, fn func(llm.CompletionResponse)) error { return s.completionResp } -func (s *mockLlm) Embed(ctx context.Context, input []string) ([][]float32, error) { +func (s *mockLlm) Embed(ctx context.Context, input []string) (*llm.EmbedResponse, error) { return s.embedResp, s.embedRespErr } func (s *mockLlm) Tokenize(ctx context.Context, content string) ([]int, error) { diff --git a/server/testdata/tools/xlam.gotmpl b/server/testdata/tools/xlam.gotmpl new file mode 100644 index 00000000..51513d69 --- /dev/null +++ b/server/testdata/tools/xlam.gotmpl @@ -0,0 +1,45 @@ +{{- if .System }}{{ .System }} +{{ end }} +{{- range $i, $_ := .Messages }} +{{- if eq .Role "user" }}### Instruction: +{{- if and $.Tools (le (len (slice $.Messages $i)) 2) }} +[BEGIN OF TASK INSTRUCTION] +You are an expert in composing functions. You are given a question and a set of possible functions. +Based on the question, you will need to make one or more function/tool calls to achieve the purpose. +If none of the functions can be used, point it out and refuse to answer. +If the given question lacks the parameters required by the function, also point it out. +[END OF TASK INSTRUCTION] + +[BEGIN OF AVAILABLE TOOLS] +{{ $.Tools }} +[END OF AVAILABLE TOOLS] + +[BEGIN OF FORMAT INSTRUCTION] +The output MUST strictly adhere to the following JSON format, and NO other text MUST be included. +The example format is as follows. Please make sure the parameter type is correct. If no function call is needed, please make tool_calls an empty list '[]'. +``` +{ + "tool_calls": [ + {"name": "func_name1", "arguments": {"argument1": "value1", "argument2": "value2"}}, + ... (more tool calls as required) + ] +} +``` +[END OF FORMAT INSTRUCTION] + +[BEGIN OF QUERY] +{{ .Content }} +[END OF QUERY] + + +{{ else }} +{{ .Content }} +{{ end }} +{{- else if .ToolCalls }}### Response: +{"tool_calls": [{{ range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}}{{ end }}]} +<|EOT|> +{{ else if eq .Role "assistant" }}### Response: +{{ .Content }} +<|EOT|> +{{ end }} +{{- end }}### Response: \ No newline at end of file diff --git a/server/testdata/tools/xlam.out b/server/testdata/tools/xlam.out new file mode 100644 index 00000000..a4a9952f --- /dev/null +++ b/server/testdata/tools/xlam.out @@ -0,0 +1,40 @@ +You are a knowledgable assistant. You can answer questions and perform tasks. +### Instruction: +What's the weather like today in Paris? +### Response: +{"tool_calls": [{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Paris, France"}}]} +<|EOT|> +### Response: +The current temperature in Paris, France is 22 degrees Celsius. +<|EOT|> +### Instruction: +[BEGIN OF TASK INSTRUCTION] +You are an expert in composing functions. You are given a question and a set of possible functions. +Based on the question, you will need to make one or more function/tool calls to achieve the purpose. +If none of the functions can be used, point it out and refuse to answer. +If the given question lacks the parameters required by the function, also point it out. +[END OF TASK INSTRUCTION] + +[BEGIN OF AVAILABLE TOOLS] +[{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather","parameters":{"type":"object","required":["location","format"],"properties":{"format":{"type":"string","description":"The temperature unit to use. Infer this from the users location.","enum":["celsius","fahrenheit"]},"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"}}}}}] +[END OF AVAILABLE TOOLS] + +[BEGIN OF FORMAT INSTRUCTION] +The output MUST strictly adhere to the following JSON format, and NO other text MUST be included. +The example format is as follows. Please make sure the parameter type is correct. If no function call is needed, please make tool_calls an empty list '[]'. +``` +{ + "tool_calls": [ + {"name": "func_name1", "arguments": {"argument1": "value1", "argument2": "value2"}}, + ... (more tool calls as required) + ] +} +``` +[END OF FORMAT INSTRUCTION] + +[BEGIN OF QUERY] +What's the weather like today in San Francisco and Toronto? +[END OF QUERY] + + +### Response: \ No newline at end of file diff --git a/server/upload.go b/server/upload.go index 73ce78ce..c4078c22 100644 --- a/server/upload.go +++ b/server/upload.go @@ -254,7 +254,7 @@ func (b *blobUpload) uploadPart(ctx context.Context, method string, requestURL * // retry uploading to the redirect URL for try := range maxRetries { - err = b.uploadPart(ctx, http.MethodPut, redirectURL, part, nil) + err = b.uploadPart(ctx, http.MethodPut, redirectURL, part, ®istryOptions{}) switch { case errors.Is(err, context.Canceled): return err diff --git a/template/alfred.json b/template/alfred.json new file mode 100644 index 00000000..edac21af --- /dev/null +++ b/template/alfred.json @@ -0,0 +1,8 @@ +{ + "stop": [ + "", + "", + "", + "" + ] +} diff --git a/template/alpaca.json b/template/alpaca.json new file mode 100644 index 00000000..eafe2b8a --- /dev/null +++ b/template/alpaca.json @@ -0,0 +1,6 @@ +{ + "stop": [ + "### Instruction:", + "### Response" + ] +} diff --git a/template/chatml.json b/template/chatml.json new file mode 100644 index 00000000..7afeb3de --- /dev/null +++ b/template/chatml.json @@ -0,0 +1,6 @@ +{ + "stop": [ + "<|im_start|>", + "<|im_end|>" + ] +} diff --git a/template/chatqa.json b/template/chatqa.json new file mode 100644 index 00000000..64dd0f33 --- /dev/null +++ b/template/chatqa.json @@ -0,0 +1,8 @@ +{ + "stop": [ + "System:", + "User:", + "Assistant:", + "<|begin_of_text|>" + ] +} diff --git a/template/codellama-70b-instruct.json b/template/codellama-70b-instruct.json new file mode 100644 index 00000000..a56a63f1 --- /dev/null +++ b/template/codellama-70b-instruct.json @@ -0,0 +1,7 @@ +{ + "stop": [ + "Source:", + "Destination:", + "" + ] +} diff --git a/template/falcon-instruct.json b/template/falcon-instruct.json new file mode 100644 index 00000000..a0da0e81 --- /dev/null +++ b/template/falcon-instruct.json @@ -0,0 +1,6 @@ +{ + "stop": [ + "User:", + "Assistant:" + ] +} diff --git a/template/gemma-instruct.json b/template/gemma-instruct.json new file mode 100644 index 00000000..f4ad415c --- /dev/null +++ b/template/gemma-instruct.json @@ -0,0 +1,6 @@ +{ + "stop": [ + "", + "" + ] +} diff --git a/template/granite-instruct.json b/template/granite-instruct.json new file mode 100644 index 00000000..0933e4b5 --- /dev/null +++ b/template/granite-instruct.json @@ -0,0 +1,7 @@ +{ + "stop": [ + "System:", + "Question:", + "Answer:" + ] +} diff --git a/template/llama2-chat.json b/template/llama2-chat.json new file mode 100644 index 00000000..17590ab4 --- /dev/null +++ b/template/llama2-chat.json @@ -0,0 +1,8 @@ +{ + "stop": [ + "[INST]", + "[/INST]", + "<>", + "<>" + ] +} diff --git a/template/llama3-instruct.json b/template/llama3-instruct.json new file mode 100644 index 00000000..c4e9d448 --- /dev/null +++ b/template/llama3-instruct.json @@ -0,0 +1,7 @@ +{ + "stop": [ + "<|start_header_id|>", + "<|end_header_id|>", + "<|eot_id|>" + ] +} diff --git a/template/magicoder.json b/template/magicoder.json new file mode 100644 index 00000000..6f67cab0 --- /dev/null +++ b/template/magicoder.json @@ -0,0 +1,6 @@ +{ + "stop": [ + "@@ Instruction", + "@@ Response" + ] +} diff --git a/template/mistral-instruct.json b/template/mistral-instruct.json new file mode 100644 index 00000000..7afeb3de --- /dev/null +++ b/template/mistral-instruct.json @@ -0,0 +1,6 @@ +{ + "stop": [ + "<|im_start|>", + "<|im_end|>" + ] +} diff --git a/template/openchat.json b/template/openchat.json new file mode 100644 index 00000000..0edc341f --- /dev/null +++ b/template/openchat.json @@ -0,0 +1,5 @@ +{ + "stop": [ + "<|end_of_turn|>" + ] +} diff --git a/template/phi-3.json b/template/phi-3.json new file mode 100644 index 00000000..27bf7664 --- /dev/null +++ b/template/phi-3.json @@ -0,0 +1,8 @@ +{ + "stop": [ + "<|end|>", + "<|system|>", + "<|user|>", + "<|assistant|>" + ] +} diff --git a/template/solar-instruct.json b/template/solar-instruct.json new file mode 100644 index 00000000..7b7a9050 --- /dev/null +++ b/template/solar-instruct.json @@ -0,0 +1,7 @@ +{ + "stop": [ + "### System:", + "### User:", + "### Assistant" + ] +} diff --git a/template/starcoder2-instruct.json b/template/starcoder2-instruct.json new file mode 100644 index 00000000..31348908 --- /dev/null +++ b/template/starcoder2-instruct.json @@ -0,0 +1,7 @@ +{ + "stop": [ + "### Instruction", + "### Response", + "<|endoftext|>" + ] +} diff --git a/template/template.go b/template/template.go index f7453791..3e0afcd1 100644 --- a/template/template.go +++ b/template/template.go @@ -23,6 +23,7 @@ import ( var indexBytes []byte //go:embed *.gotmpl +//go:embed *.json var templatesFS embed.FS var templatesOnce = sync.OnceValues(func() ([]*named, error) { @@ -39,6 +40,15 @@ var templatesOnce = sync.OnceValues(func() ([]*named, error) { // normalize line endings t.Bytes = bytes.ReplaceAll(bts, []byte("\r\n"), []byte("\n")) + + params, err := templatesFS.ReadFile(t.Name + ".json") + if err != nil { + continue + } + + if err := json.Unmarshal(params, &t.Parameters); err != nil { + return nil, err + } } return templates, nil @@ -48,6 +58,10 @@ type named struct { Name string `json:"name"` Template string `json:"template"` Bytes []byte + + Parameters *struct { + Stop []string `json:"stop"` + } } func (t named) Reader() io.Reader { diff --git a/template/vicuna.json b/template/vicuna.json new file mode 100644 index 00000000..ed7bfb0f --- /dev/null +++ b/template/vicuna.json @@ -0,0 +1,6 @@ +{ + "stop": [ + "USER:", + "ASSISTANT:" + ] +} diff --git a/template/zephyr.json b/template/zephyr.json new file mode 100644 index 00000000..f9c0115c --- /dev/null +++ b/template/zephyr.json @@ -0,0 +1,8 @@ +{ + "stop": [ + "<|system|>", + "", + "<|user|>", + "<|assistant|>" + ] +}