Compare commits

...

2 Commits

Author SHA1 Message Date
Josh Yan
edeea1d6f0 server 2024-08-20 09:17:17 -07:00
Roy Han
450400107b paligemma patch 2024-08-16 11:51:23 -07:00
2 changed files with 169 additions and 4 deletions

View File

@ -1040,6 +1040,7 @@ struct llama_server_context
img.request_encode_image = false;
}
LOG_TEE("slot has images: %d\n", slot.images.size());
return slot.images.size() > 0;
}
@ -1271,6 +1272,71 @@ struct llama_server_context
}
}
bool process_images_paligemma(server_slot &slot, int n_batch)
{
int n_past = 0;
int image_idx = 0;
slot_image &img = slot.images[image_idx];
// rescale image embeddings
float *data = img.image_embedding;
for (int i = 0; i < 2048 * 256; i++)
{
data[i] = data[i] / sqrt(2048);
}
set_image_embeds(ctx, data);
// generate user_prompt -> this should contain image tokens prepended and a new line appended:
// batch.n_tokens += (int)slot.images.size() * llama_n_embd(model);
std::vector<llama_token> tokens;
std::string prompt = "What is in this image";
std::vector<llama_token> text = ::llama_tokenize(ctx, prompt, false, true);
for (int i = 0; i < (int)slot.images.size() * 256; i++)
{
tokens.push_back(257152);
}
tokens.push_back(2);
printf("btach.n_tokens %d\n", batch.n_tokens);
for (int i = 0; i < text.size(); i++)
{
// printf("token [%d]: %d\n", text[i]);
tokens.push_back(text[i]);
}
tokens.push_back(108);
batch.n_tokens = (int)slot.images.size() * 256 + 2 + text.size();
for (int i = 0; i < batch.n_tokens; i++)
{
printf("token %d: %d\n", i, tokens[i]);
}
for (int i = 0; i < batch.n_tokens; i += n_batch)
{
printf("calling decode\n");
int n_eval = (int)batch.n_tokens - i;
if (n_eval > n_batch)
{
n_eval = n_batch;
}
printf("n_eval: %d, n_past: %d", n_eval, n_past);
if (llama_decode(ctx, llama_batch_get_one(&tokens[i], n_eval, 0, 0)))
{
printf("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, batch.n_tokens, n_batch, n_past);
return false;
}
n_past += n_eval;
}
return true;
}
// for multiple images processing
bool ingest_images(server_slot &slot, int n_batch)
{
@ -1833,12 +1899,17 @@ struct llama_server_context
slot_npast++;
}
if (has_images && !ingest_images(slot, n_batch))
LOG_ERROR("checking has images", {
{"has images", has_images},
{"task_id", slot.task_id},
});
// if (has_images && !ingest_images(slot, n_batch))
if (has_images && !process_images_paligemma(slot, n_batch))
{
LOG_ERROR("failed processing images", {
{"slot_id", slot.id},
{"task_id", slot.task_id},
});
{"slot_id", slot.id},
{"task_id", slot.task_id},
});
// FIXME @phymbert: to be properly tested
// early returning without changing the slot state will block the slot for ever
// no one at the moment is checking the return value

View File

@ -0,0 +1,94 @@
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
index 7cda5f10..50fbcf08 100644
--- a/examples/llava/clip.cpp
+++ b/examples/llava/clip.cpp
@@ -709,9 +709,12 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
- embeddings = ggml_gelu(ctx0, embeddings);
- embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
+ // paligemma missing second linear layer
+ if (model.mm_2_w) {
+ embeddings = ggml_gelu(ctx0, embeddings);
+ embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
+ embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
+ }
} else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
@@ -2076,7 +2079,10 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
return ctx->vision_model.mm_model_peg_0_b->ne[0];
}
if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
- return ctx->vision_model.mm_2_b->ne[0];
+ // paligemma missing second linear layer
+ if (ctx->vision_model.mm_2_b == nullptr) {
+ return ctx->vision_model.mm_0_b->ne[0];
+ }
}
if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
return ctx->vision_model.mm_3_b->ne[0];
diff --git a/include/llama.h b/include/llama.h
index f23355a6..7c6301bf 100644
--- a/include/llama.h
+++ b/include/llama.h
@@ -444,6 +444,9 @@ extern "C" {
// Frees all allocated memory
LLAMA_API void llama_free(struct llama_context * ctx);
+ // save image embeddings
+ LLAMA_API void set_image_embeds(struct llama_context *ctx, float *data);
+
LLAMA_API int64_t llama_time_us(void);
LLAMA_API size_t llama_max_devices(void);
diff --git a/src/llama.cpp b/src/llama.cpp
index a7b1c9eb..b0a6bc27 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -2668,6 +2668,7 @@ struct llama_context {
const struct llama_model & model;
+ float *image_embeds;
struct llama_cparams cparams;
struct llama_sampling sampling;
struct llama_kv_cache kv_self;
@@ -2751,6 +2752,10 @@ struct llama_context {
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
};
+void set_image_embeds(llama_context *ctx, float *data) {
+ ctx->image_embeds = data;
+}
+
struct llama_lora_weight {
struct ggml_tensor * a = nullptr;
struct ggml_tensor * b = nullptr;
@@ -11599,6 +11604,15 @@ struct llm_build_context {
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+ // set the image embeddings in the input tensor
+ if (lctx.image_embeds) {
+ struct ggml_tensor *image_embeds = ggml_dup_tensor(ctx0, inpL);
+ image_embeds->data = lctx.image_embeds;
+ image_embeds->ne[1] = 256;
+ inpL = ggml_set_2d_inplace(ctx0, inpL, image_embeds, inpL->nb[1], 0);
+ lctx.image_embeds = NULL;
+ }
+
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
cb(inpL, "inp_scaled", -1);
@@ -14589,7 +14603,7 @@ static int llama_decode_internal(
}
// non-causal masks do not use the KV cache
- if (hparams.causal_attn) {
+ if (hparams.causal_attn || lctx.image_embeds) {
llama_kv_cache_update(&lctx);
// if we have enough unused cells before the current head ->