Compare commits

...

6 Commits

Author SHA1 Message Date
Josh Yan
a6d30ecefe working causal attention 2024-08-27 11:34:32 -07:00
Josh Yan
80eef7c7b1 changes 2024-08-27 10:47:13 -07:00
Josh Yan
a33e56cddb uses input prompt 2024-08-23 16:29:59 -07:00
Josh Yan
e6802df906 fixed patches, llava 2024-08-23 14:12:26 -07:00
Josh Yan
c631633bce paligemma demo works 2024-08-23 13:18:26 -07:00
Roy Han
7de230f005 paligemma patch 2024-08-23 13:10:43 -07:00
3 changed files with 186 additions and 4 deletions

View File

@ -1271,8 +1271,61 @@ struct llama_server_context
} }
} }
// for multiple images processing // 1 image only
bool ingest_images(server_slot &slot, int n_batch) bool prepare_pali(server_slot &slot, int n_batch)
{
int n_past = 0;
int image_idx = 0;
slot_image &img = slot.images[image_idx];
// rescale image embeddings
float *data = img.image_embedding;
for (int i = 0; i < 2048 * 256; i++)
{
data[i] = data[i] / sqrt(2048);
}
set_image_embeds(ctx, data);
// generate user_prompt -> this should contain image tokens prepended and a new line appended:
// batch.n_tokens += (int)slot.images.size() * llama_n_embd(model);
std::vector<llama_token> tokens;
for (int i = 0; i < (int)slot.images.size() * 256; i++)
{
tokens.push_back(257152);
}
tokens.push_back(2);
// move prefix prompt behind image tokens
for (int i = 0; i < batch.n_tokens; i++)
{
tokens.push_back(batch.token[i]);
}
llama_batch_clear(batch);
for (int i = 0; i < (int)tokens.size(); ++i)
{
llama_batch_add(batch, tokens[i], system_tokens.size() + slot.n_past, {slot.id}, true);
slot.n_past += 1;
}
// append prefix of next image
const auto json_prompt = slot.params.input_suffix;
std::vector<llama_token> append_tokens = tokenize(json_prompt, false); // has next image
append_tokens.push_back(108);
for (int i = 0; i < (int)append_tokens.size(); ++i)
{
llama_batch_add(batch, append_tokens[i], system_tokens.size() + slot.n_past, {slot.id}, true);
slot.n_past += 1;
}
llama_set_causal_attn(ctx, false);
return true;
}
bool process_llava(server_slot &slot, int n_batch)
{ {
int image_idx = 0; int image_idx = 0;
@ -1349,6 +1402,21 @@ struct llama_server_context
return true; return true;
} }
// for multiple images processing based on model architecture
bool ingest_images(server_slot &slot, int n_batch)
{
switch (llama_get_architecture(model))
{
case 0:
return process_llava(slot, n_batch);
case 25:
return prepare_pali(slot, n_batch);
default:
LOG_TEE("%s : failed to retrieve model architecture\n", __func__);
return false;
}
}
void request_cancel(int task_id) void request_cancel(int task_id)
{ {
task_server task; task_server task;
@ -1916,6 +1984,7 @@ struct llama_server_context
}; };
const int ret = llama_decode(ctx, batch_view); const int ret = llama_decode(ctx, batch_view);
llama_set_causal_attn(ctx, true);
if (ret != 0) if (ret != 0)
{ {

View File

@ -7,7 +7,7 @@ index 1fe2b9f7..a43312a7 100644
// TODO: use a per-batch flag for logits presence instead // TODO: use a per-batch flag for logits presence instead
- const bool has_logits = !cparams.embeddings; - const bool has_logits = !cparams.embeddings;
+ const bool has_logits = cparams.causal_attn; + const bool has_logits = cparams.causal_attn || lctx.image_embeds;
const bool has_embd = lctx.is_encoding || (cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE)); const bool has_embd = lctx.is_encoding || (cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE));
const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0; const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
@ -36,7 +36,7 @@ index 1fe2b9f7..a43312a7 100644
GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor"); GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
} }
+ +
+ if (!cparams.causal_attn) { + if (!cparams.causal_attn && !has_image_embeds) {
+ res = nullptr; // do not extract logits when not needed + res = nullptr; // do not extract logits when not needed
+ } + }
+ +

View File

@ -0,0 +1,113 @@
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
index 9c0d351e..019a147c 100644
--- a/examples/llava/clip.cpp
+++ b/examples/llava/clip.cpp
@@ -718,10 +718,12 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
- embeddings = ggml_gelu(ctx0, embeddings);
- embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
-
+ if (model.mm_2_w)
+ {
+ embeddings = ggml_gelu(ctx0, embeddings);
+ embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
+ embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
+ }
} else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
@@ -2102,6 +2104,10 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
return ctx->vision_model.mm_model_peg_0_b->ne[0];
}
if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
+ if (ctx->vision_model.mm_2_b == nullptr)
+ {
+ return ctx->vision_model.mm_0_b->ne[0];
+ }
return ctx->vision_model.mm_2_b->ne[0];
}
if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
diff --git a/include/llama.h b/include/llama.h
index 6072e76e..4c572a74 100644
--- a/include/llama.h
+++ b/include/llama.h
@@ -444,6 +444,12 @@ extern "C" {
// Frees all allocated memory
LLAMA_API void llama_free(struct llama_context * ctx);
+ // Sets image embeddings
+ LLAMA_API void set_image_embeds(struct llama_context *ctx, float *data);
+
+ // Get architecture
+ LLAMA_API int llama_get_architecture(struct llama_model *model);
+
LLAMA_API int64_t llama_time_us(void);
LLAMA_API size_t llama_max_devices(void);
diff --git a/src/llama.cpp b/src/llama.cpp
index d883ed19..322b4b59 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -2710,6 +2710,8 @@ struct llama_context {
bool logits_all = false;
+ float *image_embeds = nullptr;
+
// embeddings output (2-dimensional array: [n_outputs][n_embd])
// populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
size_t embd_size = 0; // capacity (of floats) for embeddings
@@ -11591,6 +11593,15 @@ struct llm_build_context {
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+ if (lctx.image_embeds)
+ {
+ struct ggml_tensor *image_embeds = ggml_dup_tensor(ctx0, inpL);
+ image_embeds->data = lctx.image_embeds;
+ image_embeds->ne[1] = 256;
+ inpL = ggml_set_2d_inplace(ctx0, inpL, image_embeds, inpL->nb[1], 0);
+ lctx.image_embeds = NULL;
+ }
+
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
cb(inpL, "inp_scaled", -1);
@@ -14468,6 +14479,7 @@ static int llama_decode_internal(
const int64_t n_embd = hparams.n_embd;
const int64_t n_vocab = hparams.n_vocab;
+ const bool has_image_embeds = lctx.image_embeds;
uint32_t n_outputs = 0;
uint32_t n_outputs_prev = 0;
@@ -14581,7 +14593,8 @@ static int llama_decode_internal(
}
// non-causal masks do not use the KV cache
- if (hparams.causal_attn) {
+ if (hparams.causal_attn || lctx.image_embeds)
+ {
llama_kv_cache_update(&lctx);
// if we have enough unused cells before the current head ->
@@ -16455,6 +16468,16 @@ void llama_free_model(struct llama_model * model) {
delete model;
}
+void set_image_embeds(llama_context *ctx, float *data)
+{
+ ctx->image_embeds = data;
+}
+
+int llama_get_architecture(llama_model *model)
+{
+ return model->arch;
+}
+
struct llama_context * llama_new_context_with_model(
struct llama_model * model,
struct llama_context_params params) {