Compare commits
69 Commits
v0.4.0-ci3
...
main
Author | SHA1 | Date | |
---|---|---|---|
|
67691e410d | ||
|
d7eb05b936 | ||
|
636a743c2b | ||
|
df011054fa | ||
|
ac07160c8d | ||
|
6606e4243c | ||
|
65973ceb64 | ||
|
bebef1e50d | ||
|
d48c1c5a44 | ||
|
36a8372b28 | ||
|
4e94227b5d | ||
|
479d551766 | ||
|
76b2b723b2 | ||
|
b8d77cdeab | ||
|
c2e8cbaa14 | ||
|
771fab1dd8 | ||
|
3a5239e6bf | ||
|
3d25e7bf8c | ||
|
1618700c5a | ||
|
b111aa5a91 | ||
|
9e83e550e1 | ||
|
fc2a0715df | ||
|
3020d2dc58 | ||
|
a909417602 | ||
|
6cd566872b | ||
|
9d71bcc3e2 | ||
|
a4c70fe157 | ||
|
34a75102f7 | ||
|
4157d1f7b6 | ||
|
4ebfa2cb91 | ||
|
046054fa3b | ||
|
95483f348b | ||
|
f247a6233e | ||
|
44bd9e5994 | ||
|
18237be9b2 | ||
|
29ab9fa7d7 | ||
|
b8d5036e33 | ||
|
312d9de1d1 | ||
|
a103dae01e | ||
|
d07cf41a97 | ||
|
8c238e70ab | ||
|
8a9bb0d000 | ||
|
26acdcf44e | ||
|
921779bb10 | ||
|
16f4eabe2d | ||
|
c826e57475 | ||
|
712e99d477 | ||
|
b754f5a6a3 | ||
|
a805e5947e | ||
|
91dfbb1bba | ||
|
db1842b9e1 | ||
|
c9ca386131 | ||
|
078f666f73 | ||
|
de1557a0dc | ||
|
084929c293 | ||
|
abd5dfd06a | ||
|
099f7077a1 | ||
|
d7c94e0ca6 | ||
|
35ec7f079f | ||
|
5231ae52d9 | ||
|
3085c47bea | ||
|
0ccc73251a | ||
|
dc6fe82051 | ||
|
d78fb62056 | ||
|
5c44461ccf | ||
|
03e40efa51 | ||
|
23f746508d | ||
|
48708ca0d5 | ||
|
c7cb0f0602 |
@ -3,9 +3,7 @@ ollama
|
||||
app
|
||||
macapp
|
||||
dist
|
||||
llm/llama.cpp
|
||||
.env
|
||||
.cache
|
||||
test_data
|
||||
llm/build
|
||||
llama/build
|
||||
|
1
.gitattributes
vendored
1
.gitattributes
vendored
@ -1,4 +1,3 @@
|
||||
llm/ext_server/* linguist-vendored
|
||||
llama/**/*.cpp linguist-vendored
|
||||
llama/**/*.hpp linguist-vendored
|
||||
llama/**/*.h linguist-vendored
|
||||
|
313
.github/workflows/release.yaml
vendored
313
.github/workflows/release.yaml
vendored
@ -1,5 +1,9 @@
|
||||
name: release
|
||||
|
||||
env:
|
||||
ROCM_WINDOWS_URL: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe
|
||||
MSYS2_URL: https://github.com/msys2/msys2-installer/releases/download/2024-07-27/msys2-x86_64-20240727.exe
|
||||
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
@ -8,7 +12,7 @@ on:
|
||||
jobs:
|
||||
# Full build of the Mac assets
|
||||
build-darwin:
|
||||
runs-on: macos-12
|
||||
runs-on: macos-13
|
||||
environment: release
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
@ -39,8 +43,8 @@ jobs:
|
||||
APPLE_PASSWORD: ${{ secrets.APPLE_PASSWORD }}
|
||||
APPLE_TEAM_ID: ${{ vars.APPLE_TEAM_ID }}
|
||||
APPLE_ID: ${{ vars.APPLE_ID }}
|
||||
SDKROOT: /Applications/Xcode_13.4.1.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk
|
||||
DEVELOPER_DIR: /Applications/Xcode_13.4.1.app/Contents/Developer
|
||||
SDKROOT: /Applications/Xcode_14.1.0.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk
|
||||
DEVELOPER_DIR: /Applications/Xcode_14.1.0.app/Contents/Developer
|
||||
run: |
|
||||
./scripts/build_darwin.sh
|
||||
|
||||
@ -48,8 +52,8 @@ jobs:
|
||||
with:
|
||||
name: dist-darwin
|
||||
path: |
|
||||
dist/*arwin*
|
||||
!dist/*-cov
|
||||
dist/Ollama-darwin.zip
|
||||
dist/ollama-darwin
|
||||
|
||||
# Windows builds take a long time to both install the dependencies and build, so parallelize
|
||||
# CPU generation step
|
||||
@ -60,51 +64,34 @@ jobs:
|
||||
KEY_CONTAINER: ${{ vars.KEY_CONTAINER }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set make jobs default
|
||||
run: |
|
||||
echo "MAKEFLAGS=--jobs=$((Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
|
||||
- name: Set Version
|
||||
shell: bash
|
||||
run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV
|
||||
- uses: 'google-github-actions/auth@v2'
|
||||
with:
|
||||
project_id: 'ollama'
|
||||
credentials_json: '${{ secrets.GOOGLE_SIGNING_CREDENTIALS }}'
|
||||
- run: echo "${{ vars.OLLAMA_CERT }}" > ollama_inc.crt
|
||||
- name: install Windows SDK 8.1 to get signtool
|
||||
- name: Add msys paths
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
write-host "downloading SDK"
|
||||
Invoke-WebRequest -Uri "https://go.microsoft.com/fwlink/p/?LinkId=323507" -OutFile "${env:RUNNER_TEMP}\sdksetup.exe"
|
||||
Start-Process "${env:RUNNER_TEMP}\sdksetup.exe" -ArgumentList @("/q") -NoNewWindow -Wait
|
||||
write-host "Win SDK 8.1 installed"
|
||||
gci -path 'C:\Program Files (x86)\Windows Kits\' -r -fi 'signtool.exe'
|
||||
- name: install signing plugin
|
||||
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
- name: Install msys2 tools
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
write-host "downloading plugin"
|
||||
Invoke-WebRequest -Uri "https://github.com/GoogleCloudPlatform/kms-integrations/releases/download/cng-v1.0/kmscng-1.0-windows-amd64.zip" -OutFile "${env:RUNNER_TEMP}\plugin.zip"
|
||||
Expand-Archive -Path "${env:RUNNER_TEMP}\plugin.zip" -DestinationPath ${env:RUNNER_TEMP}\plugin\
|
||||
write-host "Installing plugin"
|
||||
& "${env:RUNNER_TEMP}\plugin\*\kmscng.msi" /quiet
|
||||
write-host "plugin installed"
|
||||
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
cache: true
|
||||
- run: go get ./...
|
||||
- run: |
|
||||
$gopath=(get-command go).source | split-path -parent
|
||||
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
|
||||
cd $env:GITHUB_WORKSPACE
|
||||
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
||||
$env:PATH="$gopath;$env:PATH"
|
||||
go generate -x ./...
|
||||
name: go generate
|
||||
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
|
||||
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
|
||||
make
|
||||
name: make
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: generate-windows-cpu
|
||||
path: |
|
||||
build/**/*
|
||||
build/**/*.a
|
||||
llm/build/**/*.a
|
||||
dist/windows-amd64/**
|
||||
|
||||
# ROCm generation step
|
||||
@ -115,74 +102,55 @@ jobs:
|
||||
KEY_CONTAINER: ${{ vars.KEY_CONTAINER }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set make jobs default
|
||||
run: |
|
||||
echo "MAKEFLAGS=--jobs=$((Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
|
||||
- name: Set Version
|
||||
shell: bash
|
||||
run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV
|
||||
- uses: 'google-github-actions/auth@v2'
|
||||
with:
|
||||
project_id: 'ollama'
|
||||
credentials_json: '${{ secrets.GOOGLE_SIGNING_CREDENTIALS }}'
|
||||
- run: echo "${{ vars.OLLAMA_CERT }}" > ollama_inc.crt
|
||||
- name: install Windows SDK 8.1 to get signtool
|
||||
- name: Add msys paths
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
write-host "downloading SDK"
|
||||
Invoke-WebRequest -Uri "https://go.microsoft.com/fwlink/p/?LinkId=323507" -OutFile "${env:RUNNER_TEMP}\sdksetup.exe"
|
||||
Start-Process "${env:RUNNER_TEMP}\sdksetup.exe" -ArgumentList @("/q") -NoNewWindow -Wait
|
||||
write-host "Win SDK 8.1 installed"
|
||||
gci -path 'C:\Program Files (x86)\Windows Kits\' -r -fi 'signtool.exe'
|
||||
- name: install signing plugin
|
||||
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
- name: Install msys2 tools
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
write-host "downloading plugin"
|
||||
Invoke-WebRequest -Uri "https://github.com/GoogleCloudPlatform/kms-integrations/releases/download/cng-v1.0/kmscng-1.0-windows-amd64.zip" -OutFile "${env:RUNNER_TEMP}\plugin.zip"
|
||||
Expand-Archive -Path "${env:RUNNER_TEMP}\plugin.zip" -DestinationPath ${env:RUNNER_TEMP}\plugin\
|
||||
write-host "Installing plugin"
|
||||
& "${env:RUNNER_TEMP}\plugin\*\kmscng.msi" /quiet
|
||||
write-host "plugin installed"
|
||||
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
cache: true
|
||||
- name: 'Install ROCm'
|
||||
# ROCM installation steps
|
||||
- name: 'Cache ROCm installer'
|
||||
id: cache-rocm
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: rocm-install.exe
|
||||
key: ${{ env.ROCM_WINDOWS_URL }}
|
||||
- name: 'Conditionally Download ROCm'
|
||||
if: steps.cache-rocm.outputs.cache-hit != 'true'
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
write-host "downloading AMD HIP Installer"
|
||||
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
|
||||
write-host "Installing AMD HIP"
|
||||
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
|
||||
write-host "Completed AMD HIP"
|
||||
Invoke-WebRequest -Uri "${env:ROCM_WINDOWS_URL}" -OutFile "rocm-install.exe"
|
||||
- name: 'Install ROCm'
|
||||
run: |
|
||||
Start-Process "rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
|
||||
- name: 'Verify ROCm'
|
||||
run: |
|
||||
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
|
||||
- run: go get ./...
|
||||
- run: |
|
||||
$gopath=(get-command go).source | split-path -parent
|
||||
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
|
||||
cd $env:GITHUB_WORKSPACE
|
||||
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
||||
$env:PATH="$gopath;$env:PATH"
|
||||
$env:OLLAMA_SKIP_CPU_GENERATE="1"
|
||||
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
go generate -x ./...
|
||||
name: go generate
|
||||
- name: 'gather rocm dependencies'
|
||||
echo "HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path | select -first 1)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
|
||||
- name: make rocm runner
|
||||
run: |
|
||||
$HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
md "dist\deps\bin\rocblas\library"
|
||||
cp "${HIP_PATH}\bin\hipblas.dll" "dist\deps\bin\"
|
||||
cp "${HIP_PATH}\bin\rocblas.dll" "dist\deps\bin\"
|
||||
cp "${HIP_PATH}\bin\rocblas\library\*" "dist\deps\bin\rocblas\library\"
|
||||
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
|
||||
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
|
||||
make -C llama print-HIP_PATH print-HIP_LIB_DIR
|
||||
make rocm
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: generate-windows-rocm
|
||||
path: |
|
||||
build/**/*
|
||||
dist/windows-amd64/**
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: windows-rocm-deps
|
||||
path: dist/deps/*
|
||||
|
||||
# CUDA generation step
|
||||
generate-windows-cuda:
|
||||
@ -191,88 +159,80 @@ jobs:
|
||||
strategy:
|
||||
matrix:
|
||||
cuda:
|
||||
- version: "11"
|
||||
url: 'https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe'
|
||||
- version: "12"
|
||||
url: 'https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_551.61_windows.exe'
|
||||
- version: "11.3"
|
||||
url: https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe
|
||||
- version: "12.4"
|
||||
url: https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_551.61_windows.exe
|
||||
env:
|
||||
KEY_CONTAINER: ${{ vars.KEY_CONTAINER }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set make jobs default
|
||||
run: |
|
||||
echo "MAKEFLAGS=--jobs=$((Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
|
||||
- name: Set Version
|
||||
shell: bash
|
||||
run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV
|
||||
- uses: 'google-github-actions/auth@v2'
|
||||
with:
|
||||
project_id: 'ollama'
|
||||
credentials_json: '${{ secrets.GOOGLE_SIGNING_CREDENTIALS }}'
|
||||
- run: echo "${{ vars.OLLAMA_CERT }}" > ollama_inc.crt
|
||||
- name: install Windows SDK 8.1 to get signtool
|
||||
- name: Install msys2
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
write-host "downloading SDK"
|
||||
Invoke-WebRequest -Uri "https://go.microsoft.com/fwlink/p/?LinkId=323507" -OutFile "${env:RUNNER_TEMP}\sdksetup.exe"
|
||||
Start-Process "${env:RUNNER_TEMP}\sdksetup.exe" -ArgumentList @("/q") -NoNewWindow -Wait
|
||||
write-host "Win SDK 8.1 installed"
|
||||
gci -path 'C:\Program Files (x86)\Windows Kits\' -r -fi 'signtool.exe'
|
||||
- name: install signing plugin
|
||||
$msys2_url="https://github.com/msys2/msys2-installer/releases/download/2024-07-27/msys2-x86_64-20240727.exe"
|
||||
write-host "Downloading msys2"
|
||||
Invoke-WebRequest -Uri "${msys2_url}" -OutFile "${env:RUNNER_TEMP}\msys2.exe"
|
||||
write-host "Installing msys2"
|
||||
Start-Process "${env:RUNNER_TEMP}\msys2.exe" -ArgumentList @("in", "--confirm-command", "--accept-messages", "--root", "C:/msys64") -NoNewWindow -Wait
|
||||
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
- name: Install msys2 tools
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
write-host "downloading plugin"
|
||||
Invoke-WebRequest -Uri "https://github.com/GoogleCloudPlatform/kms-integrations/releases/download/cng-v1.0/kmscng-1.0-windows-amd64.zip" -OutFile "${env:RUNNER_TEMP}\plugin.zip"
|
||||
Expand-Archive -Path "${env:RUNNER_TEMP}\plugin.zip" -DestinationPath ${env:RUNNER_TEMP}\plugin\
|
||||
write-host "Installing plugin"
|
||||
& "${env:RUNNER_TEMP}\plugin\*\kmscng.msi" /quiet
|
||||
write-host "plugin installed"
|
||||
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang", "make") -NoNewWindow -Wait
|
||||
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
- name: verify tools
|
||||
run: |
|
||||
get-command gcc
|
||||
gcc --version
|
||||
get-command make
|
||||
make --version
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
cache: true
|
||||
- name: 'Install CUDA ${{ matrix.cuda.version }}'
|
||||
# CUDA installation steps
|
||||
- name: 'Cache CUDA installer'
|
||||
id: cache-cuda
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: cuda-install.exe
|
||||
key: ${{ matrix.cuda.url }}
|
||||
- name: 'Conditionally Download CUDA'
|
||||
if: steps.cache-cuda.outputs.cache-hit != 'true'
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
write-host "downloading CUDA Installer"
|
||||
Invoke-WebRequest -Uri "${{ matrix.cuda.url }}" -OutFile "${env:RUNNER_TEMP}\cuda-install.exe"
|
||||
write-host "Installing CUDA"
|
||||
Start-Process "${env:RUNNER_TEMP}\cuda-install.exe" -ArgumentList '-s' -NoNewWindow -Wait
|
||||
write-host "Completed CUDA"
|
||||
Invoke-WebRequest -Uri "${{ matrix.cuda.url }}" -OutFile "cuda-install.exe"
|
||||
- name: 'Install CUDA'
|
||||
run: |
|
||||
$subpackages = @("cudart", "nvcc", "cublas", "cublas_dev") | foreach-object {"${_}_${{ matrix.cuda.version }}"}
|
||||
Start-Process "cuda-install.exe" -ArgumentList (@("-s") + $subpackages) -NoNewWindow -Wait
|
||||
- name: 'Verify CUDA'
|
||||
run: |
|
||||
& (resolve-path "c:\Program Files\NVIDIA*\CUDA\v*\bin\nvcc.exe")[0] --version
|
||||
$cudaPath=((resolve-path "c:\Program Files\NVIDIA*\CUDA\v*\bin\nvcc.exe")[0].path | split-path | split-path)
|
||||
$cudaVer=($cudaPath | split-path -leaf ) -replace 'v(\d+).(\d+)', '$1_$2'
|
||||
echo "$cudaPath\bin" >> $env:GITHUB_PATH
|
||||
echo "CUDA_PATH=$cudaPath" >> $env:GITHUB_ENV
|
||||
echo "CUDA_PATH_V${cudaVer}=$cudaPath" >> $env:GITHUB_ENV
|
||||
echo "CUDA_PATH_VX_Y=CUDA_PATH_V${cudaVer}" >> $env:GITHUB_ENV
|
||||
- name: 'Verify CUDA'
|
||||
run: nvcc -V
|
||||
- run: go get ./...
|
||||
- name: go generate
|
||||
echo "$cudaPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "CUDA_PATH=$cudaPath" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
|
||||
echo "CUDA_PATH_V${cudaVer}=$cudaPath" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
|
||||
echo "CUDA_PATH_VX_Y=CUDA_PATH_V${cudaVer}" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
|
||||
|
||||
- name: make cuda runner
|
||||
run: |
|
||||
$gopath=(get-command go).source | split-path -parent
|
||||
$cudabin=(get-command nvcc).source | split-path
|
||||
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
|
||||
cd $env:GITHUB_WORKSPACE
|
||||
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
||||
$env:PATH="$gopath;$cudabin;$env:PATH"
|
||||
$env:OLLAMA_SKIP_CPU_GENERATE="1"
|
||||
go generate -x ./...
|
||||
- name: 'gather cuda dependencies'
|
||||
run: |
|
||||
$NVIDIA_DIR=(resolve-path 'C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*\bin\')[0]
|
||||
md "dist\deps"
|
||||
cp "${NVIDIA_DIR}\cudart64_*.dll" "dist\deps\"
|
||||
cp "${NVIDIA_DIR}\cublas64_*.dll" "dist\deps\"
|
||||
cp "${NVIDIA_DIR}\cublasLt64_*.dll" "dist\deps\"
|
||||
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
|
||||
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
|
||||
make cuda_v$(($env:CUDA_PATH | split-path -leaf) -replace 'v(\d+).*', '$1')
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: generate-windows-cuda-${{ matrix.cuda.version }}
|
||||
path: |
|
||||
build/**/*
|
||||
dist/windows-amd64/**
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: windows-cuda-deps-${{ matrix.cuda.version }}
|
||||
path: dist/deps/*
|
||||
|
||||
|
||||
# windows arm64 generate, go build, and zip file (no installer)
|
||||
# Output of this build is aggregated into the final x86 build
|
||||
@ -292,6 +252,30 @@ jobs:
|
||||
choco install -y --no-progress git gzip
|
||||
echo "C:\Program Files\Git\cmd" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "C:\ProgramData\chocolatey\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
# pacman is buggy on win arm64, so we avoid using it, but rely on the binary artifacts
|
||||
# we download the sfx (7zip bundle) which isn't fully set up, but the binaries we need to build work
|
||||
- name: Install msys2 x64
|
||||
run: |
|
||||
$url="https://github.com/msys2/msys2-installer/releases/download/2024-07-27/msys2-base-x86_64-20240727.sfx.exe"
|
||||
write-host "Downloading MSYS2"
|
||||
Invoke-WebRequest -Uri "$url" -outfile "${env:RUNNER_TEMP}\msys2.exe"
|
||||
write-host "Installing msys2"
|
||||
Start-Process "${env:RUNNER_TEMP}\msys2.exe" -ArgumentList @(
|
||||
'-y', '-oC:\'
|
||||
) -NoNewWindow -Wait
|
||||
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
# since pacman isn't reliable, we just download the tar file and extract directly
|
||||
- name: Downloading and extracting msys2 make tar file
|
||||
run: |
|
||||
$url="https://mirror.msys2.org/msys/x86_64/make-4.4.1-2-x86_64.pkg.tar.zst"
|
||||
write-host "Downloading make"
|
||||
Invoke-WebRequest -Uri "$url" -outfile c:\msys64\make.tar.zst
|
||||
cd c:\msys64; tar -xf make.tar.zst
|
||||
rm c:\msys64\make.tar.zst
|
||||
- name: Verify Make works properly
|
||||
run: |
|
||||
echo $env:PATH
|
||||
make --version
|
||||
- name: Install Visual Studio 2022
|
||||
run: |
|
||||
$components = @(
|
||||
@ -385,13 +369,12 @@ jobs:
|
||||
- run: |
|
||||
$gopath=(get-command go).source | split-path -parent
|
||||
$gccpath=(get-command gcc).source | split-path -parent
|
||||
& "C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools\Launch-VsDevShell.ps1"
|
||||
cd $env:GITHUB_WORKSPACE
|
||||
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
||||
$env:PATH="$gopath;$gccpath;$env:PATH;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\CMake\CMake\bin"
|
||||
import-module 'C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||
Enter-VsDevShell -Arch arm64 -vsinstallpath 'C:\Program Files\Microsoft Visual Studio\2022\Community' -skipautomaticlocation
|
||||
$env:PATH="$gopath;$gccpath;$env:PATH"
|
||||
echo $env:PATH
|
||||
$env:ARCH="arm64"
|
||||
.\scripts\build_windows.ps1 buildOllama buildApp gatherDependencies distZip
|
||||
.\scripts\build_windows.ps1 buildOllama buildApp gatherDependencies sign distZip
|
||||
name: 'Windows Build'
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
@ -441,6 +424,24 @@ jobs:
|
||||
write-host "Installing plugin"
|
||||
& "${env:RUNNER_TEMP}\plugin\*\kmscng.msi" /quiet
|
||||
write-host "plugin installed"
|
||||
- name: Install msys2
|
||||
run: |
|
||||
$msys2_url="https://github.com/msys2/msys2-installer/releases/download/2024-07-27/msys2-x86_64-20240727.exe"
|
||||
write-host "Downloading msys2"
|
||||
Invoke-WebRequest -Uri "${msys2_url}" -OutFile "${env:RUNNER_TEMP}\msys2.exe"
|
||||
write-host "Installing msys2"
|
||||
Start-Process "${env:RUNNER_TEMP}\msys2.exe" -ArgumentList @("in", "--confirm-command", "--accept-messages", "--root", "C:/msys64") -NoNewWindow -Wait
|
||||
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
- name: Install msys2 tools
|
||||
run: |
|
||||
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang", "make") -NoNewWindow -Wait
|
||||
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
- name: verify tools
|
||||
run: |
|
||||
get-command gcc
|
||||
gcc --version
|
||||
get-command make
|
||||
make --version
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
@ -451,19 +452,10 @@ jobs:
|
||||
name: generate-windows-cpu
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: generate-windows-cuda-11
|
||||
name: generate-windows-cuda-11.3
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: generate-windows-cuda-12
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: windows-cuda-deps-11
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: windows-cuda-deps-12
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: windows-rocm-deps
|
||||
name: generate-windows-cuda-12.4
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: generate-windows-rocm
|
||||
@ -473,12 +465,11 @@ jobs:
|
||||
path: dist
|
||||
- run: dir build
|
||||
- run: |
|
||||
$gopath=(get-command go).source | split-path -parent
|
||||
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
|
||||
cd $env:GITHUB_WORKSPACE
|
||||
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
||||
$env:PATH="$gopath;$env:PATH"
|
||||
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
|
||||
$env:OLLAMA_SKIP_GENERATE="1"
|
||||
$env:ARCH="amd64"
|
||||
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
|
||||
& .\scripts\build_windows.ps1
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
|
226
.github/workflows/test.yaml
vendored
226
.github/workflows/test.yaml
vendored
@ -1,5 +1,11 @@
|
||||
name: test
|
||||
|
||||
env:
|
||||
ROCM_WINDOWS_URL: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe
|
||||
MSYS2_URL: https://github.com/msys2/msys2-installer/releases/download/2024-07-27/msys2-x86_64-20240727.exe
|
||||
CUDA_12_WINDOWS_URL: https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_551.61_windows.exe
|
||||
CUDA_12_WINDOWS_VER: 12.4
|
||||
|
||||
concurrency:
|
||||
# For PRs, later CI runs preempt previous ones. e.g. a force push on a PR
|
||||
# cancels running CI jobs and starts all new ones.
|
||||
@ -21,9 +27,6 @@ jobs:
|
||||
changes:
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
GENERATE: ${{ steps.changes.outputs.GENERATE }}
|
||||
GENERATE_CUDA: ${{ steps.changes.outputs.GENERATE_CUDA }}
|
||||
GENERATE_ROCM: ${{ steps.changes.outputs.GENERATE_ROCM }}
|
||||
RUNNERS: ${{ steps.changes.outputs.RUNNERS }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
@ -39,53 +42,12 @@ jobs:
|
||||
}
|
||||
|
||||
{
|
||||
echo GENERATE=$(changed 'llm/llama.cpp' 'llm/patches/**' 'llm/ext_server/**' 'llm/generate/**')
|
||||
echo GENERATE_CUDA=$(changed 'llm/llama.cpp' 'llm/patches/**' 'llm/ext_server/**' 'llm/generate/**')
|
||||
echo GENERATE_ROCM=$(changed 'llm/llama.cpp' 'llm/patches/**' 'llm/ext_server/**' 'llm/generate/**')
|
||||
echo RUNNERS=$(changed 'llama/**')
|
||||
} >>$GITHUB_OUTPUT
|
||||
|
||||
generate:
|
||||
runners-linux-cuda:
|
||||
needs: [changes]
|
||||
if: ${{ needs.changes.outputs.GENERATE == 'True' }}
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-latest, macos-latest, windows-2019]
|
||||
arch: [amd64, arm64]
|
||||
exclude:
|
||||
- os: ubuntu-latest
|
||||
arch: arm64
|
||||
- os: windows-2019
|
||||
arch: arm64
|
||||
runs-on: ${{ matrix.os }}
|
||||
env:
|
||||
GOARCH: ${{ matrix.arch }}
|
||||
CGO_ENABLED: '1'
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
cache: true
|
||||
- run: go get ./...
|
||||
- run: |
|
||||
$gopath=(get-command go).source | split-path -parent
|
||||
$gccpath=(get-command gcc).source | split-path -parent
|
||||
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
|
||||
cd $env:GITHUB_WORKSPACE
|
||||
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
||||
$env:PATH="$gopath;$gccpath;$env:PATH"
|
||||
echo $env:PATH
|
||||
go generate -x ./...
|
||||
if: ${{ startsWith(matrix.os, 'windows-') }}
|
||||
name: 'Windows Go Generate'
|
||||
- run: go generate -x ./...
|
||||
if: ${{ ! startsWith(matrix.os, 'windows-') }}
|
||||
name: 'Unix Go Generate'
|
||||
- run: go build .
|
||||
generate-cuda:
|
||||
needs: [changes]
|
||||
if: ${{ needs.changes.outputs.GENERATE_CUDA == 'True' }}
|
||||
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
|
||||
strategy:
|
||||
matrix:
|
||||
cuda-version:
|
||||
@ -95,8 +57,6 @@ jobs:
|
||||
steps:
|
||||
- run: |
|
||||
apt-get update && apt-get install -y git build-essential curl
|
||||
curl -fsSL https://github.com/Kitware/CMake/releases/download/v3.28.1/cmake-3.28.1-linux-x86_64.tar.gz \
|
||||
| tar -zx -C /usr --strip-components 1
|
||||
env:
|
||||
DEBIAN_FRONTEND: noninteractive
|
||||
- uses: actions/checkout@v4
|
||||
@ -107,12 +67,11 @@ jobs:
|
||||
- run: go get ./...
|
||||
- run: |
|
||||
git config --global --add safe.directory /__w/ollama/ollama
|
||||
go generate -x ./...
|
||||
env:
|
||||
OLLAMA_SKIP_CPU_GENERATE: '1'
|
||||
generate-rocm:
|
||||
cores=$(grep '^core id' /proc/cpuinfo |sort -u|wc -l)
|
||||
make -j $cores cuda_v11
|
||||
runners-linux-rocm:
|
||||
needs: [changes]
|
||||
if: ${{ needs.changes.outputs.GENERATE_ROCM == 'True' }}
|
||||
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
|
||||
strategy:
|
||||
matrix:
|
||||
rocm-version:
|
||||
@ -122,8 +81,6 @@ jobs:
|
||||
steps:
|
||||
- run: |
|
||||
apt-get update && apt-get install -y git build-essential curl rocm-libs
|
||||
curl -fsSL https://github.com/Kitware/CMake/releases/download/v3.28.1/cmake-3.28.1-linux-x86_64.tar.gz \
|
||||
| tar -zx -C /usr --strip-components 1
|
||||
env:
|
||||
DEBIAN_FRONTEND: noninteractive
|
||||
- uses: actions/checkout@v4
|
||||
@ -134,14 +91,13 @@ jobs:
|
||||
- run: go get ./...
|
||||
- run: |
|
||||
git config --global --add safe.directory /__w/ollama/ollama
|
||||
go generate -x ./...
|
||||
env:
|
||||
OLLAMA_SKIP_CPU_GENERATE: '1'
|
||||
cores=$(grep '^core id' /proc/cpuinfo |sort -u|wc -l)
|
||||
make -j $cores rocm
|
||||
|
||||
# ROCm generation step
|
||||
generate-windows-rocm:
|
||||
runners-windows-rocm:
|
||||
needs: [changes]
|
||||
if: ${{ needs.changes.outputs.GENERATE_ROCM == 'True' }}
|
||||
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
|
||||
runs-on: windows
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
@ -149,35 +105,50 @@ jobs:
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
cache: true
|
||||
- name: 'Install ROCm'
|
||||
- name: Set make jobs default
|
||||
run: |
|
||||
echo "MAKEFLAGS=--jobs=$((Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
|
||||
|
||||
# ROCM installation steps
|
||||
- name: 'Cache ROCm installer'
|
||||
id: cache-rocm
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: rocm-install.exe
|
||||
key: ${{ env.ROCM_WINDOWS_URL }}
|
||||
- name: 'Conditionally Download ROCm'
|
||||
if: steps.cache-rocm.outputs.cache-hit != 'true'
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
write-host "downloading AMD HIP Installer"
|
||||
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
|
||||
write-host "Installing AMD HIP"
|
||||
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
|
||||
write-host "Completed AMD HIP"
|
||||
Invoke-WebRequest -Uri "${env:ROCM_WINDOWS_URL}" -OutFile "rocm-install.exe"
|
||||
- name: 'Install ROCm'
|
||||
run: |
|
||||
Start-Process "rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
|
||||
- name: 'Verify ROCm'
|
||||
run: |
|
||||
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
|
||||
- run: go get ./...
|
||||
- run: |
|
||||
$gopath=(get-command go).source | split-path -parent
|
||||
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
|
||||
cd $env:GITHUB_WORKSPACE
|
||||
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
||||
$env:PATH="$gopath;$env:PATH"
|
||||
$env:OLLAMA_SKIP_CPU_GENERATE="1"
|
||||
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
go generate -x ./...
|
||||
name: go generate
|
||||
env:
|
||||
OLLAMA_SKIP_CPU_GENERATE: '1'
|
||||
echo "HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path | select -first 1)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
|
||||
|
||||
- name: Add msys paths
|
||||
run: |
|
||||
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
- name: Install msys2 tools
|
||||
run: |
|
||||
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
|
||||
|
||||
- name: make rocm runner
|
||||
run: |
|
||||
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
|
||||
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
|
||||
make -C llama print-HIP_PATH print-HIP_LIB_DIR
|
||||
make rocm
|
||||
|
||||
# CUDA generation step
|
||||
generate-windows-cuda:
|
||||
runners-windows-cuda:
|
||||
needs: [changes]
|
||||
if: ${{ needs.changes.outputs.GENERATE_CUDA == 'True' }}
|
||||
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
|
||||
runs-on: windows
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
@ -185,37 +156,51 @@ jobs:
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
cache: true
|
||||
- name: 'Install CUDA'
|
||||
- name: Set make jobs default
|
||||
run: |
|
||||
echo "MAKEFLAGS=--jobs=$((Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
|
||||
|
||||
# CUDA installation steps
|
||||
- name: 'Cache CUDA installer'
|
||||
id: cache-cuda
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: cuda-install.exe
|
||||
key: ${{ env.CUDA_12_WINDOWS_URL }}
|
||||
- name: 'Conditionally Download CUDA'
|
||||
if: steps.cache-cuda.outputs.cache-hit != 'true'
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
write-host "downloading CUDA Installer"
|
||||
Invoke-WebRequest -Uri "https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe" -OutFile "${env:RUNNER_TEMP}\cuda-install.exe"
|
||||
write-host "Installing CUDA"
|
||||
Start-Process "${env:RUNNER_TEMP}\cuda-install.exe" -ArgumentList '-s' -NoNewWindow -Wait
|
||||
write-host "Completed CUDA"
|
||||
Invoke-WebRequest -Uri "${env:CUDA_12_WINDOWS_URL}" -OutFile "cuda-install.exe"
|
||||
- name: 'Install CUDA'
|
||||
run: |
|
||||
$subpackages = @("cudart", "nvcc", "cublas", "cublas_dev") | foreach-object {"${_}_${{ env.CUDA_12_WINDOWS_VER }}"}
|
||||
Start-Process "cuda-install.exe" -ArgumentList (@("-s") + $subpackages) -NoNewWindow -Wait
|
||||
- name: 'Verify CUDA'
|
||||
run: |
|
||||
& (resolve-path "c:\Program Files\NVIDIA*\CUDA\v*\bin\nvcc.exe")[0] --version
|
||||
$cudaPath=((resolve-path "c:\Program Files\NVIDIA*\CUDA\v*\bin\nvcc.exe")[0].path | split-path | split-path)
|
||||
$cudaVer=($cudaPath | split-path -leaf ) -replace 'v(\d+).(\d+)', '$1_$2'
|
||||
echo "$cudaPath\bin" >> $env:GITHUB_PATH
|
||||
echo "CUDA_PATH=$cudaPath" >> $env:GITHUB_ENV
|
||||
echo "CUDA_PATH_V${cudaVer}=$cudaPath" >> $env:GITHUB_ENV
|
||||
echo "CUDA_PATH_VX_Y=CUDA_PATH_V${cudaVer}" >> $env:GITHUB_ENV
|
||||
- name: 'Verify CUDA'
|
||||
run: nvcc -V
|
||||
- run: go get ./...
|
||||
- name: go generate
|
||||
run: |
|
||||
$gopath=(get-command go).source | split-path -parent
|
||||
$cudabin=(get-command nvcc).source | split-path
|
||||
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
|
||||
cd $env:GITHUB_WORKSPACE
|
||||
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
||||
$env:PATH="$gopath;$cudabin;$env:PATH"
|
||||
$env:OLLAMA_SKIP_CPU_GENERATE="1"
|
||||
go generate -x ./...
|
||||
env:
|
||||
OLLAMA_SKIP_CPU_GENERATE: '1'
|
||||
echo "$cudaPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "CUDA_PATH=$cudaPath" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
|
||||
echo "CUDA_PATH_V${cudaVer}=$cudaPath" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
|
||||
echo "CUDA_PATH_VX_Y=CUDA_PATH_V${cudaVer}" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
|
||||
|
||||
runners:
|
||||
- name: Add msys paths
|
||||
run: |
|
||||
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
- name: Install msys2 tools
|
||||
run: |
|
||||
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
|
||||
- name: make cuda runner
|
||||
run: |
|
||||
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
|
||||
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
|
||||
make cuda_v$(($env:CUDA_PATH | split-path -leaf) -replace 'v(\d+).*', '$1')
|
||||
|
||||
runners-cpu:
|
||||
needs: [changes]
|
||||
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
|
||||
strategy:
|
||||
@ -238,21 +223,30 @@ jobs:
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
cache: true
|
||||
- run: go get ./...
|
||||
- name: Add msys paths
|
||||
if: ${{ startsWith(matrix.os, 'windows-') }}
|
||||
run: |
|
||||
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
- name: Install msys2 tools
|
||||
if: ${{ startsWith(matrix.os, 'windows-') }}
|
||||
run: |
|
||||
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
|
||||
- name: 'Build Windows Go Runners'
|
||||
if: ${{ startsWith(matrix.os, 'windows-') }}
|
||||
run: |
|
||||
$gopath=(get-command go).source | split-path -parent
|
||||
$gccpath=(get-command gcc).source | split-path -parent
|
||||
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
|
||||
cd $env:GITHUB_WORKSPACE
|
||||
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
|
||||
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
||||
$env:PATH="$gopath;$gccpath;$env:PATH"
|
||||
echo $env:PATH
|
||||
make -C llama -j 4
|
||||
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
|
||||
make -j 4
|
||||
- name: 'Build Unix Go Runners'
|
||||
if: ${{ ! startsWith(matrix.os, 'windows-') }}
|
||||
run: make -C llama -j 4
|
||||
run: make -j 4
|
||||
- run: go build .
|
||||
|
||||
lint:
|
||||
@ -287,7 +281,7 @@ jobs:
|
||||
shell: bash
|
||||
- uses: golangci/golangci-lint-action@v6
|
||||
with:
|
||||
args: --timeout 8m0s -v
|
||||
args: --timeout 10m0s -v
|
||||
test:
|
||||
strategy:
|
||||
matrix:
|
||||
@ -302,9 +296,6 @@ jobs:
|
||||
env:
|
||||
GOARCH: ${{ matrix.arch }}
|
||||
CGO_ENABLED: '1'
|
||||
OLLAMA_CPU_TARGET: 'static'
|
||||
OLLAMA_SKIP_CPU_GENERATE: '1'
|
||||
OLLAMA_SKIP_METAL_GENERATE: '1'
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
@ -319,7 +310,6 @@ jobs:
|
||||
arm64) echo ARCH=arm64 ;;
|
||||
esac >>$GITHUB_ENV
|
||||
shell: bash
|
||||
- run: go generate ./...
|
||||
- run: go build
|
||||
- run: go test -v ./...
|
||||
|
||||
@ -333,4 +323,4 @@ jobs:
|
||||
submodules: recursive
|
||||
- name: Verify patches carry all the changes
|
||||
run: |
|
||||
cd llama && make apply-patches sync && git diff --compact-summary --exit-code .
|
||||
make apply-patches sync && git diff --compact-summary --exit-code llama
|
4
.gitmodules
vendored
4
.gitmodules
vendored
@ -1,4 +0,0 @@
|
||||
[submodule "llama.cpp"]
|
||||
path = llm/llama.cpp
|
||||
url = https://github.com/ggerganov/llama.cpp.git
|
||||
shallow = true
|
330
Dockerfile
330
Dockerfile
@ -1,189 +1,204 @@
|
||||
ARG GOLANG_VERSION=1.22.5
|
||||
ARG GOLANG_VERSION=1.22.8
|
||||
ARG CMAKE_VERSION=3.22.1
|
||||
ARG CUDA_VERSION_11=11.3.1
|
||||
ARG CUDA_V11_ARCHITECTURES="50;52;53;60;61;62;70;72;75;80;86"
|
||||
ARG CUDA_VERSION_12=12.4.0
|
||||
ARG CUDA_V12_ARCHITECTURES="60;61;62;70;72;75;80;86;87;89;90;90a"
|
||||
ARG ROCM_VERSION=6.1.2
|
||||
ARG JETPACK_6=r36.2.0
|
||||
ARG JETPACK_5=r35.4.1
|
||||
|
||||
# Copy the minimal context we need to run the generate scripts
|
||||
FROM scratch AS llm-code
|
||||
COPY .git .git
|
||||
COPY .gitmodules .gitmodules
|
||||
COPY llm llm
|
||||
|
||||
FROM --platform=linux/amd64 nvidia/cuda:$CUDA_VERSION_11-devel-centos7 AS cuda-11-build-amd64
|
||||
ARG CMAKE_VERSION
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
|
||||
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:$PATH
|
||||
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
|
||||
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
|
||||
ARG CGO_CFLAGS
|
||||
ARG CUDA_V11_ARCHITECTURES
|
||||
ENV GOARCH=amd64
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
OLLAMA_SKIP_STATIC_GENERATE=1 \
|
||||
OLLAMA_SKIP_CPU_GENERATE=1 \
|
||||
CMAKE_CUDA_ARCHITECTURES="${CUDA_V11_ARCHITECTURES}" \
|
||||
CUDA_VARIANT="_v11" \
|
||||
bash gen_linux.sh
|
||||
|
||||
FROM --platform=linux/amd64 nvidia/cuda:$CUDA_VERSION_12-devel-centos7 AS cuda-12-build-amd64
|
||||
ARG CMAKE_VERSION
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
|
||||
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:$PATH
|
||||
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
|
||||
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
|
||||
ARG CGO_CFLAGS
|
||||
ARG CUDA_V12_ARCHITECTURES
|
||||
ENV GOARCH=amd64
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
OLLAMA_SKIP_STATIC_GENERATE=1 \
|
||||
OLLAMA_SKIP_CPU_GENERATE=1 \
|
||||
CMAKE_CUDA_ARCHITECTURES="${CUDA_V12_ARCHITECTURES}" \
|
||||
CUDA_VARIANT="_v12" \
|
||||
OLLAMA_CUSTOM_CUDA_DEFS="-DGGML_CUDA_USE_GRAPHS=on" \
|
||||
bash gen_linux.sh
|
||||
|
||||
FROM --platform=linux/arm64 nvidia/cuda:$CUDA_VERSION_11-devel-rockylinux8 AS cuda-11-build-runner-arm64
|
||||
ARG CMAKE_VERSION
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
|
||||
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
|
||||
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
|
||||
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
|
||||
ARG CGO_CFLAGS
|
||||
ARG CUDA_V11_ARCHITECTURES
|
||||
ENV GOARCH=arm64
|
||||
RUN OLLAMA_SKIP_STATIC_GENERATE=1 \
|
||||
OLLAMA_SKIP_CPU_GENERATE=1 \
|
||||
CMAKE_CUDA_ARCHITECTURES="${CUDA_V11_ARCHITECTURES}" \
|
||||
CUDA_VARIANT="_v11" \
|
||||
bash gen_linux.sh
|
||||
|
||||
FROM --platform=linux/arm64 nvidia/cuda:$CUDA_VERSION_12-devel-rockylinux8 AS cuda-12-build-runner-arm64
|
||||
ARG CMAKE_VERSION
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
|
||||
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
|
||||
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
|
||||
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
|
||||
ARG CGO_CFLAGS
|
||||
ARG CUDA_V12_ARCHITECTURES
|
||||
ENV GOARCH=arm64
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
OLLAMA_SKIP_STATIC_GENERATE=1 \
|
||||
OLLAMA_SKIP_CPU_GENERATE=1 \
|
||||
CMAKE_CUDA_ARCHITECTURES="${CUDA_V12_ARCHITECTURES}" \
|
||||
CUDA_VARIANT="_v12" \
|
||||
OLLAMA_CUSTOM_CUDA_DEFS="-DGGML_CUDA_USE_GRAPHS=on" \
|
||||
bash gen_linux.sh
|
||||
|
||||
|
||||
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete AS rocm-build-amd64
|
||||
ARG CMAKE_VERSION
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
|
||||
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:$PATH
|
||||
ENV LIBRARY_PATH=/opt/amdgpu/lib64
|
||||
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
|
||||
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
|
||||
ARG CGO_CFLAGS
|
||||
ARG AMDGPU_TARGETS
|
||||
ENV GOARCH=amd64
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_SKIP_CPU_GENERATE=1 bash gen_linux.sh
|
||||
RUN mkdir -p ../../dist/linux-amd64-rocm/lib/ollama && \
|
||||
(cd /opt/rocm/lib && tar cf - rocblas/library) | (cd ../../dist/linux-amd64-rocm/lib/ollama && tar xf - )
|
||||
|
||||
FROM --platform=linux/amd64 centos:7 AS cpu-builder-amd64
|
||||
### To create a local image for building linux binaries on mac or windows with efficient incremental builds
|
||||
#
|
||||
# docker build --platform linux/amd64 -t builder-amd64 -f Dockerfile --target unified-builder-amd64 .
|
||||
# docker run --platform linux/amd64 --rm -it -v $(pwd):/go/src/github.com/ollama/ollama/ builder-amd64
|
||||
#
|
||||
### Then incremental builds will be much faster in this container
|
||||
#
|
||||
# make -j 10 && go build -trimpath -o dist/linux-amd64/ollama .
|
||||
#
|
||||
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete AS unified-builder-amd64
|
||||
ARG CMAKE_VERSION
|
||||
ARG GOLANG_VERSION
|
||||
ARG CUDA_VERSION_11
|
||||
ARG CUDA_VERSION_12
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:/usr/local/cuda/bin:$PATH
|
||||
ENV LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64
|
||||
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs:/opt/amdgpu/lib64
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
|
||||
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:$PATH
|
||||
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
|
||||
ARG OLLAMA_CUSTOM_CPU_DEFS
|
||||
ARG CGO_CFLAGS
|
||||
ENV GOARCH=amd64
|
||||
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
|
||||
RUN yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-rhel7.repo && \
|
||||
dnf clean all && \
|
||||
dnf install -y \
|
||||
zsh \
|
||||
cuda-$(echo ${CUDA_VERSION_11} | cut -f1-2 -d. | sed -e "s/\./-/g") \
|
||||
cuda-$(echo ${CUDA_VERSION_12} | cut -f1-2 -d. | sed -e "s/\./-/g")
|
||||
# TODO intel oneapi goes here...
|
||||
ENV GOARCH amd64
|
||||
ENV CGO_ENABLED 1
|
||||
WORKDIR /go/src/github.com/ollama/ollama/
|
||||
ENTRYPOINT [ "zsh" ]
|
||||
|
||||
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu-build-amd64
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu" bash gen_linux.sh
|
||||
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx-build-amd64
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx" bash gen_linux.sh
|
||||
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx2-build-amd64
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx2" bash gen_linux.sh
|
||||
|
||||
FROM --platform=linux/arm64 rockylinux:8 AS cpu-builder-arm64
|
||||
### To create a local image for building linux binaries on mac or linux/arm64 with efficient incremental builds
|
||||
# Note: this does not contain jetson variants
|
||||
#
|
||||
# docker build --platform linux/arm64 -t builder-arm64 -f Dockerfile --target unified-builder-arm64 .
|
||||
# docker run --platform linux/arm64 --rm -it -v $(pwd):/go/src/github.com/ollama/ollama/ builder-arm64
|
||||
#
|
||||
FROM --platform=linux/arm64 rockylinux:8 AS unified-builder-arm64
|
||||
ARG CMAKE_VERSION
|
||||
ARG GOLANG_VERSION
|
||||
ARG CUDA_VERSION_11
|
||||
ARG CUDA_VERSION_12
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
|
||||
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
|
||||
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
|
||||
ARG OLLAMA_CUSTOM_CPU_DEFS
|
||||
ARG CGO_CFLAGS
|
||||
ENV GOARCH=arm64
|
||||
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
|
||||
RUN yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/sbsa/cuda-rhel8.repo && \
|
||||
dnf config-manager --set-enabled appstream && \
|
||||
dnf clean all && \
|
||||
dnf install -y \
|
||||
zsh \
|
||||
cuda-toolkit-$(echo ${CUDA_VERSION_11} | cut -f1-2 -d. | sed -e "s/\./-/g") \
|
||||
cuda-toolkit-$(echo ${CUDA_VERSION_12} | cut -f1-2 -d. | sed -e "s/\./-/g")
|
||||
ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH:/usr/local/cuda/bin
|
||||
ENV LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64
|
||||
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs:/opt/amdgpu/lib64
|
||||
ENV GOARCH amd64
|
||||
ENV CGO_ENABLED 1
|
||||
WORKDIR /go/src/github.com/ollama/ollama/
|
||||
ENTRYPOINT [ "zsh" ]
|
||||
|
||||
FROM --platform=linux/arm64 cpu-builder-arm64 AS cpu-build-arm64
|
||||
FROM --platform=linux/amd64 unified-builder-amd64 AS runners-amd64
|
||||
COPY . .
|
||||
ARG OLLAMA_SKIP_CUDA_GENERATE
|
||||
ARG OLLAMA_SKIP_CUDA_11_GENERATE
|
||||
ARG OLLAMA_SKIP_CUDA_12_GENERATE
|
||||
ARG OLLAMA_SKIP_ROCM_GENERATE
|
||||
ARG CUDA_V11_ARCHITECTURES
|
||||
ARG CUDA_V12_ARCHITECTURES
|
||||
ARG OLLAMA_FAST_BUILD
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu" bash gen_linux.sh
|
||||
if grep "^flags" /proc/cpuinfo|grep avx>/dev/null; then \
|
||||
make -j $(expr $(nproc) / 2 ) ; \
|
||||
else \
|
||||
make -j 5 ; \
|
||||
fi
|
||||
|
||||
FROM --platform=linux/arm64 unified-builder-arm64 AS runners-arm64
|
||||
COPY . .
|
||||
ARG OLLAMA_SKIP_CUDA_GENERATE
|
||||
ARG OLLAMA_SKIP_CUDA_11_GENERATE
|
||||
ARG OLLAMA_SKIP_CUDA_12_GENERATE
|
||||
ARG CUDA_V11_ARCHITECTURES
|
||||
ARG CUDA_V12_ARCHITECTURES
|
||||
ARG OLLAMA_FAST_BUILD
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
make -j 5
|
||||
|
||||
# Jetsons need to be built in discrete stages
|
||||
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK_5} AS runners-jetpack5-arm64
|
||||
ARG GOLANG_VERSION
|
||||
RUN apt-get update && apt-get install -y git curl ccache && \
|
||||
curl -s -L https://dl.google.com/go/go${GOLANG_VERSION}.linux-arm64.tar.gz | tar xz -C /usr/local && \
|
||||
ln -s /usr/local/go/bin/go /usr/local/bin/go && \
|
||||
ln -s /usr/local/go/bin/gofmt /usr/local/bin/gofmt && \
|
||||
apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
WORKDIR /go/src/github.com/ollama/ollama/
|
||||
COPY . .
|
||||
ARG CGO_CFLAGS
|
||||
ENV GOARCH arm64
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
make -j 5 cuda_v11 \
|
||||
CUDA_ARCHITECTURES="72;87" \
|
||||
GPU_RUNNER_VARIANT=_jetpack5 \
|
||||
CGO_EXTRA_LDFLAGS_LINUX=-L/usr/local/cuda/lib64/stubs \
|
||||
DIST_LIB_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ollama \
|
||||
DIST_GPU_RUNNER_DEPS_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ollama/cuda_jetpack5
|
||||
|
||||
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK_6} AS runners-jetpack6-arm64
|
||||
ARG GOLANG_VERSION
|
||||
RUN apt-get update && apt-get install -y git curl ccache && \
|
||||
curl -s -L https://dl.google.com/go/go${GOLANG_VERSION}.linux-arm64.tar.gz | tar xz -C /usr/local && \
|
||||
ln -s /usr/local/go/bin/go /usr/local/bin/go && \
|
||||
ln -s /usr/local/go/bin/gofmt /usr/local/bin/gofmt && \
|
||||
apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
WORKDIR /go/src/github.com/ollama/ollama/
|
||||
COPY . .
|
||||
ARG CGO_CFLAGS
|
||||
ENV GOARCH arm64
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
make -j 5 cuda_v12 \
|
||||
CUDA_ARCHITECTURES="87" \
|
||||
GPU_RUNNER_VARIANT=_jetpack6 \
|
||||
CGO_EXTRA_LDFLAGS_LINUX=-L/usr/local/cuda/lib64/stubs \
|
||||
DIST_LIB_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ollama \
|
||||
DIST_GPU_RUNNER_DEPS_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ollama/cuda_jetpack6
|
||||
|
||||
|
||||
# Intermediate stages used for ./scripts/build_linux.sh
|
||||
FROM --platform=linux/amd64 cpu-build-amd64 AS build-amd64
|
||||
ENV CGO_ENABLED=1
|
||||
FROM --platform=linux/amd64 centos:7 AS builder-amd64
|
||||
ARG CMAKE_VERSION
|
||||
ARG GOLANG_VERSION
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
|
||||
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
|
||||
ENV CGO_ENABLED 1
|
||||
ENV GOARCH amd64
|
||||
WORKDIR /go/src/github.com/ollama/ollama
|
||||
|
||||
FROM --platform=linux/amd64 builder-amd64 AS build-amd64
|
||||
COPY . .
|
||||
COPY --from=cpu_avx-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
COPY --from=cuda-11-build-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
|
||||
COPY --from=cuda-11-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
COPY --from=cuda-12-build-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
|
||||
COPY --from=cuda-12-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
|
||||
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
COPY --from=runners-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
|
||||
COPY --from=runners-amd64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
ARG GOFLAGS
|
||||
ARG CGO_CFLAGS
|
||||
ARG OLLAMA_SKIP_ROCM_GENERATE
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
go build -trimpath -o dist/linux-amd64/bin/ollama .
|
||||
RUN cd dist/linux-$GOARCH && \
|
||||
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH.tgz
|
||||
RUN cd dist/linux-$GOARCH-rocm && \
|
||||
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH-rocm.tgz
|
||||
RUN if [ -z ${OLLAMA_SKIP_ROCM_GENERATE} ] ; then \
|
||||
cd dist/linux-$GOARCH-rocm && \
|
||||
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH-rocm.tgz ;\
|
||||
fi
|
||||
|
||||
FROM --platform=linux/arm64 cpu-build-arm64 AS build-arm64
|
||||
ENV CGO_ENABLED=1
|
||||
FROM --platform=linux/arm64 rockylinux:8 AS builder-arm64
|
||||
ARG CMAKE_VERSION
|
||||
ARG GOLANG_VERSION
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
|
||||
ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH
|
||||
ENV CGO_ENABLED 1
|
||||
ENV GOARCH arm64
|
||||
WORKDIR /go/src/github.com/ollama/ollama
|
||||
|
||||
FROM --platform=linux/arm64 builder-arm64 AS build-arm64
|
||||
COPY . .
|
||||
COPY --from=cuda-11-build-runner-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
|
||||
COPY --from=cuda-11-build-runner-arm64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
COPY --from=cuda-12-build-runner-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
|
||||
COPY --from=cuda-12-build-runner-arm64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
COPY --from=runners-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
|
||||
COPY --from=runners-arm64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
COPY --from=runners-jetpack5-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
|
||||
COPY --from=runners-jetpack5-arm64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
COPY --from=runners-jetpack6-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
|
||||
COPY --from=runners-jetpack6-arm64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
ARG GOFLAGS
|
||||
ARG CGO_CFLAGS
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
go build -trimpath -o dist/linux-arm64/bin/ollama .
|
||||
RUN cd dist/linux-$GOARCH && \
|
||||
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH.tgz
|
||||
RUN cd dist/linux-$GOARCH-jetpack5 && \
|
||||
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH-jetpack5.tgz
|
||||
RUN cd dist/linux-$GOARCH-jetpack6 && \
|
||||
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH-jetpack6.tgz
|
||||
|
||||
FROM --platform=linux/amd64 scratch AS dist-amd64
|
||||
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
|
||||
FROM --platform=linux/arm64 scratch AS dist-arm64
|
||||
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
|
||||
FROM dist-$TARGETARCH as dist
|
||||
FROM dist-$TARGETARCH AS dist
|
||||
|
||||
|
||||
# Optimized container images do not cary nested payloads
|
||||
FROM --platform=linux/amd64 cpu-builder-amd64 AS container-build-amd64
|
||||
FROM --platform=linux/amd64 builder-amd64 AS container-build-amd64
|
||||
WORKDIR /go/src/github.com/ollama/ollama
|
||||
COPY . .
|
||||
ARG GOFLAGS
|
||||
@ -191,7 +206,7 @@ ARG CGO_CFLAGS
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
go build -trimpath -o dist/linux-amd64/bin/ollama .
|
||||
|
||||
FROM --platform=linux/arm64 cpu-builder-arm64 AS container-build-arm64
|
||||
FROM --platform=linux/arm64 builder-arm64 AS container-build-arm64
|
||||
WORKDIR /go/src/github.com/ollama/ollama
|
||||
COPY . .
|
||||
ARG GOFLAGS
|
||||
@ -199,18 +214,28 @@ ARG CGO_CFLAGS
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
go build -trimpath -o dist/linux-arm64/bin/ollama .
|
||||
|
||||
# For amd64 container images, filter out cuda/rocm to minimize size
|
||||
FROM runners-amd64 AS runners-cuda-amd64
|
||||
RUN rm -rf \
|
||||
./dist/linux-amd64/lib/ollama/libggml_hipblas.so \
|
||||
./dist/linux-amd64/lib/ollama/runners/rocm*
|
||||
|
||||
FROM runners-amd64 AS runners-rocm-amd64
|
||||
RUN rm -rf \
|
||||
./dist/linux-amd64/lib/ollama/libggml_cuda*.so \
|
||||
./dist/linux-amd64/lib/ollama/libcu*.so* \
|
||||
./dist/linux-amd64/lib/ollama/runners/cuda*
|
||||
|
||||
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-amd64
|
||||
RUN apt-get update && \
|
||||
apt-get install -y ca-certificates && \
|
||||
apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
COPY --from=container-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
|
||||
COPY --from=cpu-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
COPY --from=cpu_avx-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
COPY --from=cuda-11-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
COPY --from=cuda-12-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
COPY --from=runners-cuda-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
|
||||
FROM --platform=linux/arm64 ubuntu:22.04 AS runtime-arm64
|
||||
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ /lib/
|
||||
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ /lib/
|
||||
RUN apt-get update && \
|
||||
apt-get install -y ca-certificates && \
|
||||
apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
@ -218,29 +243,30 @@ COPY --from=container-build-arm64 /go/src/github.com/ollama/ollama/dist/linux-ar
|
||||
COPY --from=cpu-build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
|
||||
COPY --from=cuda-11-build-runner-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
|
||||
COPY --from=cuda-12-build-runner-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
|
||||
COPY --from=cuda-build-jetpack5-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
|
||||
COPY --from=cuda-build-jetpack6-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
|
||||
|
||||
|
||||
# ROCm libraries larger so we keep it distinct from the CPU/CUDA image
|
||||
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-rocm
|
||||
# Frontload the rocm libraries which are large, and rarely change to increase chance of a common layer
|
||||
# across releases
|
||||
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64-rocm/lib/ /lib/
|
||||
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64-rocm/lib/ /lib/
|
||||
RUN apt-get update && \
|
||||
apt-get install -y ca-certificates && \
|
||||
apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
COPY --from=container-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
|
||||
COPY --from=cpu-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
COPY --from=cpu_avx-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
COPY --from=runners-rocm-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
|
||||
EXPOSE 11434
|
||||
ENV OLLAMA_HOST=0.0.0.0
|
||||
ENV OLLAMA_HOST 0.0.0.0
|
||||
|
||||
ENTRYPOINT ["/bin/ollama"]
|
||||
CMD ["serve"]
|
||||
|
||||
FROM runtime-$TARGETARCH
|
||||
EXPOSE 11434
|
||||
ENV OLLAMA_HOST=0.0.0.0
|
||||
ENV OLLAMA_HOST 0.0.0.0
|
||||
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
|
||||
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
|
||||
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
|
||||
|
4
Makefile
Normal file
4
Makefile
Normal file
@ -0,0 +1,4 @@
|
||||
GOALS := $(or $(MAKECMDGOALS),all)
|
||||
.PHONY: $(GOALS)
|
||||
$(GOALS):
|
||||
$(MAKE) -C llama $@
|
51
README.md
51
README.md
@ -12,7 +12,7 @@ Get up and running with large language models.
|
||||
|
||||
[Download](https://ollama.com/download/Ollama-darwin.zip)
|
||||
|
||||
### Windows preview
|
||||
### Windows
|
||||
|
||||
[Download](https://ollama.com/download/OllamaSetup.exe)
|
||||
|
||||
@ -47,26 +47,28 @@ Ollama supports a list of models available on [ollama.com/library](https://ollam
|
||||
|
||||
Here are some example models that can be downloaded:
|
||||
|
||||
| Model | Parameters | Size | Download |
|
||||
| ------------------ | ---------- | ----- | ------------------------------ |
|
||||
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
|
||||
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
|
||||
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
|
||||
| Llama 3.1 | 70B | 40GB | `ollama run llama3.1:70b` |
|
||||
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
|
||||
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
|
||||
| Phi 3 Medium | 14B | 7.9GB | `ollama run phi3:medium` |
|
||||
| Gemma 2 | 2B | 1.6GB | `ollama run gemma2:2b` |
|
||||
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
|
||||
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
|
||||
| Mistral | 7B | 4.1GB | `ollama run mistral` |
|
||||
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
|
||||
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
|
||||
| Starling | 7B | 4.1GB | `ollama run starling-lm` |
|
||||
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
|
||||
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
|
||||
| LLaVA | 7B | 4.5GB | `ollama run llava` |
|
||||
| Solar | 10.7B | 6.1GB | `ollama run solar` |
|
||||
| Model | Parameters | Size | Download |
|
||||
| ------------------ | ---------- | ----- | -------------------------------- |
|
||||
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
|
||||
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
|
||||
| Llama 3.2 Vision | 11B | 7.9GB | `ollama run llama3.2-vision` |
|
||||
| Llama 3.2 Vision | 90B | 55GB | `ollama run llama3.2-vision:90b` |
|
||||
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
|
||||
| Llama 3.1 | 70B | 40GB | `ollama run llama3.1:70b` |
|
||||
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
|
||||
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
|
||||
| Phi 3 Medium | 14B | 7.9GB | `ollama run phi3:medium` |
|
||||
| Gemma 2 | 2B | 1.6GB | `ollama run gemma2:2b` |
|
||||
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
|
||||
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
|
||||
| Mistral | 7B | 4.1GB | `ollama run mistral` |
|
||||
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
|
||||
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
|
||||
| Starling | 7B | 4.1GB | `ollama run starling-lm` |
|
||||
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
|
||||
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
|
||||
| LLaVA | 7B | 4.5GB | `ollama run llava` |
|
||||
| Solar | 10.7B | 6.1GB | `ollama run solar` |
|
||||
|
||||
> [!NOTE]
|
||||
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
|
||||
@ -331,6 +333,8 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [ARGO](https://github.com/xark-argo/argo) (Locally download and run Ollama and Huggingface models with RAG on Mac/Windows/Linux)
|
||||
- [G1](https://github.com/bklieger-groq/g1) (Prototype of using prompting strategies to improve the LLM's reasoning through o1-like reasoning chains.)
|
||||
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
|
||||
- [Hexabot](https://github.com/hexastack/hexabot) (A conversational AI builder)
|
||||
- [Reddit Rate]((https://github.com/rapidarchitect/reddit_analyzer)) (Search and Rate Reddit topics with a weighted summation)
|
||||
|
||||
### Terminal
|
||||
|
||||
@ -357,6 +361,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Ollama eBook Summary](https://github.com/cognitivetech/ollama-ebook-summary/)
|
||||
- [Ollama Mixture of Experts (MOE) in 50 lines of code](https://github.com/rapidarchitect/ollama_moe)
|
||||
- [vim-intelligence-bridge](https://github.com/pepo-ec/vim-intelligence-bridge) Simple interaction of "Ollama" with the Vim editor
|
||||
- [aichat](https://github.com/sigoden/aichat) All-in-one LLM CLI tool featuring Shell Assistant, Chat-REPL, RAG, AI tools & agents, with access to OpenAI, Claude, Gemini, Ollama, Groq, and more.
|
||||
|
||||
### Apple Vision Pro
|
||||
- [Enchanted](https://github.com/AugustDev/enchanted)
|
||||
@ -412,6 +417,8 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [High-level function abstraction in Go](https://gitlab.com/tozd/go/fun)
|
||||
- [Ollama PHP](https://github.com/ArdaGnsrn/ollama-php)
|
||||
- [Agents-Flex for Java](https://github.com/agents-flex/agents-flex) with [example](https://github.com/agents-flex/agents-flex/tree/main/agents-flex-llm/agents-flex-llm-ollama/src/test/java/com/agentsflex/llm/ollama)
|
||||
- [Ollama for Swift](https://github.com/mattt/ollama-swift)
|
||||
- [GoLamify](https://github.com/prasad89/golamify)
|
||||
|
||||
### Mobile
|
||||
|
||||
@ -449,10 +456,12 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Discord-Ollama Chat Bot](https://github.com/kevinthedang/discord-ollama) (Generalized TypeScript Discord Bot w/ Tuning Documentation)
|
||||
- [Discord AI chat/moderation bot](https://github.com/rapmd73/Companion) Chat/moderation bot written in python. Uses Ollama to create personalities.
|
||||
- [Headless Ollama](https://github.com/nischalj10/headless-ollama) (Scripts to automatically install ollama client & models on any OS for apps that depends on ollama server)
|
||||
- [Local AI Helper](https://github.com/ivostoykov/localAI) (Chrome and Firefox extensions that enable interactions with the active tab and customisable API endpoints. Includes secure storage for user prompts.)
|
||||
- [vnc-lm](https://github.com/jk011ru/vnc-lm) (A containerized Discord bot with support for attachments and web links)
|
||||
- [LSP-AI](https://github.com/SilasMarvin/lsp-ai) (Open-source language server for AI-powered functionality)
|
||||
- [QodeAssist](https://github.com/Palm1r/QodeAssist) (AI-powered coding assistant plugin for Qt Creator)
|
||||
- [Obsidian Quiz Generator plugin](https://github.com/ECuiDev/obsidian-quiz-generator)
|
||||
- [TextCraft](https://github.com/suncloudsmoon/TextCraft) (Copilot in Word alternative using Ollama)
|
||||
|
||||
### Supported backends
|
||||
|
||||
|
@ -55,7 +55,7 @@ func checkError(resp *http.Response, body []byte) error {
|
||||
|
||||
// ClientFromEnvironment creates a new [Client] using configuration from the
|
||||
// environment variable OLLAMA_HOST, which points to the network host and
|
||||
// port on which the ollama service is listenting. The format of this variable
|
||||
// port on which the ollama service is listening. The format of this variable
|
||||
// is:
|
||||
//
|
||||
// <scheme>://<host>:<port>
|
||||
|
15
api/types.go
15
api/types.go
@ -12,7 +12,7 @@ import (
|
||||
"time"
|
||||
)
|
||||
|
||||
// StatusError is an error with and HTTP status code.
|
||||
// StatusError is an error with an HTTP status code and message.
|
||||
type StatusError struct {
|
||||
StatusCode int
|
||||
Status string
|
||||
@ -57,7 +57,7 @@ type GenerateRequest struct {
|
||||
Template string `json:"template"`
|
||||
|
||||
// Context is the context parameter returned from a previous call to
|
||||
// Generate call. It can be used to keep a short conversational memory.
|
||||
// [Client.Generate]. It can be used to keep a short conversational memory.
|
||||
Context []int `json:"context,omitempty"`
|
||||
|
||||
// Stream specifies whether the response is streaming; it is true by default.
|
||||
@ -90,14 +90,14 @@ type ChatRequest struct {
|
||||
// Messages is the messages of the chat - can be used to keep a chat memory.
|
||||
Messages []Message `json:"messages"`
|
||||
|
||||
// Stream enable streaming of returned response; true by default.
|
||||
// Stream enables streaming of returned responses; true by default.
|
||||
Stream *bool `json:"stream,omitempty"`
|
||||
|
||||
// Format is the format to return the response in (e.g. "json").
|
||||
Format string `json:"format"`
|
||||
|
||||
// KeepAlive controls how long the model will stay loaded into memory
|
||||
// followin the request.
|
||||
// following the request.
|
||||
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
||||
|
||||
// Tools is an optional list of tools the model has access to.
|
||||
@ -203,8 +203,8 @@ type Metrics struct {
|
||||
EvalDuration time.Duration `json:"eval_duration,omitempty"`
|
||||
}
|
||||
|
||||
// Options specified in [GenerateRequest], if you add a new option here add it
|
||||
// to the API docs also.
|
||||
// Options specified in [GenerateRequest]. If you add a new option here, also
|
||||
// add it to the API docs.
|
||||
type Options struct {
|
||||
Runner
|
||||
|
||||
@ -236,7 +236,7 @@ type Runner struct {
|
||||
NumGPU int `json:"num_gpu,omitempty"`
|
||||
MainGPU int `json:"main_gpu,omitempty"`
|
||||
LowVRAM bool `json:"low_vram,omitempty"`
|
||||
F16KV bool `json:"f16_kv,omitempty"`
|
||||
F16KV bool `json:"f16_kv,omitempty"` // Deprecated: This option is ignored
|
||||
LogitsAll bool `json:"logits_all,omitempty"`
|
||||
VocabOnly bool `json:"vocab_only,omitempty"`
|
||||
UseMMap *bool `json:"use_mmap,omitempty"`
|
||||
@ -613,7 +613,6 @@ func DefaultOptions() Options {
|
||||
NumGPU: -1, // -1 here indicates that NumGPU should be set dynamically
|
||||
NumThread: 0, // let the runtime decide
|
||||
LowVRAM: false,
|
||||
F16KV: true,
|
||||
UseMLock: false,
|
||||
UseMMap: nil,
|
||||
},
|
||||
|
@ -11,10 +11,12 @@ import (
|
||||
|
||||
"github.com/ollama/ollama/app/store"
|
||||
"github.com/ollama/ollama/app/tray"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
)
|
||||
|
||||
func Run() {
|
||||
InitLogging()
|
||||
slog.Info("app config", "env", envconfig.Values())
|
||||
|
||||
ctx, cancel := context.WithCancel(context.Background())
|
||||
var done chan int
|
||||
|
@ -36,8 +36,13 @@ func init() {
|
||||
ServerLogFile = filepath.Join(AppDataDir, "server.log")
|
||||
UpgradeLogFile = filepath.Join(AppDataDir, "upgrade.log")
|
||||
|
||||
// Executables are stored in APPDATA
|
||||
AppDir = filepath.Join(localAppData, "Programs", "Ollama")
|
||||
exe, err := os.Executable()
|
||||
if err != nil {
|
||||
slog.Warn("error discovering executable directory", "error", err)
|
||||
AppDir = filepath.Join(localAppData, "Programs", "Ollama")
|
||||
} else {
|
||||
AppDir = filepath.Dir(exe)
|
||||
}
|
||||
|
||||
// Make sure we have PATH set correctly for any spawned children
|
||||
paths := strings.Split(os.Getenv("PATH"), ";")
|
||||
@ -64,7 +69,7 @@ func init() {
|
||||
}
|
||||
|
||||
// Make sure our logging dir exists
|
||||
_, err := os.Stat(AppDataDir)
|
||||
_, err = os.Stat(AppDataDir)
|
||||
if errors.Is(err, os.ErrNotExist) {
|
||||
if err := os.MkdirAll(AppDataDir, 0o755); err != nil {
|
||||
slog.Error(fmt.Sprintf("create ollama dir %s: %v", AppDataDir, err))
|
||||
|
@ -18,11 +18,17 @@ func getCLIFullPath(command string) string {
|
||||
var cmdPath string
|
||||
appExe, err := os.Executable()
|
||||
if err == nil {
|
||||
// Check both the same location as the tray app, as well as ./bin
|
||||
cmdPath = filepath.Join(filepath.Dir(appExe), command)
|
||||
_, err := os.Stat(cmdPath)
|
||||
if err == nil {
|
||||
return cmdPath
|
||||
}
|
||||
cmdPath = filepath.Join(filepath.Dir(appExe), "bin", command)
|
||||
_, err = os.Stat(cmdPath)
|
||||
if err == nil {
|
||||
return cmdPath
|
||||
}
|
||||
}
|
||||
cmdPath, err = exec.LookPath(command)
|
||||
if err == nil {
|
||||
|
@ -26,19 +26,15 @@ func DoUpgrade(cancel context.CancelFunc, done chan int) error {
|
||||
slog.Info("starting upgrade with " + installerExe)
|
||||
slog.Info("upgrade log file " + UpgradeLogFile)
|
||||
|
||||
// When running in debug mode, we'll be "verbose" and let the installer pop up and prompt
|
||||
// make the upgrade show progress, but non interactive
|
||||
installArgs := []string{
|
||||
"/CLOSEAPPLICATIONS", // Quit the tray app if it's still running
|
||||
"/LOG=" + filepath.Base(UpgradeLogFile), // Only relative seems reliable, so set pwd
|
||||
"/FORCECLOSEAPPLICATIONS", // Force close the tray app - might be needed
|
||||
}
|
||||
// make the upgrade as quiet as possible (no GUI, no prompts)
|
||||
installArgs = append(installArgs,
|
||||
"/SP", // Skip the "This will install... Do you wish to continue" prompt
|
||||
"/SUPPRESSMSGBOXES",
|
||||
"/SP", // Skip the "This will install... Do you wish to continue" prompt
|
||||
"/NOCANCEL", // Disable the ability to cancel upgrade mid-flight to avoid partially installed upgrades
|
||||
"/SILENT",
|
||||
"/VERYSILENT",
|
||||
)
|
||||
}
|
||||
|
||||
// Safeguard in case we have requests in flight that need to drain...
|
||||
slog.Info("Waiting for server to shutdown")
|
||||
|
@ -53,8 +53,8 @@ RestartIfNeededByRun=no
|
||||
; https://jrsoftware.org/ishelp/index.php?topic=setup_wizardimagefile
|
||||
WizardSmallImageFile=.\assets\setup.bmp
|
||||
|
||||
; TODO verifty actual min windows version...
|
||||
; OG Win 10
|
||||
; Ollama requires Windows 10 22H2 or newer for proper unicode rendering
|
||||
; TODO: consider setting this to 10.0.19045
|
||||
MinVersion=10.0.10240
|
||||
|
||||
; First release that supports WinRT UI Composition for win32 apps
|
||||
@ -136,7 +136,7 @@ Type: filesandordirs; Name: "{%TEMP}\ollama*"
|
||||
Type: filesandordirs; Name: "{%LOCALAPPDATA}\Programs\Ollama"
|
||||
|
||||
[Messages]
|
||||
WizardReady=Ollama Windows Preview
|
||||
WizardReady=Ollama
|
||||
ReadyLabel1=%nLet's get you up and running with your own large language models.
|
||||
SetupAppRunningError=Another Ollama installer is running.%n%nPlease cancel or finish the other installer, then click OK to continue with this install, or Cancel to exit.
|
||||
|
||||
|
@ -11,12 +11,13 @@ import (
|
||||
)
|
||||
|
||||
const (
|
||||
updateAvailableMenuID = 1
|
||||
updateMenuID = updateAvailableMenuID + 1
|
||||
separatorMenuID = updateMenuID + 1
|
||||
diagLogsMenuID = separatorMenuID + 1
|
||||
diagSeparatorMenuID = diagLogsMenuID + 1
|
||||
quitMenuID = diagSeparatorMenuID + 1
|
||||
_ = iota
|
||||
updateAvailableMenuID
|
||||
updateMenuID
|
||||
separatorMenuID
|
||||
diagLogsMenuID
|
||||
diagSeparatorMenuID
|
||||
quitMenuID
|
||||
)
|
||||
|
||||
func (t *winTray) initMenus() error {
|
||||
|
82
cmd/cmd.go
82
cmd/cmd.go
@ -21,7 +21,6 @@ import (
|
||||
"path/filepath"
|
||||
"regexp"
|
||||
"runtime"
|
||||
"slices"
|
||||
"strconv"
|
||||
"strings"
|
||||
"sync/atomic"
|
||||
@ -47,28 +46,58 @@ import (
|
||||
"github.com/ollama/ollama/version"
|
||||
)
|
||||
|
||||
var (
|
||||
errModelNotFound = errors.New("no Modelfile or safetensors files found")
|
||||
errModelfileNotFound = errors.New("specified Modelfile wasn't found")
|
||||
)
|
||||
|
||||
func getModelfileName(cmd *cobra.Command) (string, error) {
|
||||
fn, _ := cmd.Flags().GetString("file")
|
||||
|
||||
filename := fn
|
||||
if filename == "" {
|
||||
filename = "Modelfile"
|
||||
}
|
||||
|
||||
absName, err := filepath.Abs(filename)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
_, err = os.Stat(absName)
|
||||
if err != nil {
|
||||
return fn, err
|
||||
}
|
||||
|
||||
return absName, nil
|
||||
}
|
||||
|
||||
func CreateHandler(cmd *cobra.Command, args []string) error {
|
||||
filename, _ := cmd.Flags().GetString("file")
|
||||
filename, err := filepath.Abs(filename)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
client, err := api.ClientFromEnvironment()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
p := progress.NewProgress(os.Stderr)
|
||||
defer p.Stop()
|
||||
|
||||
f, err := os.Open(filename)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer f.Close()
|
||||
var reader io.Reader
|
||||
|
||||
modelfile, err := parser.ParseFile(f)
|
||||
filename, err := getModelfileName(cmd)
|
||||
if os.IsNotExist(err) {
|
||||
if filename == "" {
|
||||
reader = strings.NewReader("FROM .\n")
|
||||
} else {
|
||||
return errModelfileNotFound
|
||||
}
|
||||
} else if err != nil {
|
||||
return err
|
||||
} else {
|
||||
f, err := os.Open(filename)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
reader = f
|
||||
defer f.Close()
|
||||
}
|
||||
|
||||
modelfile, err := parser.ParseFile(reader)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
@ -83,6 +112,11 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
|
||||
p.Add(status, spinner)
|
||||
defer p.Stop()
|
||||
|
||||
client, err := api.ClientFromEnvironment()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
for i := range modelfile.Commands {
|
||||
switch modelfile.Commands[i].Name {
|
||||
case "model", "adapter":
|
||||
@ -221,7 +255,7 @@ func tempZipFiles(path string) (string, error) {
|
||||
// covers consolidated.x.pth, consolidated.pth
|
||||
files = append(files, pt...)
|
||||
} else {
|
||||
return "", errors.New("no safetensors or torch files found")
|
||||
return "", errModelNotFound
|
||||
}
|
||||
|
||||
// add configuration files, json files are detected as text/plain
|
||||
@ -453,7 +487,7 @@ func RunHandler(cmd *cobra.Command, args []string) error {
|
||||
return err
|
||||
}
|
||||
|
||||
opts.MultiModal = slices.Contains(info.Details.Families, "clip")
|
||||
opts.MultiModal = len(info.ProjectorInfo) != 0
|
||||
opts.ParentModel = info.Details.ParentModel
|
||||
|
||||
if interactive {
|
||||
@ -766,9 +800,9 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
|
||||
case "parameters":
|
||||
fmt.Println(resp.Parameters)
|
||||
case "system":
|
||||
fmt.Println(resp.System)
|
||||
fmt.Print(resp.System)
|
||||
case "template":
|
||||
fmt.Println(resp.Template)
|
||||
fmt.Print(resp.Template)
|
||||
}
|
||||
|
||||
return nil
|
||||
@ -1284,7 +1318,7 @@ func NewCLI() *cobra.Command {
|
||||
log.SetFlags(log.LstdFlags | log.Lshortfile)
|
||||
cobra.EnableCommandSorting = false
|
||||
|
||||
if runtime.GOOS == "windows" {
|
||||
if runtime.GOOS == "windows" && term.IsTerminal(int(os.Stdout.Fd())) {
|
||||
console.ConsoleFromFile(os.Stdin) //nolint:errcheck
|
||||
}
|
||||
|
||||
@ -1316,7 +1350,7 @@ func NewCLI() *cobra.Command {
|
||||
RunE: CreateHandler,
|
||||
}
|
||||
|
||||
createCmd.Flags().StringP("file", "f", "Modelfile", "Name of the Modelfile")
|
||||
createCmd.Flags().StringP("file", "f", "", "Name of the Modelfile (default \"Modelfile\"")
|
||||
createCmd.Flags().StringP("quantize", "q", "", "Quantize model to this level (e.g. q4_0)")
|
||||
|
||||
showCmd := &cobra.Command{
|
||||
|
@ -270,3 +270,102 @@ func TestDeleteHandler(t *testing.T) {
|
||||
t.Fatalf("DeleteHandler failed: expected error about stopping non-existent model, got %v", err)
|
||||
}
|
||||
}
|
||||
|
||||
func TestGetModelfileName(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
modelfileName string
|
||||
fileExists bool
|
||||
expectedName string
|
||||
expectedErr error
|
||||
}{
|
||||
{
|
||||
name: "no modelfile specified, no modelfile exists",
|
||||
modelfileName: "",
|
||||
fileExists: false,
|
||||
expectedName: "",
|
||||
expectedErr: os.ErrNotExist,
|
||||
},
|
||||
{
|
||||
name: "no modelfile specified, modelfile exists",
|
||||
modelfileName: "",
|
||||
fileExists: true,
|
||||
expectedName: "Modelfile",
|
||||
expectedErr: nil,
|
||||
},
|
||||
{
|
||||
name: "modelfile specified, no modelfile exists",
|
||||
modelfileName: "crazyfile",
|
||||
fileExists: false,
|
||||
expectedName: "crazyfile",
|
||||
expectedErr: os.ErrNotExist,
|
||||
},
|
||||
{
|
||||
name: "modelfile specified, modelfile exists",
|
||||
modelfileName: "anotherfile",
|
||||
fileExists: true,
|
||||
expectedName: "anotherfile",
|
||||
expectedErr: nil,
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
cmd := &cobra.Command{
|
||||
Use: "fakecmd",
|
||||
}
|
||||
cmd.Flags().String("file", "", "path to modelfile")
|
||||
|
||||
var expectedFilename string
|
||||
|
||||
if tt.fileExists {
|
||||
tempDir, err := os.MkdirTemp("", "modelfiledir")
|
||||
defer os.RemoveAll(tempDir)
|
||||
if err != nil {
|
||||
t.Fatalf("temp modelfile dir creation failed: %v", err)
|
||||
}
|
||||
var fn string
|
||||
if tt.modelfileName != "" {
|
||||
fn = tt.modelfileName
|
||||
} else {
|
||||
fn = "Modelfile"
|
||||
}
|
||||
|
||||
tempFile, err := os.CreateTemp(tempDir, fn)
|
||||
if err != nil {
|
||||
t.Fatalf("temp modelfile creation failed: %v", err)
|
||||
}
|
||||
|
||||
expectedFilename = tempFile.Name()
|
||||
err = cmd.Flags().Set("file", expectedFilename)
|
||||
if err != nil {
|
||||
t.Fatalf("couldn't set file flag: %v", err)
|
||||
}
|
||||
} else {
|
||||
if tt.modelfileName != "" {
|
||||
expectedFilename = tt.modelfileName
|
||||
err := cmd.Flags().Set("file", tt.modelfileName)
|
||||
if err != nil {
|
||||
t.Fatalf("couldn't set file flag: %v", err)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
actualFilename, actualErr := getModelfileName(cmd)
|
||||
|
||||
if actualFilename != expectedFilename {
|
||||
t.Errorf("expected filename: '%s' actual filename: '%s'", expectedFilename, actualFilename)
|
||||
}
|
||||
|
||||
if tt.expectedErr != os.ErrNotExist {
|
||||
if actualErr != tt.expectedErr {
|
||||
t.Errorf("expected err: %v actual err: %v", tt.expectedErr, actualErr)
|
||||
}
|
||||
} else {
|
||||
if !os.IsNotExist(actualErr) {
|
||||
t.Errorf("expected err: %v actual err: %v", tt.expectedErr, actualErr)
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
@ -494,28 +494,22 @@ func buildModelfile(opts runOptions) string {
|
||||
}
|
||||
|
||||
func normalizeFilePath(fp string) string {
|
||||
// Define a map of escaped characters and their replacements
|
||||
replacements := map[string]string{
|
||||
"\\ ": " ", // Escaped space
|
||||
"\\(": "(", // Escaped left parenthesis
|
||||
"\\)": ")", // Escaped right parenthesis
|
||||
"\\[": "[", // Escaped left square bracket
|
||||
"\\]": "]", // Escaped right square bracket
|
||||
"\\{": "{", // Escaped left curly brace
|
||||
"\\}": "}", // Escaped right curly brace
|
||||
"\\$": "$", // Escaped dollar sign
|
||||
"\\&": "&", // Escaped ampersand
|
||||
"\\;": ";", // Escaped semicolon
|
||||
"\\'": "'", // Escaped single quote
|
||||
"\\\\": "\\", // Escaped backslash
|
||||
"\\*": "*", // Escaped asterisk
|
||||
"\\?": "?", // Escaped question mark
|
||||
}
|
||||
|
||||
for escaped, actual := range replacements {
|
||||
fp = strings.ReplaceAll(fp, escaped, actual)
|
||||
}
|
||||
return fp
|
||||
return strings.NewReplacer(
|
||||
"\\ ", " ", // Escaped space
|
||||
"\\(", "(", // Escaped left parenthesis
|
||||
"\\)", ")", // Escaped right parenthesis
|
||||
"\\[", "[", // Escaped left square bracket
|
||||
"\\]", "]", // Escaped right square bracket
|
||||
"\\{", "{", // Escaped left curly brace
|
||||
"\\}", "}", // Escaped right curly brace
|
||||
"\\$", "$", // Escaped dollar sign
|
||||
"\\&", "&", // Escaped ampersand
|
||||
"\\;", ";", // Escaped semicolon
|
||||
"\\'", "'", // Escaped single quote
|
||||
"\\\\", "\\", // Escaped backslash
|
||||
"\\*", "*", // Escaped asterisk
|
||||
"\\?", "?", // Escaped question mark
|
||||
).Replace(fp)
|
||||
}
|
||||
|
||||
func extractFileNames(input string) []string {
|
||||
@ -535,10 +529,9 @@ func extractFileData(input string) (string, []api.ImageData, error) {
|
||||
for _, fp := range filePaths {
|
||||
nfp := normalizeFilePath(fp)
|
||||
data, err := getImageData(nfp)
|
||||
if err != nil {
|
||||
if os.IsNotExist(err) {
|
||||
continue
|
||||
}
|
||||
if errors.Is(err, os.ErrNotExist) {
|
||||
continue
|
||||
} else if err != nil {
|
||||
fmt.Fprintf(os.Stderr, "Couldn't process image: %q\n", err)
|
||||
return "", imgs, err
|
||||
}
|
||||
@ -546,7 +539,7 @@ func extractFileData(input string) (string, []api.ImageData, error) {
|
||||
input = strings.ReplaceAll(input, fp, "")
|
||||
imgs = append(imgs, data)
|
||||
}
|
||||
return input, imgs, nil
|
||||
return strings.TrimSpace(input), imgs, nil
|
||||
}
|
||||
|
||||
func getImageData(filePath string) ([]byte, error) {
|
||||
|
@ -29,7 +29,7 @@ type tensorData struct {
|
||||
Shape []int `json:"shape"`
|
||||
}
|
||||
|
||||
func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
|
||||
func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, *llm.Tensors) {
|
||||
t.Helper()
|
||||
|
||||
f, err := os.CreateTemp(t.TempDir(), "f16")
|
||||
@ -60,7 +60,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
|
||||
return r, m.KV(), m.Tensors()
|
||||
}
|
||||
|
||||
func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors llm.Tensors) map[string]string {
|
||||
func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors *llm.Tensors) map[string]string {
|
||||
actual := make(map[string]string)
|
||||
for k, v := range kv {
|
||||
if s, ok := v.(json.Marshaler); !ok {
|
||||
|
@ -37,19 +37,6 @@ func GetSupportedGFX(libDir string) ([]string, error) {
|
||||
return ret, nil
|
||||
}
|
||||
|
||||
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
|
||||
ids := []string{}
|
||||
for _, info := range gpuInfo {
|
||||
if info.Library != "rocm" {
|
||||
// TODO shouldn't happen if things are wired correctly...
|
||||
slog.Debug("rocmGetVisibleDevicesEnv skipping over non-rocm device", "library", info.Library)
|
||||
continue
|
||||
}
|
||||
ids = append(ids, info.ID)
|
||||
}
|
||||
return "HIP_VISIBLE_DEVICES", strings.Join(ids, ",")
|
||||
}
|
||||
|
||||
func commonAMDValidateLibDir() (string, error) {
|
||||
// Favor our bundled version
|
||||
|
||||
|
@ -64,7 +64,7 @@ func NewHipLib() (*HipLib, error) {
|
||||
return hl, nil
|
||||
}
|
||||
|
||||
// The hip library only evaluates the HIP_VISIBLE_DEVICES variable at startup
|
||||
// The hip library only evaluates the ROCR_VISIBLE_DEVICES variable at startup
|
||||
// so we have to unload/reset the library after we do our initial discovery
|
||||
// to make sure our updates to that variable are processed by llama.cpp
|
||||
func (hl *HipLib) Release() {
|
||||
|
@ -64,16 +64,13 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
|
||||
// Determine if the user has already pre-selected which GPUs to look at, then ignore the others
|
||||
var visibleDevices []string
|
||||
hipVD := envconfig.HipVisibleDevices() // zero based index only
|
||||
rocrVD := envconfig.RocrVisibleDevices() // zero based index or UUID, but consumer cards seem to not support UUID
|
||||
rocrVD := envconfig.RocrVisibleDevices() // zero based index or UUID
|
||||
gpuDO := envconfig.GpuDeviceOrdinal() // zero based index
|
||||
switch {
|
||||
// TODO is this priorty order right?
|
||||
case hipVD != "":
|
||||
visibleDevices = strings.Split(hipVD, ",")
|
||||
case rocrVD != "":
|
||||
visibleDevices = strings.Split(rocrVD, ",")
|
||||
// TODO - since we don't yet support UUIDs, consider detecting and reporting here
|
||||
// all our test systems show GPU-XX indicating UUID is not supported
|
||||
case hipVD != "":
|
||||
visibleDevices = strings.Split(hipVD, ",")
|
||||
case gpuDO != "":
|
||||
visibleDevices = strings.Split(gpuDO, ",")
|
||||
}
|
||||
@ -99,7 +96,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
|
||||
}
|
||||
return a < b
|
||||
})
|
||||
cpuCount := 0
|
||||
gpuCount := 0
|
||||
for _, match := range matches {
|
||||
slog.Debug("evaluating amdgpu node " + match)
|
||||
fp, err := os.Open(match)
|
||||
@ -108,11 +105,6 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
|
||||
continue
|
||||
}
|
||||
defer fp.Close()
|
||||
nodeID, err := strconv.Atoi(filepath.Base(filepath.Dir(match)))
|
||||
if err != nil {
|
||||
slog.Debug("failed to parse node ID", "error", err)
|
||||
continue
|
||||
}
|
||||
|
||||
scanner := bufio.NewScanner(fp)
|
||||
isCPU := false
|
||||
@ -186,20 +178,19 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
|
||||
// do reliably report VRAM usage.
|
||||
|
||||
if isCPU {
|
||||
cpuCount++
|
||||
continue
|
||||
}
|
||||
|
||||
// CPUs are always first in the list
|
||||
gpuID := nodeID - cpuCount
|
||||
|
||||
// Shouldn't happen, but just in case...
|
||||
if gpuID < 0 {
|
||||
err := fmt.Errorf("unexpected amdgpu sysfs data resulted in negative GPU ID, please set OLLAMA_DEBUG=1 and report an issue")
|
||||
slog.Error(err.Error())
|
||||
return nil, err
|
||||
// Skip over any GPUs that are masked
|
||||
if major == 0 && minor == 0 && patch == 0 {
|
||||
slog.Debug("skipping gpu with gfx000")
|
||||
continue
|
||||
}
|
||||
|
||||
// Keep track of numeric IDs based on valid GPUs
|
||||
gpuID := gpuCount
|
||||
gpuCount += 1
|
||||
|
||||
// Look up the memory for the current node
|
||||
totalMemory := uint64(0)
|
||||
usedMemory := uint64(0)
|
||||
@ -273,6 +264,14 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
|
||||
name = fmt.Sprintf("%04x:%04x", vendor, device)
|
||||
}
|
||||
|
||||
// Favor UUIDs if available to reduce possibility of getting the numeric IDs wrong
|
||||
var ID string
|
||||
if uniqueID != 0 {
|
||||
ID = fmt.Sprintf("GPU-%016x", uniqueID)
|
||||
} else {
|
||||
ID = strconv.Itoa(gpuID)
|
||||
}
|
||||
|
||||
gpuInfo := RocmGPUInfo{
|
||||
GpuInfo: GpuInfo{
|
||||
Library: "rocm",
|
||||
@ -280,7 +279,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
|
||||
TotalMemory: totalMemory,
|
||||
FreeMemory: (totalMemory - usedMemory),
|
||||
},
|
||||
ID: strconv.Itoa(gpuID),
|
||||
ID: ID,
|
||||
Name: name,
|
||||
Compute: fmt.Sprintf("gfx%d%x%x", major, minor, patch),
|
||||
MinimumMemory: rocmMinimumMemory,
|
||||
@ -288,6 +287,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
|
||||
DriverMinor: driverMinor,
|
||||
},
|
||||
usedFilepath: usedFile,
|
||||
index: gpuID,
|
||||
}
|
||||
|
||||
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
|
||||
@ -319,7 +319,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
|
||||
if len(visibleDevices) > 0 {
|
||||
include := false
|
||||
for _, visible := range visibleDevices {
|
||||
if visible == gpuInfo.ID {
|
||||
if visible == gpuInfo.ID || visible == strconv.Itoa(gpuInfo.index) {
|
||||
include = true
|
||||
break
|
||||
}
|
||||
@ -350,7 +350,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
gpuInfo.DependencyPath = libDir
|
||||
gpuInfo.DependencyPath = []string{libDir}
|
||||
|
||||
if gfxOverride == "" {
|
||||
// Only load supported list once
|
||||
@ -516,3 +516,20 @@ func verifyKFDDriverAccess() error {
|
||||
fd.Close()
|
||||
return nil
|
||||
}
|
||||
|
||||
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
|
||||
ids := []string{}
|
||||
for _, info := range gpuInfo {
|
||||
if info.Library != "rocm" {
|
||||
// TODO shouldn't happen if things are wired correctly...
|
||||
slog.Debug("rocmGetVisibleDevicesEnv skipping over non-rocm device", "library", info.Library)
|
||||
continue
|
||||
}
|
||||
ids = append(ids, info.ID)
|
||||
}
|
||||
// There are 3 potential env vars to use to select GPUs.
|
||||
// ROCR_VISIBLE_DEVICES supports UUID or numeric so is our preferred on linux
|
||||
// GPU_DEVICE_ORDINAL supports numeric IDs only
|
||||
// HIP_VISIBLE_DEVICES supports numeric IDs only
|
||||
return "ROCR_VISIBLE_DEVICES", strings.Join(ids, ",")
|
||||
}
|
||||
|
@ -43,7 +43,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
|
||||
slog.Debug("error looking up amd driver version", "error", err)
|
||||
}
|
||||
|
||||
// Note: the HIP library automatically handles subsetting to any HIP_VISIBLE_DEVICES the user specified
|
||||
// Note: the HIP library automatically handles subsetting to any *_VISIBLE_DEVICES the user specified
|
||||
count := hl.HipGetDeviceCount()
|
||||
if count == 0 {
|
||||
err := fmt.Errorf("no compatible amdgpu devices detected")
|
||||
@ -111,7 +111,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
|
||||
UnreliableFreeMemory: true,
|
||||
|
||||
ID: strconv.Itoa(i), // TODO this is probably wrong if we specify visible devices
|
||||
DependencyPath: libDir,
|
||||
DependencyPath: []string{libDir},
|
||||
MinimumMemory: rocmMinimumMemory,
|
||||
Name: name,
|
||||
Compute: gfx,
|
||||
@ -201,3 +201,20 @@ func (gpus RocmGPUInfoList) RefreshFreeMemory() error {
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
|
||||
ids := []string{}
|
||||
for _, info := range gpuInfo {
|
||||
if info.Library != "rocm" {
|
||||
// TODO shouldn't happen if things are wired correctly...
|
||||
slog.Debug("rocmGetVisibleDevicesEnv skipping over non-rocm device", "library", info.Library)
|
||||
continue
|
||||
}
|
||||
ids = append(ids, info.ID)
|
||||
}
|
||||
// There are 3 potential env vars to use to select GPUs.
|
||||
// ROCR_VISIBLE_DEVICES supports UUID or numeric but does not work on Windows
|
||||
// HIP_VISIBLE_DEVICES supports numeric IDs only
|
||||
// GPU_DEVICE_ORDINAL supports numeric IDs only
|
||||
return "HIP_VISIBLE_DEVICES", strings.Join(ids, ",")
|
||||
}
|
||||
|
@ -240,7 +240,7 @@ func GetGPUInfo() GpuInfoList {
|
||||
Library: "cpu",
|
||||
Variant: cpuCapability.String(),
|
||||
ID: "0",
|
||||
DependencyPath: depPath,
|
||||
DependencyPath: []string{depPath},
|
||||
},
|
||||
CPUs: details,
|
||||
},
|
||||
@ -293,11 +293,11 @@ func GetGPUInfo() GpuInfoList {
|
||||
gpuInfo.DriverMinor = driverMinor
|
||||
variant := cudaVariant(gpuInfo)
|
||||
if depPath != "" {
|
||||
gpuInfo.DependencyPath = depPath
|
||||
gpuInfo.DependencyPath = []string{depPath}
|
||||
// Check for variant specific directory
|
||||
if variant != "" {
|
||||
if _, err := os.Stat(filepath.Join(depPath, "cuda_"+variant)); err == nil {
|
||||
gpuInfo.DependencyPath = filepath.Join(depPath, "cuda_"+variant)
|
||||
gpuInfo.DependencyPath = []string{filepath.Join(depPath, "cuda_"+variant), depPath}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -316,7 +316,9 @@ func GetGPUInfo() GpuInfoList {
|
||||
// query the management library as well so we can record any skew between the two
|
||||
// which represents overhead on the GPU we must set aside on subsequent updates
|
||||
if cHandles.nvml != nil {
|
||||
C.nvml_get_free(*cHandles.nvml, C.int(gpuInfo.index), &memInfo.free, &memInfo.total, &memInfo.used)
|
||||
uuid := C.CString(gpuInfo.ID)
|
||||
defer C.free(unsafe.Pointer(uuid))
|
||||
C.nvml_get_free(*cHandles.nvml, uuid, &memInfo.free, &memInfo.total, &memInfo.used)
|
||||
if memInfo.err != nil {
|
||||
slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
|
||||
C.free(unsafe.Pointer(memInfo.err))
|
||||
@ -368,7 +370,7 @@ func GetGPUInfo() GpuInfoList {
|
||||
gpuInfo.FreeMemory = uint64(memInfo.free)
|
||||
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
|
||||
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
|
||||
gpuInfo.DependencyPath = depPath
|
||||
gpuInfo.DependencyPath = []string{depPath}
|
||||
oneapiGPUs = append(oneapiGPUs, gpuInfo)
|
||||
}
|
||||
}
|
||||
@ -417,7 +419,9 @@ func GetGPUInfo() GpuInfoList {
|
||||
}
|
||||
for i, gpu := range cudaGPUs {
|
||||
if cHandles.nvml != nil {
|
||||
C.nvml_get_free(*cHandles.nvml, C.int(gpu.index), &memInfo.free, &memInfo.total, &memInfo.used)
|
||||
uuid := C.CString(gpu.ID)
|
||||
defer C.free(unsafe.Pointer(uuid))
|
||||
C.nvml_get_free(*cHandles.nvml, uuid, &memInfo.free, &memInfo.total, &memInfo.used)
|
||||
} else if cHandles.cudart != nil {
|
||||
C.cudart_bootstrap(*cHandles.cudart, C.int(gpu.index), &memInfo)
|
||||
} else if cHandles.nvcuda != nil {
|
||||
|
@ -4,6 +4,7 @@
|
||||
#include "gpu_info_nvcuda.h"
|
||||
|
||||
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
|
||||
LOG(resp->ch.verbose, "initializing %s\n", nvcuda_lib_path);
|
||||
CUresult ret;
|
||||
resp->err = NULL;
|
||||
resp->num_devices = 0;
|
||||
@ -57,8 +58,10 @@ void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
|
||||
resp->cudaErr = -1;
|
||||
return;
|
||||
}
|
||||
LOG(resp->ch.verbose, "dlsym: %s - %p\n", l[i].s, *l[i].p);
|
||||
}
|
||||
|
||||
LOG(resp->ch.verbose, "calling cuInit\n");
|
||||
ret = (*resp->ch.cuInit)(0);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
LOG(resp->ch.verbose, "cuInit err: %d\n", ret);
|
||||
@ -75,15 +78,18 @@ void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
|
||||
resp->ch.driver_minor = 0;
|
||||
|
||||
// Report driver version if we're in verbose mode, ignore errors
|
||||
LOG(resp->ch.verbose, "calling cuDriverGetVersion\n");
|
||||
ret = (*resp->ch.cuDriverGetVersion)(&version);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
LOG(resp->ch.verbose, "cuDriverGetVersion failed: %d\n", ret);
|
||||
} else {
|
||||
LOG(resp->ch.verbose, "raw version 0x%x\n", version);
|
||||
resp->ch.driver_major = version / 1000;
|
||||
resp->ch.driver_minor = (version - (resp->ch.driver_major * 1000)) / 10;
|
||||
LOG(resp->ch.verbose, "CUDA driver version: %d.%d\n", resp->ch.driver_major, resp->ch.driver_minor);
|
||||
}
|
||||
|
||||
LOG(resp->ch.verbose, "calling cuDeviceGetCount\n");
|
||||
ret = (*resp->ch.cuDeviceGetCount)(&resp->num_devices);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
LOG(resp->ch.verbose, "cuDeviceGetCount err: %d\n", ret);
|
||||
@ -94,6 +100,7 @@ void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
|
||||
resp->cudaErr = ret;
|
||||
return;
|
||||
}
|
||||
LOG(resp->ch.verbose, "device count %d\n", resp->num_devices);
|
||||
}
|
||||
|
||||
const int buflen = 256;
|
||||
|
@ -17,7 +17,7 @@ void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp) {
|
||||
} l[] = {
|
||||
{"nvmlInit_v2", (void *)&resp->ch.nvmlInit_v2},
|
||||
{"nvmlShutdown", (void *)&resp->ch.nvmlShutdown},
|
||||
{"nvmlDeviceGetHandleByIndex", (void *)&resp->ch.nvmlDeviceGetHandleByIndex},
|
||||
{"nvmlDeviceGetHandleByUUID", (void *)&resp->ch.nvmlDeviceGetHandleByUUID},
|
||||
{"nvmlDeviceGetMemoryInfo", (void *)&resp->ch.nvmlDeviceGetMemoryInfo},
|
||||
{NULL, NULL},
|
||||
};
|
||||
@ -67,20 +67,20 @@ void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp) {
|
||||
}
|
||||
|
||||
|
||||
void nvml_get_free(nvml_handle_t h, int device_id, uint64_t *free, uint64_t *total, uint64_t *used) {
|
||||
void nvml_get_free(nvml_handle_t h, char *uuid, uint64_t *free, uint64_t *total, uint64_t *used) {
|
||||
nvmlDevice_t device;
|
||||
nvmlMemory_t memInfo = {0};
|
||||
nvmlReturn_t ret;
|
||||
ret = (*h.nvmlDeviceGetHandleByIndex)(device_id, &device);
|
||||
ret = (*h.nvmlDeviceGetHandleByUUID)((const char *)(uuid), &device);
|
||||
if (ret != NVML_SUCCESS) {
|
||||
LOG(1, "unable to get device handle %d: %d", device_id, ret);
|
||||
LOG(1, "unable to get device handle %s: %d", uuid, ret);
|
||||
*free = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
ret = (*h.nvmlDeviceGetMemoryInfo)(device, &memInfo);
|
||||
if (ret != NVML_SUCCESS) {
|
||||
LOG(1, "device memory info lookup failure %d: %d", device_id, ret);
|
||||
LOG(1, "device memory info lookup failure %s: %d", uuid, ret);
|
||||
*free = 0;
|
||||
return;
|
||||
}
|
||||
|
@ -25,7 +25,7 @@ typedef struct nvml_handle {
|
||||
uint16_t verbose;
|
||||
nvmlReturn_t (*nvmlInit_v2)(void);
|
||||
nvmlReturn_t (*nvmlShutdown)(void);
|
||||
nvmlReturn_t (*nvmlDeviceGetHandleByIndex)(unsigned int, nvmlDevice_t *);
|
||||
nvmlReturn_t (*nvmlDeviceGetHandleByUUID)(const char *, nvmlDevice_t *);
|
||||
nvmlReturn_t (*nvmlDeviceGetMemoryInfo)(nvmlDevice_t, nvmlMemory_t *);
|
||||
} nvml_handle_t;
|
||||
|
||||
@ -41,7 +41,7 @@ typedef struct nvml_compute_capability {
|
||||
} nvml_compute_capability_t;
|
||||
|
||||
void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp);
|
||||
void nvml_get_free(nvml_handle_t ch, int device_id, uint64_t *free, uint64_t *total, uint64_t *used);
|
||||
void nvml_get_free(nvml_handle_t ch, char *uuid, uint64_t *free, uint64_t *total, uint64_t *used);
|
||||
void nvml_release(nvml_handle_t ch);
|
||||
|
||||
#endif // __GPU_INFO_NVML_H__
|
||||
|
@ -3,9 +3,11 @@ package discover
|
||||
import (
|
||||
"bufio"
|
||||
"fmt"
|
||||
"io"
|
||||
"os"
|
||||
"reflect"
|
||||
"regexp"
|
||||
"sort"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/format"
|
||||
@ -109,6 +111,10 @@ func GetCPUDetails() ([]CPU, error) {
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return linuxCPUDetails(file)
|
||||
}
|
||||
|
||||
func linuxCPUDetails(file io.Reader) ([]CPU, error) {
|
||||
reColumns := regexp.MustCompile("\t+: ")
|
||||
scanner := bufio.NewScanner(file)
|
||||
cpuInfos := []linuxCpuInfo{}
|
||||
@ -131,6 +137,9 @@ func GetCPUDetails() ([]CPU, error) {
|
||||
cpu = &linuxCpuInfo{}
|
||||
}
|
||||
}
|
||||
if cpu.ID != "" {
|
||||
cpuInfos = append(cpuInfos, *cpu)
|
||||
}
|
||||
|
||||
// Process the sockets/cores/threads
|
||||
socketByID := map[string]*CPU{}
|
||||
@ -177,10 +186,14 @@ func GetCPUDetails() ([]CPU, error) {
|
||||
s.EfficiencyCoreCount = efficiencyCoreCount
|
||||
}
|
||||
}
|
||||
|
||||
result := []CPU{}
|
||||
for _, c := range socketByID {
|
||||
result = append(result, *c)
|
||||
keys := make([]string, 0, len(socketByID))
|
||||
result := make([]CPU, 0, len(socketByID))
|
||||
for k := range socketByID {
|
||||
keys = append(keys, k)
|
||||
}
|
||||
sort.Strings(keys)
|
||||
for _, k := range keys {
|
||||
result = append(result, *socketByID[k])
|
||||
}
|
||||
return result, nil
|
||||
}
|
||||
|
2097
discover/gpu_linux_test.go
Normal file
2097
discover/gpu_linux_test.go
Normal file
File diff suppressed because it is too large
Load Diff
@ -25,7 +25,7 @@ type GpuInfo struct { // TODO better name maybe "InferenceProcessor"?
|
||||
MinimumMemory uint64 `json:"-"`
|
||||
|
||||
// Any extra PATH/LD_LIBRARY_PATH dependencies required for the Library to operate properly
|
||||
DependencyPath string `json:"lib_path,omitempty"`
|
||||
DependencyPath []string `json:"lib_path,omitempty"`
|
||||
|
||||
// Extra environment variables specific to the GPU as list of [key,value]
|
||||
EnvWorkarounds [][2]string `json:"envs,omitempty"`
|
||||
@ -175,6 +175,11 @@ func (si SystemInfo) GetOptimalThreadCount() int {
|
||||
if len(si.System.CPUs) == 0 {
|
||||
return 0
|
||||
}
|
||||
// Allocate thread count matching the performance cores on a single socket
|
||||
return si.System.CPUs[0].CoreCount - si.System.CPUs[0].EfficiencyCoreCount
|
||||
|
||||
coreCount := 0
|
||||
for _, c := range si.System.CPUs {
|
||||
coreCount += c.CoreCount - c.EfficiencyCoreCount
|
||||
}
|
||||
|
||||
return coreCount
|
||||
}
|
||||
|
@ -355,7 +355,6 @@ curl http://localhost:11434/api/generate -d '{
|
||||
"num_gpu": 1,
|
||||
"main_gpu": 0,
|
||||
"low_vram": false,
|
||||
"f16_kv": true,
|
||||
"vocab_only": false,
|
||||
"use_mmap": true,
|
||||
"use_mlock": false,
|
||||
|
@ -1,183 +1,5 @@
|
||||
# Development
|
||||
|
||||
> [!IMPORTANT]
|
||||
> The `llm` package that loads and runs models is being updated to use a new [Go runner](#transition-to-go-runner): this should only impact a small set of PRs however it does change how the project is built.
|
||||
|
||||
Install required tools:
|
||||
|
||||
- cmake version 3.24 or higher
|
||||
- go version 1.22 or higher
|
||||
- gcc version 11.4.0 or higher
|
||||
|
||||
### MacOS
|
||||
|
||||
```bash
|
||||
brew install go cmake gcc
|
||||
```
|
||||
|
||||
Optionally enable debugging and more verbose logging:
|
||||
|
||||
```bash
|
||||
# At build time
|
||||
export CGO_CFLAGS="-g"
|
||||
|
||||
# At runtime
|
||||
export OLLAMA_DEBUG=1
|
||||
```
|
||||
|
||||
Get the required libraries and build the native LLM code:
|
||||
|
||||
```bash
|
||||
go generate ./...
|
||||
```
|
||||
|
||||
Then build ollama:
|
||||
|
||||
```bash
|
||||
go build .
|
||||
```
|
||||
|
||||
Now you can run `ollama`:
|
||||
|
||||
```bash
|
||||
./ollama
|
||||
```
|
||||
|
||||
### Linux
|
||||
|
||||
#### Linux CUDA (NVIDIA)
|
||||
|
||||
_Your operating system distribution may already have packages for NVIDIA CUDA. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!_
|
||||
|
||||
Install `cmake` and `golang` as well as [NVIDIA CUDA](https://developer.nvidia.com/cuda-downloads)
|
||||
development and runtime packages.
|
||||
|
||||
Typically the build scripts will auto-detect CUDA, however, if your Linux distro
|
||||
or installation approach uses unusual paths, you can specify the location by
|
||||
specifying an environment variable `CUDA_LIB_DIR` to the location of the shared
|
||||
libraries, and `CUDACXX` to the location of the nvcc compiler. You can customize
|
||||
a set of target CUDA architectures by setting `CMAKE_CUDA_ARCHITECTURES` (e.g. "50;60;70")
|
||||
|
||||
Then generate dependencies:
|
||||
|
||||
```
|
||||
go generate ./...
|
||||
```
|
||||
|
||||
Then build the binary:
|
||||
|
||||
```
|
||||
go build .
|
||||
```
|
||||
|
||||
#### Linux ROCm (AMD)
|
||||
|
||||
_Your operating system distribution may already have packages for AMD ROCm and CLBlast. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!_
|
||||
|
||||
Install [CLBlast](https://github.com/CNugteren/CLBlast/blob/master/doc/installation.md) and [ROCm](https://rocm.docs.amd.com/en/latest/) development packages first, as well as `cmake` and `golang`.
|
||||
|
||||
Typically the build scripts will auto-detect ROCm, however, if your Linux distro
|
||||
or installation approach uses unusual paths, you can specify the location by
|
||||
specifying an environment variable `ROCM_PATH` to the location of the ROCm
|
||||
install (typically `/opt/rocm`), and `CLBlast_DIR` to the location of the
|
||||
CLBlast install (typically `/usr/lib/cmake/CLBlast`). You can also customize
|
||||
the AMD GPU targets by setting AMDGPU_TARGETS (e.g. `AMDGPU_TARGETS="gfx1101;gfx1102"`)
|
||||
|
||||
```
|
||||
go generate ./...
|
||||
```
|
||||
|
||||
Then build the binary:
|
||||
|
||||
```
|
||||
go build .
|
||||
```
|
||||
|
||||
ROCm requires elevated privileges to access the GPU at runtime. On most distros you can add your user account to the `render` group, or run as root.
|
||||
|
||||
#### Advanced CPU Settings
|
||||
|
||||
By default, running `go generate ./...` will compile a few different variations
|
||||
of the LLM library based on common CPU families and vector math capabilities,
|
||||
including a lowest-common-denominator which should run on almost any 64 bit CPU
|
||||
somewhat slowly. At runtime, Ollama will auto-detect the optimal variation to
|
||||
load. If you would like to build a CPU-based build customized for your
|
||||
processor, you can set `OLLAMA_CUSTOM_CPU_DEFS` to the llama.cpp flags you would
|
||||
like to use. For example, to compile an optimized binary for an Intel i9-9880H,
|
||||
you might use:
|
||||
|
||||
```
|
||||
OLLAMA_CUSTOM_CPU_DEFS="-DGGML_AVX=on -DGGML_AVX2=on -DGGML_F16C=on -DGGML_FMA=on" go generate ./...
|
||||
go build .
|
||||
```
|
||||
|
||||
#### Containerized Linux Build
|
||||
|
||||
If you have Docker available, you can build linux binaries with `./scripts/build_linux.sh` which has the CUDA and ROCm dependencies included. The resulting binary is placed in `./dist`
|
||||
|
||||
### Windows
|
||||
|
||||
Note: The Windows build for Ollama is still under development.
|
||||
|
||||
First, install required tools:
|
||||
|
||||
- MSVC toolchain - C/C++ and cmake as minimal requirements
|
||||
- Go version 1.22 or higher
|
||||
- MinGW (pick one variant) with GCC.
|
||||
- [MinGW-w64](https://www.mingw-w64.org/)
|
||||
- [MSYS2](https://www.msys2.org/)
|
||||
- The `ThreadJob` Powershell module: `Install-Module -Name ThreadJob -Scope CurrentUser`
|
||||
|
||||
Then, build the `ollama` binary:
|
||||
|
||||
```powershell
|
||||
$env:CGO_ENABLED="1"
|
||||
go generate ./...
|
||||
go build .
|
||||
```
|
||||
|
||||
#### Windows CUDA (NVIDIA)
|
||||
|
||||
In addition to the common Windows development tools described above, install CUDA after installing MSVC.
|
||||
|
||||
- [NVIDIA CUDA](https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html)
|
||||
|
||||
|
||||
#### Windows ROCm (AMD Radeon)
|
||||
|
||||
In addition to the common Windows development tools described above, install AMDs HIP package after installing MSVC.
|
||||
|
||||
- [AMD HIP](https://www.amd.com/en/developer/resources/rocm-hub/hip-sdk.html)
|
||||
- [Strawberry Perl](https://strawberryperl.com/)
|
||||
|
||||
Lastly, add `ninja.exe` included with MSVC to the system path (e.g. `C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\Common7\IDE\CommonExtensions\Microsoft\CMake\Ninja`).
|
||||
|
||||
#### Windows arm64
|
||||
|
||||
The default `Developer PowerShell for VS 2022` may default to x86 which is not what you want. To ensure you get an arm64 development environment, start a plain PowerShell terminal and run:
|
||||
|
||||
```powershell
|
||||
import-module 'C:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\Common7\\Tools\\Microsoft.VisualStudio.DevShell.dll'
|
||||
Enter-VsDevShell -Arch arm64 -vsinstallpath 'C:\\Program Files\\Microsoft Visual Studio\\2022\\Community' -skipautomaticlocation
|
||||
```
|
||||
|
||||
You can confirm with `write-host $env:VSCMD_ARG_TGT_ARCH`
|
||||
|
||||
Follow the instructions at https://www.msys2.org/wiki/arm64/ to set up an arm64 msys2 environment. Ollama requires gcc and mingw32-make to compile, which is not currently available on Windows arm64, but a gcc compatibility adapter is available via `mingw-w64-clang-aarch64-gcc-compat`. At a minimum you will need to install the following:
|
||||
|
||||
```
|
||||
pacman -S mingw-w64-clang-aarch64-clang mingw-w64-clang-aarch64-gcc-compat mingw-w64-clang-aarch64-make make
|
||||
```
|
||||
|
||||
You will need to ensure your PATH includes go, cmake, gcc and clang mingw32-make to build ollama from source. (typically `C:\msys64\clangarm64\bin\`)
|
||||
|
||||
|
||||
## Transition to Go runner
|
||||
|
||||
The Ollama team is working on moving to a new Go based runner that loads and runs models in a subprocess to replace the previous code under `ext_server`. During this transition period, this new Go runner is "opt in" at build time, and requires using a different approach to build.
|
||||
|
||||
After the transition to use the Go server exclusively, both `make` and `go generate` will build the Go runner.
|
||||
|
||||
Install required tools:
|
||||
|
||||
- go version 1.22 or higher
|
||||
@ -201,7 +23,7 @@ export OLLAMA_DEBUG=1
|
||||
Get the required libraries and build the native LLM code: (Adjust the job count based on your number of processors for a faster build)
|
||||
|
||||
```bash
|
||||
make -C llama -j 5
|
||||
make -j 5
|
||||
```
|
||||
|
||||
Then build ollama:
|
||||
@ -238,7 +60,7 @@ a set of target CUDA architectures by setting `CMAKE_CUDA_ARCHITECTURES` (e.g. "
|
||||
Then generate dependencies: (Adjust the job count based on your number of processors for a faster build)
|
||||
|
||||
```
|
||||
make -C llama -j 5
|
||||
make -j 5
|
||||
```
|
||||
|
||||
Then build the binary:
|
||||
@ -263,7 +85,7 @@ the AMD GPU targets by setting AMDGPU_TARGETS (e.g. `AMDGPU_TARGETS="gfx1101;gfx
|
||||
Then generate dependencies: (Adjust the job count based on your number of processors for a faster build)
|
||||
|
||||
```
|
||||
make -C llama -j 5
|
||||
make -j 5
|
||||
```
|
||||
|
||||
Then build the binary:
|
||||
@ -286,7 +108,7 @@ Custom CPU settings are not currently supported in the new Go server build but w
|
||||
|
||||
#### Containerized Linux Build
|
||||
|
||||
If you have Docker available, you can build linux binaries with `OLLAMA_NEW_RUNNERS=1 ./scripts/build_linux.sh` which has the CUDA and ROCm dependencies included. The resulting binary is placed in `./dist`
|
||||
If you have Docker available, you can build linux binaries with `./scripts/build_linux.sh` which has the CUDA and ROCm dependencies included. The resulting binary is placed in `./dist`
|
||||
|
||||
### Windows
|
||||
|
||||
@ -296,16 +118,19 @@ The following tools are required as a minimal development environment to build C
|
||||
- https://go.dev/dl/
|
||||
- Git
|
||||
- https://git-scm.com/download/win
|
||||
- GCC and Make. There are multiple options on how to go about installing these tools on Windows. We have verified the following, but others may work as well:
|
||||
- clang with gcc compat and Make. There are multiple options on how to go about installing these tools on Windows. We have verified the following, but others may work as well:
|
||||
- [MSYS2](https://www.msys2.org/)
|
||||
- After installing, from an MSYS2 terminal, run `pacman -S mingw-w64-ucrt-x86_64-gcc make` to install the required tools
|
||||
- Assuming you used the default install prefix for msys2 above, add `c:\msys64\ucrt64\bin` and `c:\msys64\usr\bin` to your environment variable `PATH` where you will perform the build steps below (e.g. system-wide, account-level, powershell, cmd, etc.)
|
||||
- After installing, from an MSYS2 terminal, run `pacman -S mingw-w64-clang-x86_64-gcc-compat mingw-w64-clang-x86_64-clang make` to install the required tools
|
||||
- Assuming you used the default install prefix for msys2 above, add `C:\msys64\clang64\bin` and `c:\msys64\usr\bin` to your environment variable `PATH` where you will perform the build steps below (e.g. system-wide, account-level, powershell, cmd, etc.)
|
||||
|
||||
> [!NOTE]
|
||||
> Due to bugs in the GCC C++ library for unicode support, Ollama should be built with clang on windows.
|
||||
|
||||
Then, build the `ollama` binary:
|
||||
|
||||
```powershell
|
||||
$env:CGO_ENABLED="1"
|
||||
make -C llama -j 8
|
||||
make -j 8
|
||||
go build .
|
||||
```
|
||||
|
||||
|
@ -74,6 +74,10 @@ would set `HSA_OVERRIDE_GFX_VERSION="10.3.0"` as an environment variable for the
|
||||
server. If you have an unsupported AMD GPU you can experiment using the list of
|
||||
supported types below.
|
||||
|
||||
If you have multiple GPUs with different GFX versions, append the numeric device
|
||||
number to the environment variable to set them individually. For example,
|
||||
`HSA_OVERRIDE_GFX_VERSION_0=10.3.0` and `HSA_OVERRIDE_GFX_VERSION_1=11.0.0`
|
||||
|
||||
At this time, the known supported GPU types on linux are the following LLVM Targets.
|
||||
This table shows some example GPUs that map to these LLVM targets:
|
||||
| **LLVM Target** | **An Example GPU** |
|
||||
@ -99,9 +103,10 @@ Reach out on [Discord](https://discord.gg/ollama) or file an
|
||||
### GPU Selection
|
||||
|
||||
If you have multiple AMD GPUs in your system and want to limit Ollama to use a
|
||||
subset, you can set `HIP_VISIBLE_DEVICES` to a comma separated list of GPUs.
|
||||
subset, you can set `ROCR_VISIBLE_DEVICES` to a comma separated list of GPUs.
|
||||
You can see the list of devices with `rocminfo`. If you want to ignore the GPUs
|
||||
and force CPU usage, use an invalid GPU ID (e.g., "-1")
|
||||
and force CPU usage, use an invalid GPU ID (e.g., "-1"). When available, use the
|
||||
`Uuid` to uniquely identify the device instead of numeric value.
|
||||
|
||||
### Container Permission
|
||||
|
||||
|
@ -32,7 +32,7 @@ ollama run my-model
|
||||
|
||||
Ollama supports importing adapters based on several different model architectures including:
|
||||
|
||||
* Llama (including Llama 2, Llama 3, and Llama 3.1);
|
||||
* Llama (including Llama 2, Llama 3, Llama 3.1, and Llama 3.2);
|
||||
* Mistral (including Mistral 1, Mistral 2, and Mixtral); and
|
||||
* Gemma (including Gemma 1 and Gemma 2)
|
||||
|
||||
@ -67,14 +67,12 @@ ollama run my-model
|
||||
|
||||
Ollama supports importing models for several different architectures including:
|
||||
|
||||
* Llama (including Llama 2, Llama 3, and Llama 3.1);
|
||||
* Llama (including Llama 2, Llama 3, Llama 3.1, and Llama 3.2);
|
||||
* Mistral (including Mistral 1, Mistral 2, and Mixtral);
|
||||
* Gemma (including Gemma 1 and Gemma 2); and
|
||||
* Phi3
|
||||
|
||||
This includes importing foundation models as well as any fine tuned models which which have been _fused_ with a foundation model.
|
||||
|
||||
|
||||
This includes importing foundation models as well as any fine tuned models which have been _fused_ with a foundation model.
|
||||
## Importing a GGUF based model or adapter
|
||||
|
||||
If you have a GGUF based model or adapter it is possible to import it into Ollama. You can obtain a GGUF model or adapter by:
|
||||
|
@ -120,7 +120,7 @@ FROM <model directory>
|
||||
The model directory should contain the Safetensors weights for a supported architecture.
|
||||
|
||||
Currently supported model architectures:
|
||||
* Llama (including Llama 2, Llama 3, and Llama 3.1)
|
||||
* Llama (including Llama 2, Llama 3, Llama 3.1, and Llama 3.2)
|
||||
* Mistral (including Mistral 1, Mistral 2, and Mixtral)
|
||||
* Gemma (including Gemma 1 and Gemma 2)
|
||||
* Phi3
|
||||
|
@ -37,7 +37,7 @@ response = client.chat.completions.create(
|
||||
{"type": "text", "text": "What's in this image?"},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": "iVBORw0KGgoAAAANSUhEUgAAAG0AAABmCAYAAADBPx+VAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAA3VSURBVHgB7Z27r0zdG8fX743i1bi1ikMoFMQloXRpKFFIqI7LH4BEQ+NWIkjQuSWCRIEoULk0gsK1kCBI0IhrQVT7tz/7zZo888yz1r7MnDl7z5xvsjkzs2fP3uu71nNfa7lkAsm7d++Sffv2JbNmzUqcc8m0adOSzZs3Z+/XES4ZckAWJEGWPiCxjsQNLWmQsWjRIpMseaxcuTKpG/7HP27I8P79e7dq1ars/yL4/v27S0ejqwv+cUOGEGGpKHR37tzJCEpHV9tnT58+dXXCJDdECBE2Ojrqjh071hpNECjx4cMHVycM1Uhbv359B2F79+51586daxN/+pyRkRFXKyRDAqxEp4yMlDDzXG1NPnnyJKkThoK0VFd1ELZu3TrzXKxKfW7dMBQ6bcuWLW2v0VlHjx41z717927ba22U9APcw7Nnz1oGEPeL3m3p2mTAYYnFmMOMXybPPXv2bNIPpFZr1NHn4HMw0KRBjg9NuRw95s8PEcz/6DZELQd/09C9QGq5RsmSRybqkwHGjh07OsJSsYYm3ijPpyHzoiacg35MLdDSIS/O1yM778jOTwYUkKNHWUzUWaOsylE00MyI0fcnOwIdjvtNdW/HZwNLGg+sR1kMepSNJXmIwxBZiG8tDTpEZzKg0GItNsosY8USkxDhD0Rinuiko2gfL/RbiD2LZAjU9zKQJj8RDR0vJBR1/Phx9+PHj9Z7REF4nTZkxzX4LCXHrV271qXkBAPGfP/atWvu/PnzHe4C97F48eIsRLZ9+3a3f/9+87dwP1JxaF7/3r17ba+5l4EcaVo0lj3SBq5kGTJSQmLWMjgYNei2GPT1MuMqGTDEFHzeQSP2wi/jGnkmPJ/nhccs44jvDAxpVcxnq0F6eT8h4ni/iIWpR5lPyA6ETkNXoSukvpJAD3AsXLiwpZs49+fPn5ke4j10TqYvegSfn0OnafC+Tv9ooA/JPkgQysqQNBzagXY55nO/oa1F7qvIPWkRL12WRpMWUvpVDYmxAPehxWSe8ZEXL20sadYIozfmNch4QJPAfeJgW3rNsnzphBKNJM2KKODo1rVOMRYik5ETy3ix4qWNI81qAAirizgMIc+yhTytx0JWZuNI03qsrgWlGtwjoS9XwgUhWGyhUaRZZQNNIEwCiXD16tXcAHUs79co0vSD8rrJCIW98pzvxpAWyyo3HYwqS0+H0BjStClcZJT5coMm6D2LOF8TolGJtK9fvyZpyiC5ePFi9nc/oJU4eiEP0jVoAnHa9wyJycITMP78+eMeP37sXrx44d6+fdt6f82aNdkx1pg9e3Zb5W+RSRE+n+VjksQWifvVaTKFhn5O8my63K8Qabdv33b379/PiAP//vuvW7BggZszZ072/+TJk91YgkafPn166zXB1rQHFvouAWHq9z3SEevSUerqCn2/dDCeta2jxYbr69evk4MHDyY7d+7MjhMnTiTPnz9Pfv/+nfQT2ggpO2dMF8cghuoM7Ygj5iWCqRlGFml0QC/ftGmTmzt3rmsaKDsgBSPh0/8yPeLLBihLkOKJc0jp8H8vUzcxIA1k6QJ/c78tWEyj5P3o4u9+jywNPdJi5rAH9x0KHcl4Hg570eQp3+vHXGyrmEeigzQsQsjavXt38ujRo44LQuDDhw+TW7duRS1HGgMxhNXHgflaNTOsHyKvHK5Ijo2jbFjJBQK9YwFd6RVMzfgRBmEfP37suBBm/p49e1qjEP2mwTViNRo0VJWH1deMXcNK08uUjVUu7s/zRaL+oLNxz1bpANco4npUgX4G2eFbpDFyQoQxojBCpEGSytmOH8qrH5Q9vuzD6ofQylkCUmh8DBAr+q8JCyVNtWQIidKQE9wNtLSQnS4jDSsxNHogzFuQBw4cyM61UKVsjfr3ooBkPSqqQHesUPWVtzi9/vQi1T+rJj7WiTz4Pt/l3LxUkr5P2VYZaZ4URpsE+st/dujQoaBBYokbrz/8TJNQYLSonrPS9kUaSkPeZyj1AWSj+d+VBoy1pIWVNed8P0Ll/ee5HdGRhrHhR5GGN0r4LGZBaj8oFDJitBTJzIZgFcmU0Y8ytWMZMzJOaXUSrUs5RxKnrxmbb5YXO9VGUhtpXldhEUogFr3IzIsvlpmdosVcGVGXFWp2oU9kLFL3dEkSz6NHEY1sjSRdIuDFWEhd8KxFqsRi1uM/nz9/zpxnwlESONdg6dKlbsaMGS4EHFHtjFIDHwKOo46l4TxSuxgDzi+rE2jg+BaFruOX4HXa0Nnf1lwAPufZeF8/r6zD97WK2qFnGjBxTw5qNGPxT+5T/r7/7RawFC3j4vTp09koCxkeHjqbHJqArmH5UrFKKksnxrK7FuRIs8STfBZv+luugXZ2pR/pP9Ois4z+TiMzUUkUjD0iEi1fzX8GmXyuxUBRcaUfykV0YZnlJGKQpOiGB76x5GeWkWWJc3mOrK6S7xdND+W5N6XyaRgtWJFe13GkaZnKOsYqGdOVVVbGupsyA/l7emTLHi7vwTdirNEt0qxnzAvBFcnQF16xh/TMpUuXHDowhlA9vQVraQhkudRdzOnK+04ZSP3DUhVSP61YsaLtd/ks7ZgtPcXqPqEafHkdqa84X6aCeL7YWlv6edGFHb+ZFICPlljHhg0bKuk0CSvVznWsotRu433alNdFrqG45ejoaPCaUkWERpLXjzFL2Rpllp7PJU2a/v7Ab8N05/9t27Z16KUqoFGsxnI9EosS2niSYg9SpU6B4JgTrvVW1flt1sT+0ADIJU2maXzcUTraGCRaL1Wp9rUMk16PMom8QhruxzvZIegJjFU7LLCePfS8uaQdPny4jTTL0dbee5mYokQsXTIWNY46kuMbnt8Kmec+LGWtOVIl9cT1rCB0V8WqkjAsRwta93TbwNYoGKsUSChN44lgBNCoHLHzquYKrU6qZ8lolCIN0Rh6cP0Q3U6I6IXILYOQI513hJaSKAorFpuHXJNfVlpRtmYBk1Su1obZr5dnKAO+L10Hrj3WZW+E3qh6IszE37F6EB+68mGpvKm4eb9bFrlzrok7fvr0Kfv727dvWRmdVTJHw0qiiCUSZ6wCK+7XL/AcsgNyL74DQQ730sv78Su7+t/A36MdY0sW5o40ahslXr58aZ5HtZB8GH64m9EmMZ7FpYw4T6QnrZfgenrhFxaSiSGXtPnz57e9TkNZLvTjeqhr734CNtrK41L40sUQckmj1lGKQ0rC37x544r8eNXRpnVE3ZZY7zXo8NomiO0ZUCj2uHz58rbXoZ6gc0uA+F6ZeKS/jhRDUq8MKrTho9fEkihMmhxtBI1DxKFY9XLpVcSkfoi8JGnToZO5sU5aiDQIW716ddt7ZLYtMQlhECdBGXZZMWldY5BHm5xgAroWj4C0hbYkSc/jBmggIrXJWlZM6pSETsEPGqZOndr2uuuR5rF169a2HoHPdurUKZM4CO1WTPqaDaAd+GFGKdIQkxAn9RuEWcTRyN2KSUgiSgF5aWzPTeA/lN5rZubMmR2bE4SIC4nJoltgAV/dVefZm72AtctUCJU2CMJ327hxY9t7EHbkyJFseq+EJSY16RPo3Dkq1kkr7+q0bNmyDuLQcZBEPYmHVdOBiJyIlrRDq41YPWfXOxUysi5fvtyaj+2BpcnsUV/oSoEMOk2CQGlr4ckhBwaetBhjCwH0ZHtJROPJkyc7UjcYLDjmrH7ADTEBXFfOYmB0k9oYBOjJ8b4aOYSe7QkKcYhFlq3QYLQhSidNmtS2RATwy8YOM3EQJsUjKiaWZ+vZToUQgzhkHXudb/PW5YMHD9yZM2faPsMwoc7RciYJXbGuBqJ1UIGKKLv915jsvgtJxCZDubdXr165mzdvtr1Hz5LONA8jrUwKPqsmVesKa49S3Q4WxmRPUEYdTjgiUcfUwLx589ySJUva3oMkP6IYddq6HMS4o55xBJBUeRjzfa4Zdeg56QZ43LhxoyPo7Lf1kNt7oO8wWAbNwaYjIv5lhyS7kRf96dvm5Jah8vfvX3flyhX35cuX6HfzFHOToS1H4BenCaHvO8pr8iDuwoUL7tevX+b5ZdbBair0xkFIlFDlW4ZknEClsp/TzXyAKVOmmHWFVSbDNw1l1+4f90U6IY/q4V27dpnE9bJ+v87QEydjqx/UamVVPRG+mwkNTYN+9tjkwzEx+atCm/X9WvWtDtAb68Wy9LXa1UmvCDDIpPkyOQ5ZwSzJ4jMrvFcr0rSjOUh+GcT4LSg5ugkW1Io0/SCDQBojh0hPlaJdah+tkVYrnTZowP8iq1F1TgMBBauufyB33x1v+NWFYmT5KmppgHC+NkAgbmRkpD3yn9QIseXymoTQFGQmIOKTxiZIWpvAatenVqRVXf2nTrAWMsPnKrMZHz6bJq5jvce6QK8J1cQNgKxlJapMPdZSR64/UivS9NztpkVEdKcrs5alhhWP9NeqlfWopzhZScI6QxseegZRGeg5a8C3Re1Mfl1ScP36ddcUaMuv24iOJtz7sbUjTS4qBvKmstYJoUauiuD3k5qhyr7QdUHMeCgLa1Ear9NquemdXgmum4fvJ6w1lqsuDhNrg1qSpleJK7K3TF0Q2jSd94uSZ60kK1e3qyVpQK6PVWXp2/FC3mp6jBhKKOiY2h3gtUV64TWM6wDETRPLDfSakXmH3w8g9Jlug8ZtTt4kVF0kLUYYmCCtD/DrQ5YhMGbA9L3ucdjh0y8kOHW5gU/VEEmJTcL4Pz/f7mgoAbYkAAAAAElFTkSuQmCC",
|
||||
"image_url": "",
|
||||
},
|
||||
],
|
||||
}
|
||||
@ -86,7 +86,7 @@ const response = await openai.chat.completions.create({
|
||||
{ type: "text", text: "What's in this image?" },
|
||||
{
|
||||
type: "image_url",
|
||||
image_url: "iVBORw0KGgoAAAANSUhEUgAAAG0AAABmCAYAAADBPx+VAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAA3VSURBVHgB7Z27r0zdG8fX743i1bi1ikMoFMQloXRpKFFIqI7LH4BEQ+NWIkjQuSWCRIEoULk0gsK1kCBI0IhrQVT7tz/7zZo888yz1r7MnDl7z5xvsjkzs2fP3uu71nNfa7lkAsm7d++Sffv2JbNmzUqcc8m0adOSzZs3Z+/XES4ZckAWJEGWPiCxjsQNLWmQsWjRIpMseaxcuTKpG/7HP27I8P79e7dq1ars/yL4/v27S0ejqwv+cUOGEGGpKHR37tzJCEpHV9tnT58+dXXCJDdECBE2Ojrqjh071hpNECjx4cMHVycM1Uhbv359B2F79+51586daxN/+pyRkRFXKyRDAqxEp4yMlDDzXG1NPnnyJKkThoK0VFd1ELZu3TrzXKxKfW7dMBQ6bcuWLW2v0VlHjx41z717927ba22U9APcw7Nnz1oGEPeL3m3p2mTAYYnFmMOMXybPPXv2bNIPpFZr1NHn4HMw0KRBjg9NuRw95s8PEcz/6DZELQd/09C9QGq5RsmSRybqkwHGjh07OsJSsYYm3ijPpyHzoiacg35MLdDSIS/O1yM778jOTwYUkKNHWUzUWaOsylE00MyI0fcnOwIdjvtNdW/HZwNLGg+sR1kMepSNJXmIwxBZiG8tDTpEZzKg0GItNsosY8USkxDhD0Rinuiko2gfL/RbiD2LZAjU9zKQJj8RDR0vJBR1/Phx9+PHj9Z7REF4nTZkxzX4LCXHrV271qXkBAPGfP/atWvu/PnzHe4C97F48eIsRLZ9+3a3f/9+87dwP1JxaF7/3r17ba+5l4EcaVo0lj3SBq5kGTJSQmLWMjgYNei2GPT1MuMqGTDEFHzeQSP2wi/jGnkmPJ/nhccs44jvDAxpVcxnq0F6eT8h4ni/iIWpR5lPyA6ETkNXoSukvpJAD3AsXLiwpZs49+fPn5ke4j10TqYvegSfn0OnafC+Tv9ooA/JPkgQysqQNBzagXY55nO/oa1F7qvIPWkRL12WRpMWUvpVDYmxAPehxWSe8ZEXL20sadYIozfmNch4QJPAfeJgW3rNsnzphBKNJM2KKODo1rVOMRYik5ETy3ix4qWNI81qAAirizgMIc+yhTytx0JWZuNI03qsrgWlGtwjoS9XwgUhWGyhUaRZZQNNIEwCiXD16tXcAHUs79co0vSD8rrJCIW98pzvxpAWyyo3HYwqS0+H0BjStClcZJT5coMm6D2LOF8TolGJtK9fvyZpyiC5ePFi9nc/oJU4eiEP0jVoAnHa9wyJycITMP78+eMeP37sXrx44d6+fdt6f82aNdkx1pg9e3Zb5W+RSRE+n+VjksQWifvVaTKFhn5O8my63K8Qabdv33b379/PiAP//vuvW7BggZszZ072/+TJk91YgkafPn166zXB1rQHFvouAWHq9z3SEevSUerqCn2/dDCeta2jxYbr69evk4MHDyY7d+7MjhMnTiTPnz9Pfv/+nfQT2ggpO2dMF8cghuoM7Ygj5iWCqRlGFml0QC/ftGmTmzt3rmsaKDsgBSPh0/8yPeLLBihLkOKJc0jp8H8vUzcxIA1k6QJ/c78tWEyj5P3o4u9+jywNPdJi5rAH9x0KHcl4Hg570eQp3+vHXGyrmEeigzQsQsjavXt38ujRo44LQuDDhw+TW7duRS1HGgMxhNXHgflaNTOsHyKvHK5Ijo2jbFjJBQK9YwFd6RVMzfgRBmEfP37suBBm/p49e1qjEP2mwTViNRo0VJWH1deMXcNK08uUjVUu7s/zRaL+oLNxz1bpANco4npUgX4G2eFbpDFyQoQxojBCpEGSytmOH8qrH5Q9vuzD6ofQylkCUmh8DBAr+q8JCyVNtWQIidKQE9wNtLSQnS4jDSsxNHogzFuQBw4cyM61UKVsjfr3ooBkPSqqQHesUPWVtzi9/vQi1T+rJj7WiTz4Pt/l3LxUkr5P2VYZaZ4URpsE+st/dujQoaBBYokbrz/8TJNQYLSonrPS9kUaSkPeZyj1AWSj+d+VBoy1pIWVNed8P0Ll/ee5HdGRhrHhR5GGN0r4LGZBaj8oFDJitBTJzIZgFcmU0Y8ytWMZMzJOaXUSrUs5RxKnrxmbb5YXO9VGUhtpXldhEUogFr3IzIsvlpmdosVcGVGXFWp2oU9kLFL3dEkSz6NHEY1sjSRdIuDFWEhd8KxFqsRi1uM/nz9/zpxnwlESONdg6dKlbsaMGS4EHFHtjFIDHwKOo46l4TxSuxgDzi+rE2jg+BaFruOX4HXa0Nnf1lwAPufZeF8/r6zD97WK2qFnGjBxTw5qNGPxT+5T/r7/7RawFC3j4vTp09koCxkeHjqbHJqArmH5UrFKKksnxrK7FuRIs8STfBZv+luugXZ2pR/pP9Ois4z+TiMzUUkUjD0iEi1fzX8GmXyuxUBRcaUfykV0YZnlJGKQpOiGB76x5GeWkWWJc3mOrK6S7xdND+W5N6XyaRgtWJFe13GkaZnKOsYqGdOVVVbGupsyA/l7emTLHi7vwTdirNEt0qxnzAvBFcnQF16xh/TMpUuXHDowhlA9vQVraQhkudRdzOnK+04ZSP3DUhVSP61YsaLtd/ks7ZgtPcXqPqEafHkdqa84X6aCeL7YWlv6edGFHb+ZFICPlljHhg0bKuk0CSvVznWsotRu433alNdFrqG45ejoaPCaUkWERpLXjzFL2Rpllp7PJU2a/v7Ab8N05/9t27Z16KUqoFGsxnI9EosS2niSYg9SpU6B4JgTrvVW1flt1sT+0ADIJU2maXzcUTraGCRaL1Wp9rUMk16PMom8QhruxzvZIegJjFU7LLCePfS8uaQdPny4jTTL0dbee5mYokQsXTIWNY46kuMbnt8Kmec+LGWtOVIl9cT1rCB0V8WqkjAsRwta93TbwNYoGKsUSChN44lgBNCoHLHzquYKrU6qZ8lolCIN0Rh6cP0Q3U6I6IXILYOQI513hJaSKAorFpuHXJNfVlpRtmYBk1Su1obZr5dnKAO+L10Hrj3WZW+E3qh6IszE37F6EB+68mGpvKm4eb9bFrlzrok7fvr0Kfv727dvWRmdVTJHw0qiiCUSZ6wCK+7XL/AcsgNyL74DQQ730sv78Su7+t/A36MdY0sW5o40ahslXr58aZ5HtZB8GH64m9EmMZ7FpYw4T6QnrZfgenrhFxaSiSGXtPnz57e9TkNZLvTjeqhr734CNtrK41L40sUQckmj1lGKQ0rC37x544r8eNXRpnVE3ZZY7zXo8NomiO0ZUCj2uHz58rbXoZ6gc0uA+F6ZeKS/jhRDUq8MKrTho9fEkihMmhxtBI1DxKFY9XLpVcSkfoi8JGnToZO5sU5aiDQIW716ddt7ZLYtMQlhECdBGXZZMWldY5BHm5xgAroWj4C0hbYkSc/jBmggIrXJWlZM6pSETsEPGqZOndr2uuuR5rF169a2HoHPdurUKZM4CO1WTPqaDaAd+GFGKdIQkxAn9RuEWcTRyN2KSUgiSgF5aWzPTeA/lN5rZubMmR2bE4SIC4nJoltgAV/dVefZm72AtctUCJU2CMJ327hxY9t7EHbkyJFseq+EJSY16RPo3Dkq1kkr7+q0bNmyDuLQcZBEPYmHVdOBiJyIlrRDq41YPWfXOxUysi5fvtyaj+2BpcnsUV/oSoEMOk2CQGlr4ckhBwaetBhjCwH0ZHtJROPJkyc7UjcYLDjmrH7ADTEBXFfOYmB0k9oYBOjJ8b4aOYSe7QkKcYhFlq3QYLQhSidNmtS2RATwy8YOM3EQJsUjKiaWZ+vZToUQgzhkHXudb/PW5YMHD9yZM2faPsMwoc7RciYJXbGuBqJ1UIGKKLv915jsvgtJxCZDubdXr165mzdvtr1Hz5LONA8jrUwKPqsmVesKa49S3Q4WxmRPUEYdTjgiUcfUwLx589ySJUva3oMkP6IYddq6HMS4o55xBJBUeRjzfa4Zdeg56QZ43LhxoyPo7Lf1kNt7oO8wWAbNwaYjIv5lhyS7kRf96dvm5Jah8vfvX3flyhX35cuX6HfzFHOToS1H4BenCaHvO8pr8iDuwoUL7tevX+b5ZdbBair0xkFIlFDlW4ZknEClsp/TzXyAKVOmmHWFVSbDNw1l1+4f90U6IY/q4V27dpnE9bJ+v87QEydjqx/UamVVPRG+mwkNTYN+9tjkwzEx+atCm/X9WvWtDtAb68Wy9LXa1UmvCDDIpPkyOQ5ZwSzJ4jMrvFcr0rSjOUh+GcT4LSg5ugkW1Io0/SCDQBojh0hPlaJdah+tkVYrnTZowP8iq1F1TgMBBauufyB33x1v+NWFYmT5KmppgHC+NkAgbmRkpD3yn9QIseXymoTQFGQmIOKTxiZIWpvAatenVqRVXf2nTrAWMsPnKrMZHz6bJq5jvce6QK8J1cQNgKxlJapMPdZSR64/UivS9NztpkVEdKcrs5alhhWP9NeqlfWopzhZScI6QxseegZRGeg5a8C3Re1Mfl1ScP36ddcUaMuv24iOJtz7sbUjTS4qBvKmstYJoUauiuD3k5qhyr7QdUHMeCgLa1Ear9NquemdXgmum4fvJ6w1lqsuDhNrg1qSpleJK7K3TF0Q2jSd94uSZ60kK1e3qyVpQK6PVWXp2/FC3mp6jBhKKOiY2h3gtUV64TWM6wDETRPLDfSakXmH3w8g9Jlug8ZtTt4kVF0kLUYYmCCtD/DrQ5YhMGbA9L3ucdjh0y8kOHW5gU/VEEmJTcL4Pz/f7mgoAbYkAAAAAElFTkSuQmCC",
|
||||
image_url: "",
|
||||
},
|
||||
],
|
||||
},
|
||||
@ -142,7 +142,7 @@ curl http://localhost:11434/v1/chat/completions \
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": "iVBORw0KGgoAAAANSUhEUgAAAG0AAABmCAYAAADBPx+VAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAA3VSURBVHgB7Z27r0zdG8fX743i1bi1ikMoFMQloXRpKFFIqI7LH4BEQ+NWIkjQuSWCRIEoULk0gsK1kCBI0IhrQVT7tz/7zZo888yz1r7MnDl7z5xvsjkzs2fP3uu71nNfa7lkAsm7d++Sffv2JbNmzUqcc8m0adOSzZs3Z+/XES4ZckAWJEGWPiCxjsQNLWmQsWjRIpMseaxcuTKpG/7HP27I8P79e7dq1ars/yL4/v27S0ejqwv+cUOGEGGpKHR37tzJCEpHV9tnT58+dXXCJDdECBE2Ojrqjh071hpNECjx4cMHVycM1Uhbv359B2F79+51586daxN/+pyRkRFXKyRDAqxEp4yMlDDzXG1NPnnyJKkThoK0VFd1ELZu3TrzXKxKfW7dMBQ6bcuWLW2v0VlHjx41z717927ba22U9APcw7Nnz1oGEPeL3m3p2mTAYYnFmMOMXybPPXv2bNIPpFZr1NHn4HMw0KRBjg9NuRw95s8PEcz/6DZELQd/09C9QGq5RsmSRybqkwHGjh07OsJSsYYm3ijPpyHzoiacg35MLdDSIS/O1yM778jOTwYUkKNHWUzUWaOsylE00MyI0fcnOwIdjvtNdW/HZwNLGg+sR1kMepSNJXmIwxBZiG8tDTpEZzKg0GItNsosY8USkxDhD0Rinuiko2gfL/RbiD2LZAjU9zKQJj8RDR0vJBR1/Phx9+PHj9Z7REF4nTZkxzX4LCXHrV271qXkBAPGfP/atWvu/PnzHe4C97F48eIsRLZ9+3a3f/9+87dwP1JxaF7/3r17ba+5l4EcaVo0lj3SBq5kGTJSQmLWMjgYNei2GPT1MuMqGTDEFHzeQSP2wi/jGnkmPJ/nhccs44jvDAxpVcxnq0F6eT8h4ni/iIWpR5lPyA6ETkNXoSukvpJAD3AsXLiwpZs49+fPn5ke4j10TqYvegSfn0OnafC+Tv9ooA/JPkgQysqQNBzagXY55nO/oa1F7qvIPWkRL12WRpMWUvpVDYmxAPehxWSe8ZEXL20sadYIozfmNch4QJPAfeJgW3rNsnzphBKNJM2KKODo1rVOMRYik5ETy3ix4qWNI81qAAirizgMIc+yhTytx0JWZuNI03qsrgWlGtwjoS9XwgUhWGyhUaRZZQNNIEwCiXD16tXcAHUs79co0vSD8rrJCIW98pzvxpAWyyo3HYwqS0+H0BjStClcZJT5coMm6D2LOF8TolGJtK9fvyZpyiC5ePFi9nc/oJU4eiEP0jVoAnHa9wyJycITMP78+eMeP37sXrx44d6+fdt6f82aNdkx1pg9e3Zb5W+RSRE+n+VjksQWifvVaTKFhn5O8my63K8Qabdv33b379/PiAP//vuvW7BggZszZ072/+TJk91YgkafPn166zXB1rQHFvouAWHq9z3SEevSUerqCn2/dDCeta2jxYbr69evk4MHDyY7d+7MjhMnTiTPnz9Pfv/+nfQT2ggpO2dMF8cghuoM7Ygj5iWCqRlGFml0QC/ftGmTmzt3rmsaKDsgBSPh0/8yPeLLBihLkOKJc0jp8H8vUzcxIA1k6QJ/c78tWEyj5P3o4u9+jywNPdJi5rAH9x0KHcl4Hg570eQp3+vHXGyrmEeigzQsQsjavXt38ujRo44LQuDDhw+TW7duRS1HGgMxhNXHgflaNTOsHyKvHK5Ijo2jbFjJBQK9YwFd6RVMzfgRBmEfP37suBBm/p49e1qjEP2mwTViNRo0VJWH1deMXcNK08uUjVUu7s/zRaL+oLNxz1bpANco4npUgX4G2eFbpDFyQoQxojBCpEGSytmOH8qrH5Q9vuzD6ofQylkCUmh8DBAr+q8JCyVNtWQIidKQE9wNtLSQnS4jDSsxNHogzFuQBw4cyM61UKVsjfr3ooBkPSqqQHesUPWVtzi9/vQi1T+rJj7WiTz4Pt/l3LxUkr5P2VYZaZ4URpsE+st/dujQoaBBYokbrz/8TJNQYLSonrPS9kUaSkPeZyj1AWSj+d+VBoy1pIWVNed8P0Ll/ee5HdGRhrHhR5GGN0r4LGZBaj8oFDJitBTJzIZgFcmU0Y8ytWMZMzJOaXUSrUs5RxKnrxmbb5YXO9VGUhtpXldhEUogFr3IzIsvlpmdosVcGVGXFWp2oU9kLFL3dEkSz6NHEY1sjSRdIuDFWEhd8KxFqsRi1uM/nz9/zpxnwlESONdg6dKlbsaMGS4EHFHtjFIDHwKOo46l4TxSuxgDzi+rE2jg+BaFruOX4HXa0Nnf1lwAPufZeF8/r6zD97WK2qFnGjBxTw5qNGPxT+5T/r7/7RawFC3j4vTp09koCxkeHjqbHJqArmH5UrFKKksnxrK7FuRIs8STfBZv+luugXZ2pR/pP9Ois4z+TiMzUUkUjD0iEi1fzX8GmXyuxUBRcaUfykV0YZnlJGKQpOiGB76x5GeWkWWJc3mOrK6S7xdND+W5N6XyaRgtWJFe13GkaZnKOsYqGdOVVVbGupsyA/l7emTLHi7vwTdirNEt0qxnzAvBFcnQF16xh/TMpUuXHDowhlA9vQVraQhkudRdzOnK+04ZSP3DUhVSP61YsaLtd/ks7ZgtPcXqPqEafHkdqa84X6aCeL7YWlv6edGFHb+ZFICPlljHhg0bKuk0CSvVznWsotRu433alNdFrqG45ejoaPCaUkWERpLXjzFL2Rpllp7PJU2a/v7Ab8N05/9t27Z16KUqoFGsxnI9EosS2niSYg9SpU6B4JgTrvVW1flt1sT+0ADIJU2maXzcUTraGCRaL1Wp9rUMk16PMom8QhruxzvZIegJjFU7LLCePfS8uaQdPny4jTTL0dbee5mYokQsXTIWNY46kuMbnt8Kmec+LGWtOVIl9cT1rCB0V8WqkjAsRwta93TbwNYoGKsUSChN44lgBNCoHLHzquYKrU6qZ8lolCIN0Rh6cP0Q3U6I6IXILYOQI513hJaSKAorFpuHXJNfVlpRtmYBk1Su1obZr5dnKAO+L10Hrj3WZW+E3qh6IszE37F6EB+68mGpvKm4eb9bFrlzrok7fvr0Kfv727dvWRmdVTJHw0qiiCUSZ6wCK+7XL/AcsgNyL74DQQ730sv78Su7+t/A36MdY0sW5o40ahslXr58aZ5HtZB8GH64m9EmMZ7FpYw4T6QnrZfgenrhFxaSiSGXtPnz57e9TkNZLvTjeqhr734CNtrK41L40sUQckmj1lGKQ0rC37x544r8eNXRpnVE3ZZY7zXo8NomiO0ZUCj2uHz58rbXoZ6gc0uA+F6ZeKS/jhRDUq8MKrTho9fEkihMmhxtBI1DxKFY9XLpVcSkfoi8JGnToZO5sU5aiDQIW716ddt7ZLYtMQlhECdBGXZZMWldY5BHm5xgAroWj4C0hbYkSc/jBmggIrXJWlZM6pSETsEPGqZOndr2uuuR5rF169a2HoHPdurUKZM4CO1WTPqaDaAd+GFGKdIQkxAn9RuEWcTRyN2KSUgiSgF5aWzPTeA/lN5rZubMmR2bE4SIC4nJoltgAV/dVefZm72AtctUCJU2CMJ327hxY9t7EHbkyJFseq+EJSY16RPo3Dkq1kkr7+q0bNmyDuLQcZBEPYmHVdOBiJyIlrRDq41YPWfXOxUysi5fvtyaj+2BpcnsUV/oSoEMOk2CQGlr4ckhBwaetBhjCwH0ZHtJROPJkyc7UjcYLDjmrH7ADTEBXFfOYmB0k9oYBOjJ8b4aOYSe7QkKcYhFlq3QYLQhSidNmtS2RATwy8YOM3EQJsUjKiaWZ+vZToUQgzhkHXudb/PW5YMHD9yZM2faPsMwoc7RciYJXbGuBqJ1UIGKKLv915jsvgtJxCZDubdXr165mzdvtr1Hz5LONA8jrUwKPqsmVesKa49S3Q4WxmRPUEYdTjgiUcfUwLx589ySJUva3oMkP6IYddq6HMS4o55xBJBUeRjzfa4Zdeg56QZ43LhxoyPo7Lf1kNt7oO8wWAbNwaYjIv5lhyS7kRf96dvm5Jah8vfvX3flyhX35cuX6HfzFHOToS1H4BenCaHvO8pr8iDuwoUL7tevX+b5ZdbBair0xkFIlFDlW4ZknEClsp/TzXyAKVOmmHWFVSbDNw1l1+4f90U6IY/q4V27dpnE9bJ+v87QEydjqx/UamVVPRG+mwkNTYN+9tjkwzEx+atCm/X9WvWtDtAb68Wy9LXa1UmvCDDIpPkyOQ5ZwSzJ4jMrvFcr0rSjOUh+GcT4LSg5ugkW1Io0/SCDQBojh0hPlaJdah+tkVYrnTZowP8iq1F1TgMBBauufyB33x1v+NWFYmT5KmppgHC+NkAgbmRkpD3yn9QIseXymoTQFGQmIOKTxiZIWpvAatenVqRVXf2nTrAWMsPnKrMZHz6bJq5jvce6QK8J1cQNgKxlJapMPdZSR64/UivS9NztpkVEdKcrs5alhhWP9NeqlfWopzhZScI6QxseegZRGeg5a8C3Re1Mfl1ScP36ddcUaMuv24iOJtz7sbUjTS4qBvKmstYJoUauiuD3k5qhyr7QdUHMeCgLa1Ear9NquemdXgmum4fvJ6w1lqsuDhNrg1qSpleJK7K3TF0Q2jSd94uSZ60kK1e3qyVpQK6PVWXp2/FC3mp6jBhKKOiY2h3gtUV64TWM6wDETRPLDfSakXmH3w8g9Jlug8ZtTt4kVF0kLUYYmCCtD/DrQ5YhMGbA9L3ucdjh0y8kOHW5gU/VEEmJTcL4Pz/f7mgoAbYkAAAAAElFTkSuQmCC"
|
||||
"url": ""
|
||||
}
|
||||
}
|
||||
]
|
||||
|
@ -95,7 +95,9 @@ If none of those resolve the problem, gather additional information and file an
|
||||
|
||||
On linux, AMD GPU access typically requires `video` and/or `render` group membership to access the `/dev/kfd` device. If permissions are not set up correctly, Ollama will detect this and report an error in the server log.
|
||||
|
||||
When running in a container, in some Linux distributions and container runtimes, the ollama process may be unable to access the GPU. Use `ls -ld /dev/kfd /dev/dri /dev/dri/*` on the host system to determine the group assignments on your system, and pass additional `--group-add ...` arguments to the container so it can access the required devices.
|
||||
When running in a container, in some Linux distributions and container runtimes, the ollama process may be unable to access the GPU. Use `ls -lnd /dev/kfd /dev/dri /dev/dri/*` on the host system to determine the **numeric** group IDs on your system, and pass additional `--group-add ...` arguments to the container so it can access the required devices. For example, in the following output `crw-rw---- 1 0 44 226, 0 Sep 16 16:55 /dev/dri/card0` the group ID column is `44`
|
||||
|
||||
If Ollama initially works on the GPU in a docker container, but then switches to running on CPU after some period of time with errors in the server log reporting GPU discovery failures, this can be resolved by disabling systemd cgroup management in Docker. Edit `/etc/docker/daemon.json` on the host and add `"exec-opts": ["native.cgroupdriver=cgroupfs"]` to the docker configuration.
|
||||
|
||||
If you are experiencing problems getting Ollama to correctly discover or use your GPU for inference, the following may help isolate the failure.
|
||||
- `AMD_LOG_LEVEL=3` Enable info log levels in the AMD HIP/ROCm libraries. This can help show more detailed error codes that can help troubleshoot problems
|
||||
|
@ -10,7 +10,7 @@ This sounds like a typical censored response, but even llama2-uncensored gives a
|
||||
|
||||
So let's figure out how we can use **LangChain** with Ollama to ask our question to the actual document, the Odyssey by Homer, using Python.
|
||||
|
||||
Let's start by asking a simple question that we can get an answer to from the **Llama2** model using **Ollama**. First, we need to install the **LangChain** package:
|
||||
Let's start by asking a simple question that we can get an answer to from the **Llama3** model using **Ollama**. First, we need to install the **LangChain** package:
|
||||
|
||||
`pip install langchain_community`
|
||||
|
||||
|
@ -1,22 +1,15 @@
|
||||
# Ollama Windows Preview
|
||||
# Ollama Windows
|
||||
|
||||
Welcome to the Ollama Windows preview.
|
||||
Welcome to Ollama for Windows.
|
||||
|
||||
No more WSL required!
|
||||
|
||||
Ollama now runs as a native Windows application, including NVIDIA and AMD Radeon GPU support.
|
||||
After installing Ollama Windows Preview, Ollama will run in the background and
|
||||
After installing Ollama for Windows, Ollama will run in the background and
|
||||
the `ollama` command line is available in `cmd`, `powershell` or your favorite
|
||||
terminal application. As usual the Ollama [api](./api.md) will be served on
|
||||
`http://localhost:11434`.
|
||||
|
||||
As this is a preview release, you should expect a few bugs here and there. If
|
||||
you run into a problem you can reach out on
|
||||
[Discord](https://discord.gg/ollama), or file an
|
||||
[issue](https://github.com/ollama/ollama/issues).
|
||||
Logs will often be helpful in diagnosing the problem (see
|
||||
[Troubleshooting](#troubleshooting) below)
|
||||
|
||||
## System Requirements
|
||||
|
||||
* Windows 10 22H2 or newer, Home or Pro
|
||||
@ -25,6 +18,32 @@ Logs will often be helpful in diagnosing the problem (see
|
||||
|
||||
Ollama uses unicode characters for progress indication, which may render as unknown squares in some older terminal fonts in Windows 10. If you see this, try changing your terminal font settings.
|
||||
|
||||
## Filesystem Requirements
|
||||
|
||||
The Ollama install does not require Administrator, and installs in your home directory by default. You'll need at least 4GB of space for the binary install. Once you've installed Ollama, you'll need additional space for storing the Large Language models, which can be tens to hundreds of GB in size. If your home directory doesn't have enough space, you can change where the binaries are installed, and where the models are stored.
|
||||
|
||||
### Changing Install Location
|
||||
|
||||
To install the Ollama application in a location different than your home directory, start the installer with the following flag
|
||||
|
||||
```powershell
|
||||
OllamaSetup.exe /DIR="d:\some\location"
|
||||
```
|
||||
|
||||
### Changing Model Location
|
||||
|
||||
To change where Ollama stores the downloaded models instead of using your home directory, set the environment variable `OLLAMA_MODELS` in your user account.
|
||||
|
||||
1. Start the Settings (Windows 11) or Control Panel (Windows 10) application and search for _environment variables_.
|
||||
|
||||
2. Click on _Edit environment variables for your account_.
|
||||
|
||||
3. Edit or create a new variable for your user account for `OLLAMA_MODELS` where you want the models stored
|
||||
|
||||
4. Click OK/Apply to save.
|
||||
|
||||
If Ollama is already running, Quit the tray application and relaunch it from the Start menu, or a new terminal started after you saved the environment variables.
|
||||
|
||||
## API Access
|
||||
|
||||
Here's a quick example showing API access from `powershell`
|
||||
@ -34,10 +53,6 @@ Here's a quick example showing API access from `powershell`
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
While we're in preview, `OLLAMA_DEBUG` is always enabled, which adds
|
||||
a "view logs" menu item to the app, and increases logging for the GUI app and
|
||||
server.
|
||||
|
||||
Ollama on Windows stores files in a few different locations. You can view them in
|
||||
the explorer window by hitting `<cmd>+R` and type in:
|
||||
- `explorer %LOCALAPPDATA%\Ollama` contains logs, and downloaded updates
|
||||
@ -52,6 +67,10 @@ the explorer window by hitting `<cmd>+R` and type in:
|
||||
|
||||
The Ollama Windows installer registers an Uninstaller application. Under `Add or remove programs` in Windows Settings, you can uninstall Ollama.
|
||||
|
||||
> [!NOTE]
|
||||
> If you have [changed the OLLAMA_MODELS location](#changing-model-location), the installer will not remove your downloaded models
|
||||
|
||||
|
||||
## Standalone CLI
|
||||
|
||||
The easiest way to install Ollama on Windows is to use the `OllamaSetup.exe`
|
||||
|
@ -72,6 +72,7 @@ func Origins() (origins []string) {
|
||||
"app://*",
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
"vscode-webview://*",
|
||||
)
|
||||
|
||||
return origins
|
||||
@ -264,9 +265,9 @@ func AsMap() map[string]EnvVar {
|
||||
|
||||
if runtime.GOOS != "darwin" {
|
||||
ret["CUDA_VISIBLE_DEVICES"] = EnvVar{"CUDA_VISIBLE_DEVICES", CudaVisibleDevices(), "Set which NVIDIA devices are visible"}
|
||||
ret["HIP_VISIBLE_DEVICES"] = EnvVar{"HIP_VISIBLE_DEVICES", HipVisibleDevices(), "Set which AMD devices are visible"}
|
||||
ret["ROCR_VISIBLE_DEVICES"] = EnvVar{"ROCR_VISIBLE_DEVICES", RocrVisibleDevices(), "Set which AMD devices are visible"}
|
||||
ret["GPU_DEVICE_ORDINAL"] = EnvVar{"GPU_DEVICE_ORDINAL", GpuDeviceOrdinal(), "Set which AMD devices are visible"}
|
||||
ret["HIP_VISIBLE_DEVICES"] = EnvVar{"HIP_VISIBLE_DEVICES", HipVisibleDevices(), "Set which AMD devices are visible by numeric ID"}
|
||||
ret["ROCR_VISIBLE_DEVICES"] = EnvVar{"ROCR_VISIBLE_DEVICES", RocrVisibleDevices(), "Set which AMD devices are visible by UUID or numeric ID"}
|
||||
ret["GPU_DEVICE_ORDINAL"] = EnvVar{"GPU_DEVICE_ORDINAL", GpuDeviceOrdinal(), "Set which AMD devices are visible by numeric ID"}
|
||||
ret["HSA_OVERRIDE_GFX_VERSION"] = EnvVar{"HSA_OVERRIDE_GFX_VERSION", HsaOverrideGfxVersion(), "Override the gfx used for all detected AMD GPUs"}
|
||||
ret["OLLAMA_INTEL_GPU"] = EnvVar{"OLLAMA_INTEL_GPU", IntelGPU(), "Enable experimental Intel GPU detection"}
|
||||
}
|
||||
|
@ -68,6 +68,7 @@ func TestOrigins(t *testing.T) {
|
||||
"app://*",
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
"vscode-webview://*",
|
||||
}},
|
||||
{"http://10.0.0.1", []string{
|
||||
"http://10.0.0.1",
|
||||
@ -86,6 +87,7 @@ func TestOrigins(t *testing.T) {
|
||||
"app://*",
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
"vscode-webview://*",
|
||||
}},
|
||||
{"http://172.16.0.1,https://192.168.0.1", []string{
|
||||
"http://172.16.0.1",
|
||||
@ -105,6 +107,7 @@ func TestOrigins(t *testing.T) {
|
||||
"app://*",
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
"vscode-webview://*",
|
||||
}},
|
||||
{"http://totally.safe,http://definitely.legit", []string{
|
||||
"http://totally.safe",
|
||||
@ -124,6 +127,7 @@ func TestOrigins(t *testing.T) {
|
||||
"app://*",
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
"vscode-webview://*",
|
||||
}},
|
||||
}
|
||||
for _, tt := range cases {
|
||||
|
3
go.mod
3
go.mod
@ -1,6 +1,6 @@
|
||||
module github.com/ollama/ollama
|
||||
|
||||
go 1.22.5
|
||||
go 1.22.8
|
||||
|
||||
require (
|
||||
github.com/containerd/console v1.0.3
|
||||
@ -22,6 +22,7 @@ require (
|
||||
github.com/mattn/go-runewidth v0.0.14
|
||||
github.com/nlpodyssey/gopickle v0.3.0
|
||||
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
|
||||
golang.org/x/image v0.14.0
|
||||
)
|
||||
|
||||
require (
|
||||
|
2
go.sum
2
go.sum
@ -230,6 +230,8 @@ golang.org/x/image v0.0.0-20200430140353-33d19683fad8/go.mod h1:FeLwcggjj3mMvU+o
|
||||
golang.org/x/image v0.0.0-20200618115811-c13761719519/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
|
||||
golang.org/x/image v0.0.0-20201208152932-35266b937fa6/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
|
||||
golang.org/x/image v0.0.0-20210216034530-4410531fe030/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
|
||||
golang.org/x/image v0.14.0 h1:tNgSxAFe3jC4uYqvZdTr84SZoM1KfwdC9SKIFrLjFn4=
|
||||
golang.org/x/image v0.14.0/go.mod h1:HUYqC05R2ZcZ3ejNQsIHQDQiwWM4JBqmm6MKANTp4LE=
|
||||
golang.org/x/lint v0.0.0-20181026193005-c67002cb31c3/go.mod h1:UVdnD1Gm6xHRNCYTkRU2/jEulfH38KcIWyp/GAMgvoE=
|
||||
golang.org/x/lint v0.0.0-20190227174305-5b3e6a55c961/go.mod h1:wehouNa3lNwaWXcvxsM5YxQ5yQlVC4a0KAMCusXpPoU=
|
||||
golang.org/x/lint v0.0.0-20190313153728-d0100b6bd8b3/go.mod h1:6SW0HCj/g11FgYtHlgUYUwCkIfeOF89ocIRzGO/8vkc=
|
||||
|
@ -30,6 +30,48 @@ func TestOrcaMiniBlueSky(t *testing.T) {
|
||||
GenerateTestHelper(ctx, t, req, []string{"rayleigh", "scattering"})
|
||||
}
|
||||
|
||||
func TestUnicode(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Minute)
|
||||
defer cancel()
|
||||
// Set up the test data
|
||||
req := api.GenerateRequest{
|
||||
// DeepSeek has a Unicode tokenizer regex, making it a unicode torture test
|
||||
Model: "deepseek-coder-v2:16b-lite-instruct-q2_K",
|
||||
Prompt: "天空为什么是蓝色的?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
// Workaround deepseek context shifting bug
|
||||
"num_ctx": 8192,
|
||||
"num_predict": 2048,
|
||||
},
|
||||
}
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
require.NoError(t, PullIfMissing(ctx, client, req.Model))
|
||||
DoGenerate(ctx, t, client, req, []string{"散射", "频率"}, 120*time.Second, 120*time.Second)
|
||||
}
|
||||
|
||||
func TestExtendedUnicodeOutput(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
|
||||
defer cancel()
|
||||
// Set up the test data
|
||||
req := api.GenerateRequest{
|
||||
Model: "gemma2:2b",
|
||||
Prompt: "Output some smily face emoji",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
},
|
||||
}
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
require.NoError(t, PullIfMissing(ctx, client, req.Model))
|
||||
DoGenerate(ctx, t, client, req, []string{"😀", "😊", "😁", "😂", "😄", "😃"}, 120*time.Second, 120*time.Second)
|
||||
}
|
||||
|
||||
func TestUnicodeModelDir(t *testing.T) {
|
||||
// This is only useful for Windows with utf-16 characters, so skip this test for other platforms
|
||||
if runtime.GOOS != "windows" {
|
||||
|
@ -60,7 +60,8 @@ func TestMultiModelConcurrency(t *testing.T) {
|
||||
for i := 0; i < len(req); i++ {
|
||||
go func(i int) {
|
||||
defer wg.Done()
|
||||
DoGenerate(ctx, t, client, req[i], resp[i], 60*time.Second, 10*time.Second)
|
||||
// Note: CPU based inference can crawl so don't give up too quickly
|
||||
DoGenerate(ctx, t, client, req[i], resp[i], 90*time.Second, 30*time.Second)
|
||||
}(i)
|
||||
}
|
||||
wg.Wait()
|
||||
|
File diff suppressed because one or more lines are too long
@ -12,7 +12,7 @@ import (
|
||||
"github.com/stretchr/testify/require"
|
||||
)
|
||||
|
||||
func TestIntegrationMultimodal(t *testing.T) {
|
||||
func TestIntegrationLlava(t *testing.T) {
|
||||
image, err := base64.StdEncoding.DecodeString(imageEncoding)
|
||||
require.NoError(t, err)
|
||||
req := api.GenerateRequest{
|
||||
@ -39,6 +39,33 @@ func TestIntegrationMultimodal(t *testing.T) {
|
||||
DoGenerate(ctx, t, client, req, []string{resp}, 120*time.Second, 30*time.Second)
|
||||
}
|
||||
|
||||
func TestIntegrationMllama(t *testing.T) {
|
||||
image, err := base64.StdEncoding.DecodeString(imageEncoding)
|
||||
require.NoError(t, err)
|
||||
req := api.GenerateRequest{
|
||||
// TODO fix up once we publish the final image
|
||||
Model: "x/llama3.2-vision",
|
||||
Prompt: "what does the text in this image say?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
Images: []api.ImageData{
|
||||
image,
|
||||
},
|
||||
}
|
||||
|
||||
resp := "the ollamas"
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Minute)
|
||||
defer cancel()
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
require.NoError(t, PullIfMissing(ctx, client, req.Model))
|
||||
// mllama models on CPU can be quite slow to start,
|
||||
DoGenerate(ctx, t, client, req, []string{resp}, 240*time.Second, 30*time.Second)
|
||||
}
|
||||
|
||||
const imageEncoding = `iVBORw0KGgoAAAANSUhEUgAAANIAAAB4CAYAAACHHqzKAAAAAXNSR0IArs4c6QAAAIRlWElmTU0AKgAAAAgABQESAAMAAAABAAEAAAEaAAUAAAABAAAASgEb
|
||||
AAUAAAABAAAAUgEoAAMAAAABAAIAAIdpAAQAAAABAAAAWgAAAAAAAABIAAAAAQAAAEgAAAABAAOgAQADAAAAAQABAACgAgAEAAAAAQAAANKgAwAEAAAAAQAA
|
||||
AHgAAAAAXdsepgAAAAlwSFlzAAALEwAACxMBAJqcGAAAAVlpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6
|
||||
|
221
llama/Dockerfile
221
llama/Dockerfile
@ -1,221 +0,0 @@
|
||||
# Note: once we have fully transitioned to the Go server, this will replace the old Dockerfile at the top of the tree
|
||||
ARG GOLANG_VERSION=1.22.5
|
||||
ARG CMAKE_VERSION=3.22.1
|
||||
ARG CUDA_VERSION_11=11.3.1
|
||||
ARG CUDA_V11_ARCHITECTURES="50;52;53;60;61;62;70;72;75;80;86"
|
||||
ARG CUDA_VERSION_12=12.4.0
|
||||
ARG CUDA_V12_ARCHITECTURES="60;61;62;70;72;75;80;86;87;89;90;90a"
|
||||
ARG ROCM_VERSION=6.1.2
|
||||
|
||||
### To create a local image for building linux binaries on mac or windows with efficient incremental builds
|
||||
#
|
||||
# docker build --platform linux/amd64 -t builder-amd64 -f Dockerfile.new --target unified-builder-amd64 .
|
||||
# docker run --platform linux/amd64 --rm -it -v $(pwd):/go/src/github.com/ollama/ollama/ builder-amd64
|
||||
#
|
||||
### Then incremental builds will be much faster in this container
|
||||
#
|
||||
# make -C llama -j 10 && go build -trimpath -o dist/linux-amd64/ollama .
|
||||
#
|
||||
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete AS unified-builder-amd64
|
||||
ARG CMAKE_VERSION
|
||||
ARG GOLANG_VERSION
|
||||
ARG CUDA_VERSION_11
|
||||
ARG CUDA_VERSION_12
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:/usr/local/cuda/bin:$PATH
|
||||
ENV LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64
|
||||
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs:/opt/amdgpu/lib64
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
|
||||
RUN yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-rhel7.repo && \
|
||||
dnf clean all && \
|
||||
dnf install -y \
|
||||
zsh \
|
||||
cuda-$(echo ${CUDA_VERSION_11} | cut -f1-2 -d. | sed -e "s/\./-/g") \
|
||||
cuda-$(echo ${CUDA_VERSION_12} | cut -f1-2 -d. | sed -e "s/\./-/g")
|
||||
# TODO intel oneapi goes here...
|
||||
ENV GOARCH amd64
|
||||
ENV CGO_ENABLED 1
|
||||
WORKDIR /go/src/github.com/ollama/ollama/
|
||||
ENTRYPOINT [ "zsh" ]
|
||||
|
||||
### To create a local image for building linux binaries on mac or linux/arm64 with efficient incremental builds
|
||||
# Note: this does not contain jetson variants
|
||||
#
|
||||
# docker build --platform linux/arm64 -t builder-arm64 -f Dockerfile.new --target unified-builder-arm64 .
|
||||
# docker run --platform linux/arm64 --rm -it -v $(pwd):/go/src/github.com/ollama/ollama/ builder-arm64
|
||||
#
|
||||
FROM --platform=linux/arm64 rockylinux:8 AS unified-builder-arm64
|
||||
ARG CMAKE_VERSION
|
||||
ARG GOLANG_VERSION
|
||||
ARG CUDA_VERSION_11
|
||||
ARG CUDA_VERSION_12
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
|
||||
RUN yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/sbsa/cuda-rhel8.repo && \
|
||||
dnf config-manager --set-enabled appstream && \
|
||||
dnf clean all && \
|
||||
dnf install -y \
|
||||
zsh \
|
||||
cuda-toolkit-$(echo ${CUDA_VERSION_11} | cut -f1-2 -d. | sed -e "s/\./-/g") \
|
||||
cuda-toolkit-$(echo ${CUDA_VERSION_12} | cut -f1-2 -d. | sed -e "s/\./-/g")
|
||||
ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH:/usr/local/cuda/bin
|
||||
ENV LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64
|
||||
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs:/opt/amdgpu/lib64
|
||||
ENV GOARCH amd64
|
||||
ENV CGO_ENABLED 1
|
||||
WORKDIR /go/src/github.com/ollama/ollama/
|
||||
ENTRYPOINT [ "zsh" ]
|
||||
|
||||
FROM --platform=linux/amd64 unified-builder-amd64 AS runners-amd64
|
||||
COPY . .
|
||||
ARG OLLAMA_SKIP_CUDA_GENERATE
|
||||
ARG OLLAMA_SKIP_CUDA_11_GENERATE
|
||||
ARG OLLAMA_SKIP_CUDA_12_GENERATE
|
||||
ARG OLLAMA_SKIP_ROCM_GENERATE
|
||||
ARG CUDA_V11_ARCHITECTURES
|
||||
ARG CUDA_V12_ARCHITECTURES
|
||||
ARG OLLAMA_FAST_BUILD
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
if grep "^flags" /proc/cpuinfo|grep avx>/dev/null; then \
|
||||
make -C llama -j $(expr $(nproc) / 2 ) ; \
|
||||
else \
|
||||
make -C llama -j 5 ; \
|
||||
fi
|
||||
|
||||
FROM --platform=linux/arm64 unified-builder-arm64 AS runners-arm64
|
||||
COPY . .
|
||||
ARG OLLAMA_SKIP_CUDA_GENERATE
|
||||
ARG OLLAMA_SKIP_CUDA_11_GENERATE
|
||||
ARG OLLAMA_SKIP_CUDA_12_GENERATE
|
||||
ARG CUDA_V11_ARCHITECTURES
|
||||
ARG CUDA_V12_ARCHITECTURES
|
||||
ARG OLLAMA_FAST_BUILD
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
make -C llama -j 8
|
||||
|
||||
|
||||
# Intermediate stages used for ./scripts/build_linux.sh
|
||||
FROM --platform=linux/amd64 centos:7 AS builder-amd64
|
||||
ARG CMAKE_VERSION
|
||||
ARG GOLANG_VERSION
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
|
||||
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
|
||||
ENV CGO_ENABLED 1
|
||||
ENV GOARCH amd64
|
||||
WORKDIR /go/src/github.com/ollama/ollama
|
||||
|
||||
FROM --platform=linux/amd64 builder-amd64 AS build-amd64
|
||||
COPY . .
|
||||
COPY --from=runners-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
|
||||
COPY --from=runners-amd64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
ARG GOFLAGS
|
||||
ARG CGO_CFLAGS
|
||||
ARG OLLAMA_SKIP_ROCM_GENERATE
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
go build -trimpath -o dist/linux-amd64/bin/ollama .
|
||||
RUN cd dist/linux-$GOARCH && \
|
||||
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH.tgz
|
||||
RUN if [ -z ${OLLAMA_SKIP_ROCM_GENERATE} ] ; then \
|
||||
cd dist/linux-$GOARCH-rocm && \
|
||||
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH-rocm.tgz ;\
|
||||
fi
|
||||
|
||||
FROM --platform=linux/arm64 rockylinux:8 AS builder-arm64
|
||||
ARG CMAKE_VERSION
|
||||
ARG GOLANG_VERSION
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
|
||||
ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH
|
||||
ENV CGO_ENABLED 1
|
||||
ENV GOARCH arm64
|
||||
WORKDIR /go/src/github.com/ollama/ollama
|
||||
|
||||
FROM --platform=linux/arm64 builder-arm64 AS build-arm64
|
||||
COPY . .
|
||||
COPY --from=runners-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
|
||||
COPY --from=runners-arm64 /go/src/github.com/ollama/ollama/build/ build/
|
||||
ARG GOFLAGS
|
||||
ARG CGO_CFLAGS
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
go build -trimpath -o dist/linux-arm64/bin/ollama .
|
||||
RUN cd dist/linux-$GOARCH && \
|
||||
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH.tgz
|
||||
|
||||
FROM --platform=linux/amd64 scratch AS dist-amd64
|
||||
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
|
||||
FROM --platform=linux/arm64 scratch AS dist-arm64
|
||||
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
|
||||
FROM dist-$TARGETARCH AS dist
|
||||
|
||||
|
||||
# Optimized container images do not cary nested payloads
|
||||
FROM --platform=linux/amd64 builder-amd64 AS container-build-amd64
|
||||
WORKDIR /go/src/github.com/ollama/ollama
|
||||
COPY . .
|
||||
ARG GOFLAGS
|
||||
ARG CGO_CFLAGS
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
go build -trimpath -o dist/linux-amd64/bin/ollama .
|
||||
|
||||
FROM --platform=linux/arm64 builder-arm64 AS container-build-arm64
|
||||
WORKDIR /go/src/github.com/ollama/ollama
|
||||
COPY . .
|
||||
ARG GOFLAGS
|
||||
ARG CGO_CFLAGS
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
go build -trimpath -o dist/linux-arm64/bin/ollama .
|
||||
|
||||
# For amd64 container images, filter out cuda/rocm to minimize size
|
||||
FROM runners-amd64 AS runners-cuda-amd64
|
||||
RUN rm -rf \
|
||||
./dist/linux-amd64/lib/ollama/libggml_hipblas.so \
|
||||
./dist/linux-amd64/lib/ollama/runners/rocm*
|
||||
|
||||
FROM runners-amd64 AS runners-rocm-amd64
|
||||
RUN rm -rf \
|
||||
./dist/linux-amd64/lib/ollama/libggml_cuda*.so \
|
||||
./dist/linux-amd64/lib/ollama/libcu*.so* \
|
||||
./dist/linux-amd64/lib/ollama/runners/cuda*
|
||||
|
||||
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-amd64
|
||||
RUN apt-get update && \
|
||||
apt-get install -y ca-certificates && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
COPY --from=container-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
|
||||
COPY --from=runners-cuda-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
|
||||
FROM --platform=linux/arm64 ubuntu:22.04 AS runtime-arm64
|
||||
RUN apt-get update && \
|
||||
apt-get install -y ca-certificates && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
COPY --from=container-build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/bin/ /bin/
|
||||
COPY --from=runners-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
|
||||
|
||||
# ROCm libraries larger so we keep it distinct from the CPU/CUDA image
|
||||
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-rocm
|
||||
# Frontload the rocm libraries which are large, and rarely change to increase chance of a common layer
|
||||
# across releases
|
||||
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64-rocm/lib/ /lib/
|
||||
RUN apt-get update && \
|
||||
apt-get install -y ca-certificates && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
COPY --from=container-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
|
||||
COPY --from=runners-rocm-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
||||
|
||||
EXPOSE 11434
|
||||
ENV OLLAMA_HOST 0.0.0.0
|
||||
|
||||
ENTRYPOINT ["/bin/ollama"]
|
||||
CMD ["serve"]
|
||||
|
||||
FROM runtime-$TARGETARCH
|
||||
EXPOSE 11434
|
||||
ENV OLLAMA_HOST 0.0.0.0
|
||||
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
|
||||
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
|
||||
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
|
||||
ENV NVIDIA_VISIBLE_DEVICES=all
|
||||
|
||||
ENTRYPOINT ["/bin/ollama"]
|
||||
CMD ["serve"]
|
@ -9,8 +9,7 @@ ifeq ($(OS),windows)
|
||||
CUDA_BASE_DIR := $(dir $(shell cygpath -m -s "$(CUDA_PATH)\\.." 2>/dev/null))
|
||||
CUDA_11:=$(shell ls -d $(CUDA_BASE_DIR)/v11.? 2>/dev/null)
|
||||
CUDA_12:=$(shell ls -d $(CUDA_BASE_DIR)/v12.? 2>/dev/null)
|
||||
HIP_PATH_83 := $(shell cygpath -m -s "$(subst \,/,$(HIP_PATH))" 2>/dev/null)
|
||||
HIP_LIB_DIR := $(shell ls -d $(HIP_PATH_83)/lib 2>/dev/null)
|
||||
HIP_LIB_DIR := $(shell ls -d $(HIP_PATH)/lib 2>/dev/null)
|
||||
else ifeq ($(OS),linux)
|
||||
HIP_PATH?=/opt/rocm
|
||||
HIP_LIB_DIR := $(shell ls -d $(HIP_PATH)/lib 2>/dev/null)
|
||||
|
@ -95,31 +95,17 @@ make -j
|
||||
|
||||
Ollama currently vendors [llama.cpp](https://github.com/ggerganov/llama.cpp/) and [ggml](https://github.com/ggerganov/ggml) through a vendoring model. While we generally strive to contribute changes back upstream to avoid drift, we cary a small set of patches which are applied to the tracking commit. A set of make targets are available to aid developers in updating to a newer tracking commit, or to work on changes.
|
||||
|
||||
> [!IMPORTANT]
|
||||
> Prior to merging #7157 we continue to leverage a submodule for llama.cpp which establishes the tracking commit. After merging that PR a new manifest file we be utilized
|
||||
|
||||
If you update the vendoring code, start by running the following command to establish the tracking llama.cpp repo in the `./vendor/` directory.
|
||||
|
||||
```
|
||||
make -C llama apply-patches
|
||||
make apply-patches
|
||||
```
|
||||
|
||||
### Updating Base Commit
|
||||
|
||||
**Pin to new base commit**
|
||||
|
||||
To update to a newer base commit, select the upstream git tag or commit
|
||||
|
||||
> [!IMPORTANT]
|
||||
> After merging #7157 a manifest will be used instead of the submodule
|
||||
|
||||
```
|
||||
cd llm/llama.cpp
|
||||
git fetch
|
||||
git checkout NEW_BASE_COMMIT
|
||||
cd ..
|
||||
git add llama.cpp
|
||||
```
|
||||
To update to a newer base commit, select the upstream git tag or commit and update `llama/vendoring.env`
|
||||
|
||||
#### Applying patches
|
||||
|
||||
@ -128,13 +114,13 @@ When updating to a newer base commit, the existing patches may not apply cleanly
|
||||
Start by applying the patches. If any of the patches have conflicts, the `git am` will stop at the first failure.
|
||||
|
||||
```
|
||||
make -C llama apply-patches
|
||||
make apply-patches
|
||||
```
|
||||
|
||||
If you see an error message about a conflict, go into the `./vendor/` directory, and perform merge resolution using your preferred tool to the patch commit which failed. Save the file(s) and continue the patch series with `git am --continue` . If any additional patches fail, follow the same pattern until the full patch series is applied. Once finished, run a final `create-patches` and `sync` target to ensure everything is updated.
|
||||
|
||||
```
|
||||
make -C llama create-patches sync
|
||||
make create-patches sync
|
||||
```
|
||||
|
||||
Build and test Ollama, and make any necessary changes to the Go code based on the new base commit. Submit your PR to the Ollama repo.
|
||||
@ -144,14 +130,14 @@ Build and test Ollama, and make any necessary changes to the Go code based on th
|
||||
When working on new fixes or features that impact vendored code, use the following model. First get a clean tracking repo with all current patches applied:
|
||||
|
||||
```
|
||||
make -C llama apply-patches
|
||||
make apply-patches
|
||||
```
|
||||
|
||||
Now edit the upstream native code in the `./vendor/` directory. You do not need to commit every change in order to build, a dirty working tree in the tracking repo is OK while developing. Simply save in your editor, and run the following to refresh the vendored code with your changes, build the backend(s) and build ollama:
|
||||
|
||||
```
|
||||
make -C llama sync
|
||||
make -C llama -j 8
|
||||
make sync
|
||||
make -j 8
|
||||
go build .
|
||||
```
|
||||
|
||||
@ -161,7 +147,7 @@ go build .
|
||||
Iterate until you're ready to submit PRs. Once your code is ready, commit a change in the `./vendor/` directory, then generate the patches for ollama with
|
||||
|
||||
```
|
||||
make -C llama create-patches
|
||||
make create-patches
|
||||
```
|
||||
|
||||
> [!IMPORTANT]
|
||||
|
4
llama/ggml-cuda.cu
vendored
4
llama/ggml-cuda.cu
vendored
@ -2296,6 +2296,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_OP_PAD:
|
||||
ggml_cuda_op_pad(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_UNPAD:
|
||||
ggml_cuda_op_unpad(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_ARANGE:
|
||||
ggml_cuda_op_arange(ctx, dst);
|
||||
break;
|
||||
@ -3018,6 +3021,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
||||
case GGML_OP_GROUP_NORM:
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_PAD:
|
||||
case GGML_OP_UNPAD:
|
||||
case GGML_OP_ARANGE:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
|
46
llama/ggml-cuda/pad.cu
vendored
46
llama/ggml-cuda/pad.cu
vendored
@ -73,3 +73,49 @@ void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
|
||||
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
|
||||
}
|
||||
|
||||
static __global__ void unpad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
|
||||
// blockIdx.z: idx of ne2*ne3, aka ne02*ne03
|
||||
// blockIdx.y: idx of ne1
|
||||
// blockIDx.x: idx of ne0 / BLOCK_SIZE
|
||||
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
if (nidx >= ne0) {
|
||||
return;
|
||||
}
|
||||
|
||||
// operation
|
||||
int offset_dst =
|
||||
nidx +
|
||||
blockIdx.y * ne0 +
|
||||
blockIdx.z * ne0 * gridDim.y;
|
||||
if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) {
|
||||
int offset_src =
|
||||
nidx +
|
||||
blockIdx.y * ne00 +
|
||||
blockIdx.z * ne00 * ne01;
|
||||
dst[offset_dst] = x[offset_src];
|
||||
}
|
||||
}
|
||||
|
||||
static void unpad_f32_cuda(const float * x, float * dst,
|
||||
const int ne00, const int ne01, const int ne02, const int ne03,
|
||||
const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
|
||||
int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
|
||||
dim3 gridDim(num_blocks, ne1, ne2*ne3);
|
||||
unpad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_unpad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
|
||||
|
||||
unpad_f32_cuda(src0_d, dst_d,
|
||||
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
|
||||
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
|
||||
}
|
||||
|
1
llama/ggml-cuda/pad.cuh
vendored
1
llama/ggml-cuda/pad.cuh
vendored
@ -29,3 +29,4 @@
|
||||
#define CUDA_PAD_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
void ggml_cuda_op_unpad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
45
llama/ggml-metal.metal
vendored
45
llama/ggml-metal.metal
vendored
@ -2055,6 +2055,51 @@ kernel void kernel_pad_f32(
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_unpad_f32(
|
||||
device const char * src0,
|
||||
device char * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant int64_t & ne03,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant uint64_t & nb03,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant int64_t & ne2,
|
||||
constant int64_t & ne3,
|
||||
constant uint64_t & nb0,
|
||||
constant uint64_t & nb1,
|
||||
constant uint64_t & nb2,
|
||||
constant uint64_t & nb3,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
uint3 ntg[[threads_per_threadgroup]]) {
|
||||
|
||||
const int64_t i3 = tgpig.z;
|
||||
const int64_t i2 = tgpig.y;
|
||||
const int64_t i1 = tgpig.x;
|
||||
|
||||
const int64_t i03 = i3;
|
||||
const int64_t i02 = i2;
|
||||
const int64_t i01 = i1;
|
||||
|
||||
device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
|
||||
device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
|
||||
|
||||
if (i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
||||
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
|
||||
if (i0 < ne00) {
|
||||
dst_ptr[i0] = src0_ptr[i0];
|
||||
}
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_arange_f32(
|
||||
device char * dst,
|
||||
constant int64_t & ne0,
|
||||
|
33
llama/ggml-metal_darwin_arm64.m
vendored
33
llama/ggml-metal_darwin_arm64.m
vendored
@ -219,6 +219,7 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_IM2COL_F32,
|
||||
GGML_METAL_KERNEL_TYPE_UPSCALE_F32,
|
||||
GGML_METAL_KERNEL_TYPE_PAD_F32,
|
||||
GGML_METAL_KERNEL_TYPE_UNPAD_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ARANGE_F32,
|
||||
GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,
|
||||
@ -715,6 +716,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(void) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32, im2col_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UNPAD_F32, unpad_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32, timestep_embedding_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARANGE_F32, arange_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true);
|
||||
@ -872,6 +874,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_context * ctx
|
||||
return false;
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_PAD:
|
||||
case GGML_OP_UNPAD:
|
||||
case GGML_OP_ARANGE:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_ARGSORT:
|
||||
@ -2681,6 +2684,36 @@ static void ggml_metal_encode_node(
|
||||
|
||||
const int nth = MIN(1024, ne0);
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_UNPAD:
|
||||
{
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
|
||||
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_UNPAD_F32].pipeline;
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
|
||||
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
|
||||
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
|
||||
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
|
||||
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
|
||||
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
|
||||
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
|
||||
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
|
||||
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10];
|
||||
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11];
|
||||
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12];
|
||||
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13];
|
||||
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14];
|
||||
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
|
||||
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16];
|
||||
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17];
|
||||
|
||||
const int nth = MIN(1024, ne0);
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_ARANGE:
|
||||
|
93
llama/ggml.c
vendored
93
llama/ggml.c
vendored
@ -3023,6 +3023,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
||||
"POOL_2D_BACK",
|
||||
"UPSCALE",
|
||||
"PAD",
|
||||
"UNPAD",
|
||||
"ARANGE",
|
||||
"TIMESTEP_EMBEDDING",
|
||||
"ARGSORT",
|
||||
@ -3056,7 +3057,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
||||
"OPT_STEP_ADAMW",
|
||||
};
|
||||
|
||||
static_assert(GGML_OP_COUNT == 80, "GGML_OP_COUNT != 80");
|
||||
static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
|
||||
|
||||
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"none",
|
||||
@ -3117,6 +3118,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"pool_2d_back(x)",
|
||||
"upscale(x)",
|
||||
"pad(x)",
|
||||
"unpad(x)",
|
||||
"arange(start, stop, step)",
|
||||
"timestep_embedding(timesteps, dim, max_period)",
|
||||
"argsort(x)",
|
||||
@ -3150,7 +3152,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"adamw(x)",
|
||||
};
|
||||
|
||||
static_assert(GGML_OP_COUNT == 80, "GGML_OP_COUNT != 80");
|
||||
static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
|
||||
|
||||
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
|
||||
|
||||
@ -6981,6 +6983,32 @@ struct ggml_tensor * ggml_pad(
|
||||
return result;
|
||||
}
|
||||
|
||||
// ggml_unpad
|
||||
|
||||
struct ggml_tensor * ggml_unpad(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int p0, int p1, int p2, int p3) {
|
||||
bool is_node = false;
|
||||
|
||||
if (a->grad) {
|
||||
GGML_ABORT("fatal error"); // TODO: implement backward
|
||||
is_node = true;
|
||||
}
|
||||
|
||||
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
|
||||
a->ne[0] - p0,
|
||||
a->ne[1] - p1,
|
||||
a->ne[2] - p2,
|
||||
a->ne[3] - p3);
|
||||
|
||||
result->op = GGML_OP_UNPAD;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = a;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// ggml_arange
|
||||
|
||||
struct ggml_tensor * ggml_arange(
|
||||
@ -15338,6 +15366,58 @@ static void ggml_compute_forward_pad(
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_unpad_f32(
|
||||
const struct ggml_compute_params *params,
|
||||
struct ggml_tensor *dst) {
|
||||
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||||
GGML_ASSERT( dst->nb[0] == sizeof(float));
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
GGML_TENSOR_UNARY_OP_LOCALS
|
||||
|
||||
float * dst_ptr = (float *) dst->data;
|
||||
|
||||
// TODO: optimize
|
||||
|
||||
for (int64_t i2 = 0; i2 < ne2; ++i2) {
|
||||
for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
|
||||
for (int64_t i0 = 0; i0 < ne0; ++i0) {
|
||||
for (int64_t i3 = 0; i3 < ne3; ++i3) {
|
||||
const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
|
||||
|
||||
const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||||
|
||||
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
||||
dst_ptr[dst_idx] = *src_ptr;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_unpad(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst) {
|
||||
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
ggml_compute_forward_unpad_f32(params, dst);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_arange
|
||||
|
||||
@ -17320,6 +17400,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
{
|
||||
ggml_compute_forward_pad(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_UNPAD:
|
||||
{
|
||||
ggml_compute_forward_unpad(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_ARANGE:
|
||||
{
|
||||
ggml_compute_forward_arange(params, tensor);
|
||||
@ -18395,6 +18479,10 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
|
||||
{
|
||||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||||
}
|
||||
case GGML_OP_UNPAD:
|
||||
{
|
||||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||||
}
|
||||
case GGML_OP_ARANGE:
|
||||
{
|
||||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||||
@ -19191,6 +19279,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||||
} break;
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_PAD:
|
||||
case GGML_OP_UNPAD:
|
||||
case GGML_OP_ARANGE:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_ARGSORT:
|
||||
|
10
llama/ggml.h
vendored
10
llama/ggml.h
vendored
@ -532,6 +532,7 @@ extern "C" {
|
||||
GGML_OP_POOL_2D_BACK,
|
||||
GGML_OP_UPSCALE, // nearest interpolate
|
||||
GGML_OP_PAD,
|
||||
GGML_OP_UNPAD,
|
||||
GGML_OP_ARANGE,
|
||||
GGML_OP_TIMESTEP_EMBEDDING,
|
||||
GGML_OP_ARGSORT,
|
||||
@ -1790,6 +1791,15 @@ extern "C" {
|
||||
int p2,
|
||||
int p3);
|
||||
|
||||
// unpad each dimension: [x, ..., x, y, ..., y] -> [x, ..., x]
|
||||
GGML_API struct ggml_tensor * ggml_unpad(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int p0,
|
||||
int p1,
|
||||
int p2,
|
||||
int p3);
|
||||
|
||||
// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
|
||||
// timesteps: [N,]
|
||||
// return: [N, dim]
|
||||
|
2
llama/llama-vocab.cpp
vendored
2
llama/llama-vocab.cpp
vendored
@ -415,7 +415,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {
|
||||
case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
|
||||
regex_exprs = {
|
||||
"[\r\n]",
|
||||
"\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
|
||||
"\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z\U00010400-\U0001044f𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
|
||||
"\\s?[!-/:-~!-/:-~‘-‟ -。]+",
|
||||
"\\s+$",
|
||||
"[一-龥ࠀ-一가-]+",
|
||||
|
447
llama/llama.cpp
vendored
447
llama/llama.cpp
vendored
@ -195,6 +195,7 @@ static std::string format(const char * fmt, ...) {
|
||||
|
||||
enum llm_arch {
|
||||
LLM_ARCH_LLAMA,
|
||||
LLM_ARCH_MLLAMA,
|
||||
LLM_ARCH_FALCON,
|
||||
LLM_ARCH_BAICHUAN,
|
||||
LLM_ARCH_GROK,
|
||||
@ -249,6 +250,7 @@ enum llm_arch {
|
||||
|
||||
static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_LLAMA, "llama" },
|
||||
{ LLM_ARCH_MLLAMA, "mllama" },
|
||||
{ LLM_ARCH_FALCON, "falcon" },
|
||||
{ LLM_ARCH_GROK, "grok" },
|
||||
{ LLM_ARCH_GPT2, "gpt2" },
|
||||
@ -356,6 +358,7 @@ enum llm_kv {
|
||||
LLM_KV_ATTENTION_SLIDING_WINDOW,
|
||||
LLM_KV_ATTENTION_SCALE,
|
||||
LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
|
||||
LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS,
|
||||
|
||||
LLM_KV_ROPE_DIMENSION_COUNT,
|
||||
LLM_KV_ROPE_FREQ_BASE,
|
||||
@ -465,6 +468,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
||||
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
|
||||
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
|
||||
{ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection.%d" },
|
||||
{ LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, "%s.attention.cross_attention_layers" },
|
||||
|
||||
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
|
||||
{ LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
|
||||
@ -639,6 +643,14 @@ enum llm_tensor {
|
||||
LLM_TENSOR_CLS,
|
||||
LLM_TENSOR_CLS_OUT,
|
||||
LLM_TENSOR_BSKCN_TV,
|
||||
LLM_TENSOR_CROSS_ATTN_K_NORM,
|
||||
LLM_TENSOR_CROSS_ATTN_K_PROJ,
|
||||
LLM_TENSOR_CROSS_ATTN_O_PROJ,
|
||||
LLM_TENSOR_CROSS_ATTN_Q_NORM,
|
||||
LLM_TENSOR_CROSS_ATTN_Q_PROJ,
|
||||
LLM_TENSOR_CROSS_ATTN_V_PROJ,
|
||||
LLM_TENSOR_CROSS_ATTN_ATTN_GATE,
|
||||
LLM_TENSOR_CROSS_ATTN_MLP_GATE,
|
||||
};
|
||||
|
||||
static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
|
||||
@ -668,6 +680,40 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_MLLAMA,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
||||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
|
||||
{ LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_K_NORM, "blk.%d.cross_attn_k_norm" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_K_PROJ, "blk.%d.cross_attn_k_proj" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_O_PROJ, "blk.%d.cross_attn_o_proj" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_Q_NORM, "blk.%d.cross_attn_q_norm" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_Q_PROJ, "blk.%d.cross_attn_q_proj" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_V_PROJ, "blk.%d.cross_attn_v_proj" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_ATTN_GATE, "blk.%d.cross_attn_attn_gate" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_MLP_GATE, "blk.%d.cross_attn_mlp_gate" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_BAICHUAN,
|
||||
{
|
||||
@ -2416,6 +2462,7 @@ enum e_model {
|
||||
MODEL_40B,
|
||||
MODEL_65B,
|
||||
MODEL_70B,
|
||||
MODEL_90B,
|
||||
MODEL_236B,
|
||||
MODEL_314B,
|
||||
MODEL_SMALL,
|
||||
@ -2460,6 +2507,7 @@ struct llama_hparams {
|
||||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
|
||||
|
||||
std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr;
|
||||
std::array<uint32_t, LLAMA_MAX_LAYERS> cross_attn_layers;
|
||||
|
||||
uint32_t n_layer_dense_lead = 0;
|
||||
uint32_t n_lora_q = 0;
|
||||
@ -2528,10 +2576,11 @@ struct llama_hparams {
|
||||
if (this->n_expert != other.n_expert) return true;
|
||||
if (this->n_expert_used != other.n_expert_used) return true;
|
||||
|
||||
if (this->n_head_arr != other.n_head_arr) return true;
|
||||
if (this->n_head_kv_arr != other.n_head_kv_arr) return true;
|
||||
if (this->n_ff_arr != other.n_ff_arr) return true;
|
||||
if (this->n_bskcn_arr != other.n_bskcn_arr) return true;
|
||||
if (this->n_head_arr != other.n_head_arr) return true;
|
||||
if (this->n_head_kv_arr != other.n_head_kv_arr) return true;
|
||||
if (this->n_ff_arr != other.n_ff_arr) return true;
|
||||
if (this->n_bskcn_arr != other.n_bskcn_arr) return true;
|
||||
if (this->cross_attn_layers != other.cross_attn_layers) return true;
|
||||
|
||||
if (this->n_rel_attn_bkts != other.n_rel_attn_bkts) return true;
|
||||
if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
|
||||
@ -2649,6 +2698,10 @@ struct llama_hparams {
|
||||
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
bool cross_attention_layers(uint32_t il) const {
|
||||
return std::find(cross_attn_layers.begin(), cross_attn_layers.end(), il) != cross_attn_layers.end();
|
||||
}
|
||||
};
|
||||
|
||||
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
|
||||
@ -2678,6 +2731,9 @@ struct llama_cparams {
|
||||
bool offload_kqv;
|
||||
bool flash_attn;
|
||||
bool no_perf;
|
||||
// TODO (jmorganca): this should most likely be passed in as part of a batch
|
||||
// and not set on the context for all batches.
|
||||
bool cross_attn = false;
|
||||
|
||||
enum llama_pooling_type pooling_type;
|
||||
|
||||
@ -2832,6 +2888,16 @@ struct llama_layer {
|
||||
struct ggml_tensor * ffn_down_scale;
|
||||
|
||||
struct ggml_tensor * bskcn_tv;
|
||||
|
||||
// cross attention
|
||||
struct ggml_tensor * cross_attn_k_norm;
|
||||
struct ggml_tensor * cross_attn_k_proj;
|
||||
struct ggml_tensor * cross_attn_o_proj;
|
||||
struct ggml_tensor * cross_attn_q_norm;
|
||||
struct ggml_tensor * cross_attn_q_proj;
|
||||
struct ggml_tensor * cross_attn_v_proj;
|
||||
struct ggml_tensor * cross_attn_attn_gate;
|
||||
struct ggml_tensor * cross_attn_mlp_gate;
|
||||
};
|
||||
|
||||
// very similar to llama_batch,
|
||||
@ -3478,6 +3544,8 @@ struct llama_context {
|
||||
struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch]
|
||||
struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
|
||||
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
|
||||
|
||||
struct ggml_tensor * inp_cross_attn_state; // F32 [4, n_embd, 1061]
|
||||
};
|
||||
|
||||
struct llama_lora_weight {
|
||||
@ -3712,6 +3780,18 @@ static bool llama_kv_cache_init(
|
||||
cache.v_l.reserve(n_layer);
|
||||
|
||||
for (int i = 0; i < (int) n_layer; i++) {
|
||||
// for cross attention layers
|
||||
if (model.arch == LLM_ARCH_MLLAMA && hparams.cross_attention_layers(i)) {
|
||||
struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
|
||||
ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_k, 6404, hparams.n_head_kv(i));
|
||||
ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_v, 6404, hparams.n_head_kv(i));
|
||||
ggml_format_name(k, "cache_k_l%d", i);
|
||||
ggml_format_name(v, "cache_v_l%d", i);
|
||||
cache.k_l.push_back(k);
|
||||
cache.v_l.push_back(v);
|
||||
continue;
|
||||
}
|
||||
|
||||
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
|
||||
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
|
||||
|
||||
@ -5486,12 +5566,14 @@ static void llm_load_hparams(
|
||||
}
|
||||
|
||||
// zero-out the per-layer hparams
|
||||
std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
|
||||
std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
|
||||
std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
|
||||
std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
|
||||
std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
|
||||
std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
|
||||
std::fill(hparams.cross_attn_layers.begin(), hparams.cross_attn_layers.end(), -1);
|
||||
|
||||
ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer);
|
||||
ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer);
|
||||
ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer);
|
||||
ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer);
|
||||
ml.get_arr(LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, hparams.cross_attn_layers, false);
|
||||
|
||||
// n_head_kv is optional, default to n_head
|
||||
hparams.n_head_kv_arr = hparams.n_head_arr;
|
||||
@ -5540,7 +5622,7 @@ static void llm_load_hparams(
|
||||
|
||||
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
|
||||
|
||||
if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
|
||||
if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_MLLAMA || model.arch == LLM_ARCH_FALCON) {
|
||||
if (hparams.n_rot != hparams.n_embd_head_k) {
|
||||
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
|
||||
}
|
||||
@ -5580,6 +5662,16 @@ static void llm_load_hparams(
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_MLLAMA:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 40: model.type = e_model::MODEL_11B; break;
|
||||
case 100: model.type = e_model::MODEL_90B; break;
|
||||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_MINICPM:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
@ -7275,6 +7367,55 @@ static bool llm_load_tensors(
|
||||
layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head_qk_rope/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_MLLAMA:
|
||||
{
|
||||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab+8});
|
||||
|
||||
// output
|
||||
{
|
||||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
|
||||
// if output is NULL, init from the input tok embed
|
||||
if (model.output == NULL) {
|
||||
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||||
|
||||
auto & layer = model.layers[i];
|
||||
|
||||
if (hparams.cross_attention_layers(i)) {
|
||||
layer.cross_attn_k_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_K_NORM, "weight", i), {128});
|
||||
layer.cross_attn_k_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_K_PROJ, "weight", i), {n_embd, 1024});
|
||||
layer.cross_attn_o_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_O_PROJ, "weight", i), {n_embd, n_embd});
|
||||
layer.cross_attn_q_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_Q_NORM, "weight", i), {128});
|
||||
layer.cross_attn_q_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_Q_PROJ, "weight", i), {n_embd, n_embd});
|
||||
layer.cross_attn_v_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_V_PROJ, "weight", i), {n_embd, 1024});
|
||||
layer.cross_attn_attn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_ATTN_GATE, i), {1});
|
||||
layer.cross_attn_mlp_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_MLP_GATE, i), {1});
|
||||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
|
||||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||||
} else {
|
||||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
|
||||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
|
||||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
|
||||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
|
||||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||||
layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_GROK:
|
||||
{
|
||||
if (n_expert == 0) {
|
||||
@ -9119,7 +9260,7 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
|
||||
|
||||
if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
|
||||
model.hparams.n_vocab != model.vocab.id_to_token.size()) {
|
||||
throw std::runtime_error("vocab size mismatch");
|
||||
LLAMA_LOG_WARN("%s: vocab mismatch %u !- %zu ...\n", __func__, model.hparams.n_vocab, model.vocab.id_to_token.size());
|
||||
}
|
||||
|
||||
if (params.vocab_only) {
|
||||
@ -9219,6 +9360,21 @@ static struct ggml_tensor * llm_build_inp_embd(
|
||||
return inpL;
|
||||
}
|
||||
|
||||
static struct ggml_tensor * llm_build_inp_cross_attn_state(
|
||||
struct ggml_context * ctx,
|
||||
struct llama_context & lctx,
|
||||
const llama_hparams & hparams,
|
||||
const llm_build_cb & cb) {
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
|
||||
struct ggml_tensor * inpCAS = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd, 1601, 4);
|
||||
cb(inpCAS, "inp_cross_attn_state", -1);
|
||||
ggml_set_input(inpCAS);
|
||||
lctx.inp_cross_attn_state = inpCAS;
|
||||
|
||||
return inpCAS;
|
||||
}
|
||||
|
||||
static void llm_build_kv_store(
|
||||
struct ggml_context * ctx,
|
||||
const llama_hparams & hparams,
|
||||
@ -10193,6 +10349,7 @@ struct llm_build_context {
|
||||
lctx.inp_pos_bucket = nullptr;
|
||||
lctx.inp_embd_enc = nullptr;
|
||||
lctx.inp_KQ_mask_cross = nullptr;
|
||||
lctx.inp_cross_attn_state = nullptr;
|
||||
}
|
||||
|
||||
void free() {
|
||||
@ -10780,6 +10937,239 @@ struct llm_build_context {
|
||||
LLM_NORM_RMS, cb, -1);
|
||||
cb(cur, "result_norm", -1);
|
||||
|
||||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||||
cb(cur, "result_output", -1);
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
|
||||
return gf;
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_mllama() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
int32_t n_tokens = this->n_tokens;
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
struct ggml_tensor * inpCAS;
|
||||
|
||||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||||
inpCAS = llm_build_inp_cross_attn_state(ctx0, lctx, hparams, cb);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct ggml_tensor * inpSA = inpL;
|
||||
|
||||
// norm
|
||||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||
model.layers[il].attn_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
if (hparams.cross_attention_layers(il)) {
|
||||
if (!batch.embd && !cparams.cross_attn) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// cross attention layer
|
||||
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_q_proj, cur);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Qcur = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 0, 2, 1, 3));
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].cross_attn_q_norm, NULL, LLM_NORM_RMS, cb, il);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
struct ggml_tensor * Kcur, * Vcur;
|
||||
if (batch.embd) {
|
||||
Kcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_k_proj, inpCAS);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, 6404);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].cross_attn_k_norm, NULL, LLM_NORM_RMS, cb, il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, kv_self.k_l[il]));
|
||||
|
||||
Vcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_v_proj, inpCAS);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, 6404);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
Vcur = ggml_permute(ctx0, Vcur, 0, 2, 1, 3);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, kv_self.v_l[il]));
|
||||
} else {
|
||||
Kcur = ggml_view_tensor(ctx0, kv_self.k_l[il]);
|
||||
cb(Kcur, "Kcur (view)", il);
|
||||
|
||||
Vcur = ggml_view_tensor(ctx0, kv_self.v_l[il]);
|
||||
cb(Vcur, "Vcur (view)", il);
|
||||
}
|
||||
|
||||
struct ggml_tensor * kq = ggml_mul_mat(ctx0, Kcur, Qcur);
|
||||
cb(kq, "kq", il);
|
||||
|
||||
// TODO: apply causal masks
|
||||
struct ggml_tensor * kq_soft_max = ggml_soft_max_ext(ctx0, kq, nullptr, 1.f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
|
||||
cb(kq_soft_max, "kq_soft_max", il);
|
||||
|
||||
Vcur = ggml_cont(ctx0, ggml_transpose(ctx0, Vcur));
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
struct ggml_tensor * kqv = ggml_mul_mat(ctx0, Vcur, kq_soft_max);
|
||||
cb(kqv, "kqv", il);
|
||||
|
||||
struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
|
||||
cb(kqv_merged, "kqv_merged", il);
|
||||
|
||||
cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_head_v*n_head, n_tokens);
|
||||
cb(cur, "kqv_merged_cont", il);
|
||||
|
||||
cur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_o_proj, cur);
|
||||
cb(cur, "cur", il);
|
||||
|
||||
// TODO: do this in place once?
|
||||
cur = ggml_mul(ctx0, cur, ggml_tanh(ctx0, model.layers[il].cross_attn_attn_gate));
|
||||
|
||||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// feed-forward network
|
||||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||||
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
||||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
// TODO: do this inplace once?
|
||||
cur = ggml_add_inplace(ctx0, ggml_mul_inplace(ctx0, cur, ggml_tanh(ctx0, model.layers[il].cross_attn_mlp_gate)), ffn_inp);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
} else {
|
||||
// self attention layer
|
||||
|
||||
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||
struct ggml_tensor * rope_factors = build_rope_factors(il);
|
||||
|
||||
// compute Q and K and RoPE them
|
||||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||||
cb(Qcur, "Qcur", il);
|
||||
if (model.layers[il].bq) {
|
||||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||||
cb(Qcur, "Qcur", il);
|
||||
}
|
||||
|
||||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||||
cb(Kcur, "Kcur", il);
|
||||
if (model.layers[il].bk) {
|
||||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||||
cb(Kcur, "Kcur", il);
|
||||
}
|
||||
|
||||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||||
cb(Vcur, "Vcur", il);
|
||||
if (model.layers[il].bv) {
|
||||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||||
cb(Vcur, "Vcur", il);
|
||||
}
|
||||
|
||||
Qcur = ggml_rope_ext(
|
||||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Kcur = ggml_rope_ext(
|
||||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||||
model.layers[il].wo, model.layers[il].bo,
|
||||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
|
||||
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
n_tokens = n_outputs;
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// feed-forward network
|
||||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||||
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
||||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
}
|
||||
|
||||
cur = inpL;
|
||||
|
||||
cur = llm_build_norm(ctx0, cur, hparams,
|
||||
model.output_norm, NULL,
|
||||
LLM_NORM_RMS, cb, -1);
|
||||
cb(cur, "result_norm", -1);
|
||||
|
||||
// lm_head
|
||||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||||
cb(cur, "result_output", -1);
|
||||
@ -16527,6 +16917,10 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
{
|
||||
result = llm.build_llama();
|
||||
} break;
|
||||
case LLM_ARCH_MLLAMA:
|
||||
{
|
||||
result = llm.build_mllama();
|
||||
} break;
|
||||
case LLM_ARCH_BAICHUAN:
|
||||
{
|
||||
result = llm.build_baichuan();
|
||||
@ -16787,10 +17181,19 @@ static void llama_set_inputs(llama_context & lctx, const llama_ubatch & batch) {
|
||||
}
|
||||
|
||||
if (batch.embd) {
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
const int64_t n_tokens = batch.n_tokens;
|
||||
if (lctx.inp_cross_attn_state && lctx.inp_cross_attn_state->buffer) {
|
||||
ggml_backend_tensor_set(lctx.inp_cross_attn_state, batch.embd, 0, ggml_nbytes(lctx.inp_cross_attn_state));
|
||||
// zero out inp_embd since it's not used
|
||||
float * inp_embd_data = (float *)lctx.inp_embd->data;
|
||||
for (int i = 0; i < ggml_nelements(lctx.inp_embd); ++i) {
|
||||
inp_embd_data[i] = 0.0f;
|
||||
}
|
||||
} else {
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
const int64_t n_tokens = batch.n_tokens;
|
||||
|
||||
ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
|
||||
ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
|
||||
}
|
||||
}
|
||||
|
||||
if (batch.pos && lctx.inp_pos) {
|
||||
@ -17371,7 +17774,7 @@ static int llama_decode_internal(
|
||||
n_outputs = 1;
|
||||
}
|
||||
|
||||
lctx.sbatch.from_batch(batch_all, n_embd,
|
||||
lctx.sbatch.from_batch(batch_all, batch_all.n_embd,
|
||||
/* simple_split */ !kv_self.recurrent,
|
||||
/* logits_all */ n_outputs == n_tokens_all);
|
||||
|
||||
@ -17664,7 +18067,7 @@ static int llama_encode_internal(
|
||||
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
|
||||
lctx.sbatch.from_batch(batch, n_embd, /* simple_split */ true, /* logits_all */ true);
|
||||
lctx.sbatch.from_batch(batch, batch.n_embd, /* simple_split */ true, /* logits_all */ true);
|
||||
|
||||
const llama_ubatch ubatch = lctx.sbatch.split_simple(n_tokens);
|
||||
|
||||
@ -18674,7 +19077,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
if (llama_model_has_encoder(&model)) {
|
||||
n_attn_layer *= 3;
|
||||
}
|
||||
GGML_ASSERT((qs.n_attention_wv == n_attn_layer) && "n_attention_wv is unexpected");
|
||||
if (qs.n_attention_wv != n_attn_layer) {
|
||||
LLAMA_LOG_WARN("%s: n_attention_wv is unexpected, expected: %d, found: %d\n", __func__, n_attn_layer, qs.n_attention_wv);
|
||||
}
|
||||
}
|
||||
|
||||
size_t total_size_org = 0;
|
||||
@ -19840,6 +20245,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
||||
|
||||
// use what we call a normal RoPE, operating on pairs of consecutive head values
|
||||
case LLM_ARCH_LLAMA:
|
||||
case LLM_ARCH_MLLAMA:
|
||||
case LLM_ARCH_BAICHUAN:
|
||||
case LLM_ARCH_STARCODER:
|
||||
case LLM_ARCH_PLAMO:
|
||||
@ -21256,6 +21662,10 @@ void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
|
||||
ctx->cparams.causal_attn = causal_attn;
|
||||
}
|
||||
|
||||
void llama_set_cross_attention(struct llama_context * ctx, bool cross_attention) {
|
||||
ctx->cparams.cross_attn = cross_attention;
|
||||
}
|
||||
|
||||
struct llama_batch llama_batch_get_one(
|
||||
llama_token * tokens,
|
||||
int32_t n_tokens,
|
||||
@ -21265,6 +21675,7 @@ struct llama_batch llama_batch_get_one(
|
||||
/*n_tokens =*/ n_tokens,
|
||||
/*tokens =*/ tokens,
|
||||
/*embd =*/ nullptr,
|
||||
/*n_embd =*/ 0,
|
||||
/*pos =*/ nullptr,
|
||||
/*n_seq_id =*/ nullptr,
|
||||
/*seq_id =*/ nullptr,
|
||||
@ -21280,6 +21691,7 @@ struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_
|
||||
/*n_tokens =*/ 0,
|
||||
/*tokens =*/ nullptr,
|
||||
/*embd =*/ nullptr,
|
||||
/*n_embd =*/ 0,
|
||||
/*pos =*/ nullptr,
|
||||
/*n_seq_id =*/ nullptr,
|
||||
/*seq_id =*/ nullptr,
|
||||
@ -21291,6 +21703,7 @@ struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_
|
||||
|
||||
if (embd) {
|
||||
batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
|
||||
batch.n_embd = embd;
|
||||
} else {
|
||||
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
|
||||
}
|
||||
|
241
llama/llama.go
241
llama/llama.go
@ -1,5 +1,7 @@
|
||||
package llama
|
||||
|
||||
//go:generate make -j 8
|
||||
|
||||
/*
|
||||
#cgo CFLAGS: -O2 -std=c11 -DGGML_BUILD=1 -DNDEBUG -DLOG_DISABLE_LOGS -DGGML_USE_LLAMAFILE
|
||||
#cgo CXXFLAGS: -O2 -std=c++11 -DGGML_BUILD=1 -DNDEBUG -DLOG_DISABLE_LOGS -DGGML_USE_LLAMAFILE
|
||||
@ -19,6 +21,8 @@ package llama
|
||||
#cgo cuda CFLAGS: -fPIE -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
|
||||
#cgo cuda CXXFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
|
||||
#cgo cuda CXXFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
|
||||
#cgo cuda_jetpack5 LDFLAGS: -lggml_cuda_jetpack5 -L/usr/local/cuda-11/lib64
|
||||
#cgo cuda_jetpack6 LDFLAGS: -lggml_cuda_jetpack6 -L/usr/local/cuda-12/lib64
|
||||
#cgo cuda_v11 LDFLAGS: -lggml_cuda_v11 -L/usr/local/cuda-11/lib64
|
||||
#cgo cuda_v12 LDFLAGS: -lggml_cuda_v12 -L/usr/local/cuda-12/lib64
|
||||
#cgo darwin,amd64 CFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers
|
||||
@ -34,8 +38,8 @@ package llama
|
||||
#cgo linux CXXFLAGS: -D_GNU_SOURCE
|
||||
#cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/Linux/amd64
|
||||
#cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/Linux/amd64
|
||||
#cgo linux,arm64 CFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA -D__ARM_FEATURE_MATMUL_INT8
|
||||
#cgo linux,arm64 CXXFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA -D__ARM_FEATURE_MATMUL_INT8
|
||||
#cgo linux,arm64 CFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA
|
||||
#cgo linux,arm64 CXXFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA
|
||||
#cgo linux,arm64 LDFLAGS: -L${SRCDIR}/build/Linux/arm64
|
||||
#cgo linux,arm64,sve CFLAGS: -march=armv8.6-a+sve
|
||||
#cgo linux,arm64,sve CXXFLAGS: -march=armv8.6-a+sve
|
||||
@ -44,8 +48,8 @@ package llama
|
||||
#cgo rocm CFLAGS: -DGGML_USE_CUDA -DGGML_USE_HIPBLAS -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
|
||||
#cgo rocm CXXFLAGS: -DGGML_USE_CUDA -DGGML_USE_HIPBLAS -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
|
||||
#cgo rocm LDFLAGS: -L${SRCDIR} -lggml_rocm -lhipblas -lamdhip64 -lrocblas
|
||||
#cgo windows CFLAGS: -Wno-discarded-qualifiers
|
||||
#cgo windows CFLAGS: -Wno-discarded-qualifiers
|
||||
#cgo windows CFLAGS: -Wno-discarded-qualifiers -D_WIN32_WINNT=0x602
|
||||
#cgo windows CXXFLAGS: -D_WIN32_WINNT=0x602
|
||||
#cgo windows LDFLAGS: -lmsvcrt
|
||||
#cgo windows LDFLAGS: -lmsvcrt -static-libstdc++ -static-libgcc -static
|
||||
#cgo windows,amd64 LDFLAGS: -L${SRCDIR}/build/Windows/amd64
|
||||
@ -60,10 +64,23 @@ package llama
|
||||
#include <stdlib.h>
|
||||
#include "llama.h"
|
||||
#include "clip.h"
|
||||
#include "ggml.h"
|
||||
#include "llava.h"
|
||||
#include "mllama.h"
|
||||
#include "sampling_ext.h"
|
||||
|
||||
bool llamaProgressCallback(float progress, void *user_data);
|
||||
|
||||
typedef enum {COMP_UNKNOWN,COMP_GCC,COMP_CLANG} COMPILER;
|
||||
COMPILER inline get_compiler() {
|
||||
#if defined(__clang__)
|
||||
return COMP_CLANG;
|
||||
#elif defined(__GNUC__)
|
||||
return COMP_GCC;
|
||||
#else
|
||||
return UNKNOWN_COMPILER;
|
||||
#endif
|
||||
}
|
||||
*/
|
||||
import "C"
|
||||
|
||||
@ -73,6 +90,7 @@ import (
|
||||
"fmt"
|
||||
"runtime"
|
||||
"runtime/cgo"
|
||||
"slices"
|
||||
"strings"
|
||||
"unsafe"
|
||||
)
|
||||
@ -84,7 +102,38 @@ func BackendInit() {
|
||||
}
|
||||
|
||||
func PrintSystemInfo() string {
|
||||
return C.GoString(C.llama_print_system_info())
|
||||
var compiler string
|
||||
switch C.get_compiler() {
|
||||
case C.COMP_UNKNOWN:
|
||||
compiler = "cgo(unknown_compiler)"
|
||||
case C.COMP_GCC:
|
||||
compiler = "cgo(gcc)"
|
||||
case C.COMP_CLANG:
|
||||
compiler = "cgo(clang)"
|
||||
}
|
||||
return C.GoString(C.llama_print_system_info()) + compiler
|
||||
}
|
||||
|
||||
func GetModelArch(modelPath string) (string, error) {
|
||||
mp := C.CString(modelPath)
|
||||
defer C.free(unsafe.Pointer(mp))
|
||||
|
||||
gguf_ctx := C.gguf_init_from_file(mp, C.struct_gguf_init_params{no_alloc: true, ctx: (**C.struct_ggml_context)(C.NULL)})
|
||||
if gguf_ctx == nil {
|
||||
return "", errors.New("unable to load model file")
|
||||
}
|
||||
defer C.gguf_free(gguf_ctx)
|
||||
|
||||
key := C.CString("general.architecture")
|
||||
defer C.free(unsafe.Pointer(key))
|
||||
arch_index := C.gguf_find_key(gguf_ctx, key)
|
||||
if int(arch_index) < 0 {
|
||||
return "", errors.New("unknown model architecture")
|
||||
}
|
||||
|
||||
arch := C.gguf_get_val_str(gguf_ctx, arch_index)
|
||||
|
||||
return C.GoString(arch), nil
|
||||
}
|
||||
|
||||
type ContextParams struct {
|
||||
@ -134,10 +183,6 @@ func (c *Context) Model() *Model {
|
||||
return &Model{c: C.llama_get_model(c.c)}
|
||||
}
|
||||
|
||||
func (c *Context) GetLogitsIth(i int) []float32 {
|
||||
return unsafe.Slice((*float32)(unsafe.Pointer(C.llama_get_logits_ith(c.c, C.int(i)))), c.Model().NumVocab())
|
||||
}
|
||||
|
||||
func (c *Context) KvCacheSeqAdd(seqId int, p0 int, p1 int, delta int) {
|
||||
C.llama_kv_cache_seq_add(c.c, C.int(seqId), C.int(p0), C.int(p1), C.int(delta))
|
||||
}
|
||||
@ -161,7 +206,12 @@ func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
|
||||
}
|
||||
|
||||
func (c *Context) GetEmbeddingsIth(i int) []float32 {
|
||||
return unsafe.Slice((*float32)(unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))), c.Model().NEmbd())
|
||||
embeddings := unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))
|
||||
if embeddings == nil {
|
||||
return nil
|
||||
}
|
||||
|
||||
return unsafe.Slice((*float32)(embeddings), c.Model().NEmbd())
|
||||
}
|
||||
|
||||
type ModelParams struct {
|
||||
@ -182,7 +232,7 @@ func llamaProgressCallback(progress C.float, userData unsafe.Pointer) C.bool {
|
||||
return true
|
||||
}
|
||||
|
||||
func LoadModelFromFile(modelPath string, params ModelParams) *Model {
|
||||
func LoadModelFromFile(modelPath string, params ModelParams) (*Model, error) {
|
||||
cparams := C.llama_model_default_params()
|
||||
cparams.n_gpu_layers = C.int(params.NumGpuLayers)
|
||||
cparams.main_gpu = C.int32_t(params.MainGpu)
|
||||
@ -212,18 +262,28 @@ func LoadModelFromFile(modelPath string, params ModelParams) *Model {
|
||||
cparams.progress_callback_user_data = unsafe.Pointer(&handle)
|
||||
}
|
||||
|
||||
return &Model{c: C.llama_load_model_from_file(C.CString(modelPath), cparams)}
|
||||
m := Model{c: C.llama_load_model_from_file(C.CString(modelPath), cparams)}
|
||||
if m.c == nil {
|
||||
return nil, fmt.Errorf("unable to load model: %s", modelPath)
|
||||
}
|
||||
|
||||
return &m, nil
|
||||
}
|
||||
|
||||
func FreeModel(model *Model) {
|
||||
C.llama_free_model(model.c)
|
||||
}
|
||||
|
||||
func NewContextWithModel(model *Model, params ContextParams) *Context {
|
||||
return &Context{
|
||||
func NewContextWithModel(model *Model, params ContextParams) (*Context, error) {
|
||||
c := Context{
|
||||
c: C.llama_new_context_with_model(model.c, params.c),
|
||||
numThreads: int(params.c.n_threads),
|
||||
}
|
||||
if c.c == nil {
|
||||
return nil, errors.New("unable to create llama context")
|
||||
}
|
||||
|
||||
return &c, nil
|
||||
}
|
||||
|
||||
func (m *Model) NumVocab() int {
|
||||
@ -243,6 +303,9 @@ func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float
|
||||
defer C.free(unsafe.Pointer(cLoraPath))
|
||||
|
||||
loraAdapter := C.llama_lora_adapter_init(m.c, cLoraPath)
|
||||
if loraAdapter == nil {
|
||||
return errors.New("unable to load lora")
|
||||
}
|
||||
|
||||
err := -1
|
||||
if loraAdapter != nil {
|
||||
@ -258,18 +321,40 @@ func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float
|
||||
type Batch struct {
|
||||
c C.struct_llama_batch
|
||||
batchSize int
|
||||
maxSeq int
|
||||
embedSize int
|
||||
}
|
||||
|
||||
// Creates a new batch for either word tokens if embed is 0 or
|
||||
// image embeddings if embed is specified. Batches cannot contain
|
||||
// both types at the same time
|
||||
func NewBatch(nTokens int, embed int, maxSeq int) *Batch {
|
||||
return &Batch{
|
||||
c: C.llama_batch_init(C.int(nTokens), C.int(embed), C.int(maxSeq)),
|
||||
batchSize: nTokens,
|
||||
embedSize: embed,
|
||||
// Creates a new batch for either word tokens or image embeddings (if embedSize is non-zero).
|
||||
// Batches cannot contain both types at the same time. batchSize is the maximum number of entries
|
||||
// that can be added per sequence
|
||||
func NewBatch(batchSize int, maxSeq int, embedSize int) (*Batch, error) {
|
||||
b := Batch{
|
||||
c: C.llama_batch_init(C.int(batchSize*maxSeq), C.int(embedSize), C.int(maxSeq)),
|
||||
batchSize: batchSize,
|
||||
maxSeq: maxSeq,
|
||||
embedSize: embedSize,
|
||||
}
|
||||
|
||||
// Check to see if any of the allocations in llama_batch_init() failed
|
||||
nilPointer := (embedSize == 0 && b.c.token == nil) || (embedSize != 0 && b.c.embd == nil) ||
|
||||
b.c.pos == nil || b.c.n_seq_id == nil || b.c.seq_id == nil || b.c.logits == nil ||
|
||||
slices.Contains(unsafe.Slice(b.c.seq_id, b.allocSize()), nil)
|
||||
|
||||
if nilPointer {
|
||||
C.llama_batch_free(b.c)
|
||||
return nil, fmt.Errorf("unable to allocate batch (batchSize=%v maxSeq=%v embedSize=%v)", batchSize, maxSeq, embedSize)
|
||||
}
|
||||
|
||||
return &b, nil
|
||||
}
|
||||
|
||||
func (b *Batch) Size() int {
|
||||
return b.batchSize
|
||||
}
|
||||
|
||||
func (b *Batch) allocSize() int {
|
||||
return b.batchSize * b.maxSeq
|
||||
}
|
||||
|
||||
func (b *Batch) NumTokens() int {
|
||||
@ -284,21 +369,21 @@ func (b *Batch) IsEmbedding() bool {
|
||||
// when the batch was initialized. The other argument will be ignored. Adds to the
|
||||
// batch with the given position for the given sequence ids, and optionally instructs
|
||||
// to include logits.
|
||||
func (b *Batch) Add(token int, embed []float32, pos int, seqIds []int, logits bool) {
|
||||
func (b *Batch) Add(token int, embed []float32, pos int, logits bool, seqIds ...int) {
|
||||
if !b.IsEmbedding() {
|
||||
unsafe.Slice(b.c.token, b.batchSize)[b.c.n_tokens] = C.llama_token(token)
|
||||
unsafe.Slice(b.c.token, b.allocSize())[b.c.n_tokens] = C.llama_token(token)
|
||||
} else {
|
||||
copy(unsafe.Slice((*float32)(b.c.embd), b.batchSize*b.embedSize)[int(b.c.n_tokens)*b.embedSize:], embed)
|
||||
copy(unsafe.Slice((*float32)(b.c.embd), b.allocSize()*b.embedSize)[int(b.c.n_tokens)*b.embedSize:], embed)
|
||||
}
|
||||
unsafe.Slice(b.c.pos, b.batchSize)[b.c.n_tokens] = C.llama_pos(pos)
|
||||
unsafe.Slice(b.c.n_seq_id, b.batchSize)[b.c.n_tokens] = C.int(len(seqIds))
|
||||
unsafe.Slice(b.c.pos, b.allocSize())[b.c.n_tokens] = C.llama_pos(pos)
|
||||
unsafe.Slice(b.c.n_seq_id, b.allocSize())[b.c.n_tokens] = C.int(len(seqIds))
|
||||
|
||||
for i, s := range seqIds {
|
||||
unsafe.Slice((unsafe.Slice(b.c.seq_id, b.batchSize)[b.c.n_tokens]), C.int(len(seqIds)))[i] = C.int32_t(s)
|
||||
unsafe.Slice((unsafe.Slice(b.c.seq_id, b.allocSize())[b.c.n_tokens]), C.int(len(seqIds)))[i] = C.int32_t(s)
|
||||
}
|
||||
|
||||
if logits {
|
||||
unsafe.Slice(b.c.logits, b.batchSize)[b.c.n_tokens] = 1
|
||||
unsafe.Slice(b.c.logits, b.allocSize())[b.c.n_tokens] = 1
|
||||
}
|
||||
|
||||
b.c.n_tokens += 1
|
||||
@ -408,29 +493,42 @@ func Quantize(infile, outfile string, ftype uint32) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
// llava
|
||||
// vision processing
|
||||
type ClipContext struct {
|
||||
c *C.struct_clip_ctx
|
||||
}
|
||||
|
||||
func NewClipContext(modelPath string) *ClipContext {
|
||||
func NewClipContext(llamaContext *Context, modelPath string) (*ClipContext, error) {
|
||||
mp := C.CString(modelPath)
|
||||
defer C.free(unsafe.Pointer(mp))
|
||||
cc := C.clip_model_load(mp, 1)
|
||||
return &ClipContext{c: cc}
|
||||
c := C.clip_model_load(mp, 1)
|
||||
if c == nil {
|
||||
return nil, fmt.Errorf("unable to load clip model: %v", modelPath)
|
||||
}
|
||||
|
||||
projEmbedSize := int(C.clip_n_mmproj_embd(c))
|
||||
modelEmbedSize := llamaContext.Model().NEmbd()
|
||||
if projEmbedSize != modelEmbedSize {
|
||||
return nil, fmt.Errorf("projector embedding size (%d) does not match model (%d)", projEmbedSize, modelEmbedSize)
|
||||
}
|
||||
|
||||
return &ClipContext{c: c}, nil
|
||||
}
|
||||
|
||||
func (c *ClipContext) Free() {
|
||||
C.clip_free(c.c)
|
||||
}
|
||||
|
||||
func NewLlavaImageEmbed(llamaContext *Context, clipContext *ClipContext, data []byte) [][]float32 {
|
||||
c := C.llava_image_embed_make_with_bytes(clipContext.c, C.int(llamaContext.numThreads), (*C.uchar)(unsafe.Pointer(&data[0])), C.int(len(data)))
|
||||
func (c *ClipContext) NewEmbed(llamaContext *Context, data []byte) ([][]float32, error) {
|
||||
l := C.llava_image_embed_make_with_bytes(c.c, C.int(llamaContext.numThreads), (*C.uchar)(unsafe.Pointer(&data[0])), C.int(len(data)))
|
||||
if l == nil {
|
||||
return nil, errors.New("unable to make llava embedding from image")
|
||||
}
|
||||
|
||||
numTokens := int(c.n_image_pos)
|
||||
numTokens := int(l.n_image_pos)
|
||||
numEmbed := llamaContext.Model().NEmbd()
|
||||
|
||||
s := unsafe.Slice((*float32)(c.embed), numEmbed*numTokens)
|
||||
s := unsafe.Slice((*float32)(l.embed), numEmbed*numTokens)
|
||||
|
||||
embed := make([][]float32, numTokens)
|
||||
rows := make([]float32, len(s))
|
||||
@ -440,9 +538,66 @@ func NewLlavaImageEmbed(llamaContext *Context, clipContext *ClipContext, data []
|
||||
embed[i] = rows[i*numEmbed : (i+1)*numEmbed]
|
||||
}
|
||||
|
||||
C.llava_image_embed_free(c)
|
||||
C.llava_image_embed_free(l)
|
||||
|
||||
return embed
|
||||
return embed, nil
|
||||
}
|
||||
|
||||
type MllamaContext struct {
|
||||
c *C.struct_mllama_ctx
|
||||
}
|
||||
|
||||
func NewMllamaContext(llamaContext *Context, modelPath string) (*MllamaContext, error) {
|
||||
mp := C.CString(modelPath)
|
||||
defer C.free(unsafe.Pointer(mp))
|
||||
c := C.mllama_model_load(mp, 1)
|
||||
if c == nil {
|
||||
return nil, fmt.Errorf("unable to load mllama model: %v", modelPath)
|
||||
}
|
||||
|
||||
projEmbedSize := int(C.mllama_n_embd(c))
|
||||
modelEmbedSize := llamaContext.Model().NEmbd()
|
||||
if projEmbedSize != modelEmbedSize {
|
||||
return nil, fmt.Errorf("projector embedding size (%d) does not match model (%d)", projEmbedSize, modelEmbedSize)
|
||||
}
|
||||
|
||||
return &MllamaContext{c: c}, nil
|
||||
}
|
||||
|
||||
func (m *MllamaContext) Free() {
|
||||
C.mllama_free(m.c)
|
||||
}
|
||||
|
||||
func (m *MllamaContext) NewEmbed(llamaContext *Context, data []byte, aspectRatioId int) ([][]float32, error) {
|
||||
img := C.mllama_image_init()
|
||||
defer C.mllama_image_free(img)
|
||||
|
||||
ok := bool(C.mllama_image_load_from_data(unsafe.Pointer(&data[0]), C.int(len(data)), 560, 560, 3, 4, C.int(aspectRatioId), img))
|
||||
if !ok {
|
||||
return nil, errors.New("unable to load mllama image data")
|
||||
}
|
||||
|
||||
rows := make([]float32, m.EmbedSize(llamaContext))
|
||||
ok = bool(C.mllama_image_encode(m.c, C.int(llamaContext.numThreads), img, (*C.float)(unsafe.Pointer(&rows[0]))))
|
||||
if !ok {
|
||||
return nil, errors.New("unable to make mllama embedding from image")
|
||||
}
|
||||
|
||||
embed := make([][]float32, 1)
|
||||
embed[0] = rows
|
||||
|
||||
return embed, nil
|
||||
}
|
||||
|
||||
func (m *MllamaContext) EmbedSize(llamaContext *Context) int {
|
||||
numTokens := int(C.mllama_n_positions(m.c) * C.mllama_n_tiles(m.c))
|
||||
numEmbed := llamaContext.Model().NEmbd()
|
||||
|
||||
return numTokens * numEmbed
|
||||
}
|
||||
|
||||
func (c *Context) SetCrossAttention(state bool) {
|
||||
C.llama_set_cross_attention(c.c, C.bool(state))
|
||||
}
|
||||
|
||||
// sampling
|
||||
@ -470,7 +625,7 @@ type SamplingParams struct {
|
||||
Grammar string
|
||||
}
|
||||
|
||||
func NewSamplingContext(model *Model, params SamplingParams) *SamplingContext {
|
||||
func NewSamplingContext(model *Model, params SamplingParams) (*SamplingContext, error) {
|
||||
var cparams C.struct_gpt_sampler_cparams
|
||||
cparams.top_k = C.int32_t(params.TopK)
|
||||
cparams.top_p = C.float(params.TopP)
|
||||
@ -493,9 +648,13 @@ func NewSamplingContext(model *Model, params SamplingParams) *SamplingContext {
|
||||
|
||||
cparams.grammar = grammar
|
||||
context := &SamplingContext{c: C.gpt_sampler_cinit(model.c, &cparams)}
|
||||
if context.c == nil {
|
||||
return nil, errors.New("unable to create sampling context")
|
||||
}
|
||||
|
||||
runtime.SetFinalizer(context, func(s *SamplingContext) { C.gpt_sampler_cfree(s.c) })
|
||||
|
||||
return context
|
||||
return context, nil
|
||||
}
|
||||
|
||||
func (s *SamplingContext) Reset() {
|
||||
|
5
llama/llama.h
vendored
5
llama/llama.h
vendored
@ -266,6 +266,7 @@ extern "C" {
|
||||
|
||||
llama_token * token;
|
||||
float * embd;
|
||||
int32_t n_embd;
|
||||
llama_pos * pos;
|
||||
int32_t * n_seq_id;
|
||||
llama_seq_id ** seq_id;
|
||||
@ -449,6 +450,10 @@ extern "C" {
|
||||
struct llama_model * model,
|
||||
struct llama_context_params params);
|
||||
|
||||
// TODO (jmorganca): this should most likely be passed in as part of a batch
|
||||
// and not set on the context for all batches.
|
||||
LLAMA_API void llama_set_cross_attention(struct llama_context * ctx, bool cross_attn_state);
|
||||
|
||||
// Frees all allocated memory
|
||||
LLAMA_API void llama_free(struct llama_context * ctx);
|
||||
|
||||
|
2
llama/llava.cpp
vendored
2
llama/llava.cpp
vendored
@ -435,7 +435,7 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
|
||||
if (n_eval > n_batch) {
|
||||
n_eval = n_batch;
|
||||
}
|
||||
llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
|
||||
llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), n_embd, nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
|
||||
if (llama_decode(ctx_llama, batch)) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
|
@ -24,17 +24,17 @@ all: $(BUILD_RUNNERS) $(DIST_RUNNERS) $(PAYLOAD_RUNNERS)
|
||||
$(RUNNERS_BUILD_DIR)/$(DEFAULT_RUNNER)/ollama_llama_server$(EXE_EXT): TARGET_CPU_FLAGS=$(CUSTOM_CPU_FLAGS)
|
||||
$(RUNNERS_BUILD_DIR)/$(DEFAULT_RUNNER)/ollama_llama_server$(EXE_EXT): *.go ./runner/*.go $(COMMON_SRCS) $(COMMON_HDRS)
|
||||
@-mkdir -p $(dir $@)
|
||||
GOARCH=$(ARCH) go build -buildmode=pie $(CPU_GOFLAGS) $(if $(CUSTOM_CPU_FLAGS),-tags $(subst $(space),$(comma),$(CUSTOM_CPU_FLAGS))) -o $@ ./runner
|
||||
GOARCH=$(ARCH) go build -buildmode=pie $(CPU_GOFLAGS) -trimpath $(if $(CUSTOM_CPU_FLAGS),-tags $(subst $(space),$(comma),$(CUSTOM_CPU_FLAGS))) -o $@ ./runner
|
||||
|
||||
$(RUNNERS_BUILD_DIR)/cpu_avx/ollama_llama_server$(EXE_EXT): TARGET_CPU_FLAGS="avx"
|
||||
$(RUNNERS_BUILD_DIR)/cpu_avx/ollama_llama_server$(EXE_EXT): *.go ./runner/*.go $(COMMON_SRCS) $(COMMON_HDRS)
|
||||
@-mkdir -p $(dir $@)
|
||||
GOARCH=$(ARCH) go build -buildmode=pie $(CPU_GOFLAGS) -tags $(subst $(space),$(comma),$(TARGET_CPU_FLAGS)) -o $@ ./runner
|
||||
GOARCH=$(ARCH) go build -buildmode=pie $(CPU_GOFLAGS) -trimpath -tags $(subst $(space),$(comma),$(TARGET_CPU_FLAGS)) -o $@ ./runner
|
||||
|
||||
$(RUNNERS_BUILD_DIR)/cpu_avx2/ollama_llama_server$(EXE_EXT): TARGET_CPU_FLAGS="avx avx2"
|
||||
$(RUNNERS_BUILD_DIR)/cpu_avx2/ollama_llama_server$(EXE_EXT): *.go ./runner/*.go $(COMMON_SRCS) $(COMMON_HDRS)
|
||||
@-mkdir -p $(dir $@)
|
||||
GOARCH=$(ARCH) go build -buildmode=pie $(CPU_GOFLAGS) -tags $(subst $(space),$(comma),$(TARGET_CPU_FLAGS)) -o $@ ./runner
|
||||
GOARCH=$(ARCH) go build -buildmode=pie $(CPU_GOFLAGS) -trimpath -tags $(subst $(space),$(comma),$(TARGET_CPU_FLAGS)) -o $@ ./runner
|
||||
|
||||
$(RUNNERS_DIST_DIR)/%: $(RUNNERS_BUILD_DIR)/%
|
||||
@-mkdir -p $(dir $@)
|
||||
@ -49,3 +49,6 @@ clean:
|
||||
|
||||
.PHONY: clean all
|
||||
|
||||
# Handy debugging for make variables
|
||||
print-%:
|
||||
@echo '$*=$($*)'
|
||||
|
@ -9,19 +9,16 @@ HIP_ARCHS_COMMON := gfx900 gfx940 gfx941 gfx942 gfx1010 gfx1012 gfx1030 gfx1100
|
||||
HIP_ARCHS_LINUX := gfx906:xnack- gfx908:xnack- gfx90a:xnack+ gfx90a:xnack-
|
||||
|
||||
ifeq ($(OS),windows)
|
||||
GPU_LIB_DIR_WIN := $(shell cygpath -m -s "$(HIP_PATH)\bin")
|
||||
# If HIP_PATH has spaces, hipcc trips over them when subprocessing
|
||||
HIP_PATH := $(shell cygpath -m -s "$(HIP_PATH)\")
|
||||
CGO_EXTRA_LDFLAGS_WIN := -L$(shell cygpath -m -s "$(HIP_PATH)\lib")
|
||||
export HIP_PATH
|
||||
GPU_COMPILER_WIN := $(HIP_PATH)bin/hipcc.bin.exe
|
||||
GPU_LIB_DIR_WIN := $(shell cygpath -m -s "$(HIP_PATH)/bin")
|
||||
CGO_EXTRA_LDFLAGS_WIN := -L$(shell cygpath -m -s "$(HIP_PATH)/lib")
|
||||
GPU_COMPILER_WIN := $(HIP_PATH)/bin/hipcc.bin.exe
|
||||
GPU_COMPILER:=$(GPU_COMPILER_WIN)
|
||||
else ifeq ($(OS),linux)
|
||||
HIP_PATH?=/opt/rocm
|
||||
GPU_LIB_DIR_LINUX := $(HIP_PATH)/lib
|
||||
GPU_COMPILER_LINUX := $(shell X=$$(which hipcc 2>/dev/null) && echo $$X)
|
||||
GPU_COMPILER:=$(GPU_COMPILER_LINUX)
|
||||
ROCM_TRANSITIVE_LIBS = $(shell ldd $(ROCM_LIBS) | grep "=>" | cut -f2 -d= | cut -f2 -d' ' | grep -e rocm -e amdgpu -e libtinfo -e libnuma -e libelf | sort -u )
|
||||
ROCM_TRANSITIVE_LIBS_INITIAL = $(sort $(shell ldd $(GPU_LIBS) | grep "=>" | cut -f2 -d= | cut -f2 -d' ' | grep -e rocm -e amdgpu -e libtinfo -e libnuma -e libelf))
|
||||
GPU_TRANSITIVE_LIBS = $(sort $(shell readlink -f $(ROCM_TRANSITIVE_LIBS_INITIAL)) $(ROCM_TRANSITIVE_LIBS_INITIAL))
|
||||
endif
|
||||
|
||||
# TODO future multi-variant support for ROCm
|
||||
@ -36,14 +33,18 @@ GPU_RUNNER_DRIVER_LIB_LINK := -lamdhip64
|
||||
GPU_RUNNER_LIBS_SHORT := hipblas rocblas
|
||||
GPU_PATH_ROOT_WIN=$(dir $(GPU_LIB_DIR_WIN))
|
||||
GPU_PATH_ROOT_LINUX=$(dir $(GPU_LIB_DIR_LINUX))
|
||||
GPU_COMPILER_CFLAGS_WIN = $(CFLAGS)
|
||||
GPU_COMPILER_CFLAGS_WIN = $(CFLAGS) -D_WIN32_WINNT=0x602
|
||||
GPU_COMPILER_CFLAGS_LINUX = $(CFLAGS) -fPIC -D_GNU_SOURCE
|
||||
GPU_COMPILER_CXXFLAGS_WIN = $(CXXFLAGS)
|
||||
GPU_COMPILER_CXXFLAGS_WIN = $(CXXFLAGS) -D_WIN32_WINNT=0x602
|
||||
GPU_COMPILER_CXXFLAGS_LINUX = $(CXXFLAGS) -fPIC -D_GNU_SOURCE
|
||||
|
||||
ROCM_LIBS = $(wildcard $(addsuffix .$(SHARED_EXT),$(addprefix $(GPU_LIB_DIR)/$(SHARED_PREFIX),$(GPU_RUNNER_LIBS_SHORT))))
|
||||
ROCM_DIST_DEPS_DIR = $(abspath $(SRC_DIR)/../dist/$(OS)-$(ARCH)-rocm)/lib/ollama
|
||||
ROCM_DIST_DEPS_LIBS = $(addprefix $(ROCM_DIST_DEPS_DIR)/,$(notdir $(ROCM_LIBS)) $(notdir $(ROCM_TRANSITIVE_LIBS)))
|
||||
GPU_LIBS = $(wildcard $(addsuffix .$(SHARED_EXT),$(addprefix $(GPU_LIB_DIR)/$(SHARED_PREFIX),$(GPU_RUNNER_LIBS_SHORT))))
|
||||
ifeq ($(OS),windows)
|
||||
ROCM_DIST_DEPS_DIR = $(abspath $(SRC_DIR)/../dist/$(OS)-$(ARCH))/lib/ollama
|
||||
else ifeq ($(OS),linux)
|
||||
ROCM_DIST_DEPS_DIR = $(abspath $(SRC_DIR)/../dist/$(OS)-$(ARCH)-rocm)/lib/ollama
|
||||
endif
|
||||
GPU_DIST_DEPS_LIBS= $(sort $(addprefix $(ROCM_DIST_DEPS_DIR)/,$(notdir $(GPU_LIBS)) $(notdir $(GPU_TRANSITIVE_LIBS))))
|
||||
ROCBLAS_DIST_DEP_MANIFEST = $(ROCM_DIST_DEPS_DIR)/rocblas/library/TensileManifest.txt
|
||||
|
||||
ifeq ($(OS),linux)
|
||||
@ -57,6 +58,8 @@ endif
|
||||
GPU_COMPILER_CUFLAGS = \
|
||||
$(GPU_COMPILER_FPIC) \
|
||||
$(addprefix -m,$(GPU_RUNNER_CPU_FLAGS)) \
|
||||
-mf16c \
|
||||
-mfma \
|
||||
-parallel-jobs=2 \
|
||||
-c \
|
||||
-O3 \
|
||||
@ -76,6 +79,9 @@ GPU_COMPILER_CUFLAGS = \
|
||||
-D_CRT_SECURE_NO_WARNINGS \
|
||||
-D_GNU_SOURCE \
|
||||
-D_XOPEN_SOURCE=600 \
|
||||
-DUSE_PROF_API=1 \
|
||||
-std=gnu++14 \
|
||||
-x hip \
|
||||
-mllvm=-amdgpu-early-inline-all=true \
|
||||
-mllvm=-amdgpu-function-calls=false \
|
||||
-Wno-expansion-to-defined \
|
||||
@ -84,18 +90,20 @@ GPU_COMPILER_CUFLAGS = \
|
||||
-Wno-pass-failed \
|
||||
-Wno-deprecated-declarations \
|
||||
-Wno-unused-result \
|
||||
-I. \
|
||||
$(foreach arch, $(HIP_ARCHS_COMMON), --offload-arch=$(arch))
|
||||
-I.
|
||||
|
||||
# Workaround buggy P2P copy on some windows multi-GPU setups
|
||||
# This workaround breaks linux systems with small system RAM, so only enable on windows
|
||||
ifeq ($(OS),windows)
|
||||
GPU_COMPILER_CUFLAGS += -DGGML_CUDA_NO_PEER_COPY=1
|
||||
endif
|
||||
|
||||
include make/gpu.make
|
||||
|
||||
# Adjust the rules from gpu.make to handle the ROCm dependencies properly
|
||||
$(RUNNERS_DIST_DIR)/$(GPU_RUNNER_NAME)/ollama_llama_server$(EXE_EXT): $(ROCBLAS_DIST_DEP_MANIFEST) $(ROCM_DIST_DEPS_LIBS)
|
||||
$(RUNNERS_DIST_DIR)/$(GPU_RUNNER_NAME)/ollama_llama_server$(EXE_EXT): $(ROCBLAS_DIST_DEP_MANIFEST)
|
||||
$(ROCBLAS_DIST_DEP_MANIFEST):
|
||||
@-mkdir -p $(dir $@)
|
||||
@echo "Copying rocblas library..."
|
||||
cd $(GPU_LIB_DIR)/rocblas/library/ && tar cf - . | (cd $(dir $@) && tar xf - )
|
||||
@echo "rocblas library copy complete"
|
||||
$(ROCM_DIST_DEPS_LIBS):
|
||||
@-mkdir -p $(dir $@)
|
||||
$(CP) $(dir $(filter %$(notdir $@),$(ROCM_LIBS) $(ROCM_TRANSITIVE_LIBS)))/$(notdir $@)* $(dir $@)
|
||||
|
@ -1,11 +1,12 @@
|
||||
# Helpers for managing our vendored llama.cpp repo and patch set
|
||||
|
||||
# TODO - this should include a manifest file at the top of the tree
|
||||
LLAMACPP_BASE_COMMIT=$(shell cd ../llm/llama.cpp && git rev-parse HEAD)
|
||||
REPO_ROOT:=$(dir $(patsubst %/,%,$(dir $(patsubst %/,%,$(dir $(abspath $(lastword $(MAKEFILE_LIST))))))))
|
||||
DST_DIR:=$(dir $(patsubst %/,%,$(dir $(abspath $(lastword $(MAKEFILE_LIST))))))
|
||||
|
||||
LLAMACPP_REPO := $(dir $(patsubst %/,%,$(dir $(abspath $(lastword $(MAKEFILE_LIST))))))vendor/
|
||||
include $(REPO_ROOT)llama/vendoring
|
||||
|
||||
LLAMACPP_REPO := $(REPO_ROOT)llama/vendor/
|
||||
|
||||
DST_DIR=$(dir $(patsubst %/,%,$(dir $(abspath $(lastword $(MAKEFILE_LIST))))))
|
||||
LLAMACPP_PATCH_DIR := $(DST_DIR)patches/
|
||||
|
||||
|
||||
|
@ -57,12 +57,18 @@ ifeq ($(OS),windows)
|
||||
EXE_EXT := .exe
|
||||
SHARED_PREFIX :=
|
||||
CPU_FLAG_PREFIX := /arch:
|
||||
ifneq ($(HIP_PATH),)
|
||||
# If HIP_PATH has spaces, hipcc trips over them when subprocessing
|
||||
HIP_PATH := $(shell cygpath -m -s "$(patsubst %\,%,$(HIP_PATH))")
|
||||
export HIP_PATH
|
||||
endif
|
||||
else ifeq ($(OS),linux)
|
||||
CP := cp -af
|
||||
OBJ_EXT := o
|
||||
SHARED_EXT := so
|
||||
SHARED_PREFIX := lib
|
||||
CPU_FLAG_PREFIX := -m
|
||||
HIP_PATH?=/opt/rocm
|
||||
else
|
||||
OBJ_EXT := o
|
||||
SHARED_EXT := so
|
||||
@ -70,3 +76,9 @@ else
|
||||
CP := cp -af
|
||||
endif
|
||||
|
||||
COMMON_SRCS := \
|
||||
$(wildcard *.c) \
|
||||
$(wildcard *.cpp)
|
||||
COMMON_HDRS := \
|
||||
$(wildcard *.h) \
|
||||
$(wildcard *.hpp)
|
||||
|
@ -19,6 +19,9 @@ GPU_COMPILER_CFLAGS_WIN = $(CFLAGS) -D_WIN32_WINNT=0x602
|
||||
GPU_COMPILER_CFLAGS_LINUX = $(CFLAGS) -Xcompiler -fPIC -D_GNU_SOURCE
|
||||
GPU_COMPILER_CXXFLAGS_WIN = $(CXXFLAGS) -D_WIN32_WINNT=0x602
|
||||
GPU_COMPILER_CXXFLAGS_LINUX = $(CXXFLAGS) -Xcompiler -fPIC -D_GNU_SOURCE
|
||||
GPU_LIBS = $(sort $(wildcard $(addsuffix *.$(SHARED_EXT)*,$(addprefix $(GPU_LIB_DIR)/$(SHARED_PREFIX),$(GPU_RUNNER_LIBS_SHORT)))))
|
||||
GPU_DIST_DEPS_LIBS= $(sort $(addprefix $(DIST_GPU_RUNNER_DEPS_DIR)/,$(notdir $(GPU_LIBS))))
|
||||
|
||||
ifeq ($(OS),linux)
|
||||
CUDA_PATH?=/usr/local/cuda
|
||||
GPU_COMPILER_FPIC = -fPIC -Wno-unused-function -std=c++11
|
||||
|
@ -34,13 +34,6 @@ endif
|
||||
GPU_RUNNER_LIBS = $(wildcard $(addsuffix .$(SHARED_EXT).*,$(addprefix $(GPU_LIB_DIR)/$(SHARED_PREFIX),$(GPU_RUNNER_LIBS_SHORT))))
|
||||
DIST_GPU_RUNNER_LIB_DEPS = $(addprefix $(DIST_GPU_RUNNER_DEPS_DIR)/,$(notdir $(GPU_RUNNER_LIBS)))
|
||||
|
||||
COMMON_SRCS := \
|
||||
$(wildcard *.c) \
|
||||
$(wildcard *.cpp)
|
||||
COMMON_HDRS := \
|
||||
$(wildcard *.h) \
|
||||
$(wildcard *.hpp)
|
||||
|
||||
GPU_RUNNER_SRCS := \
|
||||
ggml-cuda.cu \
|
||||
$(filter-out $(wildcard ggml-cuda/fattn*.cu),$(wildcard ggml-cuda/*.cu)) \
|
||||
@ -79,7 +72,7 @@ $(GPU_RUNNER_NAME): $(BUILD_RUNNERS) $(DIST_RUNNERS) $(PAYLOAD_RUNNERS)
|
||||
# Build targets
|
||||
$(BUILD_DIR)/%.$(GPU_RUNNER_NAME).$(OBJ_EXT): %.cu
|
||||
@-mkdir -p $(dir $@)
|
||||
$(CCACHE) $(GPU_COMPILER) -c $(GPU_COMPILER_CUFLAGS) $(GPU_RUNNER_ARCH_FLAGS) -o $@ $<
|
||||
$(CCACHE) $(GPU_COMPILER) -c $(GPU_COMPILER_CFLAGS) $(GPU_COMPILER_CUFLAGS) $(GPU_RUNNER_ARCH_FLAGS) -o $@ $<
|
||||
$(BUILD_DIR)/%.$(GPU_RUNNER_NAME).$(OBJ_EXT): %.c
|
||||
@-mkdir -p $(dir $@)
|
||||
$(CCACHE) $(GPU_COMPILER) -c $(GPU_COMPILER_CFLAGS) -o $@ $<
|
||||
@ -89,22 +82,25 @@ $(BUILD_DIR)/%.$(GPU_RUNNER_NAME).$(OBJ_EXT): %.cpp
|
||||
$(RUNNERS_BUILD_DIR)/$(GPU_RUNNER_NAME)/ollama_llama_server$(EXE_EXT): TARGET_CGO_LDFLAGS = -L"$(RUNNERS_BUILD_DIR)/$(GPU_RUNNER_NAME)/" $(CGO_EXTRA_LDFLAGS)
|
||||
$(RUNNERS_BUILD_DIR)/$(GPU_RUNNER_NAME)/ollama_llama_server$(EXE_EXT): $(RUNNERS_BUILD_DIR)/$(GPU_RUNNER_NAME)/$(SHARED_PREFIX)ggml_$(GPU_RUNNER_NAME).$(SHARED_EXT) *.go ./runner/*.go $(COMMON_SRCS) $(COMMON_HDRS)
|
||||
@-mkdir -p $(dir $@)
|
||||
GOARCH=$(ARCH) CGO_LDFLAGS="$(TARGET_CGO_LDFLAGS)" go build -buildmode=pie $(GPU_GOFLAGS) -tags $(subst $(space),$(comma),$(GPU_RUNNER_CPU_FLAGS) $(GPU_RUNNER_GO_TAGS)) -o $@ ./runner
|
||||
GOARCH=$(ARCH) CGO_LDFLAGS="$(TARGET_CGO_LDFLAGS)" go build -buildmode=pie $(GPU_GOFLAGS) -trimpath -tags $(subst $(space),$(comma),$(GPU_RUNNER_CPU_FLAGS) $(GPU_RUNNER_GO_TAGS)) -o $@ ./runner
|
||||
$(RUNNERS_BUILD_DIR)/$(GPU_RUNNER_NAME)/$(SHARED_PREFIX)ggml_$(GPU_RUNNER_NAME).$(SHARED_EXT): $(GPU_RUNNER_OBJS) $(DIST_GPU_RUNNER_LIB_DEPS) $(COMMON_HDRS) $(GPU_RUNNER_HDRS)
|
||||
@-mkdir -p $(dir $@)
|
||||
$(CCACHE) $(GPU_COMPILER) --shared $(GPU_RUNNER_DRIVER_LIB_LINK) -L${DIST_GPU_RUNNER_DEPS_DIR} $(foreach lib, $(GPU_RUNNER_LIBS_SHORT), -l$(lib)) $(GPU_RUNNER_OBJS) -o $@
|
||||
$(CCACHE) $(GPU_COMPILER) --shared -L$(GPU_LIB_DIR) $(GPU_RUNNER_DRIVER_LIB_LINK) -L${DIST_GPU_RUNNER_DEPS_DIR} $(foreach lib, $(GPU_RUNNER_LIBS_SHORT), -l$(lib)) $(GPU_RUNNER_OBJS) -o $@
|
||||
|
||||
# Distribution targets
|
||||
$(RUNNERS_DIST_DIR)/%: $(RUNNERS_BUILD_DIR)/%
|
||||
@-mkdir -p $(dir $@)
|
||||
cp $< $@
|
||||
$(RUNNERS_DIST_DIR)/$(GPU_RUNNER_NAME)/ollama_llama_server$(EXE_EXT): $(DIST_LIB_DIR)/$(SHARED_PREFIX)ggml_$(GPU_RUNNER_NAME).$(SHARED_EXT)
|
||||
$(CP) $< $@
|
||||
$(RUNNERS_DIST_DIR)/$(GPU_RUNNER_NAME)/ollama_llama_server$(EXE_EXT): $(DIST_LIB_DIR)/$(SHARED_PREFIX)ggml_$(GPU_RUNNER_NAME).$(SHARED_EXT) $(GPU_DIST_DEPS_LIBS)
|
||||
$(DIST_LIB_DIR)/$(SHARED_PREFIX)ggml_$(GPU_RUNNER_NAME).$(SHARED_EXT): $(RUNNERS_BUILD_DIR)/$(GPU_RUNNER_NAME)/$(SHARED_PREFIX)ggml_$(GPU_RUNNER_NAME).$(SHARED_EXT)
|
||||
@-mkdir -p $(dir $@)
|
||||
cp $< $@
|
||||
$(CP) $< $@
|
||||
$(DIST_GPU_RUNNER_LIB_DEPS):
|
||||
@-mkdir -p $(dir $@)
|
||||
$(CP) $(GPU_LIB_DIR)/$(notdir $@)* $(dir $@)
|
||||
$(CP) $(GPU_LIB_DIR)/$(notdir $@) $(dir $@)
|
||||
$(GPU_DIST_DEPS_LIBS):
|
||||
@-mkdir -p $(dir $@)
|
||||
$(CP) $(dir $(filter %$(notdir $@),$(GPU_LIBS) $(GPU_TRANSITIVE_LIBS)))/$(notdir $@) $(dir $@)
|
||||
|
||||
# Payload targets
|
||||
$(RUNNERS_PAYLOAD_DIR)/%/ollama_llama_server.gz: $(RUNNERS_BUILD_DIR)/%/ollama_llama_server
|
||||
|
900
llama/mllama.cpp
vendored
Normal file
900
llama/mllama.cpp
vendored
Normal file
@ -0,0 +1,900 @@
|
||||
// NOTE: This is modified from clip.cpp for Mllama only
|
||||
#include "mllama.h"
|
||||
|
||||
#include "ggml-alloc.h"
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#ifdef GGML_USE_CUDA
|
||||
#include "ggml-cuda.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
#include "ggml-metal.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CANN
|
||||
#include "ggml-cann.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_VULKAN
|
||||
#include "ggml-vulkan.h"
|
||||
#endif
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstdarg>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <stdexcept>
|
||||
#include <vector>
|
||||
|
||||
#define REQUIRE(x) \
|
||||
do { \
|
||||
if (!(x)) { \
|
||||
throw std::runtime_error("REQUIRE failed: " #x); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define LOG(fmt, ...) fprintf(stderr, "%s: " fmt "\n", __func__, ##__VA_ARGS__)
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
#define NOMINMAX
|
||||
#endif
|
||||
#include <windows.h>
|
||||
#if __GLIBCXX__
|
||||
#include <cstdio>
|
||||
#include <ext/stdio_filebuf.h>
|
||||
#include <fcntl.h>
|
||||
#endif
|
||||
#endif
|
||||
|
||||
struct mllama_image {
|
||||
int width;
|
||||
int height;
|
||||
|
||||
int num_channels = 3;
|
||||
int num_tiles = 4;
|
||||
|
||||
int aspect_ratio_id;
|
||||
|
||||
std::vector<float> data;
|
||||
};
|
||||
|
||||
static std::string format(const char *fmt, ...) {
|
||||
va_list args;
|
||||
va_start(args, fmt);
|
||||
std::vector<char> b(128);
|
||||
int n = vsnprintf(b.data(), b.size(), fmt, args);
|
||||
REQUIRE(n >= 0 && n < b.size());
|
||||
va_end(args);
|
||||
return std::string(b.data(), b.size());
|
||||
}
|
||||
|
||||
//
|
||||
// utilities to get data from a gguf file
|
||||
//
|
||||
|
||||
static int get_key_index(const gguf_context *ctx, const char *key) {
|
||||
int key_index = gguf_find_key(ctx, key);
|
||||
REQUIRE(key_index != -1);
|
||||
return key_index;
|
||||
}
|
||||
|
||||
static std::vector<uint32_t> get_u32_array(const gguf_context *ctx, const std::string &key) {
|
||||
const int i = get_key_index(ctx, key.c_str());
|
||||
const int n = gguf_get_arr_n(ctx, i);
|
||||
const uint32_t *data = (uint32_t *)gguf_get_arr_data(ctx, i);
|
||||
|
||||
std::vector<uint32_t> s(n);
|
||||
for (size_t j = 0; j < s.size(); j++) {
|
||||
s[j] = data[j];
|
||||
}
|
||||
|
||||
return s;
|
||||
}
|
||||
|
||||
static uint32_t get_u32(const gguf_context *ctx, const std::string &key) {
|
||||
return gguf_get_val_u32(ctx, get_key_index(ctx, key.c_str()));
|
||||
}
|
||||
|
||||
static float get_f32(const gguf_context *ctx, const std::string &key) {
|
||||
return gguf_get_val_f32(ctx, get_key_index(ctx, key.c_str()));
|
||||
}
|
||||
|
||||
static std::string get_ftype(int ftype) {
|
||||
return ggml_type_name(static_cast<ggml_type>(ftype));
|
||||
}
|
||||
|
||||
//
|
||||
// mllama layers
|
||||
//
|
||||
|
||||
struct mllama_hparams {
|
||||
uint32_t image_size;
|
||||
uint32_t patch_size;
|
||||
uint32_t hidden_size;
|
||||
uint32_t n_intermediate;
|
||||
uint32_t projection_dim;
|
||||
uint32_t n_head;
|
||||
uint32_t n_layer;
|
||||
uint32_t n_global_layer;
|
||||
uint32_t n_tiles;
|
||||
|
||||
float eps;
|
||||
|
||||
std::vector<bool> intermediate_layers;
|
||||
};
|
||||
|
||||
struct mllama_layer {
|
||||
// attention
|
||||
struct ggml_tensor *k_w;
|
||||
struct ggml_tensor *k_b;
|
||||
struct ggml_tensor *q_w;
|
||||
struct ggml_tensor *q_b;
|
||||
struct ggml_tensor *v_w;
|
||||
struct ggml_tensor *v_b;
|
||||
|
||||
struct ggml_tensor *o_w;
|
||||
struct ggml_tensor *o_b;
|
||||
|
||||
struct ggml_tensor *attn_gate;
|
||||
|
||||
// layernorm 1
|
||||
struct ggml_tensor *ln_1_w;
|
||||
struct ggml_tensor *ln_1_b;
|
||||
|
||||
// ff
|
||||
struct ggml_tensor *ff_i_w;
|
||||
struct ggml_tensor *ff_i_b;
|
||||
|
||||
struct ggml_tensor *ff_o_w;
|
||||
struct ggml_tensor *ff_o_b;
|
||||
|
||||
struct ggml_tensor *ff_gate;
|
||||
|
||||
// layernorm 2
|
||||
struct ggml_tensor *ln_2_w;
|
||||
struct ggml_tensor *ln_2_b;
|
||||
};
|
||||
|
||||
struct mllama_vision_model {
|
||||
struct mllama_hparams hparams;
|
||||
|
||||
// embeddings
|
||||
struct ggml_tensor *class_embedding;
|
||||
struct ggml_tensor *patch_embeddings;
|
||||
struct ggml_tensor *position_embeddings;
|
||||
struct ggml_tensor *position_embeddings_gate;
|
||||
struct ggml_tensor *tile_position_embeddings;
|
||||
struct ggml_tensor *tile_position_embeddings_gate;
|
||||
struct ggml_tensor *pre_tile_position_embeddings;
|
||||
struct ggml_tensor *pre_tile_position_embeddings_gate;
|
||||
struct ggml_tensor *post_tile_position_embeddings;
|
||||
struct ggml_tensor *post_tile_position_embeddings_gate;
|
||||
|
||||
struct ggml_tensor *pre_ln_w;
|
||||
struct ggml_tensor *pre_ln_b;
|
||||
|
||||
std::vector<mllama_layer> layers;
|
||||
std::vector<mllama_layer> global_layers;
|
||||
|
||||
struct ggml_tensor *post_ln_w;
|
||||
struct ggml_tensor *post_ln_b;
|
||||
|
||||
struct ggml_tensor *mm_0_w;
|
||||
struct ggml_tensor *mm_0_b;
|
||||
};
|
||||
|
||||
struct mllama_ctx {
|
||||
struct mllama_vision_model vision_model;
|
||||
|
||||
uint32_t ftype = 1;
|
||||
|
||||
struct gguf_context *ctx_gguf;
|
||||
struct ggml_context *ctx_data;
|
||||
|
||||
std::vector<uint8_t> buf_compute_meta;
|
||||
|
||||
// memory buffers to evaluate the model
|
||||
ggml_backend_buffer_t params_buffer = nullptr;
|
||||
|
||||
ggml_backend_t backend = nullptr;
|
||||
ggml_gallocr_t compute_alloc = nullptr;
|
||||
};
|
||||
|
||||
static ggml_tensor *mllama_image_build_encoder_layer(
|
||||
struct ggml_context *ctx0, const size_t il, const struct mllama_layer &layer, struct ggml_tensor *embeddings,
|
||||
const float eps, const int hidden_size, const int batch_size, const int n_head, const int d_head) {
|
||||
struct ggml_tensor *cur = embeddings;
|
||||
|
||||
{
|
||||
// layernorm1
|
||||
cur = ggml_norm(ctx0, cur, eps);
|
||||
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.ln_1_w), layer.ln_1_b);
|
||||
ggml_set_name(cur, format("%d pre layernorm", il).c_str());
|
||||
}
|
||||
|
||||
{
|
||||
// self-attention
|
||||
struct ggml_tensor *Q = ggml_mul_mat(ctx0, layer.q_w, cur);
|
||||
if (layer.q_b != nullptr) {
|
||||
Q = ggml_add(ctx0, Q, layer.q_b);
|
||||
}
|
||||
|
||||
Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, Q->ne[1], batch_size);
|
||||
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
|
||||
ggml_set_name(Q, format("%d query", il).c_str());
|
||||
|
||||
struct ggml_tensor *K = ggml_mul_mat(ctx0, layer.k_w, cur);
|
||||
if (layer.k_b != nullptr) {
|
||||
K = ggml_add(ctx0, K, layer.k_b);
|
||||
}
|
||||
|
||||
K = ggml_reshape_4d(ctx0, K, d_head, n_head, K->ne[1], batch_size);
|
||||
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
|
||||
ggml_set_name(K, format("%d key", il).c_str());
|
||||
|
||||
struct ggml_tensor *V = ggml_mul_mat(ctx0, layer.v_w, cur);
|
||||
if (layer.v_b != nullptr) {
|
||||
V = ggml_add(ctx0, V, layer.v_b);
|
||||
}
|
||||
|
||||
V = ggml_reshape_4d(ctx0, V, d_head, n_head, V->ne[1], batch_size);
|
||||
V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
|
||||
ggml_set_name(V, format("%d value", il).c_str());
|
||||
|
||||
struct ggml_tensor *KQ = ggml_mul_mat(ctx0, K, Q);
|
||||
KQ = ggml_scale_inplace(ctx0, KQ, 1.0f / sqrtf((float)d_head));
|
||||
KQ = ggml_soft_max_inplace(ctx0, KQ);
|
||||
ggml_set_name(KQ, format("%d KQ", il).c_str());
|
||||
|
||||
struct ggml_tensor *KQV = ggml_mul_mat(ctx0, V, KQ);
|
||||
KQV = ggml_reshape_4d(ctx0, KQV, d_head, KQV->ne[1], n_head, batch_size);
|
||||
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
||||
KQV = ggml_cont_3d(ctx0, KQV, hidden_size, KQV->ne[2], batch_size);
|
||||
ggml_set_name(KQV, format("%d KQV", il).c_str());
|
||||
|
||||
cur = ggml_mul_mat(ctx0, layer.o_w, KQV);
|
||||
if (layer.o_b != nullptr) {
|
||||
cur = ggml_add(ctx0, cur, layer.o_b);
|
||||
}
|
||||
ggml_set_name(cur, format("%d self attention", il).c_str());
|
||||
|
||||
if (layer.attn_gate != nullptr) {
|
||||
cur = ggml_mul_inplace(ctx0, cur, layer.attn_gate);
|
||||
ggml_set_name(cur, format("%d self attention gate", il).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
cur = ggml_add(ctx0, cur, embeddings);
|
||||
ggml_set_name(cur, format("%d residual", il).c_str());
|
||||
|
||||
embeddings = cur;
|
||||
|
||||
{
|
||||
// layernorm2
|
||||
cur = ggml_norm(ctx0, cur, eps);
|
||||
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.ln_2_w), layer.ln_2_b);
|
||||
ggml_set_name(cur, format("%d post layernorm", il).c_str());
|
||||
}
|
||||
|
||||
{
|
||||
// feed forward
|
||||
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, layer.ff_i_w, cur), layer.ff_i_b);
|
||||
cur = ggml_gelu_inplace(ctx0, cur);
|
||||
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, layer.ff_o_w, cur), layer.ff_o_b);
|
||||
ggml_set_name(cur, format("%d feed forward", il).c_str());
|
||||
|
||||
if (layer.ff_gate != nullptr) {
|
||||
cur = ggml_mul_inplace(ctx0, cur, layer.ff_gate);
|
||||
ggml_set_name(cur, format("%d feed forward gate", il).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
// residual 2
|
||||
cur = ggml_add(ctx0, cur, embeddings);
|
||||
ggml_set_name(cur, format("%d residual", il).c_str());
|
||||
|
||||
embeddings = cur;
|
||||
|
||||
return embeddings;
|
||||
}
|
||||
|
||||
static ggml_cgraph *mllama_image_build_graph(mllama_ctx *ctx, const mllama_image_batch *imgs) {
|
||||
const auto &model = ctx->vision_model;
|
||||
const auto &hparams = model.hparams;
|
||||
|
||||
const int image_size = hparams.image_size;
|
||||
const int image_size_width = image_size;
|
||||
const int image_size_height = image_size;
|
||||
|
||||
const int patch_size = hparams.patch_size;
|
||||
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
|
||||
const int num_positions = num_patches + (model.class_embedding == nullptr ? 0 : 1);
|
||||
const int hidden_size = hparams.hidden_size;
|
||||
const int n_head = hparams.n_head;
|
||||
const int d_head = hidden_size / n_head;
|
||||
|
||||
const int batch_size = imgs->size;
|
||||
REQUIRE(batch_size == 1);
|
||||
|
||||
int num_tiles = 4;
|
||||
int num_channels = 3;
|
||||
if (imgs->data != nullptr) {
|
||||
num_tiles = imgs->data[0].num_tiles > 0 ? imgs->data[0].num_tiles : num_tiles;
|
||||
num_channels = imgs->data[0].num_channels > 0 ? imgs->data[0].num_channels : num_channels;
|
||||
}
|
||||
|
||||
struct ggml_init_params params = {
|
||||
ctx->buf_compute_meta.size(), // mem_size
|
||||
ctx->buf_compute_meta.data(), // mem_buffer
|
||||
true, // no_alloc
|
||||
};
|
||||
|
||||
struct ggml_context *ctx0 = ggml_init(params);
|
||||
struct ggml_cgraph *gf = ggml_new_graph(ctx0);
|
||||
|
||||
struct ggml_tensor *inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, num_channels, num_tiles);
|
||||
ggml_set_name(inp_raw, "inp_raw");
|
||||
ggml_set_input(inp_raw);
|
||||
|
||||
struct ggml_tensor *inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
|
||||
|
||||
inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, num_tiles);
|
||||
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
|
||||
|
||||
struct ggml_tensor *aspect_ratios = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, imgs->size);
|
||||
ggml_set_name(aspect_ratios, "aspect_ratios");
|
||||
ggml_set_input(aspect_ratios);
|
||||
|
||||
if (model.pre_tile_position_embeddings != nullptr) {
|
||||
struct ggml_tensor *pre_tile_position_embeddings = ggml_get_rows(ctx0, model.pre_tile_position_embeddings, aspect_ratios);
|
||||
ggml_set_name(pre_tile_position_embeddings, "pre_tile_position_embeddings");
|
||||
|
||||
pre_tile_position_embeddings = ggml_reshape_3d(ctx0, pre_tile_position_embeddings, hidden_size, 1, num_tiles);
|
||||
if (model.pre_tile_position_embeddings_gate != nullptr) {
|
||||
pre_tile_position_embeddings = ggml_mul_inplace(ctx0, pre_tile_position_embeddings, model.pre_tile_position_embeddings_gate);
|
||||
}
|
||||
|
||||
inp = ggml_add(ctx0, inp, pre_tile_position_embeddings);
|
||||
}
|
||||
|
||||
struct ggml_tensor *embeddings = inp;
|
||||
|
||||
if (model.class_embedding != nullptr) {
|
||||
// concat class_embeddings and patch_embeddings
|
||||
embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, num_tiles);
|
||||
ggml_set_name(embeddings, "embeddings");
|
||||
ggml_set_input(embeddings);
|
||||
for (int i = 0; i < num_tiles; ++i) {
|
||||
// repeat class embeddings for each tile
|
||||
embeddings = ggml_acc_inplace(ctx0, embeddings, model.class_embedding, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], i * embeddings->nb[2]);
|
||||
}
|
||||
|
||||
embeddings = ggml_acc_inplace(ctx0, embeddings, inp, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
|
||||
}
|
||||
|
||||
struct ggml_tensor *positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
|
||||
ggml_set_name(positions, "positions");
|
||||
ggml_set_input(positions);
|
||||
|
||||
struct ggml_tensor *position_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
|
||||
if (model.position_embeddings_gate != nullptr) {
|
||||
position_embd = ggml_mul_inplace(ctx0, position_embd, model.position_embeddings_gate);
|
||||
}
|
||||
|
||||
embeddings = ggml_add(ctx0, embeddings, position_embd);
|
||||
|
||||
if (model.tile_position_embeddings != nullptr) {
|
||||
struct ggml_tensor *tile_position_embeddings = ggml_get_rows(ctx0, model.tile_position_embeddings, aspect_ratios);
|
||||
ggml_set_name(tile_position_embeddings, "tile_position_embeddings");
|
||||
|
||||
tile_position_embeddings = ggml_reshape_3d(ctx0, tile_position_embeddings, hidden_size, num_positions, num_tiles);
|
||||
if (model.tile_position_embeddings_gate != nullptr) {
|
||||
tile_position_embeddings = ggml_mul_inplace(ctx0, tile_position_embeddings, model.tile_position_embeddings_gate);
|
||||
}
|
||||
|
||||
embeddings = ggml_add(ctx0, embeddings, tile_position_embeddings);
|
||||
}
|
||||
|
||||
// pre-layernorm
|
||||
if (model.pre_ln_w != nullptr) {
|
||||
embeddings = ggml_mul(ctx0, ggml_norm(ctx0, embeddings, hparams.eps), model.pre_ln_w);
|
||||
if (model.pre_ln_b != nullptr) {
|
||||
embeddings = ggml_add(ctx0, embeddings, model.pre_ln_b);
|
||||
}
|
||||
|
||||
ggml_set_name(embeddings, "pre layernorm");
|
||||
}
|
||||
|
||||
const int num_padding_patches = 8 - (embeddings->ne[1] % 8) % 8;
|
||||
|
||||
embeddings = ggml_pad(ctx0, embeddings, 0, num_padding_patches, 0, 0);
|
||||
embeddings = ggml_view_3d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1] * embeddings->ne[2], batch_size, embeddings->nb[1], embeddings->nb[2] * embeddings->ne[3], 0);
|
||||
|
||||
std::vector<struct ggml_tensor *> intermediate_embeddings;
|
||||
|
||||
// encoder
|
||||
for (size_t il = 0; il < model.layers.size(); il++) {
|
||||
if (hparams.intermediate_layers[il]) {
|
||||
intermediate_embeddings.push_back(embeddings);
|
||||
}
|
||||
|
||||
embeddings = mllama_image_build_encoder_layer(
|
||||
ctx0, il, model.layers[il], embeddings,
|
||||
hparams.eps, hidden_size, batch_size, n_head, d_head);
|
||||
}
|
||||
|
||||
// post-layernorm
|
||||
if (model.post_ln_w != nullptr) {
|
||||
embeddings = ggml_mul(ctx0, ggml_norm(ctx0, embeddings, hparams.eps), model.post_ln_w);
|
||||
if (model.post_ln_b != nullptr) {
|
||||
embeddings = ggml_add(ctx0, embeddings, model.post_ln_b);
|
||||
}
|
||||
|
||||
ggml_set_name(embeddings, "post layernorm");
|
||||
}
|
||||
|
||||
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, num_positions + num_padding_patches, num_tiles);
|
||||
|
||||
if (model.post_tile_position_embeddings != nullptr) {
|
||||
struct ggml_tensor *post_tile_position_embeddings = ggml_get_rows(ctx0, model.post_tile_position_embeddings, aspect_ratios);
|
||||
ggml_set_name(post_tile_position_embeddings, "post_tile_position_embeddings");
|
||||
|
||||
post_tile_position_embeddings = ggml_reshape_3d(ctx0, post_tile_position_embeddings, hidden_size, 1, num_tiles);
|
||||
if (model.post_tile_position_embeddings_gate != nullptr) {
|
||||
post_tile_position_embeddings = ggml_mul(ctx0, post_tile_position_embeddings, model.post_tile_position_embeddings_gate);
|
||||
}
|
||||
|
||||
embeddings = ggml_add(ctx0, embeddings, post_tile_position_embeddings);
|
||||
}
|
||||
|
||||
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, num_tiles * (num_positions + num_padding_patches), 1);
|
||||
|
||||
// global encoder
|
||||
for (size_t il = 0; il < model.global_layers.size(); il++) {
|
||||
embeddings = mllama_image_build_encoder_layer(
|
||||
ctx0, il, model.global_layers[il], embeddings,
|
||||
hparams.eps, hidden_size, batch_size, n_head, d_head);
|
||||
}
|
||||
|
||||
struct ggml_tensor *stacked_embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 0, hidden_size, (num_positions + num_padding_patches) * num_tiles);
|
||||
for (size_t i = 0; i < intermediate_embeddings.size(); ++i) {
|
||||
stacked_embeddings = ggml_concat(ctx0, stacked_embeddings, ggml_reshape_3d(ctx0, intermediate_embeddings[i], 1, intermediate_embeddings[i]->ne[0], intermediate_embeddings[i]->ne[1]), 0);
|
||||
}
|
||||
|
||||
stacked_embeddings = ggml_reshape_4d(ctx0, stacked_embeddings, intermediate_embeddings.size() * hidden_size, num_positions + num_padding_patches, num_tiles, batch_size);
|
||||
stacked_embeddings = ggml_unpad(ctx0, stacked_embeddings, 0, num_padding_patches, 0, 0);
|
||||
|
||||
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, num_positions + num_padding_patches, num_tiles);
|
||||
embeddings = ggml_unpad(ctx0, embeddings, 0, num_padding_patches, 0, 0);
|
||||
embeddings = ggml_concat(ctx0, embeddings, stacked_embeddings, 0);
|
||||
|
||||
// mllama projector
|
||||
embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_0_w, embeddings), model.mm_0_b);
|
||||
ggml_set_name(embeddings, "multi modal projector");
|
||||
|
||||
// build the graph
|
||||
ggml_build_forward_expand(gf, embeddings);
|
||||
|
||||
ggml_free(ctx0);
|
||||
|
||||
return gf;
|
||||
}
|
||||
|
||||
static struct ggml_tensor *mllama_tensor_load(struct ggml_context *ctx, const char *name, const bool optional) {
|
||||
struct ggml_tensor *cur = ggml_get_tensor(ctx, name);
|
||||
REQUIRE(cur != nullptr || optional);
|
||||
return cur;
|
||||
}
|
||||
|
||||
static std::vector<struct mllama_layer> mllama_layers_load(struct ggml_context *ctx, const char *prefix, const int n) {
|
||||
std::vector<struct mllama_layer> layers(n);
|
||||
for (size_t i = 0; i < layers.size(); i++) {
|
||||
auto &layer = layers[i];
|
||||
layer.ln_1_w = mllama_tensor_load(ctx, format("%s.blk.%d.ln1.weight", prefix, i).c_str(), false);
|
||||
layer.ln_1_b = mllama_tensor_load(ctx, format("%s.blk.%d.ln1.bias", prefix, i).c_str(), false);
|
||||
layer.ln_2_w = mllama_tensor_load(ctx, format("%s.blk.%d.ln2.weight", prefix, i).c_str(), false);
|
||||
layer.ln_2_b = mllama_tensor_load(ctx, format("%s.blk.%d.ln2.bias", prefix, i).c_str(), false);
|
||||
|
||||
layer.k_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_k.weight", prefix, i).c_str(), false);
|
||||
layer.k_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_k.bias", prefix, i).c_str(), true);
|
||||
layer.q_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_q.weight", prefix, i).c_str(), false);
|
||||
layer.q_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_q.bias", prefix, i).c_str(), true);
|
||||
layer.v_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_v.weight", prefix, i).c_str(), false);
|
||||
layer.v_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_v.bias", prefix, i).c_str(), true);
|
||||
layer.o_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_out.weight", prefix, i).c_str(), false);
|
||||
layer.o_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_out.bias", prefix, i).c_str(), true);
|
||||
|
||||
layer.ff_i_w = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_down.weight", prefix, i).c_str(), false);
|
||||
layer.ff_i_b = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_down.bias", prefix, i).c_str(), false);
|
||||
layer.ff_o_w = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_up.weight", prefix, i).c_str(), false);
|
||||
layer.ff_o_b = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_up.bias", prefix, i).c_str(), false);
|
||||
|
||||
layer.attn_gate = mllama_tensor_load(ctx, format("%s.blk.%d.attn_gate", prefix, i).c_str(), true);
|
||||
layer.ff_gate = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_gate", prefix, i).c_str(), true);
|
||||
}
|
||||
|
||||
return layers;
|
||||
}
|
||||
|
||||
// read and create ggml_context containing the tensors and their data
|
||||
struct mllama_ctx *mllama_model_load(const char *fname, const int verbosity = 1) {
|
||||
struct ggml_context *meta = nullptr;
|
||||
|
||||
struct gguf_init_params params = {
|
||||
true, // no_alloc
|
||||
&meta, // ctx
|
||||
};
|
||||
|
||||
struct gguf_context *ctx = gguf_init_from_file(fname, params);
|
||||
REQUIRE(ctx != nullptr);
|
||||
|
||||
if (verbosity >= 1) {
|
||||
const int n_tensors = gguf_get_n_tensors(ctx);
|
||||
const int n_kv = gguf_get_n_kv(ctx);
|
||||
const std::string ftype = get_ftype(get_u32(ctx, "general.file_type"));
|
||||
const int idx_desc = get_key_index(ctx, "general.description");
|
||||
const std::string description = gguf_get_val_str(ctx, idx_desc);
|
||||
const int idx_name = gguf_find_key(ctx, "general.name");
|
||||
if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug
|
||||
const std::string name = gguf_get_val_str(ctx, idx_name);
|
||||
LOG("model name: %s", name.c_str());
|
||||
}
|
||||
LOG("description: %s", description.c_str());
|
||||
LOG("GGUF version: %d", gguf_get_version(ctx));
|
||||
LOG("alignment: %zu", gguf_get_alignment(ctx));
|
||||
LOG("n_tensors: %d", n_tensors);
|
||||
LOG("n_kv: %d", n_kv);
|
||||
LOG("ftype: %s", ftype.c_str());
|
||||
LOG("");
|
||||
}
|
||||
const int n_tensors = gguf_get_n_tensors(ctx);
|
||||
|
||||
mllama_ctx *new_mllama = new mllama_ctx{};
|
||||
|
||||
#ifdef GGML_USE_CUDA
|
||||
new_mllama->backend = ggml_backend_cuda_init(0);
|
||||
LOG("vision using CUDA backend");
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
new_mllama->backend = ggml_backend_metal_init();
|
||||
LOG("vision using Metal backend");
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CANN
|
||||
new_mllama->backend = ggml_backend_cann_init(0);
|
||||
LOG("vision using CANN backend");
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_VULKAN
|
||||
new_mllama->backend = ggml_backend_vk_init(0);
|
||||
LOG("vision using Vulkan backend");
|
||||
#endif
|
||||
|
||||
if (!new_mllama->backend) {
|
||||
new_mllama->backend = ggml_backend_cpu_init();
|
||||
LOG("vision using CPU backend");
|
||||
}
|
||||
|
||||
// load tensors
|
||||
{
|
||||
std::vector<uint8_t> read_buf;
|
||||
struct ggml_init_params params = {
|
||||
(n_tensors + 1) * ggml_tensor_overhead(), // mem_size
|
||||
nullptr, // mem_buffer
|
||||
true, // no_alloc
|
||||
};
|
||||
|
||||
new_mllama->ctx_data = ggml_init(params);
|
||||
if (!new_mllama->ctx_data) {
|
||||
LOG("ggml_init() failed");
|
||||
mllama_free(new_mllama);
|
||||
gguf_free(ctx);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
#ifdef _WIN32
|
||||
int wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, NULL, 0);
|
||||
if (!wlen) {
|
||||
return NULL;
|
||||
}
|
||||
wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t));
|
||||
wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, wbuf, wlen);
|
||||
if (!wlen) {
|
||||
free(wbuf);
|
||||
return NULL;
|
||||
}
|
||||
#if __GLIBCXX__
|
||||
int fd = _wopen(wbuf, _O_RDONLY | _O_BINARY);
|
||||
__gnu_cxx::stdio_filebuf<char> buffer(fd, std::ios_base::in);
|
||||
std::istream fin(&buffer);
|
||||
#else // MSVC
|
||||
// unused in our current build
|
||||
auto fin = std::ifstream(wbuf, std::ios::binary);
|
||||
#endif
|
||||
free(wbuf);
|
||||
#else
|
||||
auto fin = std::ifstream(fname, std::ios::binary);
|
||||
#endif
|
||||
if (!fin) {
|
||||
LOG("cannot open model file for loading tensors\n");
|
||||
mllama_free(new_mllama);
|
||||
gguf_free(ctx);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// add tensors to context
|
||||
for (int i = 0; i < n_tensors; ++i) {
|
||||
const char *name = gguf_get_tensor_name(ctx, i);
|
||||
struct ggml_tensor *t = ggml_get_tensor(meta, name);
|
||||
struct ggml_tensor *cur = ggml_dup_tensor(new_mllama->ctx_data, t);
|
||||
ggml_set_name(cur, name);
|
||||
}
|
||||
|
||||
// alloc memory and offload data
|
||||
new_mllama->params_buffer = ggml_backend_alloc_ctx_tensors(new_mllama->ctx_data, new_mllama->backend);
|
||||
for (int i = 0; i < n_tensors; ++i) {
|
||||
const char *name = gguf_get_tensor_name(ctx, i);
|
||||
struct ggml_tensor *cur = ggml_get_tensor(new_mllama->ctx_data, name);
|
||||
const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
|
||||
fin.seekg(offset, std::ios::beg);
|
||||
if (!fin) {
|
||||
LOG("failed to seek for tensor %s\n", name);
|
||||
mllama_free(new_mllama);
|
||||
gguf_free(ctx);
|
||||
return nullptr;
|
||||
}
|
||||
int num_bytes = ggml_nbytes(cur);
|
||||
if (ggml_backend_buffer_is_host(new_mllama->params_buffer)) {
|
||||
// for the CPU and Metal backend, we can read directly into the tensor
|
||||
fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
|
||||
} else {
|
||||
// read into a temporary buffer first, then copy to device memory
|
||||
read_buf.resize(num_bytes);
|
||||
fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
|
||||
ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(_WIN32) && defined(__GLIBCXX__)
|
||||
close(fd);
|
||||
#else
|
||||
fin.close();
|
||||
#endif
|
||||
}
|
||||
|
||||
// vision model
|
||||
// load vision model
|
||||
auto &vision_model = new_mllama->vision_model;
|
||||
auto &hparams = vision_model.hparams;
|
||||
hparams.hidden_size = get_u32(ctx, "mllama.vision.embedding_length");
|
||||
hparams.n_head = get_u32(ctx, "mllama.vision.attention.head_count");
|
||||
hparams.n_intermediate = get_u32(ctx, "mllama.vision.feed_forward_length");
|
||||
hparams.n_layer = get_u32(ctx, "mllama.vision.block_count");
|
||||
hparams.n_global_layer = get_u32(ctx, "mllama.vision.global.block_count");
|
||||
hparams.n_tiles = get_u32(ctx, "mllama.vision.max_num_tiles");
|
||||
hparams.image_size = get_u32(ctx, "mllama.vision.image_size");
|
||||
hparams.patch_size = get_u32(ctx, "mllama.vision.patch_size");
|
||||
hparams.projection_dim = get_u32(ctx, "mllama.vision.projection_dim");
|
||||
hparams.eps = get_f32(ctx, "mllama.vision.attention.layer_norm_epsilon");
|
||||
|
||||
std::vector<uint32_t> intermediate_layers_indices = get_u32_array(ctx, "mllama.vision.intermediate_layers_indices");
|
||||
hparams.intermediate_layers.resize(hparams.n_layer);
|
||||
for (size_t i = 0; i < intermediate_layers_indices.size(); i++) {
|
||||
hparams.intermediate_layers[intermediate_layers_indices[i]] = true;
|
||||
}
|
||||
|
||||
if (verbosity >= 2) {
|
||||
LOG("");
|
||||
LOG("vision model hparams");
|
||||
LOG("image_size %d", hparams.image_size);
|
||||
LOG("patch_size %d", hparams.patch_size);
|
||||
LOG("v_hidden_size %d", hparams.hidden_size);
|
||||
LOG("v_n_intermediate %d", hparams.n_intermediate);
|
||||
LOG("v_projection_dim %d", hparams.projection_dim);
|
||||
LOG("v_n_head %d", hparams.n_head);
|
||||
LOG("v_n_layer %d", hparams.n_layer);
|
||||
LOG("v_n_global_layer %d", hparams.n_global_layer);
|
||||
LOG("v_eps %f", hparams.eps);
|
||||
}
|
||||
|
||||
vision_model.class_embedding = mllama_tensor_load(new_mllama->ctx_data, "v.class_embd", true);
|
||||
vision_model.patch_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.patch_embd.weight", true);
|
||||
|
||||
vision_model.position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.position_embd.weight", true);
|
||||
vision_model.position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.position_embd.gate", true);
|
||||
|
||||
vision_model.pre_ln_w = mllama_tensor_load(new_mllama->ctx_data, "v.pre_ln.weight", true);
|
||||
vision_model.pre_ln_b = mllama_tensor_load(new_mllama->ctx_data, "v.pre_ln.bias", true);
|
||||
vision_model.post_ln_w = mllama_tensor_load(new_mllama->ctx_data, "v.post_ln.weight", true);
|
||||
vision_model.post_ln_b = mllama_tensor_load(new_mllama->ctx_data, "v.post_ln.bias", true);
|
||||
|
||||
vision_model.tile_position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.tile_position_embd.weight", true);
|
||||
vision_model.tile_position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.tile_position_embd.gate", true);
|
||||
|
||||
vision_model.pre_tile_position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.pre_tile_position_embd.weight", true);
|
||||
vision_model.pre_tile_position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.pre_tile_position_embd.gate", true);
|
||||
|
||||
vision_model.post_tile_position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.post_tile_position_embd.weight", true);
|
||||
vision_model.post_tile_position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.post_tile_position_embd.gate", true);
|
||||
|
||||
vision_model.mm_0_w = mllama_tensor_load(new_mllama->ctx_data, "mm.0.weight", false);
|
||||
vision_model.mm_0_b = mllama_tensor_load(new_mllama->ctx_data, "mm.0.bias", false);
|
||||
|
||||
vision_model.layers = mllama_layers_load(new_mllama->ctx_data, "v", hparams.n_layer);
|
||||
vision_model.global_layers = mllama_layers_load(new_mllama->ctx_data, "v.global", hparams.n_global_layer);
|
||||
|
||||
ggml_free(meta);
|
||||
|
||||
new_mllama->ctx_gguf = ctx;
|
||||
|
||||
{
|
||||
// measure mem requirement and allocate
|
||||
new_mllama->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
|
||||
new_mllama->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_mllama->backend));
|
||||
struct mllama_image_batch batch;
|
||||
batch.size = 1;
|
||||
ggml_cgraph *gf = mllama_image_build_graph(new_mllama, &batch);
|
||||
ggml_gallocr_reserve(new_mllama->compute_alloc, gf);
|
||||
size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_mllama->compute_alloc, 0);
|
||||
LOG("compute allocated memory: %.2f MB", compute_memory_buffer_size / 1024.0 / 1024.0);
|
||||
}
|
||||
|
||||
return new_mllama;
|
||||
}
|
||||
|
||||
struct mllama_image *mllama_image_init() {
|
||||
return new mllama_image();
|
||||
}
|
||||
|
||||
void mllama_image_free(struct mllama_image *img) { delete img; }
|
||||
void mllama_image_batch_free(struct mllama_image_batch *batch) {
|
||||
if (batch->size > 0) {
|
||||
delete[] batch->data;
|
||||
batch->size = 0;
|
||||
}
|
||||
}
|
||||
|
||||
bool mllama_image_load_from_data(const void *data, const int n, const int width, const int height, const int num_channels, const int num_tiles, const int aspect_ratio_id, struct mllama_image *img) {
|
||||
img->width = width;
|
||||
img->height = height;
|
||||
img->num_channels = num_channels;
|
||||
img->num_tiles = num_tiles;
|
||||
img->aspect_ratio_id = aspect_ratio_id;
|
||||
img->data.resize(n);
|
||||
|
||||
memcpy(img->data.data(), data, n);
|
||||
return true;
|
||||
}
|
||||
|
||||
inline int mllama(int x, int lower, int upper) {
|
||||
return std::max(lower, std::min(x, upper));
|
||||
}
|
||||
|
||||
void mllama_free(mllama_ctx *ctx) {
|
||||
ggml_free(ctx->ctx_data);
|
||||
gguf_free(ctx->ctx_gguf);
|
||||
|
||||
ggml_backend_buffer_free(ctx->params_buffer);
|
||||
ggml_backend_free(ctx->backend);
|
||||
ggml_gallocr_free(ctx->compute_alloc);
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
bool mllama_image_encode(struct mllama_ctx *ctx, const int n_threads, mllama_image *img, float *vec) {
|
||||
mllama_image_batch imgs{};
|
||||
imgs.size = 1;
|
||||
imgs.data = img;
|
||||
return mllama_image_batch_encode(ctx, n_threads, &imgs, vec);
|
||||
}
|
||||
|
||||
bool mllama_image_batch_encode(mllama_ctx *ctx, const int n_threads, const mllama_image_batch *imgs, float *vec) {
|
||||
int batch_size = imgs->size;
|
||||
REQUIRE(batch_size == 1);
|
||||
|
||||
// build the inference graph
|
||||
ggml_cgraph *gf = mllama_image_build_graph(ctx, imgs);
|
||||
ggml_gallocr_alloc_graph(ctx->compute_alloc, gf);
|
||||
|
||||
// set inputs
|
||||
const auto &model = ctx->vision_model;
|
||||
const auto &hparams = model.hparams;
|
||||
|
||||
const int image_size = hparams.image_size;
|
||||
int image_size_width = image_size;
|
||||
int image_size_height = image_size;
|
||||
|
||||
const int patch_size = hparams.patch_size;
|
||||
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
|
||||
const int num_positions = num_patches + (model.class_embedding == nullptr ? 0 : 1);
|
||||
|
||||
{
|
||||
struct ggml_tensor *inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
|
||||
ggml_backend_tensor_set(inp_raw, imgs->data[0].data.data(), 0, ggml_nbytes(inp_raw));
|
||||
}
|
||||
|
||||
{
|
||||
struct ggml_tensor *embeddings = ggml_graph_get_tensor(gf, "embeddings");
|
||||
if (embeddings != nullptr) {
|
||||
void *zeros = malloc(ggml_nbytes(embeddings));
|
||||
memset(zeros, 0, ggml_nbytes(embeddings));
|
||||
ggml_backend_tensor_set(embeddings, zeros, 0, ggml_nbytes(embeddings));
|
||||
free(zeros);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
struct ggml_tensor *positions = ggml_graph_get_tensor(gf, "positions");
|
||||
if (positions != nullptr) {
|
||||
int *positions_data = (int *)malloc(ggml_nbytes(positions));
|
||||
for (int i = 0; i < num_positions; i++) {
|
||||
positions_data[i] = i;
|
||||
}
|
||||
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
|
||||
free(positions_data);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
struct ggml_tensor *aspect_ratios = ggml_graph_get_tensor(gf, "aspect_ratios");
|
||||
if (aspect_ratios != nullptr) {
|
||||
int *aspect_ratios_data = (int *)malloc(ggml_nbytes(aspect_ratios));
|
||||
aspect_ratios_data[0] = imgs->data[0].aspect_ratio_id;
|
||||
ggml_backend_tensor_set(aspect_ratios, aspect_ratios_data, 0, ggml_nbytes(aspect_ratios));
|
||||
free(aspect_ratios_data);
|
||||
}
|
||||
}
|
||||
|
||||
if (ggml_backend_is_cpu(ctx->backend)) {
|
||||
ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
|
||||
}
|
||||
|
||||
ggml_backend_graph_compute(ctx->backend, gf);
|
||||
|
||||
// the last node is the embedding tensor
|
||||
struct ggml_tensor *embeddings = ggml_graph_node(gf, ggml_graph_n_nodes(gf) - 1);
|
||||
|
||||
// copy the embeddings to the location passed by the user
|
||||
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int32_t mllama_image_size(const struct mllama_ctx *ctx) {
|
||||
return ctx->vision_model.hparams.image_size;
|
||||
}
|
||||
|
||||
int32_t mllama_patch_size(const struct mllama_ctx *ctx) {
|
||||
return ctx->vision_model.hparams.patch_size;
|
||||
}
|
||||
|
||||
int32_t mllama_hidden_size(const struct mllama_ctx *ctx) {
|
||||
return ctx->vision_model.hparams.hidden_size;
|
||||
}
|
||||
|
||||
int mllama_n_patches(const struct mllama_ctx *ctx) {
|
||||
const auto &hparams = ctx->vision_model.hparams;
|
||||
return (hparams.image_size / hparams.patch_size) * (hparams.image_size / hparams.patch_size);
|
||||
}
|
||||
|
||||
int mllama_n_positions(const struct mllama_ctx *ctx) {
|
||||
return mllama_n_patches(ctx) + (ctx->vision_model.class_embedding == nullptr ? 0 : 1);
|
||||
}
|
||||
|
||||
int mllama_n_tiles(const struct mllama_ctx *ctx) {
|
||||
return ctx->vision_model.hparams.n_tiles;
|
||||
}
|
||||
|
||||
int mllama_n_embd(const struct mllama_ctx *ctx) {
|
||||
return ctx->vision_model.hparams.projection_dim;
|
||||
}
|
||||
|
||||
size_t mllama_n_embd_bytes(const struct mllama_ctx *ctx) {
|
||||
return mllama_n_positions(ctx) * mllama_n_embd(ctx) * mllama_n_tiles(ctx) * sizeof(float);
|
||||
}
|
61
llama/mllama.h
vendored
Normal file
61
llama/mllama.h
vendored
Normal file
@ -0,0 +1,61 @@
|
||||
#ifndef MLLAMA_H
|
||||
#define MLLAMA_H
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef LLAMA_SHARED
|
||||
#if defined(_WIN32) && !defined(__MINGW32__)
|
||||
#ifdef LLAMA_BUILD
|
||||
#define MLLAMA_API __declspec(dllexport)
|
||||
#else
|
||||
#define MLLAMA_API __declspec(dllimport)
|
||||
#endif
|
||||
#else
|
||||
#define MLLAMA_API __attribute__((visibility("default")))
|
||||
#endif
|
||||
#else
|
||||
#define MLLAMA_API
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct mllama_ctx;
|
||||
|
||||
struct mllama_image_batch {
|
||||
struct mllama_image *data;
|
||||
size_t size;
|
||||
};
|
||||
|
||||
MLLAMA_API struct mllama_ctx *mllama_model_load(const char *fname, int verbosity);
|
||||
MLLAMA_API struct mllama_ctx *mllama_model_load_cpu(const char *fname, int verbosity);
|
||||
|
||||
MLLAMA_API void mllama_free(struct mllama_ctx *ctx);
|
||||
|
||||
MLLAMA_API int32_t mllama_image_size(const struct mllama_ctx *ctx);
|
||||
MLLAMA_API int32_t mllama_patch_size(const struct mllama_ctx *ctx);
|
||||
MLLAMA_API int32_t mllama_hidden_size(const struct mllama_ctx *ctx);
|
||||
|
||||
MLLAMA_API int mllama_n_patches(const struct mllama_ctx *ctx);
|
||||
MLLAMA_API int mllama_n_positions(const struct mllama_ctx *ctx);
|
||||
MLLAMA_API int mllama_n_tiles(const struct mllama_ctx *ctx);
|
||||
MLLAMA_API int mllama_n_embd(const struct mllama_ctx *ctx);
|
||||
MLLAMA_API size_t mllama_n_embd_bytes(const struct mllama_ctx *ctx);
|
||||
|
||||
MLLAMA_API struct mllama_image *mllama_image_init();
|
||||
|
||||
MLLAMA_API void mllama_image_free(struct mllama_image *img);
|
||||
MLLAMA_API void mllama_image_batch_free(struct mllama_image_batch *batch);
|
||||
|
||||
MLLAMA_API bool mllama_image_load_from_data(const void *data, const int n, const int nx, const int ny, const int nc, const int nt, const int aspect_ratio_id, struct mllama_image *img);
|
||||
|
||||
MLLAMA_API bool mllama_image_encode(struct mllama_ctx *ctx, int n_threads, struct mllama_image *img, float *vec);
|
||||
MLLAMA_API bool mllama_image_batch_encode(struct mllama_ctx *ctx, int n_threads, const struct mllama_image_batch *imgs, float *vec);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // MLLAMA_H
|
732
llama/patches/0010-add-mllama-support.patch
Normal file
732
llama/patches/0010-add-mllama-support.patch
Normal file
@ -0,0 +1,732 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: jmorganca <jmorganca@gmail.com>
|
||||
Date: Thu, 17 Oct 2024 15:18:22 -0700
|
||||
Subject: [PATCH] add mllama support
|
||||
|
||||
mllama adds cross-attention layers to the standard llama architecture
|
||||
it also requires a way to input a new tensor: cross_attention_state
|
||||
once per generation
|
||||
|
||||
cross-attention layers don't change and so they are cached in the
|
||||
kv cache once per run
|
||||
|
||||
remaining is to implement the cross attention mask
|
||||
---
|
||||
examples/llava/llava.cpp | 2 +-
|
||||
include/llama.h | 5 +
|
||||
src/llama.cpp | 447 +++++++++++++++++++++++++++++++++++++--
|
||||
3 files changed, 436 insertions(+), 18 deletions(-)
|
||||
|
||||
diff --git a/examples/llava/llava.cpp b/examples/llava/llava.cpp
|
||||
index 8558c6bd..37b2f2e2 100644
|
||||
--- a/examples/llava/llava.cpp
|
||||
+++ b/examples/llava/llava.cpp
|
||||
@@ -409,7 +409,7 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
|
||||
if (n_eval > n_batch) {
|
||||
n_eval = n_batch;
|
||||
}
|
||||
- llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
|
||||
+ llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), n_embd, nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
|
||||
if (llama_decode(ctx_llama, batch)) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
diff --git a/include/llama.h b/include/llama.h
|
||||
index 7cae1bbe..aca09310 100644
|
||||
--- a/include/llama.h
|
||||
+++ b/include/llama.h
|
||||
@@ -240,6 +240,7 @@ extern "C" {
|
||||
|
||||
llama_token * token;
|
||||
float * embd;
|
||||
+ int32_t n_embd;
|
||||
llama_pos * pos;
|
||||
int32_t * n_seq_id;
|
||||
llama_seq_id ** seq_id;
|
||||
@@ -423,6 +424,10 @@ extern "C" {
|
||||
struct llama_model * model,
|
||||
struct llama_context_params params);
|
||||
|
||||
+ // TODO (jmorganca): this should most likely be passed in as part of a batch
|
||||
+ // and not set on the context for all batches.
|
||||
+ LLAMA_API void llama_set_cross_attention(struct llama_context * ctx, bool cross_attn_state);
|
||||
+
|
||||
// Frees all allocated memory
|
||||
LLAMA_API void llama_free(struct llama_context * ctx);
|
||||
|
||||
diff --git a/src/llama.cpp b/src/llama.cpp
|
||||
index 83b80b59..35748488 100644
|
||||
--- a/src/llama.cpp
|
||||
+++ b/src/llama.cpp
|
||||
@@ -169,6 +169,7 @@ static std::string format(const char * fmt, ...) {
|
||||
|
||||
enum llm_arch {
|
||||
LLM_ARCH_LLAMA,
|
||||
+ LLM_ARCH_MLLAMA,
|
||||
LLM_ARCH_FALCON,
|
||||
LLM_ARCH_BAICHUAN,
|
||||
LLM_ARCH_GROK,
|
||||
@@ -223,6 +224,7 @@ enum llm_arch {
|
||||
|
||||
static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_LLAMA, "llama" },
|
||||
+ { LLM_ARCH_MLLAMA, "mllama" },
|
||||
{ LLM_ARCH_FALCON, "falcon" },
|
||||
{ LLM_ARCH_GROK, "grok" },
|
||||
{ LLM_ARCH_GPT2, "gpt2" },
|
||||
@@ -330,6 +332,7 @@ enum llm_kv {
|
||||
LLM_KV_ATTENTION_SLIDING_WINDOW,
|
||||
LLM_KV_ATTENTION_SCALE,
|
||||
LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
|
||||
+ LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS,
|
||||
|
||||
LLM_KV_ROPE_DIMENSION_COUNT,
|
||||
LLM_KV_ROPE_FREQ_BASE,
|
||||
@@ -439,6 +442,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
||||
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
|
||||
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
|
||||
{ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection.%d" },
|
||||
+ { LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, "%s.attention.cross_attention_layers" },
|
||||
|
||||
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
|
||||
{ LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
|
||||
@@ -613,6 +617,14 @@ enum llm_tensor {
|
||||
LLM_TENSOR_CLS,
|
||||
LLM_TENSOR_CLS_OUT,
|
||||
LLM_TENSOR_BSKCN_TV,
|
||||
+ LLM_TENSOR_CROSS_ATTN_K_NORM,
|
||||
+ LLM_TENSOR_CROSS_ATTN_K_PROJ,
|
||||
+ LLM_TENSOR_CROSS_ATTN_O_PROJ,
|
||||
+ LLM_TENSOR_CROSS_ATTN_Q_NORM,
|
||||
+ LLM_TENSOR_CROSS_ATTN_Q_PROJ,
|
||||
+ LLM_TENSOR_CROSS_ATTN_V_PROJ,
|
||||
+ LLM_TENSOR_CROSS_ATTN_ATTN_GATE,
|
||||
+ LLM_TENSOR_CROSS_ATTN_MLP_GATE,
|
||||
};
|
||||
|
||||
static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
|
||||
@@ -642,6 +654,40 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
},
|
||||
},
|
||||
+ {
|
||||
+ LLM_ARCH_MLLAMA,
|
||||
+ {
|
||||
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
+ { LLM_TENSOR_OUTPUT, "output" },
|
||||
+ { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||||
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
+ { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
||||
+ { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
+ { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
|
||||
+ { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
|
||||
+ { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
|
||||
+ { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||
+ { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||
+ { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
+ { LLM_TENSOR_CROSS_ATTN_K_NORM, "blk.%d.cross_attn_k_norm" },
|
||||
+ { LLM_TENSOR_CROSS_ATTN_K_PROJ, "blk.%d.cross_attn_k_proj" },
|
||||
+ { LLM_TENSOR_CROSS_ATTN_O_PROJ, "blk.%d.cross_attn_o_proj" },
|
||||
+ { LLM_TENSOR_CROSS_ATTN_Q_NORM, "blk.%d.cross_attn_q_norm" },
|
||||
+ { LLM_TENSOR_CROSS_ATTN_Q_PROJ, "blk.%d.cross_attn_q_proj" },
|
||||
+ { LLM_TENSOR_CROSS_ATTN_V_PROJ, "blk.%d.cross_attn_v_proj" },
|
||||
+ { LLM_TENSOR_CROSS_ATTN_ATTN_GATE, "blk.%d.cross_attn_attn_gate" },
|
||||
+ { LLM_TENSOR_CROSS_ATTN_MLP_GATE, "blk.%d.cross_attn_mlp_gate" },
|
||||
+ },
|
||||
+ },
|
||||
{
|
||||
LLM_ARCH_BAICHUAN,
|
||||
{
|
||||
@@ -2390,6 +2436,7 @@ enum e_model {
|
||||
MODEL_40B,
|
||||
MODEL_65B,
|
||||
MODEL_70B,
|
||||
+ MODEL_90B,
|
||||
MODEL_236B,
|
||||
MODEL_314B,
|
||||
MODEL_SMALL,
|
||||
@@ -2434,6 +2481,7 @@ struct llama_hparams {
|
||||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
|
||||
|
||||
std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr;
|
||||
+ std::array<uint32_t, LLAMA_MAX_LAYERS> cross_attn_layers;
|
||||
|
||||
uint32_t n_layer_dense_lead = 0;
|
||||
uint32_t n_lora_q = 0;
|
||||
@@ -2502,10 +2550,11 @@ struct llama_hparams {
|
||||
if (this->n_expert != other.n_expert) return true;
|
||||
if (this->n_expert_used != other.n_expert_used) return true;
|
||||
|
||||
- if (this->n_head_arr != other.n_head_arr) return true;
|
||||
- if (this->n_head_kv_arr != other.n_head_kv_arr) return true;
|
||||
- if (this->n_ff_arr != other.n_ff_arr) return true;
|
||||
- if (this->n_bskcn_arr != other.n_bskcn_arr) return true;
|
||||
+ if (this->n_head_arr != other.n_head_arr) return true;
|
||||
+ if (this->n_head_kv_arr != other.n_head_kv_arr) return true;
|
||||
+ if (this->n_ff_arr != other.n_ff_arr) return true;
|
||||
+ if (this->n_bskcn_arr != other.n_bskcn_arr) return true;
|
||||
+ if (this->cross_attn_layers != other.cross_attn_layers) return true;
|
||||
|
||||
if (this->n_rel_attn_bkts != other.n_rel_attn_bkts) return true;
|
||||
if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
|
||||
@@ -2623,6 +2672,10 @@ struct llama_hparams {
|
||||
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
+
|
||||
+ bool cross_attention_layers(uint32_t il) const {
|
||||
+ return std::find(cross_attn_layers.begin(), cross_attn_layers.end(), il) != cross_attn_layers.end();
|
||||
+ }
|
||||
};
|
||||
|
||||
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
|
||||
@@ -2652,6 +2705,9 @@ struct llama_cparams {
|
||||
bool offload_kqv;
|
||||
bool flash_attn;
|
||||
bool no_perf;
|
||||
+ // TODO (jmorganca): this should most likely be passed in as part of a batch
|
||||
+ // and not set on the context for all batches.
|
||||
+ bool cross_attn = false;
|
||||
|
||||
enum llama_pooling_type pooling_type;
|
||||
|
||||
@@ -2806,6 +2862,16 @@ struct llama_layer {
|
||||
struct ggml_tensor * ffn_down_scale;
|
||||
|
||||
struct ggml_tensor * bskcn_tv;
|
||||
+
|
||||
+ // cross attention
|
||||
+ struct ggml_tensor * cross_attn_k_norm;
|
||||
+ struct ggml_tensor * cross_attn_k_proj;
|
||||
+ struct ggml_tensor * cross_attn_o_proj;
|
||||
+ struct ggml_tensor * cross_attn_q_norm;
|
||||
+ struct ggml_tensor * cross_attn_q_proj;
|
||||
+ struct ggml_tensor * cross_attn_v_proj;
|
||||
+ struct ggml_tensor * cross_attn_attn_gate;
|
||||
+ struct ggml_tensor * cross_attn_mlp_gate;
|
||||
};
|
||||
|
||||
// very similar to llama_batch,
|
||||
@@ -3452,6 +3518,8 @@ struct llama_context {
|
||||
struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch]
|
||||
struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
|
||||
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
|
||||
+
|
||||
+ struct ggml_tensor * inp_cross_attn_state; // F32 [4, n_embd, 1061]
|
||||
};
|
||||
|
||||
struct llama_lora_weight {
|
||||
@@ -3686,6 +3754,18 @@ static bool llama_kv_cache_init(
|
||||
cache.v_l.reserve(n_layer);
|
||||
|
||||
for (int i = 0; i < (int) n_layer; i++) {
|
||||
+ // for cross attention layers
|
||||
+ if (model.arch == LLM_ARCH_MLLAMA && hparams.cross_attention_layers(i)) {
|
||||
+ struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
|
||||
+ ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_k, 6404, hparams.n_head_kv(i));
|
||||
+ ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_v, 6404, hparams.n_head_kv(i));
|
||||
+ ggml_format_name(k, "cache_k_l%d", i);
|
||||
+ ggml_format_name(v, "cache_v_l%d", i);
|
||||
+ cache.k_l.push_back(k);
|
||||
+ cache.v_l.push_back(v);
|
||||
+ continue;
|
||||
+ }
|
||||
+
|
||||
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
|
||||
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
|
||||
|
||||
@@ -5460,12 +5540,14 @@ static void llm_load_hparams(
|
||||
}
|
||||
|
||||
// zero-out the per-layer hparams
|
||||
- std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
|
||||
- std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
|
||||
- std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
|
||||
+ std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
|
||||
+ std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
|
||||
+ std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
|
||||
+ std::fill(hparams.cross_attn_layers.begin(), hparams.cross_attn_layers.end(), -1);
|
||||
|
||||
- ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer);
|
||||
- ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer);
|
||||
+ ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer);
|
||||
+ ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer);
|
||||
+ ml.get_arr(LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, hparams.cross_attn_layers, false);
|
||||
|
||||
// n_head_kv is optional, default to n_head
|
||||
hparams.n_head_kv_arr = hparams.n_head_arr;
|
||||
@@ -5514,7 +5596,7 @@ static void llm_load_hparams(
|
||||
|
||||
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
|
||||
|
||||
- if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
|
||||
+ if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_MLLAMA || model.arch == LLM_ARCH_FALCON) {
|
||||
if (hparams.n_rot != hparams.n_embd_head_k) {
|
||||
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
|
||||
}
|
||||
@@ -5554,6 +5636,16 @@ static void llm_load_hparams(
|
||||
}
|
||||
}
|
||||
} break;
|
||||
+ case LLM_ARCH_MLLAMA:
|
||||
+ {
|
||||
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
+
|
||||
+ switch (hparams.n_layer) {
|
||||
+ case 40: model.type = e_model::MODEL_11B; break;
|
||||
+ case 100: model.type = e_model::MODEL_90B; break;
|
||||
+ default: model.type = e_model::MODEL_UNKNOWN;
|
||||
+ }
|
||||
+ } break;
|
||||
case LLM_ARCH_MINICPM:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
@@ -7249,6 +7341,55 @@ static bool llm_load_tensors(
|
||||
layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head_qk_rope/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||||
}
|
||||
} break;
|
||||
+ case LLM_ARCH_MLLAMA:
|
||||
+ {
|
||||
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab+8});
|
||||
+
|
||||
+ // output
|
||||
+ {
|
||||
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||||
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
+
|
||||
+ // if output is NULL, init from the input tok embed
|
||||
+ if (model.output == NULL) {
|
||||
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
||||
+ }
|
||||
+ }
|
||||
+
|
||||
+ for (int i = 0; i < n_layer; ++i) {
|
||||
+ ggml_context * ctx_layer = ctx_for_layer(i);
|
||||
+ ggml_context * ctx_split = ctx_for_layer_split(i);
|
||||
+
|
||||
+ auto & layer = model.layers[i];
|
||||
+
|
||||
+ if (hparams.cross_attention_layers(i)) {
|
||||
+ layer.cross_attn_k_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_K_NORM, "weight", i), {128});
|
||||
+ layer.cross_attn_k_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_K_PROJ, "weight", i), {n_embd, 1024});
|
||||
+ layer.cross_attn_o_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_O_PROJ, "weight", i), {n_embd, n_embd});
|
||||
+ layer.cross_attn_q_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_Q_NORM, "weight", i), {128});
|
||||
+ layer.cross_attn_q_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_Q_PROJ, "weight", i), {n_embd, n_embd});
|
||||
+ layer.cross_attn_v_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_V_PROJ, "weight", i), {n_embd, 1024});
|
||||
+ layer.cross_attn_attn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_ATTN_GATE, i), {1});
|
||||
+ layer.cross_attn_mlp_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_MLP_GATE, i), {1});
|
||||
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
|
||||
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||||
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||||
+ } else {
|
||||
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
|
||||
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
|
||||
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
|
||||
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
|
||||
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||||
+ layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||||
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||||
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||||
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||
+ }
|
||||
+ }
|
||||
+ } break;
|
||||
case LLM_ARCH_GROK:
|
||||
{
|
||||
if (n_expert == 0) {
|
||||
@@ -9093,7 +9234,7 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
|
||||
|
||||
if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
|
||||
model.hparams.n_vocab != model.vocab.id_to_token.size()) {
|
||||
- throw std::runtime_error("vocab size mismatch");
|
||||
+ LLAMA_LOG_WARN("%s: vocab mismatch %u !- %zu ...\n", __func__, model.hparams.n_vocab, model.vocab.id_to_token.size());
|
||||
}
|
||||
|
||||
if (params.vocab_only) {
|
||||
@@ -9193,6 +9334,21 @@ static struct ggml_tensor * llm_build_inp_embd(
|
||||
return inpL;
|
||||
}
|
||||
|
||||
+static struct ggml_tensor * llm_build_inp_cross_attn_state(
|
||||
+ struct ggml_context * ctx,
|
||||
+ struct llama_context & lctx,
|
||||
+ const llama_hparams & hparams,
|
||||
+ const llm_build_cb & cb) {
|
||||
+ const int64_t n_embd = hparams.n_embd;
|
||||
+
|
||||
+ struct ggml_tensor * inpCAS = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd, 1601, 4);
|
||||
+ cb(inpCAS, "inp_cross_attn_state", -1);
|
||||
+ ggml_set_input(inpCAS);
|
||||
+ lctx.inp_cross_attn_state = inpCAS;
|
||||
+
|
||||
+ return inpCAS;
|
||||
+}
|
||||
+
|
||||
static void llm_build_kv_store(
|
||||
struct ggml_context * ctx,
|
||||
const llama_hparams & hparams,
|
||||
@@ -10167,6 +10323,7 @@ struct llm_build_context {
|
||||
lctx.inp_pos_bucket = nullptr;
|
||||
lctx.inp_embd_enc = nullptr;
|
||||
lctx.inp_KQ_mask_cross = nullptr;
|
||||
+ lctx.inp_cross_attn_state = nullptr;
|
||||
}
|
||||
|
||||
void free() {
|
||||
@@ -10754,6 +10911,239 @@ struct llm_build_context {
|
||||
LLM_NORM_RMS, cb, -1);
|
||||
cb(cur, "result_norm", -1);
|
||||
|
||||
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||||
+ cb(cur, "result_output", -1);
|
||||
+
|
||||
+ ggml_build_forward_expand(gf, cur);
|
||||
+
|
||||
+ return gf;
|
||||
+ }
|
||||
+
|
||||
+ struct ggml_cgraph * build_mllama() {
|
||||
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
+
|
||||
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
+ int32_t n_tokens = this->n_tokens;
|
||||
+
|
||||
+ const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
+
|
||||
+ struct ggml_tensor * cur;
|
||||
+ struct ggml_tensor * inpL;
|
||||
+ struct ggml_tensor * inpCAS;
|
||||
+
|
||||
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||||
+ inpCAS = llm_build_inp_cross_attn_state(ctx0, lctx, hparams, cb);
|
||||
+
|
||||
+ // inp_pos - contains the positions
|
||||
+ struct ggml_tensor * inp_pos = build_inp_pos();
|
||||
+
|
||||
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||||
+
|
||||
+ for (int il = 0; il < n_layer; ++il) {
|
||||
+ struct ggml_tensor * inpSA = inpL;
|
||||
+
|
||||
+ // norm
|
||||
+ cur = llm_build_norm(ctx0, inpL, hparams,
|
||||
+ model.layers[il].attn_norm, NULL,
|
||||
+ LLM_NORM_RMS, cb, il);
|
||||
+ cb(cur, "attn_norm", il);
|
||||
+
|
||||
+ if (hparams.cross_attention_layers(il)) {
|
||||
+ if (!batch.embd && !cparams.cross_attn) {
|
||||
+ continue;
|
||||
+ }
|
||||
+
|
||||
+ // cross attention layer
|
||||
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_q_proj, cur);
|
||||
+ cb(Qcur, "Qcur", il);
|
||||
+
|
||||
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
+ cb(Qcur, "Qcur", il);
|
||||
+
|
||||
+ Qcur = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 0, 2, 1, 3));
|
||||
+ cb(Qcur, "Qcur", il);
|
||||
+
|
||||
+ Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].cross_attn_q_norm, NULL, LLM_NORM_RMS, cb, il);
|
||||
+ cb(Qcur, "Qcur", il);
|
||||
+
|
||||
+ struct ggml_tensor * Kcur, * Vcur;
|
||||
+ if (batch.embd) {
|
||||
+ Kcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_k_proj, inpCAS);
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+
|
||||
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, 6404);
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+
|
||||
+ Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+
|
||||
+ Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].cross_attn_k_norm, NULL, LLM_NORM_RMS, cb, il);
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+
|
||||
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, kv_self.k_l[il]));
|
||||
+
|
||||
+ Vcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_v_proj, inpCAS);
|
||||
+ cb(Vcur, "Vcur", il);
|
||||
+
|
||||
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, 6404);
|
||||
+ cb(Vcur, "Vcur", il);
|
||||
+
|
||||
+ Vcur = ggml_permute(ctx0, Vcur, 0, 2, 1, 3);
|
||||
+ cb(Vcur, "Vcur", il);
|
||||
+
|
||||
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, kv_self.v_l[il]));
|
||||
+ } else {
|
||||
+ Kcur = ggml_view_tensor(ctx0, kv_self.k_l[il]);
|
||||
+ cb(Kcur, "Kcur (view)", il);
|
||||
+
|
||||
+ Vcur = ggml_view_tensor(ctx0, kv_self.v_l[il]);
|
||||
+ cb(Vcur, "Vcur (view)", il);
|
||||
+ }
|
||||
+
|
||||
+ struct ggml_tensor * kq = ggml_mul_mat(ctx0, Kcur, Qcur);
|
||||
+ cb(kq, "kq", il);
|
||||
+
|
||||
+ // TODO: apply causal masks
|
||||
+ struct ggml_tensor * kq_soft_max = ggml_soft_max_ext(ctx0, kq, nullptr, 1.f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
|
||||
+ cb(kq_soft_max, "kq_soft_max", il);
|
||||
+
|
||||
+ Vcur = ggml_cont(ctx0, ggml_transpose(ctx0, Vcur));
|
||||
+ cb(Vcur, "Vcur", il);
|
||||
+
|
||||
+ struct ggml_tensor * kqv = ggml_mul_mat(ctx0, Vcur, kq_soft_max);
|
||||
+ cb(kqv, "kqv", il);
|
||||
+
|
||||
+ struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
|
||||
+ cb(kqv_merged, "kqv_merged", il);
|
||||
+
|
||||
+ cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_head_v*n_head, n_tokens);
|
||||
+ cb(cur, "kqv_merged_cont", il);
|
||||
+
|
||||
+ cur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_o_proj, cur);
|
||||
+ cb(cur, "cur", il);
|
||||
+
|
||||
+ // TODO: do this in place once?
|
||||
+ cur = ggml_mul(ctx0, cur, ggml_tanh(ctx0, model.layers[il].cross_attn_attn_gate));
|
||||
+
|
||||
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
+ cb(ffn_inp, "ffn_inp", il);
|
||||
+
|
||||
+ // feed-forward network
|
||||
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
+ model.layers[il].ffn_norm, NULL,
|
||||
+ LLM_NORM_RMS, cb, il);
|
||||
+ cb(cur, "ffn_norm", il);
|
||||
+
|
||||
+ cur = llm_build_ffn(ctx0, lctx, cur,
|
||||
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||||
+ model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
||||
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||||
+ NULL,
|
||||
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||
+ cb(cur, "ffn_out", il);
|
||||
+
|
||||
+ // TODO: do this inplace once?
|
||||
+ cur = ggml_add_inplace(ctx0, ggml_mul_inplace(ctx0, cur, ggml_tanh(ctx0, model.layers[il].cross_attn_mlp_gate)), ffn_inp);
|
||||
+ cb(cur, "ffn_out", il);
|
||||
+
|
||||
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||||
+ cb(cur, "l_out", il);
|
||||
+
|
||||
+ // input for next layer
|
||||
+ inpL = cur;
|
||||
+ } else {
|
||||
+ // self attention layer
|
||||
+
|
||||
+ // rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||
+ struct ggml_tensor * rope_factors = build_rope_factors(il);
|
||||
+
|
||||
+ // compute Q and K and RoPE them
|
||||
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||||
+ cb(Qcur, "Qcur", il);
|
||||
+ if (model.layers[il].bq) {
|
||||
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||||
+ cb(Qcur, "Qcur", il);
|
||||
+ }
|
||||
+
|
||||
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+ if (model.layers[il].bk) {
|
||||
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+ }
|
||||
+
|
||||
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||||
+ cb(Vcur, "Vcur", il);
|
||||
+ if (model.layers[il].bv) {
|
||||
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||||
+ cb(Vcur, "Vcur", il);
|
||||
+ }
|
||||
+
|
||||
+ Qcur = ggml_rope_ext(
|
||||
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
|
||||
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
+ ext_factor, attn_factor, beta_fast, beta_slow
|
||||
+ );
|
||||
+ cb(Qcur, "Qcur", il);
|
||||
+
|
||||
+ Kcur = ggml_rope_ext(
|
||||
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
|
||||
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
+ ext_factor, attn_factor, beta_fast, beta_slow
|
||||
+ );
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+
|
||||
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||||
+ model.layers[il].wo, model.layers[il].bo,
|
||||
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
+
|
||||
+
|
||||
+ if (il == n_layer - 1) {
|
||||
+ // skip computing output for unused tokens
|
||||
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
+ n_tokens = n_outputs;
|
||||
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
+ }
|
||||
+
|
||||
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
+ cb(ffn_inp, "ffn_inp", il);
|
||||
+
|
||||
+ // feed-forward network
|
||||
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
+ model.layers[il].ffn_norm, NULL,
|
||||
+ LLM_NORM_RMS, cb, il);
|
||||
+ cb(cur, "ffn_norm", il);
|
||||
+
|
||||
+ cur = llm_build_ffn(ctx0, lctx, cur,
|
||||
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||||
+ model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
||||
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||||
+ NULL,
|
||||
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||
+ cb(cur, "ffn_out", il);
|
||||
+
|
||||
+ cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
+ cb(cur, "ffn_out", il);
|
||||
+
|
||||
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||||
+ cb(cur, "l_out", il);
|
||||
+
|
||||
+ // input for next layer
|
||||
+ inpL = cur;
|
||||
+ }
|
||||
+ }
|
||||
+
|
||||
+ cur = inpL;
|
||||
+
|
||||
+ cur = llm_build_norm(ctx0, cur, hparams,
|
||||
+ model.output_norm, NULL,
|
||||
+ LLM_NORM_RMS, cb, -1);
|
||||
+ cb(cur, "result_norm", -1);
|
||||
+
|
||||
// lm_head
|
||||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||||
cb(cur, "result_output", -1);
|
||||
@@ -16501,6 +16891,10 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
{
|
||||
result = llm.build_llama();
|
||||
} break;
|
||||
+ case LLM_ARCH_MLLAMA:
|
||||
+ {
|
||||
+ result = llm.build_mllama();
|
||||
+ } break;
|
||||
case LLM_ARCH_BAICHUAN:
|
||||
{
|
||||
result = llm.build_baichuan();
|
||||
@@ -16761,10 +17155,19 @@ static void llama_set_inputs(llama_context & lctx, const llama_ubatch & batch) {
|
||||
}
|
||||
|
||||
if (batch.embd) {
|
||||
- const int64_t n_embd = hparams.n_embd;
|
||||
- const int64_t n_tokens = batch.n_tokens;
|
||||
+ if (lctx.inp_cross_attn_state && lctx.inp_cross_attn_state->buffer) {
|
||||
+ ggml_backend_tensor_set(lctx.inp_cross_attn_state, batch.embd, 0, ggml_nbytes(lctx.inp_cross_attn_state));
|
||||
+ // zero out inp_embd since it's not used
|
||||
+ float * inp_embd_data = (float *)lctx.inp_embd->data;
|
||||
+ for (int i = 0; i < ggml_nelements(lctx.inp_embd); ++i) {
|
||||
+ inp_embd_data[i] = 0.0f;
|
||||
+ }
|
||||
+ } else {
|
||||
+ const int64_t n_embd = hparams.n_embd;
|
||||
+ const int64_t n_tokens = batch.n_tokens;
|
||||
|
||||
- ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
|
||||
+ ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
|
||||
+ }
|
||||
}
|
||||
|
||||
if (batch.pos && lctx.inp_pos) {
|
||||
@@ -17345,7 +17748,7 @@ static int llama_decode_internal(
|
||||
n_outputs = 1;
|
||||
}
|
||||
|
||||
- lctx.sbatch.from_batch(batch_all, n_embd,
|
||||
+ lctx.sbatch.from_batch(batch_all, batch_all.n_embd,
|
||||
/* simple_split */ !kv_self.recurrent,
|
||||
/* logits_all */ n_outputs == n_tokens_all);
|
||||
|
||||
@@ -17638,7 +18041,7 @@ static int llama_encode_internal(
|
||||
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
|
||||
- lctx.sbatch.from_batch(batch, n_embd, /* simple_split */ true, /* logits_all */ true);
|
||||
+ lctx.sbatch.from_batch(batch, batch.n_embd, /* simple_split */ true, /* logits_all */ true);
|
||||
|
||||
const llama_ubatch ubatch = lctx.sbatch.split_simple(n_tokens);
|
||||
|
||||
@@ -18648,7 +19051,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
if (llama_model_has_encoder(&model)) {
|
||||
n_attn_layer *= 3;
|
||||
}
|
||||
- GGML_ASSERT((qs.n_attention_wv == n_attn_layer) && "n_attention_wv is unexpected");
|
||||
+ if (qs.n_attention_wv != n_attn_layer) {
|
||||
+ LLAMA_LOG_WARN("%s: n_attention_wv is unexpected, expected: %d, found: %d\n", __func__, n_attn_layer, qs.n_attention_wv);
|
||||
+ }
|
||||
}
|
||||
|
||||
size_t total_size_org = 0;
|
||||
@@ -19814,6 +20219,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
||||
|
||||
// use what we call a normal RoPE, operating on pairs of consecutive head values
|
||||
case LLM_ARCH_LLAMA:
|
||||
+ case LLM_ARCH_MLLAMA:
|
||||
case LLM_ARCH_BAICHUAN:
|
||||
case LLM_ARCH_STARCODER:
|
||||
case LLM_ARCH_PLAMO:
|
||||
@@ -21230,6 +21636,10 @@ void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
|
||||
ctx->cparams.causal_attn = causal_attn;
|
||||
}
|
||||
|
||||
+void llama_set_cross_attention(struct llama_context * ctx, bool cross_attention) {
|
||||
+ ctx->cparams.cross_attn = cross_attention;
|
||||
+}
|
||||
+
|
||||
struct llama_batch llama_batch_get_one(
|
||||
llama_token * tokens,
|
||||
int32_t n_tokens,
|
||||
@@ -21239,6 +21649,7 @@ struct llama_batch llama_batch_get_one(
|
||||
/*n_tokens =*/ n_tokens,
|
||||
/*tokens =*/ tokens,
|
||||
/*embd =*/ nullptr,
|
||||
+ /*n_embd =*/ 0,
|
||||
/*pos =*/ nullptr,
|
||||
/*n_seq_id =*/ nullptr,
|
||||
/*seq_id =*/ nullptr,
|
||||
@@ -21254,6 +21665,7 @@ struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_
|
||||
/*n_tokens =*/ 0,
|
||||
/*tokens =*/ nullptr,
|
||||
/*embd =*/ nullptr,
|
||||
+ /*n_embd =*/ 0,
|
||||
/*pos =*/ nullptr,
|
||||
/*n_seq_id =*/ nullptr,
|
||||
/*seq_id =*/ nullptr,
|
||||
@@ -21265,6 +21677,7 @@ struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_
|
||||
|
||||
if (embd) {
|
||||
batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
|
||||
+ batch.n_embd = embd;
|
||||
} else {
|
||||
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
|
||||
}
|
409
llama/patches/0011-add-unpad-operator.patch
Normal file
409
llama/patches/0011-add-unpad-operator.patch
Normal file
@ -0,0 +1,409 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: Michael Yang <mxyng@pm.me>
|
||||
Date: Thu, 17 Oct 2024 17:19:25 -0700
|
||||
Subject: [PATCH] add unpad operator
|
||||
|
||||
---
|
||||
ggml/include/ggml.h | 10 ++++
|
||||
ggml/src/ggml-cuda.cu | 4 ++
|
||||
ggml/src/ggml-cuda/pad.cu | 46 +++++++++++++++++++
|
||||
ggml/src/ggml-cuda/pad.cuh | 1 +
|
||||
ggml/src/ggml-metal.m | 33 ++++++++++++++
|
||||
ggml/src/ggml-metal.metal | 45 ++++++++++++++++++
|
||||
ggml/src/ggml.c | 93 +++++++++++++++++++++++++++++++++++++-
|
||||
7 files changed, 230 insertions(+), 2 deletions(-)
|
||||
|
||||
diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h
|
||||
index ce3d92cb..962cb5f7 100644
|
||||
--- a/ggml/include/ggml.h
|
||||
+++ b/ggml/include/ggml.h
|
||||
@@ -506,6 +506,7 @@ extern "C" {
|
||||
GGML_OP_POOL_2D_BACK,
|
||||
GGML_OP_UPSCALE, // nearest interpolate
|
||||
GGML_OP_PAD,
|
||||
+ GGML_OP_UNPAD,
|
||||
GGML_OP_ARANGE,
|
||||
GGML_OP_TIMESTEP_EMBEDDING,
|
||||
GGML_OP_ARGSORT,
|
||||
@@ -1764,6 +1765,15 @@ extern "C" {
|
||||
int p2,
|
||||
int p3);
|
||||
|
||||
+ // unpad each dimension: [x, ..., x, y, ..., y] -> [x, ..., x]
|
||||
+ GGML_API struct ggml_tensor * ggml_unpad(
|
||||
+ struct ggml_context * ctx,
|
||||
+ struct ggml_tensor * a,
|
||||
+ int p0,
|
||||
+ int p1,
|
||||
+ int p2,
|
||||
+ int p3);
|
||||
+
|
||||
// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
|
||||
// timesteps: [N,]
|
||||
// return: [N, dim]
|
||||
diff --git a/ggml/src/ggml-cuda.cu b/ggml/src/ggml-cuda.cu
|
||||
index fe77b81c..6e84af56 100644
|
||||
--- a/ggml/src/ggml-cuda.cu
|
||||
+++ b/ggml/src/ggml-cuda.cu
|
||||
@@ -2270,6 +2270,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_OP_PAD:
|
||||
ggml_cuda_op_pad(ctx, dst);
|
||||
break;
|
||||
+ case GGML_OP_UNPAD:
|
||||
+ ggml_cuda_op_unpad(ctx, dst);
|
||||
+ break;
|
||||
case GGML_OP_ARANGE:
|
||||
ggml_cuda_op_arange(ctx, dst);
|
||||
break;
|
||||
@@ -2992,6 +2995,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
||||
case GGML_OP_GROUP_NORM:
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_PAD:
|
||||
+ case GGML_OP_UNPAD:
|
||||
case GGML_OP_ARANGE:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
diff --git a/ggml/src/ggml-cuda/pad.cu b/ggml/src/ggml-cuda/pad.cu
|
||||
index aba539e8..39fd4b16 100644
|
||||
--- a/ggml/src/ggml-cuda/pad.cu
|
||||
+++ b/ggml/src/ggml-cuda/pad.cu
|
||||
@@ -47,3 +47,49 @@ void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
|
||||
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
|
||||
}
|
||||
+
|
||||
+static __global__ void unpad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
|
||||
+ // blockIdx.z: idx of ne2*ne3, aka ne02*ne03
|
||||
+ // blockIdx.y: idx of ne1
|
||||
+ // blockIDx.x: idx of ne0 / BLOCK_SIZE
|
||||
+ int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
+ if (nidx >= ne0) {
|
||||
+ return;
|
||||
+ }
|
||||
+
|
||||
+ // operation
|
||||
+ int offset_dst =
|
||||
+ nidx +
|
||||
+ blockIdx.y * ne0 +
|
||||
+ blockIdx.z * ne0 * gridDim.y;
|
||||
+ if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) {
|
||||
+ int offset_src =
|
||||
+ nidx +
|
||||
+ blockIdx.y * ne00 +
|
||||
+ blockIdx.z * ne00 * ne01;
|
||||
+ dst[offset_dst] = x[offset_src];
|
||||
+ }
|
||||
+}
|
||||
+
|
||||
+static void unpad_f32_cuda(const float * x, float * dst,
|
||||
+ const int ne00, const int ne01, const int ne02, const int ne03,
|
||||
+ const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
|
||||
+ int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
|
||||
+ dim3 gridDim(num_blocks, ne1, ne2*ne3);
|
||||
+ unpad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
|
||||
+}
|
||||
+
|
||||
+void ggml_cuda_op_unpad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
+ const ggml_tensor * src0 = dst->src[0];
|
||||
+ const float * src0_d = (const float *)src0->data;
|
||||
+ float * dst_d = (float *)dst->data;
|
||||
+ cudaStream_t stream = ctx.stream();
|
||||
+
|
||||
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
+ GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
|
||||
+
|
||||
+ unpad_f32_cuda(src0_d, dst_d,
|
||||
+ src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
|
||||
+ dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
|
||||
+}
|
||||
diff --git a/ggml/src/ggml-cuda/pad.cuh b/ggml/src/ggml-cuda/pad.cuh
|
||||
index 8fd386b0..e2ededc3 100644
|
||||
--- a/ggml/src/ggml-cuda/pad.cuh
|
||||
+++ b/ggml/src/ggml-cuda/pad.cuh
|
||||
@@ -3,3 +3,4 @@
|
||||
#define CUDA_PAD_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
+void ggml_cuda_op_unpad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
diff --git a/ggml/src/ggml-metal.m b/ggml/src/ggml-metal.m
|
||||
index 829c5e39..25702d85 100644
|
||||
--- a/ggml/src/ggml-metal.m
|
||||
+++ b/ggml/src/ggml-metal.m
|
||||
@@ -193,6 +193,7 @@
|
||||
GGML_METAL_KERNEL_TYPE_IM2COL_F32,
|
||||
GGML_METAL_KERNEL_TYPE_UPSCALE_F32,
|
||||
GGML_METAL_KERNEL_TYPE_PAD_F32,
|
||||
+ GGML_METAL_KERNEL_TYPE_UNPAD_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ARANGE_F32,
|
||||
GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,
|
||||
@@ -689,6 +690,7 @@ static void ggml_metal_log(enum ggml_log_level level, const char * format, ...){
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32, im2col_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true);
|
||||
+ GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UNPAD_F32, unpad_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32, timestep_embedding_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARANGE_F32, arange_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true);
|
||||
@@ -846,6 +848,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_context * ctx
|
||||
return false;
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_PAD:
|
||||
+ case GGML_OP_UNPAD:
|
||||
case GGML_OP_ARANGE:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_ARGSORT:
|
||||
@@ -2655,6 +2658,36 @@ static void ggml_metal_encode_node(
|
||||
|
||||
const int nth = MIN(1024, ne0);
|
||||
|
||||
+ [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
+ } break;
|
||||
+ case GGML_OP_UNPAD:
|
||||
+ {
|
||||
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
+
|
||||
+ id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_UNPAD_F32].pipeline;
|
||||
+
|
||||
+ [encoder setComputePipelineState:pipeline];
|
||||
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
+ [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
|
||||
+ [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
|
||||
+ [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
|
||||
+ [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
|
||||
+ [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
|
||||
+ [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
|
||||
+ [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
|
||||
+ [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
|
||||
+ [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10];
|
||||
+ [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11];
|
||||
+ [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12];
|
||||
+ [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13];
|
||||
+ [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14];
|
||||
+ [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
|
||||
+ [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16];
|
||||
+ [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17];
|
||||
+
|
||||
+ const int nth = MIN(1024, ne0);
|
||||
+
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_ARANGE:
|
||||
diff --git a/ggml/src/ggml-metal.metal b/ggml/src/ggml-metal.metal
|
||||
index 2b200032..09887511 100644
|
||||
--- a/ggml/src/ggml-metal.metal
|
||||
+++ b/ggml/src/ggml-metal.metal
|
||||
@@ -2029,6 +2029,51 @@ kernel void kernel_pad_f32(
|
||||
}
|
||||
}
|
||||
|
||||
+kernel void kernel_unpad_f32(
|
||||
+ device const char * src0,
|
||||
+ device char * dst,
|
||||
+ constant int64_t & ne00,
|
||||
+ constant int64_t & ne01,
|
||||
+ constant int64_t & ne02,
|
||||
+ constant int64_t & ne03,
|
||||
+ constant uint64_t & nb00,
|
||||
+ constant uint64_t & nb01,
|
||||
+ constant uint64_t & nb02,
|
||||
+ constant uint64_t & nb03,
|
||||
+ constant int64_t & ne0,
|
||||
+ constant int64_t & ne1,
|
||||
+ constant int64_t & ne2,
|
||||
+ constant int64_t & ne3,
|
||||
+ constant uint64_t & nb0,
|
||||
+ constant uint64_t & nb1,
|
||||
+ constant uint64_t & nb2,
|
||||
+ constant uint64_t & nb3,
|
||||
+ uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
+ uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
+ uint3 ntg[[threads_per_threadgroup]]) {
|
||||
+
|
||||
+ const int64_t i3 = tgpig.z;
|
||||
+ const int64_t i2 = tgpig.y;
|
||||
+ const int64_t i1 = tgpig.x;
|
||||
+
|
||||
+ const int64_t i03 = i3;
|
||||
+ const int64_t i02 = i2;
|
||||
+ const int64_t i01 = i1;
|
||||
+
|
||||
+ device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
|
||||
+ device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
|
||||
+
|
||||
+ if (i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
||||
+ for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
|
||||
+ if (i0 < ne00) {
|
||||
+ dst_ptr[i0] = src0_ptr[i0];
|
||||
+ }
|
||||
+ }
|
||||
+
|
||||
+ return;
|
||||
+ }
|
||||
+}
|
||||
+
|
||||
kernel void kernel_arange_f32(
|
||||
device char * dst,
|
||||
constant int64_t & ne0,
|
||||
diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c
|
||||
index bcbc32d9..f4864ac8 100644
|
||||
--- a/ggml/src/ggml.c
|
||||
+++ b/ggml/src/ggml.c
|
||||
@@ -2997,6 +2997,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
||||
"POOL_2D_BACK",
|
||||
"UPSCALE",
|
||||
"PAD",
|
||||
+ "UNPAD",
|
||||
"ARANGE",
|
||||
"TIMESTEP_EMBEDDING",
|
||||
"ARGSORT",
|
||||
@@ -3030,7 +3031,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
||||
"OPT_STEP_ADAMW",
|
||||
};
|
||||
|
||||
-static_assert(GGML_OP_COUNT == 80, "GGML_OP_COUNT != 80");
|
||||
+static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
|
||||
|
||||
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"none",
|
||||
@@ -3091,6 +3092,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"pool_2d_back(x)",
|
||||
"upscale(x)",
|
||||
"pad(x)",
|
||||
+ "unpad(x)",
|
||||
"arange(start, stop, step)",
|
||||
"timestep_embedding(timesteps, dim, max_period)",
|
||||
"argsort(x)",
|
||||
@@ -3124,7 +3126,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"adamw(x)",
|
||||
};
|
||||
|
||||
-static_assert(GGML_OP_COUNT == 80, "GGML_OP_COUNT != 80");
|
||||
+static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
|
||||
|
||||
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
|
||||
|
||||
@@ -6955,6 +6957,32 @@ struct ggml_tensor * ggml_pad(
|
||||
return result;
|
||||
}
|
||||
|
||||
+// ggml_unpad
|
||||
+
|
||||
+struct ggml_tensor * ggml_unpad(
|
||||
+ struct ggml_context * ctx,
|
||||
+ struct ggml_tensor * a,
|
||||
+ int p0, int p1, int p2, int p3) {
|
||||
+ bool is_node = false;
|
||||
+
|
||||
+ if (a->grad) {
|
||||
+ GGML_ABORT("fatal error"); // TODO: implement backward
|
||||
+ is_node = true;
|
||||
+ }
|
||||
+
|
||||
+ struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
|
||||
+ a->ne[0] - p0,
|
||||
+ a->ne[1] - p1,
|
||||
+ a->ne[2] - p2,
|
||||
+ a->ne[3] - p3);
|
||||
+
|
||||
+ result->op = GGML_OP_UNPAD;
|
||||
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
+ result->src[0] = a;
|
||||
+
|
||||
+ return result;
|
||||
+}
|
||||
+
|
||||
// ggml_arange
|
||||
|
||||
struct ggml_tensor * ggml_arange(
|
||||
@@ -15312,6 +15340,58 @@ static void ggml_compute_forward_pad(
|
||||
}
|
||||
}
|
||||
|
||||
+static void ggml_compute_forward_unpad_f32(
|
||||
+ const struct ggml_compute_params *params,
|
||||
+ struct ggml_tensor *dst) {
|
||||
+
|
||||
+ const struct ggml_tensor * src0 = dst->src[0];
|
||||
+
|
||||
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||||
+ GGML_ASSERT( dst->nb[0] == sizeof(float));
|
||||
+
|
||||
+ const int ith = params->ith;
|
||||
+ const int nth = params->nth;
|
||||
+
|
||||
+ GGML_TENSOR_UNARY_OP_LOCALS
|
||||
+
|
||||
+ float * dst_ptr = (float *) dst->data;
|
||||
+
|
||||
+ // TODO: optimize
|
||||
+
|
||||
+ for (int64_t i2 = 0; i2 < ne2; ++i2) {
|
||||
+ for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
|
||||
+ for (int64_t i0 = 0; i0 < ne0; ++i0) {
|
||||
+ for (int64_t i3 = 0; i3 < ne3; ++i3) {
|
||||
+ const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
|
||||
+
|
||||
+ const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||||
+
|
||||
+ if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
||||
+ dst_ptr[dst_idx] = *src_ptr;
|
||||
+ }
|
||||
+ }
|
||||
+ }
|
||||
+ }
|
||||
+ }
|
||||
+}
|
||||
+
|
||||
+static void ggml_compute_forward_unpad(
|
||||
+ const struct ggml_compute_params * params,
|
||||
+ struct ggml_tensor * dst) {
|
||||
+
|
||||
+ const struct ggml_tensor * src0 = dst->src[0];
|
||||
+
|
||||
+ switch (src0->type) {
|
||||
+ case GGML_TYPE_F32:
|
||||
+ {
|
||||
+ ggml_compute_forward_unpad_f32(params, dst);
|
||||
+ } break;
|
||||
+ default:
|
||||
+ {
|
||||
+ GGML_ABORT("fatal error");
|
||||
+ }
|
||||
+ }
|
||||
+}
|
||||
|
||||
// ggml_compute_forward_arange
|
||||
|
||||
@@ -17294,6 +17374,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
{
|
||||
ggml_compute_forward_pad(params, tensor);
|
||||
} break;
|
||||
+ case GGML_OP_UNPAD:
|
||||
+ {
|
||||
+ ggml_compute_forward_unpad(params, tensor);
|
||||
+ } break;
|
||||
case GGML_OP_ARANGE:
|
||||
{
|
||||
ggml_compute_forward_arange(params, tensor);
|
||||
@@ -18369,6 +18453,10 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
|
||||
{
|
||||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||||
}
|
||||
+ case GGML_OP_UNPAD:
|
||||
+ {
|
||||
+ GGML_ABORT("fatal error"); // TODO: not implemented
|
||||
+ }
|
||||
case GGML_OP_ARANGE:
|
||||
{
|
||||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||||
@@ -19165,6 +19253,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||||
} break;
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_PAD:
|
||||
+ case GGML_OP_UNPAD:
|
||||
case GGML_OP_ARANGE:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_ARGSORT:
|
66
llama/patches/0012-fix-deepseek-deseret-regex.patch
Normal file
66
llama/patches/0012-fix-deepseek-deseret-regex.patch
Normal file
@ -0,0 +1,66 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: Daniel Hiltgen <daniel@ollama.com>
|
||||
Date: Fri, 25 Oct 2024 16:25:18 -0700
|
||||
Subject: [PATCH] fix deepseek deseret regex
|
||||
|
||||
On windows compiled with gcc the c++ regex library failed to handle
|
||||
the characters
|
||||
---
|
||||
src/llama-vocab.cpp | 2 +-
|
||||
src/unicode.cpp | 21 +++++++++++++++++++++
|
||||
2 files changed, 22 insertions(+), 1 deletion(-)
|
||||
|
||||
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
|
||||
index d2f34ddd..3ef6af19 100644
|
||||
--- a/src/llama-vocab.cpp
|
||||
+++ b/src/llama-vocab.cpp
|
||||
@@ -389,7 +389,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {
|
||||
case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
|
||||
regex_exprs = {
|
||||
"[\r\n]",
|
||||
- "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
|
||||
+ "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z\U00010400-\U0001044f𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
|
||||
"\\s?[!-/:-~!-/:-~‘-‟ -。]+",
|
||||
"\\s+$",
|
||||
"[一-龥ࠀ-一가-]+",
|
||||
diff --git a/src/unicode.cpp b/src/unicode.cpp
|
||||
index f4e941cd..9d78ff16 100644
|
||||
--- a/src/unicode.cpp
|
||||
+++ b/src/unicode.cpp
|
||||
@@ -2,6 +2,11 @@
|
||||
#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
|
||||
#endif
|
||||
|
||||
+#if defined(_WIN32)
|
||||
+#define WIN32_LEAN_AND_MEAN
|
||||
+#include <windows.h>
|
||||
+#endif
|
||||
+
|
||||
#include "unicode.h"
|
||||
#include "unicode-data.h"
|
||||
|
||||
@@ -201,8 +206,24 @@ static std::unordered_map<std::string, uint8_t> unicode_utf8_to_byte_map() {
|
||||
}
|
||||
|
||||
static inline std::wstring unicode_wstring_from_utf8(const std::string & s) {
|
||||
+#ifdef _WIN32
|
||||
+ int wlen = MultiByteToWideChar(CP_UTF8, 0, s.c_str(), -1, NULL, 0);
|
||||
+ if (!wlen) {
|
||||
+ throw std::invalid_argument("failed to convert regex");
|
||||
+ }
|
||||
+ wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t));
|
||||
+ wlen = MultiByteToWideChar(CP_UTF8, 0, s.c_str(), -1, wbuf, wlen);
|
||||
+ if (!wlen) {
|
||||
+ free(wbuf);
|
||||
+ throw std::invalid_argument("failed to convert regex");
|
||||
+ }
|
||||
+ std::wstring ret = std::wstring(wbuf);
|
||||
+ free(wbuf);
|
||||
+ return ret;
|
||||
+#else
|
||||
std::wstring_convert<std::codecvt_utf8<wchar_t>> conv;
|
||||
return conv.from_bytes(s);
|
||||
+#endif
|
||||
}
|
||||
|
||||
static std::vector<std::string> unicode_byte_encoding_process(const std::vector<std::string> & bpe_words) {
|
@ -2,7 +2,7 @@ package main
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"hash/maphash"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"reflect"
|
||||
"time"
|
||||
@ -20,14 +20,14 @@ type InputCache struct {
|
||||
// optimize cache eviction for multiple users
|
||||
multiUserCache bool
|
||||
|
||||
// cache of images to embeddings
|
||||
images []imageCache
|
||||
imageHash maphash.Hash
|
||||
|
||||
lc *llama.Context
|
||||
}
|
||||
|
||||
func NewInputCache(lc *llama.Context, kvSize int, numSlots int, multiUserCache bool) *InputCache {
|
||||
func NewInputCache(lc *llama.Context, kvSize int, numSlots int, multiUserCache bool) (*InputCache, error) {
|
||||
if kvSize/numSlots < 1 {
|
||||
return nil, fmt.Errorf("must have at least one kv cache entry per parallel sequence (kv: %v parallel: %v)", kvSize, numSlots)
|
||||
}
|
||||
|
||||
slots := make([]InputCacheSlot, numSlots)
|
||||
|
||||
for i := range slots {
|
||||
@ -41,9 +41,8 @@ func NewInputCache(lc *llama.Context, kvSize int, numSlots int, multiUserCache b
|
||||
numCtx: kvSize / numSlots,
|
||||
slots: slots,
|
||||
multiUserCache: multiUserCache,
|
||||
images: make([]imageCache, numSlots),
|
||||
lc: lc,
|
||||
}
|
||||
}, nil
|
||||
}
|
||||
|
||||
// Locking: Operations on InputCacheSlot (including finding one
|
||||
@ -64,7 +63,7 @@ type InputCacheSlot struct {
|
||||
lastUsed time.Time
|
||||
}
|
||||
|
||||
func (c *InputCache) LoadCacheSlot(prompt []input, cachePrompt bool) (*InputCacheSlot, []input, int, error) {
|
||||
func (c *InputCache) LoadCacheSlot(prompt []input, cachePrompt bool) (*InputCacheSlot, []input, error) {
|
||||
var slot *InputCacheSlot
|
||||
var numPast int
|
||||
var err error
|
||||
@ -81,7 +80,7 @@ func (c *InputCache) LoadCacheSlot(prompt []input, cachePrompt bool) (*InputCach
|
||||
slot, numPast, err = c.findBestCacheSlot(prompt)
|
||||
}
|
||||
if err != nil {
|
||||
return nil, nil, 0, err
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
if !cachePrompt {
|
||||
@ -108,7 +107,7 @@ func (c *InputCache) LoadCacheSlot(prompt []input, cachePrompt bool) (*InputCach
|
||||
prompt = prompt[numPast:]
|
||||
slot.Inputs = slot.Inputs[:numPast]
|
||||
|
||||
return slot, prompt, numPast, nil
|
||||
return slot, prompt, nil
|
||||
}
|
||||
|
||||
func (c *InputCache) findLongestCacheSlot(prompt []input) (*InputCacheSlot, int, error) {
|
||||
@ -200,66 +199,30 @@ func countCommonPrefix(a []input, b []input) int {
|
||||
return count
|
||||
}
|
||||
|
||||
func (c *InputCache) ShiftCacheSlot(slot *InputCacheSlot, numKeep int, numDiscard int, numPast int) {
|
||||
// Frees up space in the KV cache by deleting the oldest half of history and shifting
|
||||
// the newest half into that space (saving numKeep inputs at the beginning).
|
||||
//
|
||||
// Assumes that at least 1 entry can be freed up by shifting (i.e. numKeep < numCtx)
|
||||
func (c *InputCache) ShiftCacheSlot(slot *InputCacheSlot, numKeep int) {
|
||||
targetFree := (c.numCtx - numKeep) / 2
|
||||
targetFree = max(targetFree, 1)
|
||||
|
||||
currentFree := c.numCtx - len(slot.Inputs)
|
||||
discard := targetFree - currentFree
|
||||
|
||||
if discard <= 0 {
|
||||
return
|
||||
}
|
||||
|
||||
slog.Debug("context limit hit - shifting", "limit", c.numCtx, "input", len(slot.Inputs),
|
||||
"keep", numKeep, "discard", discard)
|
||||
|
||||
// TODO (jessegross): KV cache removal can fail for certain types of models
|
||||
// server.cpp doesn't handle this, though we can be more graceful
|
||||
c.lc.KvCacheSeqRm(slot.Id, numKeep, numKeep+numDiscard)
|
||||
c.lc.KvCacheSeqAdd(slot.Id, numKeep+numDiscard, numPast, -numDiscard)
|
||||
c.lc.KvCacheSeqRm(slot.Id, numKeep, numKeep+discard)
|
||||
c.lc.KvCacheSeqAdd(slot.Id, numKeep+discard, len(slot.Inputs), -discard)
|
||||
|
||||
for i := numKeep + numDiscard; i < len(slot.Inputs); i++ {
|
||||
slot.Inputs[i-numDiscard] = slot.Inputs[i]
|
||||
for i := numKeep + discard; i < len(slot.Inputs); i++ {
|
||||
slot.Inputs[i-discard] = slot.Inputs[i]
|
||||
}
|
||||
slot.Inputs = slot.Inputs[:len(slot.Inputs)-numDiscard]
|
||||
}
|
||||
|
||||
// Locking: Lookup and store operations on imageCache require a lock
|
||||
// to be held that serializes these with each other. Hash does not
|
||||
// require a lock nor they need to be serialized with InputCacheSlot.
|
||||
|
||||
type imageCache struct {
|
||||
key uint64
|
||||
val [][]float32
|
||||
lastUsed time.Time
|
||||
}
|
||||
|
||||
func (c *InputCache) HashImage(image []byte) uint64 {
|
||||
c.imageHash.Reset()
|
||||
_, _ = c.imageHash.Write(image)
|
||||
return c.imageHash.Sum64()
|
||||
}
|
||||
|
||||
var ErrImageNotFound = errors.New("image not found in cache")
|
||||
|
||||
func (c *InputCache) FindImage(hash uint64) ([][]float32, error) {
|
||||
for i := range c.images {
|
||||
if c.images[i].key == hash {
|
||||
slog.Debug("loading image embeddings from cache", "entry", i)
|
||||
c.images[i].lastUsed = time.Now()
|
||||
return c.images[i].val, nil
|
||||
}
|
||||
}
|
||||
|
||||
return nil, ErrImageNotFound
|
||||
}
|
||||
|
||||
func (c *InputCache) AddImage(hash uint64, embed [][]float32) {
|
||||
best := time.Now()
|
||||
var bestImage int
|
||||
|
||||
for i := range c.images {
|
||||
if c.images[i].key == hash {
|
||||
bestImage = i
|
||||
break
|
||||
}
|
||||
|
||||
if c.images[i].lastUsed.Compare(best) < 0 {
|
||||
best = c.images[i].lastUsed
|
||||
bestImage = i
|
||||
}
|
||||
}
|
||||
|
||||
slog.Debug("storing image embeddings in cache", "entry", bestImage, "used", c.images[bestImage].lastUsed)
|
||||
c.images[bestImage].key = hash
|
||||
c.images[bestImage].val = embed
|
||||
c.images[bestImage].lastUsed = time.Now()
|
||||
slot.Inputs = slot.Inputs[:len(slot.Inputs)-discard]
|
||||
}
|
||||
|
@ -1,7 +1,6 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"reflect"
|
||||
"testing"
|
||||
"time"
|
||||
)
|
||||
@ -228,77 +227,3 @@ func TestFindCacheSlot(t *testing.T) {
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestImageCache(t *testing.T) {
|
||||
cache := NewInputCache(nil, 2048, 4, false)
|
||||
|
||||
valA := [][]float32{{0.1, 0.2}, {0.3}}
|
||||
valB := [][]float32{{0.4}, {0.5}, {0.6}}
|
||||
valC := [][]float32{{0.7}}
|
||||
valD := [][]float32{{0.8}}
|
||||
valE := [][]float32{{0.9}}
|
||||
|
||||
// Empty cache
|
||||
result, err := cache.FindImage(0x5adb61d31933a946)
|
||||
if err != ErrImageNotFound {
|
||||
t.Errorf("found result in empty cache: result %v, err %v", result, err)
|
||||
}
|
||||
|
||||
// Insert A
|
||||
cache.AddImage(0x5adb61d31933a946, valA)
|
||||
|
||||
result, err = cache.FindImage(0x5adb61d31933a946)
|
||||
if !reflect.DeepEqual(result, valA) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
|
||||
// Insert B
|
||||
cache.AddImage(0x011551369a34a901, valB)
|
||||
|
||||
result, err = cache.FindImage(0x5adb61d31933a946)
|
||||
if !reflect.DeepEqual(result, valA) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
result, err = cache.FindImage(0x011551369a34a901)
|
||||
if !reflect.DeepEqual(result, valB) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
|
||||
// Replace B with C
|
||||
cache.AddImage(0x011551369a34a901, valC)
|
||||
|
||||
result, err = cache.FindImage(0x5adb61d31933a946)
|
||||
if !reflect.DeepEqual(result, valA) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
result, err = cache.FindImage(0x011551369a34a901)
|
||||
if !reflect.DeepEqual(result, valC) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
|
||||
// Evict A
|
||||
cache.AddImage(0x756b218a517e7353, valB)
|
||||
cache.AddImage(0x75e5e8d35d7e3967, valD)
|
||||
cache.AddImage(0xd96f7f268ca0646e, valE)
|
||||
|
||||
result, err = cache.FindImage(0x5adb61d31933a946)
|
||||
if reflect.DeepEqual(result, valA) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
result, err = cache.FindImage(0x756b218a517e7353)
|
||||
if !reflect.DeepEqual(result, valB) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
result, err = cache.FindImage(0x011551369a34a901)
|
||||
if !reflect.DeepEqual(result, valC) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
result, err = cache.FindImage(0x75e5e8d35d7e3967)
|
||||
if !reflect.DeepEqual(result, valD) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
result, err = cache.FindImage(0xd96f7f268ca0646e)
|
||||
if !reflect.DeepEqual(result, valE) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
}
|
||||
|
183
llama/runner/image.go
Normal file
183
llama/runner/image.go
Normal file
@ -0,0 +1,183 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"hash/maphash"
|
||||
"log/slog"
|
||||
"slices"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/llama"
|
||||
)
|
||||
|
||||
const imageCacheSize = 4
|
||||
|
||||
type ImageContext struct {
|
||||
// mu is required to be held when generating embeddings or accessing the cache
|
||||
mu sync.Mutex
|
||||
|
||||
clip *llama.ClipContext
|
||||
mllama *llama.MllamaContext
|
||||
|
||||
// cache of images to embeddings
|
||||
images []imageCache
|
||||
imageHash maphash.Hash
|
||||
}
|
||||
|
||||
func NewImageContext(llamaContext *llama.Context, modelPath string) (*ImageContext, error) {
|
||||
arch, err := llama.GetModelArch(modelPath)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("unable to determine vision architecture: %w (%s)", err, modelPath)
|
||||
}
|
||||
|
||||
var c ImageContext
|
||||
if arch == "clip" {
|
||||
c.clip, err = llama.NewClipContext(llamaContext, modelPath)
|
||||
} else if arch == "mllama" {
|
||||
c.mllama, err = llama.NewMllamaContext(llamaContext, modelPath)
|
||||
} else {
|
||||
return nil, fmt.Errorf("unknown vision model architecture: %s", arch)
|
||||
}
|
||||
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
c.images = make([]imageCache, imageCacheSize)
|
||||
|
||||
return &c, nil
|
||||
}
|
||||
|
||||
func (c *ImageContext) Free(modelPath string) {
|
||||
if c == nil {
|
||||
return
|
||||
}
|
||||
|
||||
if c.clip != nil {
|
||||
c.clip.Free()
|
||||
}
|
||||
if c.mllama != nil {
|
||||
c.mllama.Free()
|
||||
}
|
||||
}
|
||||
|
||||
func (c *ImageContext) NewEmbed(llamaContext *llama.Context, data []byte, aspectRatioId int) ([][]float32, error) {
|
||||
if c == nil {
|
||||
return nil, nil
|
||||
}
|
||||
|
||||
if len(data) <= 0 {
|
||||
return nil, errors.New("received zero length image")
|
||||
}
|
||||
|
||||
hash := c.hashImage(data)
|
||||
|
||||
c.mu.Lock()
|
||||
defer c.mu.Unlock()
|
||||
|
||||
embed, err := c.findImage(hash)
|
||||
if err != nil {
|
||||
if c.mllama != nil {
|
||||
embed, err = c.mllama.NewEmbed(llamaContext, data, aspectRatioId)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
} else if c.clip != nil {
|
||||
embed, err = c.clip.NewEmbed(llamaContext, data)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
} else {
|
||||
return nil, errors.New("received image but vision model not loaded")
|
||||
}
|
||||
|
||||
c.addImage(hash, embed)
|
||||
}
|
||||
|
||||
return embed, nil
|
||||
}
|
||||
|
||||
func (c *ImageContext) BatchSize(configuredBatchSize int) int {
|
||||
// If images are not supported, we don't need to allocate embedding batches
|
||||
if c == nil {
|
||||
return 0
|
||||
}
|
||||
|
||||
// Mllama maps an image to 1 embedding token (llava creates many tokens)
|
||||
// and doesn't support more than a single image per request.
|
||||
// The embeddings are large (100 MB), so allocating a big batch can fail
|
||||
// on some systems
|
||||
if c.mllama != nil {
|
||||
return 1
|
||||
}
|
||||
|
||||
return configuredBatchSize
|
||||
}
|
||||
|
||||
func (c *ImageContext) EmbedSize(llamaContext *llama.Context) int {
|
||||
if c != nil && c.mllama != nil {
|
||||
return c.mllama.EmbedSize(llamaContext)
|
||||
} else {
|
||||
return llamaContext.Model().NEmbd()
|
||||
}
|
||||
}
|
||||
|
||||
func (c *ImageContext) NeedCrossAttention(inputs ...input) bool {
|
||||
if c == nil || c.mllama == nil {
|
||||
return false
|
||||
}
|
||||
|
||||
return slices.ContainsFunc(inputs, func(input input) bool {
|
||||
return input.embed != nil
|
||||
})
|
||||
}
|
||||
|
||||
type imageCache struct {
|
||||
key uint64
|
||||
val [][]float32
|
||||
lastUsed time.Time
|
||||
}
|
||||
|
||||
func (c *ImageContext) hashImage(image []byte) uint64 {
|
||||
c.imageHash.Reset()
|
||||
_, _ = c.imageHash.Write(image)
|
||||
return c.imageHash.Sum64()
|
||||
}
|
||||
|
||||
var errImageNotFound = errors.New("image not found in cache")
|
||||
|
||||
func (c *ImageContext) findImage(hash uint64) ([][]float32, error) {
|
||||
for i := range c.images {
|
||||
if c.images[i].key == hash {
|
||||
slog.Debug("loading image embeddings from cache", "entry", i)
|
||||
c.images[i].lastUsed = time.Now()
|
||||
return c.images[i].val, nil
|
||||
}
|
||||
}
|
||||
|
||||
return nil, errImageNotFound
|
||||
}
|
||||
|
||||
func (c *ImageContext) addImage(hash uint64, embed [][]float32) {
|
||||
best := time.Now()
|
||||
var bestImage int
|
||||
|
||||
for i := range c.images {
|
||||
if c.images[i].key == hash {
|
||||
bestImage = i
|
||||
break
|
||||
}
|
||||
|
||||
if c.images[i].lastUsed.Compare(best) < 0 {
|
||||
best = c.images[i].lastUsed
|
||||
bestImage = i
|
||||
}
|
||||
}
|
||||
|
||||
slog.Debug("storing image embeddings in cache", "entry", bestImage, "used", c.images[bestImage].lastUsed)
|
||||
c.images[bestImage].key = hash
|
||||
c.images[bestImage].val = embed
|
||||
c.images[bestImage].lastUsed = time.Now()
|
||||
}
|
80
llama/runner/image_test.go
Normal file
80
llama/runner/image_test.go
Normal file
@ -0,0 +1,80 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"reflect"
|
||||
"testing"
|
||||
)
|
||||
|
||||
func TestImageCache(t *testing.T) {
|
||||
cache := ImageContext{images: make([]imageCache, 4)}
|
||||
|
||||
valA := [][]float32{{0.1, 0.2}, {0.3}}
|
||||
valB := [][]float32{{0.4}, {0.5}, {0.6}}
|
||||
valC := [][]float32{{0.7}}
|
||||
valD := [][]float32{{0.8}}
|
||||
valE := [][]float32{{0.9}}
|
||||
|
||||
// Empty cache
|
||||
result, err := cache.findImage(0x5adb61d31933a946)
|
||||
if err != errImageNotFound {
|
||||
t.Errorf("found result in empty cache: result %v, err %v", result, err)
|
||||
}
|
||||
|
||||
// Insert A
|
||||
cache.addImage(0x5adb61d31933a946, valA)
|
||||
|
||||
result, err = cache.findImage(0x5adb61d31933a946)
|
||||
if !reflect.DeepEqual(result, valA) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
|
||||
// Insert B
|
||||
cache.addImage(0x011551369a34a901, valB)
|
||||
|
||||
result, err = cache.findImage(0x5adb61d31933a946)
|
||||
if !reflect.DeepEqual(result, valA) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
result, err = cache.findImage(0x011551369a34a901)
|
||||
if !reflect.DeepEqual(result, valB) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
|
||||
// Replace B with C
|
||||
cache.addImage(0x011551369a34a901, valC)
|
||||
|
||||
result, err = cache.findImage(0x5adb61d31933a946)
|
||||
if !reflect.DeepEqual(result, valA) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
result, err = cache.findImage(0x011551369a34a901)
|
||||
if !reflect.DeepEqual(result, valC) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
|
||||
// Evict A
|
||||
cache.addImage(0x756b218a517e7353, valB)
|
||||
cache.addImage(0x75e5e8d35d7e3967, valD)
|
||||
cache.addImage(0xd96f7f268ca0646e, valE)
|
||||
|
||||
result, err = cache.findImage(0x5adb61d31933a946)
|
||||
if reflect.DeepEqual(result, valA) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
result, err = cache.findImage(0x756b218a517e7353)
|
||||
if !reflect.DeepEqual(result, valB) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
result, err = cache.findImage(0x011551369a34a901)
|
||||
if !reflect.DeepEqual(result, valC) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
result, err = cache.findImage(0x75e5e8d35d7e3967)
|
||||
if !reflect.DeepEqual(result, valD) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
result, err = cache.findImage(0xd96f7f268ca0646e)
|
||||
if !reflect.DeepEqual(result, valE) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
}
|
@ -18,6 +18,7 @@ import (
|
||||
"strings"
|
||||
"sync"
|
||||
"time"
|
||||
"unicode/utf8"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/llama"
|
||||
@ -33,9 +34,6 @@ type input struct {
|
||||
}
|
||||
|
||||
type Sequence struct {
|
||||
// number of inputs evaluated
|
||||
numPast int
|
||||
|
||||
// batch index
|
||||
iBatch int
|
||||
|
||||
@ -51,6 +49,10 @@ type Sequence struct {
|
||||
// input cache being used by this sequence
|
||||
cache *InputCacheSlot
|
||||
|
||||
// does this sequence require cross-attention layers to be processed? - if we have seen
|
||||
// an image for certain multi-modal models
|
||||
crossAttention bool
|
||||
|
||||
// channel to send responses over
|
||||
responses chan string
|
||||
|
||||
@ -107,26 +109,23 @@ func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequen
|
||||
params.numKeep = len(inputs)
|
||||
}
|
||||
|
||||
if !params.embedding {
|
||||
// Subtracting 4 ensures that at least 1 input can be discarded during shift
|
||||
params.numKeep = min(params.numKeep, s.cache.numCtx-4)
|
||||
params.numKeep += s.bosToken
|
||||
} else {
|
||||
// Embeddings are 1 shot - just truncate to the context window, without ever shifting
|
||||
params.numKeep = min(params.numKeep, s.cache.numCtx)
|
||||
if s.model.AddBOSToken() {
|
||||
params.numKeep += 1
|
||||
}
|
||||
|
||||
// truncate to fit in context window
|
||||
// Ensure that at least 1 input can be discarded during shift
|
||||
params.numKeep = min(params.numKeep, s.cache.numCtx-1)
|
||||
|
||||
if len(inputs) > s.cache.numCtx {
|
||||
slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "numKeep", params.numKeep)
|
||||
newInputs := inputs[:params.numKeep]
|
||||
newInputs = append(newInputs, inputs[len(inputs)-s.cache.numCtx+params.numKeep:]...)
|
||||
inputs = newInputs
|
||||
slog.Warn("input exceeds context length", "prompt", len(inputs), "limit", s.cache.numCtx)
|
||||
}
|
||||
|
||||
var sc *llama.SamplingContext
|
||||
if params.samplingParams != nil {
|
||||
sc = llama.NewSamplingContext(s.model, *params.samplingParams)
|
||||
sc, err = llama.NewSamplingContext(s.model, *params.samplingParams)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
for _, input := range inputs {
|
||||
if input.embed == nil {
|
||||
sc.Accept(input.token, false)
|
||||
@ -189,16 +188,10 @@ func (s *Server) inputs(prompt string, images []ImageData) ([]input, error) {
|
||||
return nil, fmt.Errorf("invalid image index: %d", n)
|
||||
}
|
||||
|
||||
hash := s.cache.HashImage(images[imageIndex].Data)
|
||||
|
||||
// Vision models cannot be accessed concurrently
|
||||
s.clip.mu.Lock()
|
||||
embed, err := s.cache.FindImage(hash)
|
||||
embed, err := s.image.NewEmbed(s.lc, images[imageIndex].Data, images[imageIndex].AspectRatioID)
|
||||
if err != nil {
|
||||
embed = llama.NewLlavaImageEmbed(s.lc, s.clip.cc, images[imageIndex].Data)
|
||||
s.cache.AddImage(hash, embed)
|
||||
return nil, err
|
||||
}
|
||||
s.clip.mu.Unlock()
|
||||
|
||||
for _, e := range embed {
|
||||
inputs = append(inputs, input{embed: e})
|
||||
@ -209,18 +202,14 @@ func (s *Server) inputs(prompt string, images []ImageData) ([]input, error) {
|
||||
return inputs, nil
|
||||
}
|
||||
|
||||
type clip struct {
|
||||
cc *llama.ClipContext
|
||||
mu sync.Mutex
|
||||
}
|
||||
|
||||
type Server struct {
|
||||
model *llama.Model
|
||||
lc *llama.Context
|
||||
|
||||
// required for image embeddings
|
||||
clip clip
|
||||
image *ImageContext
|
||||
|
||||
// TODO (jmorganca): make this n_batch
|
||||
batchSize int
|
||||
|
||||
// parallel is the number of parallel requests to handle
|
||||
@ -233,9 +222,6 @@ type Server struct {
|
||||
// KV cache
|
||||
cache *InputCache
|
||||
|
||||
// does this model require a beginning of sequence token?
|
||||
bosToken int
|
||||
|
||||
// next sequence for prompt processing to avoid starvation
|
||||
nextSeq int
|
||||
|
||||
@ -260,30 +246,30 @@ func (s *Server) allNil() bool {
|
||||
return true
|
||||
}
|
||||
|
||||
func (s *Server) shiftContext(seq *Sequence) {
|
||||
numLeft := seq.numPast - seq.numKeep
|
||||
numDiscard := numLeft / 2
|
||||
|
||||
slog.Debug("context limit hit - shifting", "limit", s.cache.numCtx, "numPast", seq.numPast,
|
||||
"numKeep", seq.numKeep, "numLeft", numLeft, "numDiscard", numDiscard)
|
||||
|
||||
s.cache.ShiftCacheSlot(seq.cache, seq.numKeep, numDiscard, seq.numPast)
|
||||
|
||||
seq.numPast -= numDiscard
|
||||
}
|
||||
|
||||
func flushPending(seq *Sequence) bool {
|
||||
for _, p := range seq.pendingResponses {
|
||||
select {
|
||||
case seq.responses <- p:
|
||||
case <-seq.quit:
|
||||
seq.pendingResponses = []string{}
|
||||
return false
|
||||
}
|
||||
joined := strings.Join(seq.pendingResponses, "")
|
||||
seq.pendingResponses = []string{}
|
||||
|
||||
// Check if there are any partial UTF-8 characters remaining.
|
||||
// We already check and queue as we are generating but some may
|
||||
// still make it here:
|
||||
// - Sequence is ending, e.g. generation limit has been hit
|
||||
// - Invalid characters in the middle of a string
|
||||
// This is a stricter check to ensure we never output invalid Unicode.
|
||||
for !utf8.ValidString(joined) {
|
||||
joined = joined[:len(joined)-1]
|
||||
}
|
||||
|
||||
seq.pendingResponses = []string{}
|
||||
return true
|
||||
if len(joined) == 0 {
|
||||
return true
|
||||
}
|
||||
|
||||
select {
|
||||
case seq.responses <- joined:
|
||||
return true
|
||||
case <-seq.quit:
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
||||
func (s *Server) removeSequence(seqIndex int, reason string) {
|
||||
@ -300,13 +286,25 @@ func (s *Server) removeSequence(seqIndex int, reason string) {
|
||||
func (s *Server) run(ctx context.Context) {
|
||||
s.ready.Wait()
|
||||
|
||||
// logically these batches are used only within the context of processBatch
|
||||
// Logically these batches are used only within the context of processBatch
|
||||
// but it is better for performance to allocate them once here
|
||||
tokenBatch := llama.NewBatch(s.batchSize*len(s.seqs), 0, len(s.seqs))
|
||||
tokenBatch, err := llama.NewBatch(s.batchSize, len(s.seqs), 0)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
defer tokenBatch.Free()
|
||||
|
||||
embedBatch := llama.NewBatch(s.batchSize*len(s.seqs), s.lc.Model().NEmbd(), len(s.seqs))
|
||||
defer embedBatch.Free()
|
||||
var embedBatch *llama.Batch
|
||||
embedBatchSize := s.image.BatchSize(s.batchSize)
|
||||
if embedBatchSize != 0 {
|
||||
embedBatch, err = llama.NewBatch(embedBatchSize, len(s.seqs), s.image.EmbedSize(s.lc))
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
defer embedBatch.Free()
|
||||
} else {
|
||||
embedBatch = &llama.Batch{}
|
||||
}
|
||||
|
||||
for {
|
||||
select {
|
||||
@ -335,6 +333,7 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
|
||||
defer s.mu.Unlock()
|
||||
|
||||
var batch *llama.Batch
|
||||
crossAttention := false
|
||||
|
||||
seqIdx := s.nextSeq - 1
|
||||
for range s.seqs {
|
||||
@ -346,17 +345,24 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
|
||||
}
|
||||
|
||||
// if past the num predict limit
|
||||
if seq.numPredict > 0 && seq.numPredicted > seq.numPredict {
|
||||
if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
|
||||
s.removeSequence(seqIdx, "limit")
|
||||
continue
|
||||
}
|
||||
|
||||
if seq.numPast+len(seq.inputs) > s.cache.numCtx {
|
||||
s.shiftContext(seq)
|
||||
}
|
||||
|
||||
var numInputsProcessed int
|
||||
shifted := false
|
||||
|
||||
for i, input := range seq.inputs {
|
||||
if len(seq.cache.Inputs)+1 > s.cache.numCtx {
|
||||
if !shifted {
|
||||
s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
|
||||
shifted = true
|
||||
} else {
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
embedding := input.embed != nil
|
||||
|
||||
// If we don't currently have a batch, use one of the correct type and
|
||||
@ -368,24 +374,24 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
|
||||
batch = tokenBatch
|
||||
} else {
|
||||
batch = embedBatch
|
||||
seq.crossAttention = s.image.NeedCrossAttention(input)
|
||||
}
|
||||
} else if embedding != batch.IsEmbedding() {
|
||||
} else if embedding != batch.IsEmbedding() || crossAttention != seq.crossAttention {
|
||||
s.nextSeq = seqIdx
|
||||
break
|
||||
}
|
||||
|
||||
// todo: make this n_batch
|
||||
if i >= s.batchSize {
|
||||
if i >= batch.Size() {
|
||||
break
|
||||
}
|
||||
|
||||
batch.Add(input.token, input.embed, seq.numPast, []int{seq.cache.Id}, numInputsProcessed+1 == len(seq.inputs))
|
||||
seq.numPast++
|
||||
crossAttention = seq.crossAttention
|
||||
batch.Add(input.token, input.embed, len(seq.cache.Inputs), i+1 == len(seq.inputs), seq.cache.Id)
|
||||
seq.cache.Inputs = append(seq.cache.Inputs, input)
|
||||
numInputsProcessed++
|
||||
}
|
||||
|
||||
if numInputsProcessed > 0 {
|
||||
seq.cache.Inputs = append(seq.cache.Inputs, seq.inputs[:numInputsProcessed]...)
|
||||
seq.inputs = seq.inputs[numInputsProcessed:]
|
||||
seq.iBatch = batch.NumTokens() - 1
|
||||
}
|
||||
@ -395,6 +401,8 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
|
||||
return
|
||||
}
|
||||
|
||||
s.lc.SetCrossAttention(crossAttention)
|
||||
|
||||
err := s.lc.Decode(batch)
|
||||
if err != nil {
|
||||
slog.Error("failed to decode batch", "error", err)
|
||||
@ -517,8 +525,9 @@ type Options struct {
|
||||
}
|
||||
|
||||
type ImageData struct {
|
||||
Data []byte `json:"data"`
|
||||
ID int `json:"id"`
|
||||
Data []byte `json:"data"`
|
||||
ID int `json:"id"`
|
||||
AspectRatioID int `json:"aspect_ratio_id"`
|
||||
}
|
||||
|
||||
type CompletionRequest struct {
|
||||
@ -605,12 +614,15 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
|
||||
s.mu.Lock()
|
||||
for i, sq := range s.seqs {
|
||||
if sq == nil {
|
||||
seq.cache, seq.inputs, seq.numPast, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
|
||||
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
|
||||
if err != nil {
|
||||
s.mu.Unlock()
|
||||
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
|
||||
return
|
||||
}
|
||||
|
||||
seq.crossAttention = s.image.NeedCrossAttention(seq.cache.Inputs...)
|
||||
|
||||
s.seqs[i] = seq
|
||||
s.cond.Signal()
|
||||
break
|
||||
@ -685,7 +697,7 @@ func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
|
||||
s.mu.Lock()
|
||||
for i, sq := range s.seqs {
|
||||
if sq == nil {
|
||||
seq.cache, seq.inputs, seq.numPast, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
|
||||
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
|
||||
if err != nil {
|
||||
s.mu.Unlock()
|
||||
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
|
||||
@ -753,10 +765,17 @@ func (s *Server) loadModel(
|
||||
) {
|
||||
llama.BackendInit()
|
||||
|
||||
s.model = llama.LoadModelFromFile(mpath, params)
|
||||
var err error
|
||||
s.model, err = llama.LoadModelFromFile(mpath, params)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
ctxParams := llama.NewContextParams(kvSize, s.batchSize*s.parallel, s.parallel, threads, flashAttention)
|
||||
s.lc = llama.NewContextWithModel(s.model, ctxParams)
|
||||
s.lc, err = llama.NewContextWithModel(s.model, ctxParams)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
if lpath != "" {
|
||||
err := s.model.ApplyLoraFromFile(s.lc, lpath, 1.0, threads)
|
||||
@ -765,15 +784,18 @@ func (s *Server) loadModel(
|
||||
}
|
||||
}
|
||||
|
||||
if s.model.AddBOSToken() {
|
||||
s.bosToken = 1
|
||||
}
|
||||
|
||||
if ppath != "" {
|
||||
s.clip.cc = llama.NewClipContext(ppath)
|
||||
var err error
|
||||
s.image, err = NewImageContext(s.lc, ppath)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
||||
|
||||
s.cache = NewInputCache(s.lc, kvSize, s.parallel, multiUserCache)
|
||||
s.cache, err = NewInputCache(s.lc, kvSize, s.parallel, multiUserCache)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
s.status = ServerStatusReady
|
||||
s.ready.Done()
|
||||
@ -796,14 +818,8 @@ func main() {
|
||||
mlock := flag.Bool("mlock", false, "force system to keep model in RAM rather than swapping or compressing")
|
||||
tensorSplit := flag.String("tensor-split", "", "fraction of the model to offload to each GPU, comma-separated list of proportions")
|
||||
multiUserCache := flag.Bool("multiuser-cache", false, "optimize input cache algorithm for multiple users")
|
||||
// Expose requirements as a JSON output to stdout
|
||||
requirements := flag.Bool("requirements", false, "print json requirement information")
|
||||
|
||||
// These are either ignored by llama.cpp or have no significance to us
|
||||
_ = flag.Bool("embedding", false, "enable embedding vector output (default: disabled)")
|
||||
_ = flag.Bool("log-disable", false, "disables logging to a file")
|
||||
_ = flag.Bool("memory-f32", false, "use f32 instead of f16 for memory key+value (default: disabled) not recommended: doubles context memory required and no measurable increase in quality")
|
||||
|
||||
flag.Parse()
|
||||
if *requirements {
|
||||
printRequirements(os.Stdout)
|
||||
@ -826,7 +842,7 @@ func main() {
|
||||
})
|
||||
slog.SetDefault(slog.New(handler))
|
||||
slog.Info("starting go runner")
|
||||
slog.Debug("system info", "cpu", llama.PrintSystemInfo(), "threads", *threads)
|
||||
slog.Info("system", "info", llama.PrintSystemInfo(), "threads", *threads)
|
||||
|
||||
server := &Server{
|
||||
batchSize: *batchSize,
|
||||
|
40
llama/sampling_ext.cpp
vendored
40
llama/sampling_ext.cpp
vendored
@ -5,24 +5,28 @@
|
||||
struct gpt_sampler *gpt_sampler_cinit(
|
||||
const struct llama_model *model, struct gpt_sampler_cparams *params)
|
||||
{
|
||||
gpt_sampler_params sparams;
|
||||
sparams.top_k = params->top_k;
|
||||
sparams.top_p = params->top_p;
|
||||
sparams.min_p = params->min_p;
|
||||
sparams.tfs_z = params->tfs_z;
|
||||
sparams.typ_p = params->typical_p;
|
||||
sparams.temp = params->temp;
|
||||
sparams.penalty_last_n = params->penalty_last_n;
|
||||
sparams.penalty_repeat = params->penalty_repeat;
|
||||
sparams.penalty_freq = params->penalty_freq;
|
||||
sparams.penalty_present = params->penalty_present;
|
||||
sparams.mirostat = params->mirostat;
|
||||
sparams.mirostat_tau = params->mirostat_tau;
|
||||
sparams.mirostat_eta = params->mirostat_eta;
|
||||
sparams.penalize_nl = params->penalize_nl;
|
||||
sparams.seed = params->seed;
|
||||
sparams.grammar = params->grammar;
|
||||
return gpt_sampler_init(model, sparams);
|
||||
try {
|
||||
gpt_sampler_params sparams;
|
||||
sparams.top_k = params->top_k;
|
||||
sparams.top_p = params->top_p;
|
||||
sparams.min_p = params->min_p;
|
||||
sparams.tfs_z = params->tfs_z;
|
||||
sparams.typ_p = params->typical_p;
|
||||
sparams.temp = params->temp;
|
||||
sparams.penalty_last_n = params->penalty_last_n;
|
||||
sparams.penalty_repeat = params->penalty_repeat;
|
||||
sparams.penalty_freq = params->penalty_freq;
|
||||
sparams.penalty_present = params->penalty_present;
|
||||
sparams.mirostat = params->mirostat;
|
||||
sparams.mirostat_tau = params->mirostat_tau;
|
||||
sparams.mirostat_eta = params->mirostat_eta;
|
||||
sparams.penalize_nl = params->penalize_nl;
|
||||
sparams.seed = params->seed;
|
||||
sparams.grammar = params->grammar;
|
||||
return gpt_sampler_init(model, sparams);
|
||||
} catch (const std::exception & err) {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
void gpt_sampler_cfree(struct gpt_sampler *sampler)
|
||||
|
21
llama/unicode.cpp
vendored
21
llama/unicode.cpp
vendored
@ -28,6 +28,11 @@
|
||||
#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
|
||||
#endif
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
#include "unicode.h"
|
||||
#include "unicode-data.h"
|
||||
|
||||
@ -227,8 +232,24 @@ static std::unordered_map<std::string, uint8_t> unicode_utf8_to_byte_map() {
|
||||
}
|
||||
|
||||
static inline std::wstring unicode_wstring_from_utf8(const std::string & s) {
|
||||
#ifdef _WIN32
|
||||
int wlen = MultiByteToWideChar(CP_UTF8, 0, s.c_str(), -1, NULL, 0);
|
||||
if (!wlen) {
|
||||
throw std::invalid_argument("failed to convert regex");
|
||||
}
|
||||
wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t));
|
||||
wlen = MultiByteToWideChar(CP_UTF8, 0, s.c_str(), -1, wbuf, wlen);
|
||||
if (!wlen) {
|
||||
free(wbuf);
|
||||
throw std::invalid_argument("failed to convert regex");
|
||||
}
|
||||
std::wstring ret = std::wstring(wbuf);
|
||||
free(wbuf);
|
||||
return ret;
|
||||
#else
|
||||
std::wstring_convert<std::codecvt_utf8<wchar_t>> conv;
|
||||
return conv.from_bytes(s);
|
||||
#endif
|
||||
}
|
||||
|
||||
static std::vector<std::string> unicode_byte_encoding_process(const std::vector<std::string> & bpe_words) {
|
||||
|
1
llama/vendoring
Normal file
1
llama/vendoring
Normal file
@ -0,0 +1 @@
|
||||
LLAMACPP_BASE_COMMIT=3f1ae2e32cde00c39b96be6d01c2997c29bae555
|
@ -1,15 +0,0 @@
|
||||
set(TARGET ollama_llama_server)
|
||||
option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
|
||||
set(LLAMA_SERVER_LDFLAGS $ENV{LLAMA_SERVER_LDFLAGS})
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
add_executable(${TARGET} server.cpp utils.hpp httplib.h)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_compile_definitions(${TARGET} PRIVATE
|
||||
SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
|
||||
)
|
||||
target_link_libraries(${TARGET} PRIVATE ggml llama common llava ${CMAKE_THREAD_LIBS_INIT} ${LLAMA_SERVER_LDFLAGS})
|
||||
if (WIN32)
|
||||
TARGET_LINK_LIBRARIES(${TARGET} PRIVATE ws2_32)
|
||||
target_link_options(${TARGET} PRIVATE -municode -Wl,/subsystem:console)
|
||||
endif()
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -1,661 +0,0 @@
|
||||
// MIT License
|
||||
|
||||
// Copyright (c) 2023 Georgi Gerganov
|
||||
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
// of this software and associated documentation files (the "Software"), to deal
|
||||
// in the Software without restriction, including without limitation the rights
|
||||
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
// copies of the Software, and to permit persons to whom the Software is
|
||||
// furnished to do so, subject to the following conditions:
|
||||
|
||||
// The above copyright notice and this permission notice shall be included in all
|
||||
// copies or substantial portions of the Software.
|
||||
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
// SOFTWARE.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <set>
|
||||
#include <mutex>
|
||||
#include <condition_variable>
|
||||
#include <unordered_map>
|
||||
#include <random>
|
||||
#include <iostream>
|
||||
#include <thread>
|
||||
|
||||
#include "json.hpp"
|
||||
|
||||
#include "../llava/clip.h"
|
||||
|
||||
using json = nlohmann::json;
|
||||
|
||||
extern bool server_verbose;
|
||||
extern bool server_log_json;
|
||||
|
||||
#ifndef SERVER_VERBOSE
|
||||
#define SERVER_VERBOSE 1
|
||||
#endif
|
||||
|
||||
#if SERVER_VERBOSE != 1
|
||||
#define LOG_VERBOSE(MSG, ...)
|
||||
#else
|
||||
#define LOG_VERBOSE(MSG, ...) \
|
||||
do \
|
||||
{ \
|
||||
if (server_verbose) \
|
||||
{ \
|
||||
server_log("VERB", __func__, __LINE__, MSG, __VA_ARGS__); \
|
||||
} \
|
||||
} while (0)
|
||||
#endif
|
||||
|
||||
#define LOG_ERROR( MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
#define LOG_WARNING(MSG, ...) server_log("WARN", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
#define LOG_DEBUG( MSG, ...) server_log("DEBUG", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
|
||||
enum server_state {
|
||||
SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
|
||||
SERVER_STATE_READY, // Server is ready and model is loaded
|
||||
SERVER_STATE_ERROR // An error occurred, load_model failed
|
||||
};
|
||||
|
||||
enum task_type {
|
||||
TASK_TYPE_COMPLETION,
|
||||
TASK_TYPE_CANCEL,
|
||||
TASK_TYPE_NEXT_RESPONSE,
|
||||
TASK_TYPE_METRICS
|
||||
};
|
||||
|
||||
struct task_server {
|
||||
int id = -1; // to be filled by llama_server_queue
|
||||
int target_id;
|
||||
task_type type;
|
||||
json data;
|
||||
bool infill_mode = false;
|
||||
bool embedding_mode = false;
|
||||
int multitask_id = -1;
|
||||
};
|
||||
|
||||
struct task_result {
|
||||
int id;
|
||||
int multitask_id = -1;
|
||||
bool stop;
|
||||
bool error;
|
||||
json result_json;
|
||||
};
|
||||
|
||||
struct task_multi {
|
||||
int id;
|
||||
std::set<int> subtasks_remaining{};
|
||||
std::vector<task_result> results{};
|
||||
};
|
||||
|
||||
// completion token output with probabilities
|
||||
struct completion_token_output {
|
||||
struct token_prob
|
||||
{
|
||||
llama_token tok;
|
||||
float prob;
|
||||
};
|
||||
|
||||
std::vector<token_prob> probs;
|
||||
llama_token tok;
|
||||
std::string text_to_send;
|
||||
};
|
||||
|
||||
struct token_translator {
|
||||
llama_context * ctx;
|
||||
std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); }
|
||||
std::string operator()(const completion_token_output &cto) const { return (*this)(cto.tok); }
|
||||
};
|
||||
|
||||
static inline void server_log(const char *level, const char *function, int line, const char *message, const nlohmann::ordered_json &extra) {
|
||||
std::stringstream ss_tid;
|
||||
ss_tid << std::this_thread::get_id();
|
||||
json log = nlohmann::ordered_json{
|
||||
{"tid", ss_tid.str()},
|
||||
{"timestamp", time(nullptr)},
|
||||
};
|
||||
|
||||
if (strncmp("DEBUG", level, strlen(level)) == 0 && !server_verbose) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (server_log_json) {
|
||||
log.merge_patch(
|
||||
{
|
||||
{"level", level},
|
||||
{"function", function},
|
||||
{"line", line},
|
||||
{"msg", message},
|
||||
});
|
||||
if (!extra.empty()) {
|
||||
log.merge_patch(extra);
|
||||
}
|
||||
|
||||
std::cout << log.dump(-1, ' ', false, json::error_handler_t::replace) << "\n" << std::flush;
|
||||
} else {
|
||||
if (!extra.empty()) {
|
||||
log.merge_patch(extra);
|
||||
}
|
||||
|
||||
std::stringstream ss;
|
||||
ss << level << " [" << function << "] " << message << " |";
|
||||
for (const auto& el : log.items())
|
||||
{
|
||||
const std::string value = el.value().dump(-1, ' ', false, json::error_handler_t::replace);
|
||||
ss << " " << el.key() << "=" << value;
|
||||
}
|
||||
|
||||
const std::string str = ss.str();
|
||||
printf("%.*s\n", (int)str.size(), str.data());
|
||||
fflush(stdout);
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// server utils
|
||||
//
|
||||
|
||||
template <typename T>
|
||||
static T json_value(const json &body, const std::string &key, const T &default_value) {
|
||||
// Fallback null to default value
|
||||
return body.contains(key) && !body.at(key).is_null()
|
||||
? body.value(key, default_value)
|
||||
: default_value;
|
||||
}
|
||||
|
||||
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
|
||||
inline bool verify_custom_template(const std::string & tmpl) {
|
||||
llama_chat_message chat[] = {{"user", "test"}};
|
||||
std::vector<char> buf(1);
|
||||
int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, buf.data(), buf.size());
|
||||
return res >= 0;
|
||||
}
|
||||
|
||||
// Format given chat. If tmpl is empty, we take the template from model metadata
|
||||
inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages) {
|
||||
size_t alloc_size = 0;
|
||||
// vector holding all allocated string to be passed to llama_chat_apply_template
|
||||
std::vector<std::string> str(messages.size() * 2);
|
||||
std::vector<llama_chat_message> chat(messages.size());
|
||||
|
||||
for (size_t i = 0; i < messages.size(); ++i) {
|
||||
auto &curr_msg = messages[i];
|
||||
str[i*2 + 0] = json_value(curr_msg, "role", std::string(""));
|
||||
str[i*2 + 1] = json_value(curr_msg, "content", std::string(""));
|
||||
alloc_size += str[i*2 + 1].length();
|
||||
chat[i].role = str[i*2 + 0].c_str();
|
||||
chat[i].content = str[i*2 + 1].c_str();
|
||||
}
|
||||
|
||||
const char * ptr_tmpl = tmpl.empty() ? nullptr : tmpl.c_str();
|
||||
std::vector<char> buf(alloc_size * 2);
|
||||
|
||||
// run the first time to get the total output length
|
||||
int32_t res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), true, buf.data(), buf.size());
|
||||
|
||||
// if it turns out that our buffer is too small, we resize it
|
||||
if ((size_t) res > buf.size()) {
|
||||
buf.resize(res);
|
||||
res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), true, buf.data(), buf.size());
|
||||
}
|
||||
|
||||
std::string formatted_chat(buf.data(), res);
|
||||
LOG_VERBOSE("formatted_chat", {{"text", formatted_chat.c_str()}});
|
||||
|
||||
return formatted_chat;
|
||||
}
|
||||
|
||||
//
|
||||
// work queue utils
|
||||
//
|
||||
|
||||
struct llama_server_queue {
|
||||
int id = 0;
|
||||
std::mutex mutex_tasks;
|
||||
bool running;
|
||||
// queues
|
||||
std::vector<task_server> queue_tasks;
|
||||
std::vector<task_server> queue_tasks_deferred;
|
||||
std::vector<task_multi> queue_multitasks;
|
||||
std::condition_variable condition_tasks;
|
||||
// callback functions
|
||||
std::function<void(task_server&)> callback_new_task;
|
||||
std::function<void(task_multi&)> callback_finish_multitask;
|
||||
std::function<void(void)> callback_run_slots;
|
||||
|
||||
// Add a new task to the end of the queue
|
||||
int post(task_server task) {
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
if (task.id == -1) {
|
||||
task.id = id++;
|
||||
LOG_VERBOSE("new task id", {{"new_id", task.id}});
|
||||
}
|
||||
queue_tasks.push_back(std::move(task));
|
||||
condition_tasks.notify_one();
|
||||
return task.id;
|
||||
}
|
||||
|
||||
// Add a new task, but defer until one slot is available
|
||||
void defer(task_server task) {
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
queue_tasks_deferred.push_back(std::move(task));
|
||||
}
|
||||
|
||||
// Get the next id for creating anew task
|
||||
int get_new_id() {
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
int new_id = id++;
|
||||
LOG_VERBOSE("new task id", {{"new_id", new_id}});
|
||||
return new_id;
|
||||
}
|
||||
|
||||
// Register function to process a new task
|
||||
void on_new_task(std::function<void(task_server&)> callback) {
|
||||
callback_new_task = callback;
|
||||
}
|
||||
|
||||
// Register function to process a multitask when it is finished
|
||||
void on_finish_multitask(std::function<void(task_multi&)> callback) {
|
||||
callback_finish_multitask = callback;
|
||||
}
|
||||
|
||||
// Register the function to be called when all slots data is ready to be processed
|
||||
void on_run_slots(std::function<void(void)> callback) {
|
||||
callback_run_slots = callback;
|
||||
}
|
||||
|
||||
// Call when the state of one slot is changed
|
||||
void notify_slot_changed() {
|
||||
// move deferred tasks back to main loop
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
for (auto & task : queue_tasks_deferred) {
|
||||
queue_tasks.push_back(std::move(task));
|
||||
}
|
||||
queue_tasks_deferred.clear();
|
||||
}
|
||||
|
||||
// end the start_loop routine
|
||||
void terminate() {
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
running = false;
|
||||
}
|
||||
condition_tasks.notify_all();
|
||||
}
|
||||
|
||||
/**
|
||||
* Main loop consists of these steps:
|
||||
* - Wait until a new task arrives
|
||||
* - Process the task (i.e. maybe copy data into slot)
|
||||
* - Check if multitask is finished
|
||||
* - Run all slots
|
||||
*/
|
||||
void start_loop() {
|
||||
running = true;
|
||||
while (true) {
|
||||
LOG_VERBOSE("new task may arrive", {});
|
||||
{
|
||||
while (true)
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
if (queue_tasks.empty()) {
|
||||
lock.unlock();
|
||||
break;
|
||||
}
|
||||
task_server task = queue_tasks.front();
|
||||
queue_tasks.erase(queue_tasks.begin());
|
||||
lock.unlock();
|
||||
LOG_VERBOSE("callback_new_task", {{"task_id", task.id}});
|
||||
callback_new_task(task);
|
||||
}
|
||||
LOG_VERBOSE("update_multitasks", {});
|
||||
// check if we have any finished multitasks
|
||||
auto queue_iterator = queue_multitasks.begin();
|
||||
while (queue_iterator != queue_multitasks.end())
|
||||
{
|
||||
if (queue_iterator->subtasks_remaining.empty())
|
||||
{
|
||||
// all subtasks done == multitask is done
|
||||
task_multi current_multitask = *queue_iterator;
|
||||
callback_finish_multitask(current_multitask);
|
||||
// remove this multitask
|
||||
queue_iterator = queue_multitasks.erase(queue_iterator);
|
||||
}
|
||||
else
|
||||
{
|
||||
++queue_iterator;
|
||||
}
|
||||
}
|
||||
// all tasks in the current loop is processed, slots data is now ready
|
||||
LOG_VERBOSE("callback_run_slots", {});
|
||||
callback_run_slots();
|
||||
}
|
||||
LOG_VERBOSE("wait for new task", {});
|
||||
// wait for new task
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
if (queue_tasks.empty()) {
|
||||
if (!running) {
|
||||
LOG_VERBOSE("ending start_loop", {});
|
||||
return;
|
||||
}
|
||||
condition_tasks.wait(lock, [&]{
|
||||
return (!queue_tasks.empty() || !running);
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// functions to manage multitasks
|
||||
//
|
||||
|
||||
// add a multitask by specifying the id of all subtask (subtask is a task_server)
|
||||
void add_multitask(int multitask_id, std::vector<int>& sub_ids)
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mutex_tasks);
|
||||
task_multi multi;
|
||||
multi.id = multitask_id;
|
||||
std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end()));
|
||||
queue_multitasks.push_back(multi);
|
||||
}
|
||||
|
||||
// updatethe remaining subtasks, while appending results to multitask
|
||||
void update_multitask(int multitask_id, int subtask_id, task_result& result)
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mutex_tasks);
|
||||
for (auto& multitask : queue_multitasks)
|
||||
{
|
||||
if (multitask.id == multitask_id)
|
||||
{
|
||||
multitask.subtasks_remaining.erase(subtask_id);
|
||||
multitask.results.push_back(result);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
struct llama_server_response {
|
||||
typedef std::function<void(int, int, task_result&)> callback_multitask_t;
|
||||
callback_multitask_t callback_update_multitask;
|
||||
// for keeping track of all tasks waiting for the result
|
||||
std::set<int> waiting_task_ids;
|
||||
// the main result queue
|
||||
std::vector<task_result> queue_results;
|
||||
std::mutex mutex_results;
|
||||
std::condition_variable condition_results;
|
||||
|
||||
// add the task_id to the list of tasks waiting for response
|
||||
void add_waiting_task_id(int task_id) {
|
||||
LOG_VERBOSE("waiting for task id", {{"task_id", task_id}});
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
waiting_task_ids.insert(task_id);
|
||||
}
|
||||
|
||||
// when the request is finished, we can remove task associated with it
|
||||
void remove_waiting_task_id(int task_id) {
|
||||
LOG_VERBOSE("remove waiting for task id", {{"task_id", task_id}});
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
waiting_task_ids.erase(task_id);
|
||||
}
|
||||
|
||||
// This function blocks the thread until there is a response for this task_id
|
||||
task_result recv(int task_id) {
|
||||
while (true)
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
condition_results.wait(lock, [&]{
|
||||
return !queue_results.empty();
|
||||
});
|
||||
|
||||
for (int i = 0; i < (int) queue_results.size(); i++)
|
||||
{
|
||||
if (queue_results[i].id == task_id)
|
||||
{
|
||||
assert(queue_results[i].multitask_id == -1);
|
||||
task_result res = queue_results[i];
|
||||
queue_results.erase(queue_results.begin() + i);
|
||||
return res;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// should never reach here
|
||||
}
|
||||
|
||||
// Register the function to update multitask
|
||||
void on_multitask_update(callback_multitask_t callback) {
|
||||
callback_update_multitask = callback;
|
||||
}
|
||||
|
||||
// Send a new result to a waiting task_id
|
||||
void send(task_result result) {
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
LOG_VERBOSE("send new result", {{"task_id", result.id}});
|
||||
for (auto& task_id : waiting_task_ids) {
|
||||
// LOG_TEE("waiting task id %i \n", task_id);
|
||||
// for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
|
||||
if (result.multitask_id == task_id)
|
||||
{
|
||||
LOG_VERBOSE("callback_update_multitask", {{"task_id", task_id}});
|
||||
callback_update_multitask(task_id, result.id, result);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (result.id == task_id)
|
||||
{
|
||||
LOG_VERBOSE("queue_results.push_back", {{"task_id", task_id}});
|
||||
queue_results.push_back(result);
|
||||
condition_results.notify_all();
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
//
|
||||
// base64 utils (TODO: move to common in the future)
|
||||
//
|
||||
|
||||
static const std::string base64_chars =
|
||||
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
||||
"abcdefghijklmnopqrstuvwxyz"
|
||||
"0123456789+/";
|
||||
|
||||
static inline bool is_base64(uint8_t c)
|
||||
{
|
||||
return (isalnum(c) || (c == '+') || (c == '/'));
|
||||
}
|
||||
|
||||
static inline std::vector<uint8_t> base64_decode(const std::string & encoded_string)
|
||||
{
|
||||
int i = 0;
|
||||
int j = 0;
|
||||
int in_ = 0;
|
||||
|
||||
int in_len = encoded_string.size();
|
||||
|
||||
uint8_t char_array_4[4];
|
||||
uint8_t char_array_3[3];
|
||||
|
||||
std::vector<uint8_t> ret;
|
||||
|
||||
while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_]))
|
||||
{
|
||||
char_array_4[i++] = encoded_string[in_]; in_++;
|
||||
if (i == 4)
|
||||
{
|
||||
for (i = 0; i <4; i++)
|
||||
{
|
||||
char_array_4[i] = base64_chars.find(char_array_4[i]);
|
||||
}
|
||||
|
||||
char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
|
||||
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
|
||||
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
|
||||
|
||||
for (i = 0; (i < 3); i++)
|
||||
{
|
||||
ret.push_back(char_array_3[i]);
|
||||
}
|
||||
i = 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (i)
|
||||
{
|
||||
for (j = i; j <4; j++)
|
||||
{
|
||||
char_array_4[j] = 0;
|
||||
}
|
||||
|
||||
for (j = 0; j <4; j++)
|
||||
{
|
||||
char_array_4[j] = base64_chars.find(char_array_4[j]);
|
||||
}
|
||||
|
||||
char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
|
||||
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
|
||||
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
|
||||
|
||||
for (j = 0; (j < i - 1); j++)
|
||||
{
|
||||
ret.push_back(char_array_3[j]);
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
//
|
||||
// random string / id
|
||||
//
|
||||
|
||||
static std::string random_string()
|
||||
{
|
||||
static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
|
||||
|
||||
std::random_device rd;
|
||||
std::mt19937 generator(rd());
|
||||
|
||||
std::string result(32, ' ');
|
||||
|
||||
for (int i = 0; i < 32; ++i) {
|
||||
result[i] = str[generator() % str.size()];
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static std::string gen_chatcmplid()
|
||||
{
|
||||
std::stringstream chatcmplid;
|
||||
chatcmplid << "chatcmpl-" << random_string();
|
||||
return chatcmplid.str();
|
||||
}
|
||||
|
||||
//
|
||||
// other common utils
|
||||
//
|
||||
|
||||
static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
|
||||
{
|
||||
size_t i;
|
||||
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++)
|
||||
{
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
||||
static bool ends_with(const std::string &str, const std::string &suffix)
|
||||
{
|
||||
return str.size() >= suffix.size() &&
|
||||
0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
|
||||
}
|
||||
|
||||
static size_t find_partial_stop_string(const std::string &stop,
|
||||
const std::string &text)
|
||||
{
|
||||
if (!text.empty() && !stop.empty())
|
||||
{
|
||||
const char text_last_char = text.back();
|
||||
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--)
|
||||
{
|
||||
if (stop[char_index] == text_last_char)
|
||||
{
|
||||
const std::string current_partial = stop.substr(0, char_index + 1);
|
||||
if (ends_with(text, current_partial))
|
||||
{
|
||||
return text.size() - char_index - 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return std::string::npos;
|
||||
}
|
||||
|
||||
// TODO: reuse llama_detokenize
|
||||
template <class Iter>
|
||||
static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
|
||||
{
|
||||
std::string ret;
|
||||
for (; begin != end; ++begin)
|
||||
{
|
||||
ret += llama_token_to_piece(ctx, *begin);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
// format incomplete utf-8 multibyte character for output
|
||||
static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
|
||||
{
|
||||
std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
|
||||
// if the size is 1 and first bit is 1, meaning it's a partial character
|
||||
// (size > 1 meaning it's already a known token)
|
||||
if (out.size() == 1 && (out[0] & 0x80) == 0x80)
|
||||
{
|
||||
std::stringstream ss;
|
||||
ss << std::hex << (out[0] & 0xff);
|
||||
std::string res(ss.str());
|
||||
out = "byte: \\x" + res;
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
// convert a vector of completion_token_output to json
|
||||
static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> &probs)
|
||||
{
|
||||
json out = json::array();
|
||||
for (const auto &prob : probs)
|
||||
{
|
||||
json probs_for_token = json::array();
|
||||
for (const auto &p : prob.probs)
|
||||
{
|
||||
std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
|
||||
probs_for_token.push_back(json
|
||||
{
|
||||
{"tok_str", tok_str},
|
||||
{"prob", p.prob},
|
||||
});
|
||||
}
|
||||
std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
|
||||
out.push_back(json{
|
||||
{"content", tok_str},
|
||||
{"probs", probs_for_token},
|
||||
});
|
||||
}
|
||||
return out;
|
||||
}
|
@ -1,137 +0,0 @@
|
||||
# common logic across linux and darwin
|
||||
|
||||
init_vars() {
|
||||
case "${GOARCH}" in
|
||||
"amd64")
|
||||
ARCH="x86_64"
|
||||
;;
|
||||
"arm64")
|
||||
ARCH="arm64"
|
||||
;;
|
||||
*)
|
||||
echo "GOARCH must be set"
|
||||
echo "this script is meant to be run from within go generate"
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
|
||||
LLAMACPP_DIR=../llama.cpp
|
||||
CMAKE_DEFS="-DCMAKE_SKIP_RPATH=on"
|
||||
CMAKE_TARGETS="--target ollama_llama_server"
|
||||
if echo "${CGO_CFLAGS}" | grep -- '-g' >/dev/null; then
|
||||
CMAKE_DEFS="-DCMAKE_BUILD_TYPE=RelWithDebInfo -DCMAKE_VERBOSE_MAKEFILE=on -DLLAMA_GPROF=on -DLLAMA_SERVER_VERBOSE=on ${CMAKE_DEFS}"
|
||||
else
|
||||
# TODO - add additional optimization flags...
|
||||
CMAKE_DEFS="-DCMAKE_BUILD_TYPE=Release -DLLAMA_SERVER_VERBOSE=off ${CMAKE_DEFS}"
|
||||
fi
|
||||
case $(uname -s) in
|
||||
"Darwin")
|
||||
LIB_EXT="dylib"
|
||||
WHOLE_ARCHIVE="-Wl,-force_load"
|
||||
NO_WHOLE_ARCHIVE=""
|
||||
GCC_ARCH="-arch ${ARCH}"
|
||||
DIST_BASE=../../dist/darwin-${GOARCH}/
|
||||
PAYLOAD_BASE=../../build/darwin/${GOARCH}
|
||||
;;
|
||||
"Linux")
|
||||
LIB_EXT="so"
|
||||
WHOLE_ARCHIVE="-Wl,--whole-archive"
|
||||
NO_WHOLE_ARCHIVE="-Wl,--no-whole-archive"
|
||||
|
||||
# Cross compiling not supported on linux - Use docker
|
||||
GCC_ARCH=""
|
||||
DIST_BASE=../../dist/linux-${GOARCH}/
|
||||
PAYLOAD_BASE=../../build/linux/${GOARCH}
|
||||
;;
|
||||
*)
|
||||
;;
|
||||
esac
|
||||
if [ -z "${CMAKE_CUDA_ARCHITECTURES}" ] ; then
|
||||
CMAKE_CUDA_ARCHITECTURES="50;52;61;70;75;80"
|
||||
fi
|
||||
GZIP=$(command -v pigz 2>/dev/null || echo "gzip")
|
||||
RUNNER_BASE="${DIST_BASE}/lib/ollama/runners"
|
||||
}
|
||||
|
||||
git_module_setup() {
|
||||
if [ -n "${OLLAMA_SKIP_PATCHING}" ]; then
|
||||
echo "Skipping submodule initialization"
|
||||
return
|
||||
fi
|
||||
# Make sure the tree is clean after the directory moves
|
||||
if [ -d "${LLAMACPP_DIR}/gguf" ]; then
|
||||
echo "Cleaning up old submodule"
|
||||
rm -rf ${LLAMACPP_DIR}
|
||||
fi
|
||||
git submodule init
|
||||
git submodule update --force ${LLAMACPP_DIR}
|
||||
|
||||
}
|
||||
|
||||
apply_patches() {
|
||||
# apply temporary patches until fix is upstream
|
||||
for patch in ../patches/*.patch; do
|
||||
git -c 'user.name=nobody' -c 'user.email=<>' -C ${LLAMACPP_DIR} am ${patch}
|
||||
done
|
||||
}
|
||||
|
||||
build() {
|
||||
cmake -S ${LLAMACPP_DIR} -B ${BUILD_DIR} ${CMAKE_DEFS}
|
||||
cmake --build ${BUILD_DIR} ${CMAKE_TARGETS} -j8
|
||||
# remove unnecessary build artifacts
|
||||
rm -f ${BUILD_DIR}/bin/ggml-common.h ${BUILD_DIR}/bin/ggml-metal.metal
|
||||
}
|
||||
|
||||
dist() {
|
||||
[ -z "${RUNNER}" ] && exit 1
|
||||
mkdir -p ${RUNNER_BASE}/${RUNNER}/
|
||||
for f in ${BUILD_DIR}/bin/* ; do
|
||||
cp ${f} ${RUNNER_BASE}/${RUNNER}/
|
||||
done
|
||||
# check for lib directory
|
||||
if [ -d ${BUILD_DIR}/lib ]; then
|
||||
for f in ${BUILD_DIR}/lib/* ; do
|
||||
cp ${f} ${RUNNER_BASE}/${RUNNER}/
|
||||
done
|
||||
fi
|
||||
}
|
||||
|
||||
# Compress from the build $BUILD_DIR into the $PAYLOAD_BASE/$RUNNER dir
|
||||
compress() {
|
||||
[ -z "${RUNNER}" ] && exit 1
|
||||
echo "Compressing payloads with ${GZIP} to reduce overall binary size..."
|
||||
rm -rf "${PAYLOAD_BASE}/${RUNNER}/"
|
||||
mkdir -p "${PAYLOAD_BASE}/${RUNNER}/"
|
||||
for f in ${BUILD_DIR}/bin/* ; do
|
||||
${GZIP} -c --best ${f} > "${PAYLOAD_BASE}/${RUNNER}/$(basename ${f}).gz" &
|
||||
compress_pids+=" $!"
|
||||
done
|
||||
# check for lib directory
|
||||
if [ -d ${BUILD_DIR}/lib ]; then
|
||||
for f in ${BUILD_DIR}/lib/* ; do
|
||||
${GZIP} -c --best ${f} > "${PAYLOAD_BASE}/${RUNNER}/$(basename ${f}).gz" &
|
||||
compress_pids+=" $!"
|
||||
done
|
||||
fi
|
||||
echo
|
||||
}
|
||||
|
||||
wait_for_compress() {
|
||||
for pid in ${compress_pids}; do
|
||||
wait $pid
|
||||
done
|
||||
echo "Finished compression"
|
||||
}
|
||||
|
||||
install() {
|
||||
echo "Installing libraries to bin dir ${BUILD_DIR}/bin/"
|
||||
for lib in $(find ${BUILD_DIR} -name \*.${LIB_EXT} | grep -v "${BUILD_DIR}/bin/" ); do
|
||||
rm -f "${BUILD_DIR}/bin/$(basename ${lib})"
|
||||
cp -af "${lib}" "${BUILD_DIR}/bin/"
|
||||
done
|
||||
}
|
||||
|
||||
# Keep the local tree clean after we're done with the build
|
||||
cleanup() {
|
||||
git submodule update --force ${LLAMACPP_DIR}
|
||||
}
|
@ -1,91 +0,0 @@
|
||||
#!/bin/bash
|
||||
# This script is intended to run inside the go generate
|
||||
# working directory must be ./llm/generate/
|
||||
|
||||
# TODO - add hardening to detect missing tools (cmake, etc.)
|
||||
|
||||
set -ex
|
||||
set -o pipefail
|
||||
compress_pids=""
|
||||
echo "Starting darwin generate script"
|
||||
source $(dirname $0)/gen_common.sh
|
||||
init_vars
|
||||
git_module_setup
|
||||
apply_patches
|
||||
|
||||
sign() {
|
||||
if [ -n "$APPLE_IDENTITY" ]; then
|
||||
codesign -f --timestamp --deep --options=runtime --sign "$APPLE_IDENTITY" --identifier ai.ollama.ollama $1
|
||||
fi
|
||||
}
|
||||
|
||||
COMMON_DARWIN_DEFS="-DBUILD_SHARED_LIBS=off -DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DGGML_METAL_MACOSX_VERSION_MIN=11.3 -DCMAKE_SYSTEM_NAME=Darwin -DGGML_METAL_EMBED_LIBRARY=on -DGGML_OPENMP=off"
|
||||
|
||||
case "${GOARCH}" in
|
||||
"amd64")
|
||||
COMMON_CPU_DEFS="${COMMON_DARWIN_DEFS} -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} -DGGML_METAL=off -DGGML_NATIVE=off"
|
||||
|
||||
if [ -z "$OLLAMA_SKIP_CPU_GENERATE" ]; then
|
||||
#
|
||||
# CPU first for the default library, set up as lowest common denominator for maximum compatibility (including Rosetta)
|
||||
#
|
||||
init_vars
|
||||
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_ACCELERATE=off -DGGML_BLAS=off -DGGML_AVX=off -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off ${CMAKE_DEFS}"
|
||||
RUNNER=cpu
|
||||
BUILD_DIR="../build/darwin/${GOARCH}/${RUNNER}"
|
||||
echo "Building LCD CPU"
|
||||
build
|
||||
sign ${BUILD_DIR}/bin/ollama_llama_server
|
||||
compress
|
||||
|
||||
#
|
||||
# ~2011 CPU Dynamic library with more capabilities turned on to optimize performance
|
||||
# Approximately 400% faster than LCD on same CPU
|
||||
#
|
||||
init_vars
|
||||
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_ACCELERATE=off -DGGML_BLAS=off -DGGML_AVX=on -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off ${CMAKE_DEFS}"
|
||||
RUNNER=cpu_avx
|
||||
BUILD_DIR="../build/darwin/${GOARCH}/${RUNNER}"
|
||||
echo "Building AVX CPU"
|
||||
build
|
||||
sign ${BUILD_DIR}/bin/ollama_llama_server
|
||||
compress
|
||||
|
||||
#
|
||||
# ~2013 CPU Dynamic library
|
||||
# Approximately 10% faster than AVX on same CPU
|
||||
#
|
||||
init_vars
|
||||
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_ACCELERATE=on -DGGML_BLAS=off -DGGML_AVX=on -DGGML_AVX2=on -DGGML_AVX512=off -DGGML_FMA=on -DGGML_F16C=on ${CMAKE_DEFS}"
|
||||
RUNNER=cpu_avx2
|
||||
BUILD_DIR="../build/darwin/${GOARCH}/${RUNNER}"
|
||||
echo "Building AVX2 CPU"
|
||||
EXTRA_LIBS="${EXTRA_LIBS} -framework Accelerate -framework Foundation"
|
||||
build
|
||||
sign ${BUILD_DIR}/bin/ollama_llama_server
|
||||
compress
|
||||
fi
|
||||
;;
|
||||
"arm64")
|
||||
|
||||
if [ -z "$OLLAMA_SKIP_METAL_GENERATE" ]; then
|
||||
init_vars
|
||||
CMAKE_DEFS="${COMMON_DARWIN_DEFS} -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} ${CMAKE_DEFS}"
|
||||
RUNNER="metal"
|
||||
BUILD_DIR="../build/darwin/${GOARCH}/${RUNNER}"
|
||||
EXTRA_LIBS="${EXTRA_LIBS} -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders"
|
||||
build
|
||||
sign ${BUILD_DIR}/bin/ollama_llama_server
|
||||
compress
|
||||
fi
|
||||
;;
|
||||
*)
|
||||
echo "GOARCH must be set"
|
||||
echo "this script is meant to be run from within go generate"
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
|
||||
cleanup
|
||||
wait_for_compress
|
||||
echo "go generate completed. LLM runners: $(cd ${BUILD_DIR}/..; echo *)"
|
@ -1,285 +0,0 @@
|
||||
#!/bin/bash
|
||||
# This script is intended to run inside the go generate
|
||||
# working directory must be llm/generate/
|
||||
|
||||
# First we build one or more CPU based LLM libraries
|
||||
#
|
||||
# Then if we detect CUDA, we build a CUDA dynamic library, and carry the required
|
||||
# library dependencies
|
||||
#
|
||||
# Then if we detect ROCm, we build a dynamically loaded ROCm lib. The ROCM
|
||||
# libraries are quite large, and also dynamically load data files at runtime
|
||||
# which in turn are large, so we don't attempt to cary them as payload
|
||||
|
||||
set -ex
|
||||
set -o pipefail
|
||||
compress_pids=""
|
||||
|
||||
# See https://llvm.org/docs/AMDGPUUsage.html#processors for reference
|
||||
amdGPUs() {
|
||||
if [ -n "${AMDGPU_TARGETS}" ]; then
|
||||
echo "${AMDGPU_TARGETS}"
|
||||
return
|
||||
fi
|
||||
GPU_LIST=(
|
||||
"gfx900"
|
||||
"gfx906:xnack-"
|
||||
"gfx908:xnack-"
|
||||
"gfx90a:xnack+"
|
||||
"gfx90a:xnack-"
|
||||
"gfx940"
|
||||
"gfx941"
|
||||
"gfx942"
|
||||
"gfx1010"
|
||||
"gfx1012"
|
||||
"gfx1030"
|
||||
"gfx1100"
|
||||
"gfx1101"
|
||||
"gfx1102"
|
||||
)
|
||||
(
|
||||
IFS=$';'
|
||||
echo "'${GPU_LIST[*]}'"
|
||||
)
|
||||
}
|
||||
|
||||
echo "Starting linux generate script"
|
||||
if [ -z "${CUDACXX}" ]; then
|
||||
if [ -x /usr/local/cuda/bin/nvcc ]; then
|
||||
export CUDACXX=/usr/local/cuda/bin/nvcc
|
||||
else
|
||||
# Try the default location in case it exists
|
||||
export CUDACXX=$(command -v nvcc)
|
||||
fi
|
||||
fi
|
||||
COMMON_CMAKE_DEFS="-DCMAKE_SKIP_RPATH=on -DBUILD_SHARED_LIBS=on -DCMAKE_POSITION_INDEPENDENT_CODE=on -DGGML_NATIVE=off -DGGML_AVX=on -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off -DGGML_OPENMP=off"
|
||||
source $(dirname $0)/gen_common.sh
|
||||
init_vars
|
||||
git_module_setup
|
||||
apply_patches
|
||||
|
||||
init_vars
|
||||
if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
|
||||
# Users building from source can tune the exact flags we pass to cmake for configuring
|
||||
# llama.cpp, and we'll build only 1 CPU variant in that case as the default.
|
||||
if [ -n "${OLLAMA_CUSTOM_CPU_DEFS}" ]; then
|
||||
init_vars
|
||||
echo "OLLAMA_CUSTOM_CPU_DEFS=\"${OLLAMA_CUSTOM_CPU_DEFS}\""
|
||||
CMAKE_DEFS="${OLLAMA_CUSTOM_CPU_DEFS} -DBUILD_SHARED_LIBS=on -DCMAKE_POSITION_INDEPENDENT_CODE=on ${CMAKE_DEFS}"
|
||||
RUNNER="cpu"
|
||||
BUILD_DIR="../build/linux/${GOARCH}/${RUNNER}"
|
||||
echo "Building custom CPU"
|
||||
build
|
||||
install
|
||||
dist
|
||||
compress
|
||||
else
|
||||
# Darwin Rosetta x86 emulation does NOT support AVX, AVX2, AVX512
|
||||
# -DGGML_AVX -- 2011 Intel Sandy Bridge & AMD Bulldozer
|
||||
# -DGGML_F16C -- 2012 Intel Ivy Bridge & AMD 2011 Bulldozer (No significant improvement over just AVX)
|
||||
# -DGGML_AVX2 -- 2013 Intel Haswell & 2015 AMD Excavator / 2017 AMD Zen
|
||||
# -DGGML_FMA (FMA3) -- 2013 Intel Haswell & 2012 AMD Piledriver
|
||||
# Note: the following seem to yield slower results than AVX2 - ymmv
|
||||
# -DGGML_AVX512 -- 2017 Intel Skylake and High End DeskTop (HEDT)
|
||||
# -DGGML_AVX512_VBMI -- 2018 Intel Cannon Lake
|
||||
# -DGGML_AVX512_VNNI -- 2021 Intel Alder Lake
|
||||
|
||||
COMMON_CPU_DEFS="-DBUILD_SHARED_LIBS=on -DCMAKE_POSITION_INDEPENDENT_CODE=on -DGGML_NATIVE=off -DGGML_OPENMP=off"
|
||||
if [ -z "${OLLAMA_CPU_TARGET}" -o "${OLLAMA_CPU_TARGET}" = "cpu" ]; then
|
||||
#
|
||||
# CPU first for the default library, set up as lowest common denominator for maximum compatibility (including Rosetta)
|
||||
#
|
||||
init_vars
|
||||
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_AVX=off -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off ${CMAKE_DEFS}"
|
||||
RUNNER=cpu
|
||||
BUILD_DIR="../build/linux/${GOARCH}/${RUNNER}"
|
||||
echo "Building LCD CPU"
|
||||
build
|
||||
install
|
||||
dist
|
||||
compress
|
||||
fi
|
||||
|
||||
if [ "${ARCH}" == "x86_64" ]; then
|
||||
#
|
||||
# ARM chips in M1/M2/M3-based MACs and NVidia Tegra devices do not currently support avx extensions.
|
||||
#
|
||||
if [ -z "${OLLAMA_CPU_TARGET}" -o "${OLLAMA_CPU_TARGET}" = "cpu_avx" ]; then
|
||||
#
|
||||
# ~2011 CPU Dynamic library with more capabilities turned on to optimize performance
|
||||
# Approximately 400% faster than LCD on same CPU
|
||||
#
|
||||
init_vars
|
||||
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_AVX=on -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off ${CMAKE_DEFS}"
|
||||
RUNNER=cpu_avx
|
||||
BUILD_DIR="../build/linux/${GOARCH}/${RUNNER}"
|
||||
echo "Building AVX CPU"
|
||||
build
|
||||
install
|
||||
dist
|
||||
compress
|
||||
fi
|
||||
|
||||
if [ -z "${OLLAMA_CPU_TARGET}" -o "${OLLAMA_CPU_TARGET}" = "cpu_avx2" ]; then
|
||||
#
|
||||
# ~2013 CPU Dynamic library
|
||||
# Approximately 10% faster than AVX on same CPU
|
||||
#
|
||||
init_vars
|
||||
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_AVX=on -DGGML_AVX2=on -DGGML_AVX512=off -DGGML_FMA=on -DGGML_F16C=on ${CMAKE_DEFS}"
|
||||
RUNNER=cpu_avx2
|
||||
BUILD_DIR="../build/linux/${GOARCH}/${RUNNER}"
|
||||
echo "Building AVX2 CPU"
|
||||
build
|
||||
install
|
||||
dist
|
||||
compress
|
||||
fi
|
||||
fi
|
||||
fi
|
||||
else
|
||||
echo "Skipping CPU generation step as requested"
|
||||
fi
|
||||
|
||||
# If needed, look for the default CUDA toolkit location
|
||||
if [ -z "${CUDA_LIB_DIR}" ] && [ -d /usr/local/cuda/lib64 ]; then
|
||||
CUDA_LIB_DIR=/usr/local/cuda/lib64
|
||||
fi
|
||||
|
||||
# If needed, look for CUDA on Arch Linux
|
||||
if [ -z "${CUDA_LIB_DIR}" ] && [ -d /opt/cuda/targets/x86_64-linux/lib ]; then
|
||||
CUDA_LIB_DIR=/opt/cuda/targets/x86_64-linux/lib
|
||||
fi
|
||||
|
||||
# Allow override in case libcudart is in the wrong place
|
||||
if [ -z "${CUDART_LIB_DIR}" ]; then
|
||||
CUDART_LIB_DIR="${CUDA_LIB_DIR}"
|
||||
fi
|
||||
|
||||
if [ -z "${OLLAMA_SKIP_CUDA_GENERATE}" -a -d "${CUDA_LIB_DIR}" ]; then
|
||||
echo "CUDA libraries detected - building dynamic CUDA library"
|
||||
init_vars
|
||||
CUDA_MAJOR=$(ls "${CUDA_LIB_DIR}"/libcudart.so.* | head -1 | cut -f3 -d. || true)
|
||||
if [ -n "${CUDA_MAJOR}" -a -z "${CUDA_VARIANT}" ]; then
|
||||
CUDA_VARIANT=_v${CUDA_MAJOR}
|
||||
fi
|
||||
if [ "${ARCH}" == "arm64" ]; then
|
||||
echo "ARM CPU detected - disabling unsupported AVX instructions"
|
||||
|
||||
# ARM-based CPUs such as M1 and Tegra do not support AVX extensions.
|
||||
#
|
||||
# CUDA compute < 6.0 lacks proper FP16 support on ARM.
|
||||
# Disabling has minimal performance effect while maintaining compatibility.
|
||||
ARM64_DEFS="-DGGML_AVX=off -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_CUDA_F16=off"
|
||||
fi
|
||||
# Users building from source can tune the exact flags we pass to cmake for configuring llama.cpp
|
||||
if [ -n "${OLLAMA_CUSTOM_CUDA_DEFS}" ]; then
|
||||
echo "OLLAMA_CUSTOM_CUDA_DEFS=\"${OLLAMA_CUSTOM_CUDA_DEFS}\""
|
||||
CMAKE_CUDA_DEFS="-DGGML_CUDA=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES} ${OLLAMA_CUSTOM_CUDA_DEFS}"
|
||||
echo "Building custom CUDA GPU"
|
||||
else
|
||||
CMAKE_CUDA_DEFS="-DGGML_CUDA=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES}"
|
||||
fi
|
||||
export CUDAFLAGS="-t8"
|
||||
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} ${ARM64_DEFS} ${CMAKE_CUDA_DEFS} -DGGML_STATIC=off"
|
||||
RUNNER=cuda${CUDA_VARIANT}
|
||||
BUILD_DIR="../build/linux/${GOARCH}/${RUNNER}"
|
||||
export LLAMA_SERVER_LDFLAGS="-L${CUDA_LIB_DIR} -lcudart -lcublas -lcublasLt -lcuda"
|
||||
CUDA_DIST_DIR="${CUDA_DIST_DIR:-${DIST_BASE}/lib/ollama}"
|
||||
build
|
||||
install
|
||||
dist
|
||||
echo "Installing CUDA dependencies in ${CUDA_DIST_DIR}"
|
||||
mkdir -p "${CUDA_DIST_DIR}"
|
||||
for lib in ${CUDA_LIB_DIR}/libcudart.so* ${CUDA_LIB_DIR}/libcublas.so* ${CUDA_LIB_DIR}/libcublasLt.so* ; do
|
||||
cp -a "${lib}" "${CUDA_DIST_DIR}"
|
||||
done
|
||||
compress
|
||||
|
||||
fi
|
||||
|
||||
if [ -z "${ONEAPI_ROOT}" ]; then
|
||||
# Try the default location in case it exists
|
||||
ONEAPI_ROOT=/opt/intel/oneapi
|
||||
fi
|
||||
|
||||
if [ -z "${OLLAMA_SKIP_ONEAPI_GENERATE}" -a -d "${ONEAPI_ROOT}" ]; then
|
||||
echo "OneAPI libraries detected - building dynamic OneAPI library"
|
||||
init_vars
|
||||
source ${ONEAPI_ROOT}/setvars.sh --force # set up environment variables for oneAPI
|
||||
CC=icx
|
||||
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL=ON -DGGML_SYCL_F16=OFF"
|
||||
RUNNER=oneapi
|
||||
BUILD_DIR="../build/linux/${GOARCH}/${RUNNER}"
|
||||
ONEAPI_DIST_DIR="${DIST_BASE}/lib/ollama"
|
||||
export LLAMA_SERVER_LDFLAGS="-fsycl -lOpenCL -lmkl_core -lmkl_sycl_blas -lmkl_intel_ilp64 -lmkl_tbb_thread -ltbb"
|
||||
DEBUG_FLAGS="" # icx compiles with -O0 if we pass -g, so we must remove it
|
||||
build
|
||||
|
||||
# copy oneAPI dependencies
|
||||
mkdir -p "${ONEAPI_DIST_DIR}"
|
||||
for dep in $(ldd "${BUILD_DIR}/bin/ollama_llama_server" | grep "=>" | cut -f2 -d= | cut -f2 -d' ' | grep -e sycl -e mkl -e tbb); do
|
||||
cp -a "${dep}" "${ONEAPI_DIST_DIR}"
|
||||
done
|
||||
cp "${ONEAPI_ROOT}/compiler/latest/lib/libOpenCL.so" "${ONEAPI_DIST_DIR}"
|
||||
cp "${ONEAPI_ROOT}/compiler/latest/lib/libimf.so" "${ONEAPI_DIST_DIR}"
|
||||
cp "${ONEAPI_ROOT}/compiler/latest/lib/libintlc.so.5" "${ONEAPI_DIST_DIR}"
|
||||
cp "${ONEAPI_ROOT}/compiler/latest/lib/libirng.so" "${ONEAPI_DIST_DIR}"
|
||||
cp "${ONEAPI_ROOT}/compiler/latest/lib/libpi_level_zero.so" "${ONEAPI_DIST_DIR}"
|
||||
cp "${ONEAPI_ROOT}/compiler/latest/lib/libsvml.so" "${ONEAPI_DIST_DIR}"
|
||||
cp "${ONEAPI_ROOT}/compiler/latest/lib/libur_loader.so.0" "${ONEAPI_DIST_DIR}"
|
||||
install
|
||||
dist
|
||||
compress
|
||||
fi
|
||||
|
||||
if [ -z "${ROCM_PATH}" ]; then
|
||||
# Try the default location in case it exists
|
||||
ROCM_PATH=/opt/rocm
|
||||
fi
|
||||
|
||||
if [ -z "${CLBlast_DIR}" ]; then
|
||||
# Try the default location in case it exists
|
||||
if [ -d /usr/lib/cmake/CLBlast ]; then
|
||||
export CLBlast_DIR=/usr/lib/cmake/CLBlast
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ -z "${OLLAMA_SKIP_ROCM_GENERATE}" -a -d "${ROCM_PATH}" ]; then
|
||||
echo "ROCm libraries detected - building dynamic ROCm library"
|
||||
if [ -f ${ROCM_PATH}/lib/librocblas.so.*.*.????? ]; then
|
||||
ROCM_VARIANT=_v$(ls ${ROCM_PATH}/lib/librocblas.so.*.*.????? | cut -f5 -d. || true)
|
||||
fi
|
||||
init_vars
|
||||
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DGGML_HIPBLAS=on -DCMAKE_C_COMPILER=$ROCM_PATH/llvm/bin/clang -DCMAKE_CXX_COMPILER=$ROCM_PATH/llvm/bin/clang++ -DAMDGPU_TARGETS=$(amdGPUs) -DGPU_TARGETS=$(amdGPUs)"
|
||||
# Users building from source can tune the exact flags we pass to cmake for configuring llama.cpp
|
||||
if [ -n "${OLLAMA_CUSTOM_ROCM_DEFS}" ]; then
|
||||
echo "OLLAMA_CUSTOM_ROCM_DEFS=\"${OLLAMA_CUSTOM_ROCM_DEFS}\""
|
||||
CMAKE_DEFS="${CMAKE_DEFS} ${OLLAMA_CUSTOM_ROCM_DEFS}"
|
||||
echo "Building custom ROCM GPU"
|
||||
fi
|
||||
RUNNER=rocm${ROCM_VARIANT}
|
||||
BUILD_DIR="../build/linux/${GOARCH}/${RUNNER}"
|
||||
# ROCm dependencies are too large to fit into a unified bundle
|
||||
ROCM_DIST_DIR="${DIST_BASE}/../linux-${GOARCH}-rocm/lib/ollama"
|
||||
# TODO figure out how to disable runpath (rpath)
|
||||
# export CMAKE_HIP_FLAGS="-fno-rtlib-add-rpath" # doesn't work
|
||||
export LLAMA_SERVER_LDFLAGS="-L${ROCM_PATH}/lib -L/opt/amdgpu/lib/x86_64-linux-gnu/ -lhipblas -lrocblas -lamdhip64 -lrocsolver -lamd_comgr -lhsa-runtime64 -lrocsparse -ldrm -ldrm_amdgpu"
|
||||
build
|
||||
|
||||
# copy the ROCM dependencies
|
||||
mkdir -p "${ROCM_DIST_DIR}"
|
||||
for dep in $(ldd "${BUILD_DIR}/bin/ollama_llama_server" | grep "=>" | cut -f2 -d= | cut -f2 -d' ' | grep -v "${GOARCH}/rocm${ROCM_VARIANT}" | grep -e rocm -e amdgpu -e libtinfo -e libnuma -e libelf ); do
|
||||
cp -a "${dep}"* "${ROCM_DIST_DIR}"
|
||||
if [ $(readlink -f "${dep}") != "${dep}" ] ; then
|
||||
cp $(readlink -f "${dep}") "${ROCM_DIST_DIR}"
|
||||
fi
|
||||
done
|
||||
install
|
||||
dist
|
||||
compress
|
||||
fi
|
||||
|
||||
cleanup
|
||||
wait_for_compress
|
||||
echo "go generate completed. LLM runners: $(cd ${PAYLOAD_BASE}; echo *)"
|
@ -1,403 +0,0 @@
|
||||
#!powershell
|
||||
|
||||
$ErrorActionPreference = "Stop"
|
||||
|
||||
function amdGPUs {
|
||||
if ($env:AMDGPU_TARGETS) {
|
||||
return $env:AMDGPU_TARGETS
|
||||
}
|
||||
# Current supported rocblas list from ROCm v6.1.2 on windows
|
||||
# https://rocm.docs.amd.com/projects/install-on-windows/en/latest/reference/system-requirements.html#windows-supported-gpus
|
||||
$GPU_LIST = @(
|
||||
"gfx1030"
|
||||
"gfx1100"
|
||||
"gfx1101"
|
||||
"gfx1102"
|
||||
)
|
||||
$GPU_LIST -join ';'
|
||||
}
|
||||
|
||||
|
||||
function init_vars {
|
||||
write-host "Checking for cmake..."
|
||||
get-command cmake
|
||||
write-host "Checking for ninja..."
|
||||
$d=(get-command -ea 'silentlycontinue' ninja).path
|
||||
if ($null -eq $d) {
|
||||
$MSVC_INSTALL=(Get-CimInstance MSFT_VSInstance -Namespace root/cimv2/vs)[0].InstallLocation
|
||||
$matches=(gci -path $MSVC_INSTALL -r -fi ninja.exe)
|
||||
if ($matches.count -eq 0) {
|
||||
throw "Unable to locate ninja"
|
||||
}
|
||||
$ninjaDir=($matches[0].FullName | split-path -parent)
|
||||
$env:PATH="$env:PATH;$ninjaDir"
|
||||
}
|
||||
if (!$script:SRC_DIR) {
|
||||
$script:SRC_DIR = $(resolve-path "..\..\")
|
||||
}
|
||||
if (!$script:llamacppDir) {
|
||||
$script:llamacppDir = "../llama.cpp"
|
||||
}
|
||||
if (!$script:cmakeTargets) {
|
||||
$script:cmakeTargets = @("ollama_llama_server")
|
||||
}
|
||||
$script:cmakeDefs = @(
|
||||
"-DBUILD_SHARED_LIBS=on",
|
||||
"-DGGML_NATIVE=off",
|
||||
"-DGGML_OPENMP=off"
|
||||
)
|
||||
$script:commonCpuDefs = @("-DCMAKE_POSITION_INDEPENDENT_CODE=on")
|
||||
$script:ARCH = $Env:PROCESSOR_ARCHITECTURE.ToLower()
|
||||
$script:DIST_BASE = "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\runners"
|
||||
md "$script:DIST_BASE" -ea 0 > $null
|
||||
if ($env:CGO_CFLAGS -contains "-g") {
|
||||
$script:cmakeDefs += @("-DCMAKE_VERBOSE_MAKEFILE=on", "-DLLAMA_SERVER_VERBOSE=on", "-DCMAKE_BUILD_TYPE=RelWithDebInfo")
|
||||
$script:config = "RelWithDebInfo"
|
||||
} else {
|
||||
$script:cmakeDefs += @("-DLLAMA_SERVER_VERBOSE=off", "-DCMAKE_BUILD_TYPE=Release")
|
||||
$script:config = "Release"
|
||||
}
|
||||
if ($null -ne $env:CMAKE_SYSTEM_VERSION) {
|
||||
$script:cmakeDefs += @("-DCMAKE_SYSTEM_VERSION=${env:CMAKE_SYSTEM_VERSION}")
|
||||
}
|
||||
# Try to find the CUDA dir
|
||||
if ($env:CUDA_LIB_DIR -eq $null) {
|
||||
$d=(get-command -ea 'silentlycontinue' nvcc).path
|
||||
if ($d -ne $null) {
|
||||
$script:CUDA_LIB_DIR=($d| split-path -parent)
|
||||
$script:CUDA_INCLUDE_DIR=($script:CUDA_LIB_DIR|split-path -parent)+"\include"
|
||||
}
|
||||
} else {
|
||||
$script:CUDA_LIB_DIR=$env:CUDA_LIB_DIR
|
||||
}
|
||||
$script:DUMPBIN=(get-command -ea 'silentlycontinue' dumpbin).path
|
||||
if ($null -eq $env:CMAKE_CUDA_ARCHITECTURES) {
|
||||
$script:CMAKE_CUDA_ARCHITECTURES="50;52;61;70;75;80"
|
||||
} else {
|
||||
$script:CMAKE_CUDA_ARCHITECTURES=$env:CMAKE_CUDA_ARCHITECTURES
|
||||
}
|
||||
# Note: Windows Kits 10 signtool crashes with GCP's plugin
|
||||
if ($null -eq $env:SIGN_TOOL) {
|
||||
${script:SignTool}="C:\Program Files (x86)\Windows Kits\8.1\bin\x64\signtool.exe"
|
||||
} else {
|
||||
${script:SignTool}=${env:SIGN_TOOL}
|
||||
}
|
||||
if ("${env:KEY_CONTAINER}") {
|
||||
${script:OLLAMA_CERT}=$(resolve-path "${script:SRC_DIR}\ollama_inc.crt")
|
||||
}
|
||||
}
|
||||
|
||||
function git_module_setup {
|
||||
# TODO add flags to skip the init/patch logic to make it easier to mod llama.cpp code in-repo
|
||||
& git submodule init
|
||||
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
|
||||
& git submodule update --force "${script:llamacppDir}"
|
||||
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
|
||||
}
|
||||
|
||||
function apply_patches {
|
||||
# Apply temporary patches until fix is upstream
|
||||
foreach ($patch in $(Get-ChildItem "../patches/*.patch")) {
|
||||
git -c 'user.name=nobody' -c 'user.email=<>' -C "${script:llamacppDir}" am $patch.FullName
|
||||
}
|
||||
}
|
||||
|
||||
function build {
|
||||
write-host "generating config with: cmake -S ${script:llamacppDir} -B $script:buildDir $script:cmakeDefs"
|
||||
& cmake --version
|
||||
& cmake -S "${script:llamacppDir}" -B $script:buildDir $script:cmakeDefs
|
||||
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
|
||||
if ($cmakeDefs -contains "-G") {
|
||||
$extra=@("-j8")
|
||||
} else {
|
||||
$extra= @("--", "/maxCpuCount:8")
|
||||
}
|
||||
write-host "building with: cmake --build $script:buildDir --config $script:config $($script:cmakeTargets | ForEach-Object { `"--target`", $_ }) $extra"
|
||||
& cmake --build $script:buildDir --config $script:config ($script:cmakeTargets | ForEach-Object { "--target", $_ }) $extra
|
||||
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
|
||||
# Rearrange output to be consistent between different generators
|
||||
if ($null -ne ${script:config} -And (test-path -path "${script:buildDir}/bin/${script:config}" ) ) {
|
||||
mv -force "${script:buildDir}/bin/${script:config}/*" "${script:buildDir}/bin/"
|
||||
remove-item "${script:buildDir}/bin/${script:config}"
|
||||
}
|
||||
}
|
||||
|
||||
function sign {
|
||||
if ("${env:KEY_CONTAINER}") {
|
||||
write-host "Signing ${script:buildDir}/bin/*.exe ${script:buildDir}/bin/*.dll"
|
||||
foreach ($file in @(get-childitem "${script:buildDir}/bin/*.exe") + @(get-childitem "${script:buildDir}/bin/*.dll")){
|
||||
& "${script:SignTool}" sign /v /fd sha256 /t http://timestamp.digicert.com /f "${script:OLLAMA_CERT}" `
|
||||
/csp "Google Cloud KMS Provider" /kc "${env:KEY_CONTAINER}" $file
|
||||
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
function install {
|
||||
write-host "Installing binaries to dist dir ${script:distDir}"
|
||||
mkdir ${script:distDir} -ErrorAction SilentlyContinue
|
||||
$binaries = dir "${script:buildDir}/bin/*.exe"
|
||||
foreach ($file in $binaries) {
|
||||
copy-item -Path $file -Destination ${script:distDir} -Force
|
||||
}
|
||||
|
||||
write-host "Installing dlls to dist dir ${script:distDir}"
|
||||
$dlls = dir "${script:buildDir}/bin/*.dll"
|
||||
foreach ($file in $dlls) {
|
||||
copy-item -Path $file -Destination ${script:distDir} -Force
|
||||
}
|
||||
}
|
||||
|
||||
function cleanup {
|
||||
$patches = Get-ChildItem "../patches/*.diff"
|
||||
foreach ($patch in $patches) {
|
||||
# Extract file paths from the patch file
|
||||
$filePaths = Get-Content $patch.FullName | Where-Object { $_ -match '^\+\+\+ ' } | ForEach-Object {
|
||||
$parts = $_ -split ' '
|
||||
($parts[1] -split '/', 2)[1]
|
||||
}
|
||||
|
||||
# Checkout each file
|
||||
foreach ($file in $filePaths) {
|
||||
git -C "${script:llamacppDir}" checkout $file
|
||||
}
|
||||
git -C "${script:llamacppDir}" checkout CMakeLists.txt
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
# -DGGML_AVX -- 2011 Intel Sandy Bridge & AMD Bulldozer
|
||||
# -DGGML_AVX2 -- 2013 Intel Haswell & 2015 AMD Excavator / 2017 AMD Zen
|
||||
# -DGGML_FMA (FMA3) -- 2013 Intel Haswell & 2012 AMD Piledriver
|
||||
|
||||
|
||||
function build_cpu_x64 {
|
||||
if ((-not "${env:OLLAMA_SKIP_CPU_GENERATE}" ) -and ((-not "${env:OLLAMA_CPU_TARGET}") -or ("${env:OLLAMA_CPU_TARGET}" -eq "cpu"))) {
|
||||
init_vars
|
||||
$script:cmakeDefs = $script:commonCpuDefs + @("-A", "x64", "-DGGML_AVX=off", "-DGGML_AVX2=off", "-DGGML_AVX512=off", "-DGGML_FMA=off", "-DGGML_F16C=off") + $script:cmakeDefs
|
||||
$script:buildDir="../build/windows/${script:ARCH}/cpu"
|
||||
$script:distDir="$script:DIST_BASE\cpu"
|
||||
write-host "Building LCD CPU"
|
||||
build
|
||||
sign
|
||||
install
|
||||
} else {
|
||||
write-host "Skipping CPU generation step as requested"
|
||||
}
|
||||
}
|
||||
|
||||
function build_cpu_arm64 {
|
||||
if ((-not "${env:OLLAMA_SKIP_CPU_GENERATE}" ) -and ((-not "${env:OLLAMA_CPU_TARGET}") -or ("${env:OLLAMA_CPU_TARGET}" -eq "cpu"))) {
|
||||
init_vars
|
||||
write-host "Checking for clang..."
|
||||
get-command clang
|
||||
$env:CFLAGS="-march=armv8.7-a -fvectorize -ffp-model=fast -fno-finite-math-only"
|
||||
$env:CXXFLAGS="$env:CFLAGS"
|
||||
$env:LDFLAGS="-static-libstdc++"
|
||||
$script:cmakeDefs = $script:commonCpuDefs + @(
|
||||
"-DCMAKE_VERBOSE_MAKEFILE=on",
|
||||
"-DCMAKE_C_COMPILER=clang.exe",
|
||||
"-DCMAKE_CXX_COMPILER=clang++.exe",
|
||||
"-DMSVC_RUNTIME_LIBRARY=MultiThreaded"
|
||||
) + $script:cmakeDefs
|
||||
$script:buildDir="../build/windows/${script:ARCH}/cpu"
|
||||
$script:distDir="$script:DIST_BASE\cpu"
|
||||
write-host "Building LCD CPU"
|
||||
build
|
||||
sign
|
||||
install
|
||||
} else {
|
||||
write-host "Skipping CPU generation step as requested"
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
function build_cpu_avx() {
|
||||
if ((-not "${env:OLLAMA_SKIP_CPU_GENERATE}" ) -and ((-not "${env:OLLAMA_CPU_TARGET}") -or ("${env:OLLAMA_CPU_TARGET}" -eq "cpu_avx"))) {
|
||||
init_vars
|
||||
$script:cmakeDefs = $script:commonCpuDefs + @("-A", "x64", "-DGGML_AVX=on", "-DGGML_AVX2=off", "-DGGML_AVX512=off", "-DGGML_FMA=off", "-DGGML_F16C=off") + $script:cmakeDefs
|
||||
$script:buildDir="../build/windows/${script:ARCH}/cpu_avx"
|
||||
$script:distDir="$script:DIST_BASE\cpu_avx"
|
||||
write-host "Building AVX CPU"
|
||||
build
|
||||
sign
|
||||
install
|
||||
} else {
|
||||
write-host "Skipping CPU AVX generation step as requested"
|
||||
}
|
||||
}
|
||||
|
||||
function build_cpu_avx2() {
|
||||
if ((-not "${env:OLLAMA_SKIP_CPU_GENERATE}" ) -and ((-not "${env:OLLAMA_CPU_TARGET}") -or ("${env:OLLAMA_CPU_TARGET}" -eq "cpu_avx2"))) {
|
||||
init_vars
|
||||
$script:cmakeDefs = $script:commonCpuDefs + @("-A", "x64", "-DGGML_AVX=on", "-DGGML_AVX2=on", "-DGGML_AVX512=off", "-DGGML_FMA=on", "-DGGML_F16C=on") + $script:cmakeDefs
|
||||
$script:buildDir="../build/windows/${script:ARCH}/cpu_avx2"
|
||||
$script:distDir="$script:DIST_BASE\cpu_avx2"
|
||||
write-host "Building AVX2 CPU"
|
||||
build
|
||||
sign
|
||||
install
|
||||
} else {
|
||||
write-host "Skipping CPU AVX2 generation step as requested"
|
||||
}
|
||||
}
|
||||
|
||||
function build_cuda() {
|
||||
if ((-not "${env:OLLAMA_SKIP_CUDA_GENERATE}") -and ("${script:CUDA_LIB_DIR}")) {
|
||||
# Then build cuda as a dynamically loaded library
|
||||
$nvcc = "$script:CUDA_LIB_DIR\nvcc.exe"
|
||||
$script:CUDA_VERSION=((get-item ($nvcc | split-path | split-path)).Basename -Split "\.")[0]
|
||||
if ($null -ne $script:CUDA_VERSION) {
|
||||
$script:CUDA_VARIANT="_"+$script:CUDA_VERSION
|
||||
}
|
||||
init_vars
|
||||
$script:buildDir="../build/windows/${script:ARCH}/cuda$script:CUDA_VARIANT"
|
||||
$script:distDir="$script:DIST_BASE\cuda$script:CUDA_VARIANT"
|
||||
$script:cmakeDefs += @(
|
||||
"-A", "x64",
|
||||
"-DGGML_CUDA=ON",
|
||||
"-DGGML_AVX=on",
|
||||
"-DGGML_AVX2=off",
|
||||
"-DCMAKE_CUDA_FLAGS=-t6",
|
||||
"-DCMAKE_CUDA_ARCHITECTURES=${script:CMAKE_CUDA_ARCHITECTURES}",
|
||||
"-DCMAKE_CUDA_COMPILER_TOOLKIT_ROOT=$env:CUDA_PATH"
|
||||
)
|
||||
if ($null -ne $env:OLLAMA_CUSTOM_CUDA_DEFS) {
|
||||
write-host "OLLAMA_CUSTOM_CUDA_DEFS=`"${env:OLLAMA_CUSTOM_CUDA_DEFS}`""
|
||||
$script:cmakeDefs +=@("${env:OLLAMA_CUSTOM_CUDA_DEFS}")
|
||||
write-host "building custom CUDA GPU"
|
||||
}
|
||||
build
|
||||
sign
|
||||
install
|
||||
|
||||
md "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\" -ea 0 > $null
|
||||
write-host "copying CUDA dependencies to ${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
|
||||
cp "${script:CUDA_LIB_DIR}\cudart64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
|
||||
cp "${script:CUDA_LIB_DIR}\cublas64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
|
||||
cp "${script:CUDA_LIB_DIR}\cublasLt64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
|
||||
} else {
|
||||
write-host "Skipping CUDA generation step"
|
||||
}
|
||||
}
|
||||
|
||||
function build_oneapi() {
|
||||
if ((-not "${env:OLLAMA_SKIP_ONEAPI_GENERATE}") -and ("${env:ONEAPI_ROOT}")) {
|
||||
# Get oneAPI version
|
||||
$script:ONEAPI_VERSION = icpx --version
|
||||
$script:ONEAPI_VERSION = [regex]::Match($script:ONEAPI_VERSION, '(?<=oneAPI DPC\+\+/C\+\+ Compiler )(?<version>\d+\.\d+\.\d+)').Value
|
||||
if ($null -ne $script:ONEAPI_VERSION) {
|
||||
$script:ONEAPI_VARIANT = "_v" + $script:ONEAPI_VERSION
|
||||
}
|
||||
init_vars
|
||||
$script:buildDir = "../build/windows/${script:ARCH}/oneapi$script:ONEAPI_VARIANT"
|
||||
$script:distDir ="$script:DIST_BASE\oneapi$script:ONEAPI_VARIANT"
|
||||
$script:cmakeDefs += @(
|
||||
"-G", "MinGW Makefiles",
|
||||
"-DGGML_SYCL=ON",
|
||||
"-DCMAKE_C_COMPILER=icx",
|
||||
"-DCMAKE_CXX_COMPILER=icx",
|
||||
"-DCMAKE_BUILD_TYPE=Release"
|
||||
)
|
||||
|
||||
Write-Host "Building oneAPI"
|
||||
build
|
||||
# Ninja doesn't prefix with config name
|
||||
if ($null -ne $script:DUMPBIN) {
|
||||
& "$script:DUMPBIN" /dependents "${script:buildDir}/bin/ollama_llama_server.exe" | Select-String ".dll"
|
||||
}
|
||||
sign
|
||||
install
|
||||
|
||||
md "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\" -ea 0 > $null
|
||||
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\libirngmd.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
|
||||
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\libmmd.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
|
||||
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_level_zero.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
|
||||
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_unified_runtime.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
|
||||
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_win_proxy_loader.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
|
||||
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\svml_dispmd.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
|
||||
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\sycl7.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
|
||||
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_core.2.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
|
||||
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_sycl_blas.4.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
|
||||
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_tbb_thread.2.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
|
||||
} else {
|
||||
Write-Host "Skipping oneAPI generation step"
|
||||
}
|
||||
}
|
||||
|
||||
function build_rocm() {
|
||||
if ((-not "${env:OLLAMA_SKIP_ROCM_GENERATE}") -and ("${env:HIP_PATH}")) {
|
||||
$script:ROCM_VERSION=(get-item $env:HIP_PATH).Basename
|
||||
if ($null -ne $script:ROCM_VERSION) {
|
||||
$script:ROCM_VARIANT="_v"+$script:ROCM_VERSION
|
||||
}
|
||||
|
||||
init_vars
|
||||
$script:buildDir="../build/windows/${script:ARCH}/rocm$script:ROCM_VARIANT"
|
||||
$script:distDir="$script:DIST_BASE\rocm$script:ROCM_VARIANT"
|
||||
$script:cmakeDefs += @(
|
||||
"-G", "Ninja",
|
||||
"-DCMAKE_C_COMPILER=clang.exe",
|
||||
"-DCMAKE_CXX_COMPILER=clang++.exe",
|
||||
"-DGGML_HIPBLAS=on",
|
||||
"-DHIP_PLATFORM=amd",
|
||||
"-DGGML_AVX=on",
|
||||
"-DGGML_AVX2=off",
|
||||
"-DCMAKE_POSITION_INDEPENDENT_CODE=on",
|
||||
"-DAMDGPU_TARGETS=$(amdGPUs)",
|
||||
"-DGPU_TARGETS=$(amdGPUs)"
|
||||
)
|
||||
|
||||
# Make sure the ROCm binary dir is first in the path
|
||||
$env:PATH="$env:HIP_PATH\bin;$env:PATH"
|
||||
|
||||
# We have to clobber the LIB var from the developer shell for clang to work properly
|
||||
$env:LIB=""
|
||||
if ($null -ne $env:OLLAMA_CUSTOM_ROCM_DEFS) {
|
||||
write-host "OLLAMA_CUSTOM_ROCM_DEFS=`"${env:OLLAMA_CUSTOM_ROCM_DEFS}`""
|
||||
$script:cmakeDefs += @("${env:OLLAMA_CUSTOM_ROCM_DEFS}")
|
||||
write-host "building custom ROCM GPU"
|
||||
}
|
||||
write-host "Building ROCm"
|
||||
build
|
||||
# Ninja doesn't prefix with config name
|
||||
${script:config}=""
|
||||
if ($null -ne $script:DUMPBIN) {
|
||||
& "$script:DUMPBIN" /dependents "${script:buildDir}/bin/ollama_llama_server.exe" | select-string ".dll"
|
||||
}
|
||||
sign
|
||||
install
|
||||
|
||||
md "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\rocblas\library\" -ea 0 > $null
|
||||
cp "${env:HIP_PATH}\bin\hipblas.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
|
||||
cp "${env:HIP_PATH}\bin\rocblas.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
|
||||
# amdhip64.dll dependency comes from the driver and must be installed on the host to use AMD GPUs
|
||||
cp "${env:HIP_PATH}\bin\rocblas\library\*" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\rocblas\library\"
|
||||
} else {
|
||||
write-host "Skipping ROCm generation step"
|
||||
}
|
||||
}
|
||||
|
||||
init_vars
|
||||
if ($($args.count) -eq 0) {
|
||||
git_module_setup
|
||||
apply_patches
|
||||
if ($script:ARCH -eq "arm64") {
|
||||
build_cpu_arm64
|
||||
} else { # amd64
|
||||
build_cpu_x64
|
||||
build_cpu_avx
|
||||
build_cpu_avx2
|
||||
build_cuda
|
||||
build_oneapi
|
||||
build_rocm
|
||||
}
|
||||
|
||||
cleanup
|
||||
write-host "`ngo generate completed. LLM runners: $(get-childitem -path $script:DIST_BASE)"
|
||||
} else {
|
||||
for ( $i = 0; $i -lt $args.count; $i++ ) {
|
||||
write-host "performing $($args[$i])"
|
||||
& $($args[$i])
|
||||
}
|
||||
}
|
@ -1,3 +0,0 @@
|
||||
package generate
|
||||
|
||||
//go:generate bash ./gen_darwin.sh
|
@ -1,3 +0,0 @@
|
||||
package generate
|
||||
|
||||
//go:generate bash ./gen_linux.sh
|
@ -1,3 +0,0 @@
|
||||
package generate
|
||||
|
||||
//go:generate powershell -ExecutionPolicy Bypass -File ./gen_windows.ps1
|
@ -51,8 +51,8 @@ func (llm *ggla) KV() KV {
|
||||
return llm.kv
|
||||
}
|
||||
|
||||
func (llm *ggla) Tensors() Tensors {
|
||||
return Tensors{
|
||||
func (llm *ggla) Tensors() *Tensors {
|
||||
return &Tensors{
|
||||
Items: llm.tensors,
|
||||
Offset: llm.tensorOffset,
|
||||
}
|
||||
|
84
llm/ggml.go
84
llm/ggml.go
@ -5,7 +5,9 @@ import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"slices"
|
||||
"strings"
|
||||
"sync"
|
||||
|
||||
"github.com/ollama/ollama/util/bufioutil"
|
||||
)
|
||||
@ -17,7 +19,7 @@ type GGML struct {
|
||||
|
||||
type model interface {
|
||||
KV() KV
|
||||
Tensors() Tensors
|
||||
Tensors() *Tensors
|
||||
}
|
||||
|
||||
type KV map[string]any
|
||||
@ -123,25 +125,34 @@ func (kv KV) ChatTemplate() string {
|
||||
type Tensors struct {
|
||||
Items []*Tensor
|
||||
Offset uint64
|
||||
|
||||
layers map[string]Layer
|
||||
layersOnce sync.Once
|
||||
}
|
||||
|
||||
func (ts Tensors) Layers() map[string]Layer {
|
||||
layers := make(map[string]Layer)
|
||||
for _, t := range ts.Items {
|
||||
parts := strings.Split(t.Name, ".")
|
||||
if parts[0] == "blk" {
|
||||
// join first and second part, e.g. blk.%d
|
||||
parts = append([]string{fmt.Sprintf("%s.%s", parts[0], parts[1])}, parts[2:]...)
|
||||
func (ts *Tensors) Layers() map[string]Layer {
|
||||
ts.layersOnce.Do(func() {
|
||||
ts.layers = make(map[string]Layer)
|
||||
for _, t := range ts.Items {
|
||||
parts := strings.Split(t.Name, ".")
|
||||
if index := slices.IndexFunc(parts, func(s string) bool { return s == "blk" || s == "mm" }); index != -1 {
|
||||
if len(parts) > index+2 {
|
||||
// blk and mm should have a number after them, join it
|
||||
parts = append(
|
||||
[]string{strings.Join(parts[:index+2], ".")},
|
||||
parts[index+2:]...)
|
||||
}
|
||||
}
|
||||
|
||||
if _, ok := ts.layers[parts[0]]; !ok {
|
||||
ts.layers[parts[0]] = make(Layer)
|
||||
}
|
||||
|
||||
ts.layers[parts[0]][strings.Join(parts[1:], ".")] = t
|
||||
}
|
||||
})
|
||||
|
||||
if _, ok := layers[parts[0]]; !ok {
|
||||
layers[parts[0]] = make(Layer)
|
||||
}
|
||||
|
||||
layers[parts[0]][strings.Join(parts[1:], ".")] = t
|
||||
}
|
||||
|
||||
return layers
|
||||
return ts.layers
|
||||
}
|
||||
|
||||
type Layer map[string]*Tensor
|
||||
@ -349,7 +360,7 @@ func DecodeGGML(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
|
||||
}, offset, nil
|
||||
}
|
||||
|
||||
func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload uint64) {
|
||||
func (llm GGML) GraphSize(context, batch uint64) (kv, partialOffload, fullOffload uint64) {
|
||||
embedding := llm.KV().EmbeddingLength()
|
||||
heads := llm.KV().HeadCount()
|
||||
headsKV := llm.KV().HeadCountKV()
|
||||
@ -357,9 +368,12 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
|
||||
|
||||
embeddingHeads := llm.KV().EmbeddingHeadCount()
|
||||
embeddingHeadsK := llm.KV().EmbeddingHeadCountK()
|
||||
embeddingHeadsV := llm.KV().EmbeddingHeadCountV()
|
||||
|
||||
layers := llm.Tensors().Layers()
|
||||
|
||||
kv = 2 * context * llm.KV().BlockCount() * (embeddingHeadsK + embeddingHeadsV) * headsKV
|
||||
|
||||
switch llm.KV().Architecture() {
|
||||
case "llama":
|
||||
fullOffload = max(
|
||||
@ -389,6 +403,42 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
|
||||
4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
|
||||
)
|
||||
}
|
||||
case "mllama":
|
||||
var visionTokens, tiles uint64 = 1601, 4
|
||||
|
||||
if crossAttentionLayers, ok := llm.KV()["mllama.attention.cross_attention_layers"].(*array); ok {
|
||||
kv = headsKV *
|
||||
(embeddingHeadsK + embeddingHeadsV) * // one for K, one for V
|
||||
(2* // sizeof(float16)
|
||||
(llm.KV().BlockCount()-uint64(crossAttentionLayers.size))* // num non-cross attention layers
|
||||
context +
|
||||
4* // sizeof(float32)
|
||||
uint64(crossAttentionLayers.size)* // num cross attention layers
|
||||
visionTokens*
|
||||
tiles)
|
||||
}
|
||||
|
||||
fullOffload = max(
|
||||
4*batch*(2+3*embedding+embeddingHeadsK*heads+context*(1+heads)),
|
||||
// vocab graph
|
||||
4*batch*(embedding+vocab),
|
||||
)
|
||||
|
||||
var ropeFreqsCount uint64
|
||||
if ropeFreqs, ok := llm.Tensors().Layers()["rope_freqs"]; ok {
|
||||
if ropeFreqsWeights, ok := ropeFreqs["weights"]; ok {
|
||||
ropeFreqsCount = ropeFreqsWeights.parameters()
|
||||
}
|
||||
}
|
||||
|
||||
partialOffload = max(
|
||||
4*(batch*
|
||||
(2*embedding+1+context*(1+heads)+embeddingHeadsK*heads)+
|
||||
ropeFreqsCount+
|
||||
embeddingHeadsK*context*headsKV),
|
||||
// vocab graph
|
||||
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
||||
)
|
||||
case "gemma", "gemma2":
|
||||
fullOffload = max(
|
||||
4*batch*(embedding+vocab),
|
||||
|
@ -110,8 +110,8 @@ func (llm *gguf) KV() KV {
|
||||
return llm.kv
|
||||
}
|
||||
|
||||
func (llm *gguf) Tensors() Tensors {
|
||||
return Tensors{
|
||||
func (llm *gguf) Tensors() *Tensors {
|
||||
return &Tensors{
|
||||
Items: llm.tensors,
|
||||
Offset: llm.tensorOffset,
|
||||
}
|
||||
|
@ -1 +0,0 @@
|
||||
Subproject commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555
|
@ -3,6 +3,7 @@ package llm
|
||||
import (
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"os"
|
||||
"strconv"
|
||||
"strings"
|
||||
|
||||
@ -63,6 +64,8 @@ type MemoryEstimate struct {
|
||||
memoryLayerOutput uint64
|
||||
graphFullOffload uint64
|
||||
graphPartialOffload uint64
|
||||
|
||||
projectorWeights, projectorGraph uint64
|
||||
}
|
||||
|
||||
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
|
||||
@ -78,7 +81,8 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
|
||||
var graphOffload uint64
|
||||
|
||||
// Projectors loaded into GPU0 only
|
||||
var projectorSize uint64
|
||||
var projectorWeights uint64
|
||||
var projectorGraph uint64
|
||||
|
||||
// Conditional output size on GPU 0
|
||||
var memoryLayerOutput uint64
|
||||
@ -103,7 +107,9 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
|
||||
slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", availableList)
|
||||
|
||||
for _, projector := range projectors {
|
||||
projectorSize += projectorMemoryRequirements(projector)
|
||||
weight, graph := projectorMemoryRequirements(projector)
|
||||
projectorWeights += weight
|
||||
projectorGraph += graph
|
||||
|
||||
// multimodal models require at least 2048 context
|
||||
opts.NumCtx = max(opts.NumCtx, 2048)
|
||||
@ -117,13 +123,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
|
||||
slog.Warn("model missing blk.0 layer size")
|
||||
}
|
||||
|
||||
// fp16 k,v = sizeof(float16) * n_ctx * n_layer * (n_embd_head_k + n_embd_head_v) * n_head_kv
|
||||
var kv uint64 = 2 * uint64(opts.NumCtx) * ggml.KV().BlockCount() * (ggml.KV().EmbeddingHeadCountK() + ggml.KV().EmbeddingHeadCountV()) * ggml.KV().HeadCountKV()
|
||||
|
||||
// KV is proportional to the number of layers
|
||||
layerSize += kv / ggml.KV().BlockCount()
|
||||
|
||||
graphPartialOffload, graphFullOffload = ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)))
|
||||
kv, graphPartialOffload, graphFullOffload := ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)))
|
||||
if graphPartialOffload == 0 {
|
||||
graphPartialOffload = ggml.KV().GQA() * kv / 6
|
||||
}
|
||||
@ -131,6 +131,9 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
|
||||
graphFullOffload = graphPartialOffload
|
||||
}
|
||||
|
||||
// KV is proportional to the number of layers
|
||||
layerSize += kv / ggml.KV().BlockCount()
|
||||
|
||||
// on metal there's no partial offload overhead
|
||||
if gpus[0].Library == "metal" {
|
||||
graphPartialOffload = graphFullOffload
|
||||
@ -149,7 +152,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
|
||||
}
|
||||
|
||||
// Output layer handled at the end if we have space
|
||||
gpuZeroOverhead := projectorSize
|
||||
gpuZeroOverhead := projectorWeights + projectorGraph
|
||||
|
||||
// Reduce set of GPUs to only those that have sufficient space to fit overhead and at least one layer
|
||||
var layerCount int
|
||||
@ -303,6 +306,8 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
|
||||
memoryLayerOutput: memoryLayerOutput,
|
||||
graphFullOffload: graphFullOffload,
|
||||
graphPartialOffload: graphPartialOffload,
|
||||
projectorWeights: projectorWeights,
|
||||
projectorGraph: projectorGraph,
|
||||
}
|
||||
|
||||
if gpus[0].Library == "cpu" {
|
||||
@ -323,7 +328,19 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
|
||||
|
||||
func (m MemoryEstimate) log() {
|
||||
overhead := envconfig.GpuOverhead()
|
||||
slog.Info(
|
||||
|
||||
log := slog.With()
|
||||
if m.projectorWeights > 0 {
|
||||
log = log.With(
|
||||
slog.Group(
|
||||
"projector",
|
||||
"weights", format.HumanBytes2(m.projectorWeights),
|
||||
"graph", format.HumanBytes2(m.projectorGraph),
|
||||
),
|
||||
)
|
||||
}
|
||||
|
||||
log.Info(
|
||||
"offload to "+m.inferenceLibrary,
|
||||
slog.Group(
|
||||
"layers",
|
||||
@ -371,3 +388,52 @@ func (m MemoryEstimate) log() {
|
||||
),
|
||||
)
|
||||
}
|
||||
|
||||
func projectorMemoryRequirements(filename string) (weights, graphSize uint64) {
|
||||
file, err := os.Open(filename)
|
||||
if err != nil {
|
||||
return 0, 0
|
||||
}
|
||||
defer file.Close()
|
||||
|
||||
ggml, _, err := DecodeGGML(file, 0)
|
||||
if err != nil {
|
||||
return 0, 0
|
||||
}
|
||||
|
||||
for _, layer := range ggml.Tensors().Layers() {
|
||||
weights += layer.size()
|
||||
}
|
||||
|
||||
switch arch := ggml.KV().Architecture(); arch {
|
||||
case "mllama":
|
||||
kv := func(n string) uint64 {
|
||||
if v, ok := ggml.KV()[arch+".vision."+n].(uint32); ok {
|
||||
return uint64(v)
|
||||
}
|
||||
|
||||
return 0
|
||||
}
|
||||
|
||||
imageSize := kv("image_size")
|
||||
|
||||
maxNumTiles := kv("max_num_tiles")
|
||||
embeddingLength := kv("embedding_length")
|
||||
headCount := kv("attention.head_count")
|
||||
|
||||
numPatches := (imageSize / kv("patch_size")) * (imageSize / kv("patch_size"))
|
||||
if _, ok := ggml.Tensors().Layers()["v"]["class_embd"]; ok {
|
||||
numPatches++
|
||||
}
|
||||
|
||||
numPaddedPatches := numPatches + 8 - (numPatches%8)%8
|
||||
|
||||
graphSize = 4 * (8 +
|
||||
imageSize*imageSize*kv("num_channels")*maxNumTiles +
|
||||
embeddingLength*numPatches*maxNumTiles +
|
||||
9*embeddingLength*numPaddedPatches*maxNumTiles +
|
||||
numPaddedPatches*maxNumTiles*numPaddedPatches*maxNumTiles*headCount)
|
||||
}
|
||||
|
||||
return weights, graphSize
|
||||
}
|
||||
|
@ -1,22 +0,0 @@
|
||||
From 7a3555098d4591c9b329c677654497ed8cee07ec Mon Sep 17 00:00:00 2001
|
||||
From: Michael Yang <mxyng@pm.me>
|
||||
Date: Fri, 23 Aug 2024 11:27:48 -0700
|
||||
Subject: [PATCH] patch cmakelist
|
||||
|
||||
---
|
||||
CMakeLists.txt | 2 ++
|
||||
1 file changed, 2 insertions(+)
|
||||
|
||||
diff --git a/CMakeLists.txt b/CMakeLists.txt
|
||||
index 415743c2..aaadd13e 100644
|
||||
--- a/CMakeLists.txt
|
||||
+++ b/CMakeLists.txt
|
||||
@@ -210,3 +210,5 @@ if (LLAMA_BUILD_EXAMPLES)
|
||||
add_subdirectory(examples)
|
||||
add_subdirectory(pocs)
|
||||
endif()
|
||||
+
|
||||
+add_subdirectory(../ext_server ext_server) # ollama
|
||||
--
|
||||
2.39.3 (Apple Git-146)
|
||||
|
@ -1,44 +0,0 @@
|
||||
From c97ed60c3369294d5551ba099a88ddc509687df1 Mon Sep 17 00:00:00 2001
|
||||
From: Gabe Goodhart <ghart@us.ibm.com>
|
||||
Date: Thu, 19 Sep 2024 16:55:15 -0600
|
||||
Subject: [PATCH] patch load progress
|
||||
|
||||
---
|
||||
common/common.cpp | 2 ++
|
||||
common/common.h | 7 +++++++
|
||||
2 files changed, 9 insertions(+)
|
||||
|
||||
diff --git a/common/common.cpp b/common/common.cpp
|
||||
index 8d0ed4f9..a09e8a53 100644
|
||||
--- a/common/common.cpp
|
||||
+++ b/common/common.cpp
|
||||
@@ -955,6 +955,8 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
|
||||
mparams.use_mmap = params.use_mmap;
|
||||
mparams.use_mlock = params.use_mlock;
|
||||
mparams.check_tensors = params.check_tensors;
|
||||
+ mparams.progress_callback = params.progress_callback;
|
||||
+ mparams.progress_callback_user_data = params.progress_callback_user_data;
|
||||
if (params.kv_overrides.empty()) {
|
||||
mparams.kv_overrides = NULL;
|
||||
} else {
|
||||
diff --git a/common/common.h b/common/common.h
|
||||
index cb87c447..818a4a4a 100644
|
||||
--- a/common/common.h
|
||||
+++ b/common/common.h
|
||||
@@ -266,6 +266,13 @@ struct gpt_params {
|
||||
std::string mmproj = ""; // path to multimodal projector // NOLINT
|
||||
std::vector<std::string> image; // path to image file(s)
|
||||
|
||||
+ // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
|
||||
+ // If the provided progress_callback returns true, model loading continues.
|
||||
+ // If it returns false, model loading is immediately aborted.
|
||||
+ llama_progress_callback progress_callback = NULL;
|
||||
+ // context pointer passed to the progress callback
|
||||
+ void * progress_callback_user_data;
|
||||
+
|
||||
// embedding
|
||||
bool embedding = false; // get only sentence embedding
|
||||
int32_t embd_normalize = 2; // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
|
||||
--
|
||||
2.39.3 (Apple Git-146)
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
x
Reference in New Issue
Block a user