import gradio as gr import sys import os from collections.abc import Iterable from langchain.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader, UnstructuredHTMLLoader from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter from langchain.chains import RetrievalQA from langchain.llms import Ollama from langchain.vectorstores import FAISS, Chroma from langchain.embeddings import GPT4AllEmbeddings, CacheBackedEmbeddings from langchain.storage import LocalFileStore#, RedisStore, UpstashRedisStore, InMemoryStore ollama = Ollama(base_url='http://localhost:11434', #model="codellama") #model="starcoder") model="llama2") docsUrl = "/home/user/dev/docs" documents = [] for file in os.listdir(docsUrl): if file.endswith(".pdf"): pdf_path = docsUrl + "/" + file loader = PyPDFLoader(pdf_path) documents.extend(loader.load()) print("Found " + pdf_path) elif file.endswith('.docx') or file.endswith('.doc'): doc_path = docsUrl + "/" + file loader = Docx2txtLoader(doc_path) documents.extend(loader.load()) print("Found " + doc_path) elif file.endswith('.txt') or file.endswith('.kt') or file.endswith('.json'): text_path = docsUrl + "/" + file loader = TextLoader(text_path) documents.extend(loader.load()) print("Found " + text_path) elif file.endswith('.html') or file.endswith('.htm'): htm_path = docsUrl + "/" + file loader = UnstructuredHTMLLoader(htm_path) documents.extend(loader.load()) print("Found " + htm_path) text_splitter = CharacterTextSplitter(chunk_size=32, chunk_overlap=32) all_splits = text_splitter.split_documents(documents) #fs = LocalFileStore("/home/gabriele/dev/cache/") #underlying_embeddings = GPT4AllEmbeddings() #cached_embedder = CacheBackedEmbeddings.from_bytes_store( # underlying_embeddings, fs, namespace=underlying_embeddings.model #) vectorstore = Chroma.from_documents(documents=all_splits, embedding=GPT4AllEmbeddings(embeddings_chunk_size=1000)) #vectorstore = FAISS.from_documents(documents=all_splits, embedding=cached_embedder) def AI_response(question, history): docs = vectorstore.similarity_search(question) len(docs) qachain=RetrievalQA.from_chain_type(ollama, retriever=vectorstore.as_retriever()) #reply=qachain() #reply=str(qachain({"query": question})) reply=str(qachain.run(question)) return reply demo = gr.ChatInterface(AI_response, title="Put your files in folder" + docsUrl) if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860)