package main import ( "context" "encoding/json" "flag" "fmt" "log" "log/slog" "math" "net" "net/http" "os" "path/filepath" "runtime" "strconv" "strings" "sync" "time" "github.com/ollama/ollama/api" "github.com/ollama/ollama/llama" ) type Sequence struct { // number of tokens evaluated nPast int // batch index iBatch int // number of tokens predicted so far numPredicted int // tokens left to evaluate tokens []int // channel to send responses over responses chan string // number of tokens to predict numPredict int samplingCtx *llama.SamplingContext // channel to send back the embedding if embedding only embedding chan []float32 // stop sequences stop []string // true if an embedding are to be returned instead of text generation embeddingOnly bool doneReason string // Metrics t_start_process_prompt time.Time t_start_genereration time.Time n_decoded int n_prompt_tokens int } // prompt returns true if the prompt is still being processed // TODO (jmorganca): clean up this logic func (s *Sequence) prompt() bool { return s.nPast < len(s.tokens)-1 } func (s *Server) NewSequence(prompt string, numPredict int, stop []string, params *llama.SamplingParams, embedding bool) *Sequence { tokens, err := s.lc.Model().Tokenize(prompt, true, true) if err != nil { panic(err) } // truncate to last n tokens // TODO: this shouldn't happen and will severely impact generation // quality. instead we should ensure to cut prompt in the API. if len(tokens) > s.numCtx { tokens = tokens[:s.numCtx] } var sc *llama.SamplingContext if params != nil { sc = llama.NewSamplingContext(*params) for _, t := range tokens { sc.Accept(s.lc, t, false) } } return &Sequence{ tokens: tokens, n_prompt_tokens: len(tokens), responses: make(chan string, 1), embedding: make(chan []float32, 1), samplingCtx: sc, embeddingOnly: embedding, stop: stop, } } type Server struct { model *llama.Model lc *llama.Context cc *llama.ClipContext batchSize int // parallel is the number of parallel requests to handle parallel int // seqs is the list of parallel sequences being evaluated // TODO (jmorganca): this can probably be moved into run() seqs []*Sequence // context window size numCtx int mu sync.Mutex cond *sync.Cond progress float32 status string } func (s *Server) allNil() bool { for _, item := range s.seqs { if item != nil { return false } } return true } func (s *Server) run(ctx context.Context) { // TODO - should this be n_ctx / parallel like the old server.cpp setup? batch := llama.NewBatch(s.batchSize, 0, s.parallel) defer batch.Free() // build up stop sequences as we recognize them // TODO (jmorganca): simplify this pieces := make([][]string, s.parallel) for { select { case <-ctx.Done(): return default: slog.Debug("Processing batch", "seqs", len(s.seqs)) s.mu.Lock() for s.allNil() { s.cond.Wait() // Wait until an item is added } s.mu.Unlock() for i, seq := range s.seqs { if seq == nil { continue } hitLimit := seq.numPredict > 0 && seq.numPredicted > seq.numPredict // if past the num predict limit if hitLimit || seq.nPast > s.numCtx { seq.doneReason = "limit" close(seq.responses) s.lc.KvCacheSeqRm(i, 0, -1) s.seqs[i] = nil continue } if seq.t_start_process_prompt.IsZero() { seq.t_start_process_prompt = time.Now() } for j, t := range seq.tokens { // todo: make this n_batch if j > s.batchSize { break } batch.Add(t, seq.nPast, []int{i}, !seq.prompt()) seq.nPast++ } seq.iBatch = batch.NumTokens() - 1 } err := s.lc.Decode(batch) if err != nil { slog.Error("failed to decode batch", "error", err) panic("Failed to decode") } for i, seq := range s.seqs { if seq == nil { continue } // don't sample prompt processing if seq.prompt() { continue } // if done processing the prompt, generating an embedding and return if seq.embeddingOnly { embd := s.lc.GetEmbeddingsSeq(i) if embd == nil { embd = s.lc.GetEmbeddingsIth(seq.iBatch) } seq.embedding <- embd close(seq.embedding) s.lc.KvCacheSeqRm(i, 0, -1) s.seqs[i] = nil continue } // sample a token // logits := s.lc.GetLogitsIth(ibatch[i]) // token := s.lc.SampleTokenGreedy(logits) token := seq.samplingCtx.Sample(s.lc, nil, seq.iBatch) seq.samplingCtx.Accept(s.lc, token, true) seq.n_decoded += 1 if seq.n_decoded == 1 { seq.t_start_genereration = time.Now() } piece := s.model.TokenToPiece(token) seq.numPredicted++ slog.Debug("sampled", "piece", piece) // if it's an end of sequence token, break // TODO: just end this sequence if s.model.TokenIsEog(token) { // TODO: end the sequence instead of quitting the pool s.lc.KvCacheSeqRm(i, 0, -1) // TODO (jmorganca): we should send this back // as it's important for the /api/generate context // seq.responses <- piece seq.doneReason = "stop" close(seq.responses) seq.samplingCtx.Free() pieces[i] = []string{} s.seqs[i] = nil continue } seq.tokens = []int{token} pieces[i] = append(pieces[i], piece) sequence := strings.Join(pieces[i], "") if ok, stop := findStop(sequence, seq.stop); ok { slog.Info("hit stop token", "stop", seq.stop) truncated := truncateStop(pieces[i], stop) for _, p := range truncated { seq.responses <- p } s.lc.KvCacheSeqRm(i, 0, -1) seq.doneReason = "stop" close(seq.responses) seq.samplingCtx.Free() pieces[i] = []string{} s.seqs[i] = nil continue } if containsStopSuffix(sequence, seq.stop) { continue } for _, p := range pieces[i] { seq.responses <- p } pieces[i] = []string{} } batch.Clear() } } } type CompletionRequest struct { Prompt string `json:"prompt"` Images []string `json:"images"` Grammar string `json:"grammar"` Stop []string `json:"stop"` api.Options } type Timings struct { PredictedN int `json:"predicted_n"` PredictedMS float64 `json:"predicted_ms"` PromptN int `json:"prompt_n"` PromptMS float64 `json:"prompt_ms"` } type CompletionResponse struct { Content string `json:"content"` Stop bool `json:"stop"` Model string `json:"model,omitempty"` Prompt string `json:"prompt,omitempty"` StoppedLimit bool `json:"stopped_limit,omitempty"` PredictedN int `json:"predicted_n,omitempty"` PredictedMS float64 `json:"predicted_ms,omitempty"` PromptN int `json:"prompt_n,omitempty"` PromptMS float64 `json:"prompt_ms,omitempty"` Timings Timings `json:"timings"` } func (s *Server) completion(w http.ResponseWriter, r *http.Request) { var req CompletionRequest req.Options = api.DefaultOptions() if err := json.NewDecoder(r.Body).Decode(&req); err != nil { http.Error(w, "Bad request", http.StatusBadRequest) return } // Set the headers to indicate streaming w.Header().Set("Content-Type", "application/json") w.Header().Set("Transfer-Encoding", "chunked") w.WriteHeader(http.StatusOK) var samplingParams llama.SamplingParams samplingParams.TopK = req.TopK samplingParams.TopP = req.TopP samplingParams.TfsZ = req.TFSZ samplingParams.TypicalP = req.TypicalP samplingParams.Temp = req.Temperature samplingParams.PenaltyRepeat = req.RepeatPenalty samplingParams.PenaltyFreq = req.FrequencyPenalty samplingParams.PenaltyPresent = req.PresencePenalty samplingParams.Mirostat = req.Mirostat samplingParams.MirostatTau = req.MirostatTau samplingParams.MirostatEta = req.MirostatEta samplingParams.PenalizeNl = req.PenalizeNewline samplingParams.Seed = uint32(req.Seed) samplingParams.Grammar = req.Grammar seq := s.NewSequence(req.Prompt, req.NumPredict, req.Stop, &samplingParams, false) // TODO (jmorganca): add to sequence queue instead of // failing if a slot isn't available s.mu.Lock() for i, sq := range s.seqs { if sq == nil { s.seqs[i] = seq s.cond.Signal() break } } s.mu.Unlock() // stream the response for content := range seq.responses { if err := json.NewEncoder(w).Encode(&CompletionResponse{ Content: content, }); err != nil { log.Println("Failed to encode result:", err) return } flusher, ok := w.(http.Flusher) if !ok { http.Error(w, "Streaming not supported", http.StatusInternalServerError) return } flusher.Flush() } // Send the stop if err := json.NewEncoder(w).Encode(&CompletionResponse{ Stop: true, Timings: Timings{ PromptN: seq.n_prompt_tokens, PromptMS: float64(seq.t_start_genereration.Sub(seq.t_start_process_prompt).Milliseconds()), PredictedN: seq.n_decoded, PredictedMS: float64(time.Since(seq.t_start_genereration).Milliseconds()), }, }); err != nil { log.Println("Failed to encode result:", err) return } flusher, ok := w.(http.Flusher) if !ok { http.Error(w, "Streaming not supported", http.StatusInternalServerError) return } flusher.Flush() } type EmbeddingRequest struct { Content []string `json:"content"` } type EmbeddingResponse struct { Embedding [][]float32 `json:"embedding"` } // TODO (jmorganca): is it safe to do this concurrently with decoding? func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) { var req EmbeddingRequest if err := json.NewDecoder(r.Body).Decode(&req); err != nil { http.Error(w, "Bad request", http.StatusBadRequest) return } w.Header().Set("Content-Type", "application/json") slog.Debug("embedding request", "content", req.Content) seqs := make([]*Sequence, len(req.Content)) embeddings := make([][]float32, len(req.Content)) var processed int for i, content := range req.Content { seqs[i] = s.NewSequence(content, 0, nil, nil, true) } // TODO - refactor to go routines to add seq's and drain the responses // so we don't stall until each set is iterated through for processed < len(seqs) { s.mu.Lock() for i, sq := range s.seqs { if processed >= len(seqs) { break } if sq == nil { s.seqs[i] = seqs[processed] processed += 1 } } s.cond.Signal() s.mu.Unlock() for i := range processed { embeddings[i] = <-seqs[i].embedding } } if err := json.NewEncoder(w).Encode(&EmbeddingResponse{ Embedding: embeddings, }); err != nil { log.Println("Failed to encode result:", err) return } } type HealthResponse struct { Status string `json:"status"` Progress float32 `json:"progress"` } // TODO (jmorganca): is it safe to do this concurrently with decoding? func (s *Server) health(w http.ResponseWriter, r *http.Request) { w.Header().Set("Content-Type", "application/json") if err := json.NewEncoder(w).Encode(&HealthResponse{ Status: s.status, Progress: s.progress, }); err != nil { log.Println("Failed to encode result:", err) return } } func main() { mpath := flag.String("model", "", "Path to model binary file") ppath := flag.String("mmproj", "", "Path to projector binary file") parallel := flag.Int("parallel", 1, "Number of sequences to handle simultaneously") batchSize := flag.Int("batch-size", 512, "Batch size") nGpuLayers := flag.Int("n-gpu-layers", 0, "Number of layers to offload to GPU") mainGpu := flag.Int("main-gpu", 0, "Main GPU") flashAttention := flag.Bool("flash-attn", false, "Enable flash attention") numCtx := flag.Int("ctx-size", 2048, "Context (or KV cache) size") lpath := flag.String("lora", "", "Path to lora layer file") port := flag.Int("port", 8080, "Port to expose the server on") threads := flag.Int("threads", runtime.NumCPU(), "Number of threads to use during generation") // TODO not yet implemented but wired to keep the parsing aligned embedding := flag.Bool("embedding", false, "enable embedding vector output (default: disabled)") logDisable := flag.Bool("log-disable", false, "disables logging to a file") verbose := flag.Bool("verbose", false, "verbose output (default: disabled)") f32 := flag.Bool("memory-f32", false, "use f32 instead of f16 for memory key+value (default: disabled) not recommended: doubles context memory required and no measurable increase in quality") noMmap := flag.Bool("no-mmap", false, "do not memory-map model (slower load but may reduce pageouts if not using mlock)") mlock := flag.Bool("mlock", false, "force system to keep model in RAM rather than swapping or compressing") tensorSplit := flag.String("tensor-split", "", "fraction of the model to offload to each GPU, comma-separated list of proportions") flag.Parse() level := slog.LevelInfo if *verbose { level = slog.LevelDebug } handler := slog.NewTextHandler(os.Stderr, &slog.HandlerOptions{ Level: level, AddSource: true, ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr { if attr.Key == slog.SourceKey { source := attr.Value.Any().(*slog.Source) source.File = filepath.Base(source.File) } return attr }, }) slog.SetDefault(slog.New(handler)) // TODO actually implement... if *embedding { slog.Warn("embeddings not yet support") } if *logDisable { slog.Info("ignoring --log-disable") } if *f32 { slog.Warn("memory-f32 not yet supported") } if *noMmap { slog.Warn("no-mmap not yet supported") } if *mlock { slog.Warn("mlock not yet supported") } if *tensorSplit != "" { slog.Warn("tensor-split not yet implemented") } server := &Server{ numCtx: *numCtx, batchSize: *batchSize, parallel: *parallel, seqs: make([]*Sequence, *parallel), status: "loading", } // load the model llama.BackendInit() params := llama.NewModelParams(*nGpuLayers, *mainGpu, func(progress float32) { slog.Debug("Loading model", "progress %", math.Round(float64(progress*100))) server.progress = progress }) server.model = llama.LoadModelFromFile(*mpath, params) if *lpath != "" { err := server.model.ApplyLoraFromFile(*lpath, 1.0, "", *threads) if err != nil { panic(err) } } ctxParams := llama.NewContextParams(*numCtx, *threads, *flashAttention) server.lc = llama.NewContextWithModel(server.model, ctxParams) if *ppath != "" { server.cc = llama.NewClipContext(*ppath) } server.cond = sync.NewCond(&server.mu) ctx, cancel := context.WithCancel(context.Background()) go server.run(ctx) addr := "127.0.0.1:" + strconv.Itoa(*port) listener, err := net.Listen("tcp", addr) if err != nil { fmt.Println("Listen error:", err) return } defer listener.Close() mux := http.NewServeMux() mux.HandleFunc("/embedding", server.embeddings) mux.HandleFunc("/completion", server.completion) mux.HandleFunc("/health", server.health) httpServer := http.Server{ Handler: mux, } server.status = "ok" log.Println("Server listening on", addr) if err := httpServer.Serve(listener); err != nil { log.Fatal("server error:", err) } cancel() }