ollama/llama/llama.go
2024-09-03 21:15:12 -04:00

273 lines
8.2 KiB
Go

package llama
// #cgo CFLAGS: -std=c11 -DNDEBUG -DLOG_DISABLE_LOGS
// #cgo CXXFLAGS: -std=c++11 -DNDEBUG -DLOG_DISABLE_LOGS
// #cgo darwin,arm64 CFLAGS: -DGGML_USE_METAL -DGGML_METAL_EMBED_LIBRARY -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
// #cgo darwin,arm64 CXXFLAGS: -DGGML_USE_METAL -DGGML_METAL_EMBED_LIBRARY -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
// #cgo darwin,arm64 LDFLAGS: -ld_classic ${SRCDIR}/ggml-metal.o -framework Foundation -framework Metal -framework MetalKit -framework Accelerate
// #cgo darwin,amd64 CFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers
// #cgo darwin,amd64 CXXFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers
// #cgo darwin,amd64 LDFLAGS: -ld_classic -framework Foundation -framework Accelerate
// #cgo linux CFLAGS: -D_GNU_SOURCE
// #cgo linux CXXFLAGS: -D_GNU_SOURCE
// #cgo windows LDFLAGS: -lmsvcrt
// #cgo avx CFLAGS: -mavx
// #cgo avx CXXFLAGS: -mavx
// #cgo avx2 CFLAGS: -mavx2 -mfma
// #cgo avx2 CXXFLAGS: -mavx2 -mfma
// #cgo cuda CFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
// #cgo cuda CXXFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
// #cgo rocm CFLAGS: -DGGML_USE_CUDA -DGGML_USE_HIPBLAS -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
// #cgo rocm CXXFLAGS: -DGGML_USE_CUDA -DGGML_USE_HIPBLAS -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
// #cgo rocm LDFLAGS: -L${SRCDIR} -lggml-hipblas -lhipblas -lamdhip64 -lrocblas
// #cgo windows,cuda LDFLAGS: -L. -L"C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.3/lib/x64" -lggml-cuda -lcuda -lcudart -lcublas -lcublasLt
// #cgo windows,rocm LDFLAGS: -L. -L"C:/Program Files/AMD/ROCm/5.7/lib"
// #cgo linux,cuda LDFLAGS: -L${SRCDIR} -L/usr/local/cuda/lib64 -lggml-cuda -lcuda -lcudart -lcublas -lcublasLt -lpthread -ldl -lrt
// #cgo linux,rocm LDFLAGS: -L/opt/rocm/lib
// #include <stdlib.h>
// #include "llama.h"
// #include "clip.h"
// #include "llava.h"
import "C"
import (
"fmt"
"runtime"
"strings"
"unsafe"
"github.com/ollama/ollama/llm"
)
func BackendInit() {
C.llama_backend_init()
}
func PrintSystemInfo() string {
return C.GoString(C.llama_print_system_info())
}
type ContextParams struct {
c C.struct_llama_context_params
}
func NewContextParams() ContextParams {
params := C.llama_context_default_params()
params.seed = C.uint(1234)
params.n_ctx = C.uint(2048)
params.n_threads = C.uint(runtime.NumCPU())
params.n_threads_batch = params.n_threads
return ContextParams{c: params}
}
type ModelParams struct {
c C.struct_llama_model_params
}
func NewModelParams() ModelParams {
params := C.llama_model_default_params()
params.n_gpu_layers = 999
return ModelParams{c: params}
}
type Context struct {
c *C.struct_llama_context
}
func (c *Context) KvCacheClear() {
C.llama_kv_cache_clear(c.c)
}
func (c *Context) Decode(batch Batch) error {
// Positive return values does not mean a fatal error, but rather a warning.
// 0 - success
// 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
// < 0 - error
code := int(C.llama_decode(c.c, batch.c))
if code < 0 {
return fmt.Errorf("llama_decode failed with code %d", code)
}
if code > 0 {
return fmt.Errorf("could not find a KV slot for the batch - try reducing the size of the batch or increase the context. code: %d", code)
}
return nil
}
func (c *Context) Model() *Model {
return &Model{c: C.llama_get_model(c.c)}
}
func (c *Context) GetLogitsIth(i int) []float32 {
return unsafe.Slice((*float32)(unsafe.Pointer(C.llama_get_logits_ith(c.c, C.int(i)))), c.Model().NumVocab())
}
func (c *Context) SampleTokenGreedy(logits []float32) int {
candidates := (*C.struct_llama_token_data)(C.malloc(C.size_t(len(logits)) * C.size_t(unsafe.Sizeof(C.struct_llama_token_data{}))))
defer C.free(unsafe.Pointer(candidates))
for i, logit := range logits {
ptr := (*C.struct_llama_token_data)(unsafe.Pointer(uintptr(unsafe.Pointer(candidates)) + uintptr(i)*unsafe.Sizeof(C.struct_llama_token_data{})))
ptr.id = C.int(i)
ptr.logit = C.float(logit)
ptr.p = 0.0
}
return int(C.llama_sample_token_greedy(c.c, &C.llama_token_data_array{
data: candidates,
size: C.size_t(len(logits)),
sorted: C.bool(false),
}))
}
func (c *Context) KvCacheSeqRm(seqId int, p0 int, p1 int) bool {
return bool(C.llama_kv_cache_seq_rm(c.c, C.int(seqId), C.int(p0), C.int(p1)))
}
func LoadModelFromFile(modelPath string, params ModelParams) *Model {
return &Model{c: C.llama_load_model_from_file(C.CString(modelPath), params.c)}
}
func NewContextWithModel(model *Model, params ContextParams) *Context {
return &Context{c: C.llama_new_context_with_model(model.c, params.c)}
}
func (m *Model) NumVocab() int {
return int(C.llama_n_vocab(m.c))
}
func (m *Model) TokenIsEog(token int) bool {
return bool(C.llama_token_is_eog(m.c, C.llama_token(token)))
}
type Batch struct {
c C.struct_llama_batch
}
func NewBatch(nTokens int, embd int, maxSeq int) Batch {
return Batch{c: C.llama_batch_init(C.int(nTokens), C.int(embd), C.int(maxSeq))}
}
func (b *Batch) NumTokens() int {
return int(b.c.n_tokens)
}
// Add adds a token to the batch with the given position for the given
// sequence ids, and optionally instructs to include logits.
func (b *Batch) Add(token int, pos int, seqIds []int, logits bool) {
unsafe.Slice(b.c.token, 512)[b.c.n_tokens] = C.llama_token(token)
unsafe.Slice(b.c.pos, 512)[b.c.n_tokens] = C.llama_pos(pos)
unsafe.Slice(b.c.n_seq_id, 512)[b.c.n_tokens] = C.int(len(seqIds))
for i, s := range seqIds {
unsafe.Slice((unsafe.Slice(b.c.seq_id, 512)[b.c.n_tokens]), C.int(len(seqIds)))[i] = C.int32_t(s)
}
if logits {
unsafe.Slice(b.c.logits, 512)[b.c.n_tokens] = 1
}
b.c.n_tokens += 1
}
func (b *Batch) Clear() {
b.c.n_tokens = 0
}
func (b *Batch) Free() {
C.llama_batch_free(b.c)
}
func BatchGetOne(tokens []int, pos0 int, seqId int) Batch {
return Batch{c: C.llama_batch_get_one((*C.int)(unsafe.Pointer(&tokens[0])), C.int32_t(len(tokens)), C.int(pos0), C.int(seqId))}
}
type Model struct {
c *C.struct_llama_model
}
func (m *Model) TokenToPiece(token int) string {
buf := make([]byte, 12)
C.llama_token_to_piece(
m.c,
C.int32_t(token),
(*C.char)(unsafe.Pointer(&buf[0])),
C.int32_t(12),
C.bool(true),
)
return strings.TrimRight(string(buf), "\x00")
}
func (m *Model) Tokenize(text string, maxTokens int, addSpecial bool, parseSpecial bool) ([]int, error) {
cTokens := make([]C.llama_token, maxTokens)
cText := C.CString(text)
defer C.free(unsafe.Pointer(cText))
result := C.llama_tokenize(
m.c,
cText,
C.int32_t(len(text)),
&cTokens[0],
C.int32_t(maxTokens),
C.bool(addSpecial),
C.bool(parseSpecial),
)
if result < 0 {
return nil, fmt.Errorf("tokenization failed, required %d tokens", -result)
}
tokens := make([]int, result)
for i := 0; i < int(result); i++ {
tokens[i] = int(cTokens[i])
}
return tokens, nil
}
func Quantize(infile, outfile string, ftype llm.FileType) error {
cinfile := C.CString(infile)
defer C.free(unsafe.Pointer(cinfile))
coutfile := C.CString(outfile)
defer C.free(unsafe.Pointer(coutfile))
params := C.llama_model_quantize_default_params()
params.nthread = -1
params.ftype = ftype.Value()
if rc := C.llama_model_quantize(cinfile, coutfile, &params); rc != 0 {
return fmt.Errorf("llama_model_quantize: %d", rc)
}
return nil
}
type ClipContext struct {
c *C.struct_clip_ctx
}
func NewClipContext(modelPath string) *ClipContext {
mp := C.CString(modelPath)
defer C.free(unsafe.Pointer(mp))
cc := C.clip_model_load(mp, 1)
return &ClipContext{c: cc}
}
type LlavaContext struct {
c *C.struct_llava_context
}
type LlavaImageEmbed struct {
c *C.struct_llava_image_embed
}
func NewLlavaImageEmbed(clipContext *ClipContext, data []byte) *LlavaImageEmbed {
return &LlavaImageEmbed{c: C.llava_image_embed_make_with_bytes(clipContext.c, C.int(runtime.NumCPU()), (*C.uchar)(unsafe.Pointer(&data[0])), C.int(len(data)))}
}
func LlavaEvalImageEmbed(llamaContext *Context, embed *LlavaImageEmbed, nBatch int, nPast *int) {
C.llava_eval_image_embed(llamaContext.c, embed.c, C.int(nBatch), (*C.int)(unsafe.Pointer(nPast)))
}