Migrate the pipeline to C and pthreads

This commit is contained in:
Alexander Kojevnikov 2012-08-14 21:53:01 -07:00
parent 9d12bd49fe
commit 4df42e8258
7 changed files with 411 additions and 280 deletions

View File

@ -29,8 +29,7 @@ AC_MSG_RESULT([$os])
AC_CHECK_LIB(m, log10)
pkg_modules="libavformat >= 52.111 libavcodec >= 52.123 libavutil"
PKG_CHECK_MODULES(FFMPEG, [$pkg_modules])
PKG_CHECK_MODULES(FFMPEG, [libavformat >= 52.111 libavcodec >= 52.123 libavutil])
AM_OPTIONS_WXCONFIG
reqwx=2.8.0

View File

@ -8,6 +8,8 @@ spek_SOURCES = \
spek-audio-desc.hh \
spek-fft.c \
spek-fft.h \
spek-pipeline.c \
spek-pipeline.h \
spek-platform.cc \
spek-platform.hh \
spek-preferences.cc \
@ -19,6 +21,7 @@ spek_SOURCES = \
spek_CPPFLAGS = \
-include config.h \
-pthread \
$(WX_CPPFLAGS)
spek_CFLAGS = \
@ -26,9 +29,11 @@ spek_CFLAGS = \
$(WX_CFLAGS_ONLY)
spek_CXXFLAGS = \
$(FFMPEG_CFLAGS) \
$(WX_CXXFLAGS_ONLY)
spek_LDADD = \
$(FFMPEG_LIBS) \
$(WX_LIBS)
$(WX_LIBS)
spek_LDFLAGS = \
-pthread

View File

@ -17,6 +17,7 @@
*/
#include <math.h>
#include <libavcodec/avfft.h>
#include <libavutil/mem.h>
#include "spek-fft.h"
@ -55,7 +56,7 @@ void spek_fft_execute(struct spek_fft_plan *p)
}
}
void spek_fft_destroy(struct spek_fft_plan *p)
void spek_fft_delete(struct spek_fft_plan *p)
{
av_rdft_end(p->cx);
av_free(p->input);

View File

@ -23,12 +23,12 @@
extern "C" {
#endif
#include <libavcodec/avfft.h>
struct RDFTContext;
struct spek_fft_plan
{
// Internal data.
RDFTContext *cx;
struct RDFTContext *cx;
int n;
int threshold;

355
src/spek-pipeline.c Normal file
View File

@ -0,0 +1,355 @@
/* spek-pipeline.c
*
* Copyright (C) 2010-2012 Alexander Kojevnikov <alexander@kojevnikov.com>
*
* Spek is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Spek is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Spek. If not, see <http://www.gnu.org/licenses/>.
*
* Conversion of decoded samples into an FFT-happy format is heavily
* influenced by GstSpectrum which is part of gst-plugins-good.
* The original code:
* (c) 1999 Erik Walthinsen <omega@cse.ogi.edu>
* (c) 2006 Stefan Kost <ensonic@users.sf.net>
* (c) 2007-2009 Sebastian Dröge <sebastian.droege@collabora.co.uk>
*/
#include <assert.h>
#include <math.h>
#include <pthread.h>
#include <stdlib.h>
#include <string.h>
#include "spek-audio.h"
#include "spek-fft.h"
#include "spek-pipeline.h"
enum
{
NFFT = 64 // Number of FFTs to pre-fetch.
};
struct spek_pipeline
{
struct spek_audio_context *cx;
const struct spek_audio_properties *properties;
int bands;
int samples;
int threshold;
spek_pipeline_cb cb;
struct spek_fft_plan *fft;
float *coss; // Pre-computed cos table.
int nfft; // Size of the FFT transform.
int input_size;
int input_pos;
float *input;
float *output;
pthread_t reader_thread;
bool has_reader_thread;
pthread_mutex_t reader_mutex;
bool has_reader_mutex;
pthread_cond_t reader_cond;
bool has_reader_cond;
pthread_t worker_thread;
bool has_worker_thread;
pthread_mutex_t worker_mutex;
bool has_worker_mutex;
pthread_cond_t worker_cond;
bool has_worker_cond;
bool worker_done;
volatile bool quit;
};
// Forward declarations.
static void * reader_func(void *);
static void * worker_func(void *);
static void reader_sync(struct spek_pipeline *p, int pos);
static float average_input(const struct spek_pipeline *p, void *buffer);
struct spek_pipeline * spek_pipeline_open(
const char *path, int bands, int samples, int threshold, spek_pipeline_cb cb)
{
struct spek_pipeline *p = malloc(sizeof(struct spek_pipeline));
p->cx = spek_audio_open(path);
p->properties = spek_audio_get_properties(p->cx);
p->bands = bands;
p->samples = samples;
p->threshold = threshold;
p->cb = cb;
p->coss = NULL;
p->fft = NULL;
p->input = NULL;
p->output = NULL;
p->has_reader_thread = false;
p->has_reader_mutex = false;
p->has_reader_cond = false;
p->has_worker_thread = false;
p->has_worker_mutex = false;
p->has_worker_cond = false;
if (!p->properties->error) {
p->nfft = 2 * bands - 2;
p->coss = malloc(p->nfft * sizeof(float));
float cf = 2.0f * (float)M_PI / p->nfft;
for (int i = 0; i < p->nfft; ++i) {
p->coss[i] = cosf(cf * i);
}
p->fft = spek_fft_plan_new(p->nfft, threshold);
p->input_size = p->nfft * (NFFT * 2 + 1);
p->input = malloc(p->input_size * sizeof(float));
p->output = malloc(bands * sizeof(float));
spek_audio_start(p->cx, samples);
}
}
void spek_pipeline_start(struct spek_pipeline *p)
{
if (!p->properties->error) return;
p->input_pos = 0;
p->worker_done = false;
p->quit = false;
p->has_reader_mutex = !pthread_mutex_init(&p->reader_mutex, NULL);
p->has_reader_cond = !pthread_cond_init(&p->reader_cond, NULL);
p->has_worker_mutex = !pthread_mutex_init(&p->worker_mutex, NULL);
p->has_worker_cond = !pthread_cond_init(&p->worker_cond, NULL);
p->has_reader_thread = !pthread_create(&p->reader_thread, NULL, &reader_func, p);
if (!p->has_reader_thread) {
spek_pipeline_close(p);
}
}
void spek_pipeline_close(struct spek_pipeline *p) {
if (p->has_reader_thread) {
p->quit = true;
pthread_join(p->reader_thread, NULL);
p->has_reader_thread = false;
}
if (p->has_worker_cond) {
pthread_cond_destroy(&p->worker_cond);
p->has_worker_cond = false;
}
if (p->has_worker_mutex) {
pthread_mutex_destroy(&p->worker_mutex);
p->has_worker_mutex = false;
}
if (p->has_reader_cond) {
pthread_cond_destroy(&p->reader_cond);
p->has_reader_cond = false;
}
if (p->has_reader_mutex) {
pthread_mutex_destroy(&p->reader_mutex);
p->has_reader_mutex = false;
}
if (p->output) {
free(p->output);
p->output = NULL;
}
if (p->input) {
free(p->input);
p->input = NULL;
}
if (p->fft) {
spek_fft_delete(p->fft);
p->fft = NULL;
}
if (p->coss) {
free(p->coss);
p->coss = NULL;
}
if (p->cx) {
spek_audio_close(p->cx);
p->cx = NULL;
}
}
static void * reader_func (void *pp) {
struct spek_pipeline *p = pp;
p->has_worker_thread = !pthread_create(&p->worker_thread, NULL, &worker_func, p);
if (!p->has_worker_thread) {
return NULL;
}
int pos = 0, prev_pos = 0;
int block_size = p->properties->width * p->properties->channels / 8;
int size;
while ((size = spek_audio_read(p->cx)) > 0) {
if (p->quit) break;
uint8_t *buffer = p->properties->buffer;
while (size >= block_size) {
p->input[pos] = average_input(p, buffer);
buffer += block_size;
size -= block_size;
pos = (pos + 1) % p->input_size;
// Wake up the worker if we have enough data.
if ((pos > prev_pos ? pos : pos + p->input_size) - prev_pos == p->nfft * NFFT) {
reader_sync(p, prev_pos = pos);
}
}
assert(size == 0);
}
if (pos != prev_pos) {
// Process the remaining data.
reader_sync(p, pos);
}
// Force the worker to quit.
reader_sync(p, -1);
pthread_join(p->worker_thread, NULL);
return NULL;
}
static void reader_sync(struct spek_pipeline *p, int pos)
{
pthread_mutex_lock(&p->reader_mutex);
while (!p->worker_done) {
pthread_cond_wait(&p->reader_cond, &p->reader_mutex);
}
p->worker_done = false;
pthread_mutex_unlock(&p->reader_mutex);
pthread_mutex_lock(&p->worker_mutex);
p->input_pos = pos;
pthread_cond_signal(&p->worker_cond);
pthread_mutex_unlock(&p->worker_mutex);
}
static void * worker_func (void *pp) {
struct spek_pipeline *p = pp;
int sample = 0;
int64_t frames = 0;
int64_t num_fft = 0;
int64_t acc_error = 0;
int head = 0, tail = 0;
int prev_head = 0;
memset(p->output, 0, sizeof(float) * p->bands);
while (true) {
pthread_mutex_lock(&p->reader_mutex);
p->worker_done = true;
pthread_cond_signal(&p->reader_cond);
pthread_mutex_unlock(&p->reader_mutex);
pthread_mutex_lock(&p->worker_mutex);
while (tail == p->input_pos) {
pthread_cond_wait(&p->worker_cond, &p->worker_mutex);
}
tail = p->input_pos;
pthread_mutex_unlock(&p->worker_mutex);
if (tail == -1) {
return NULL;
}
while (true) {
head = (head + 1) % p->input_size;
if (head == tail) {
head = prev_head;
break;
}
frames++;
// If we have enough frames for an FFT or we have
// all frames required for the interval run and FFT.
bool int_full =
acc_error < p->properties->error_base &&
frames == p->properties->frames_per_interval;
bool int_over =
acc_error >= p->properties->error_base &&
frames == 1 + p->properties->frames_per_interval;
if (frames % p->nfft == 0 || ((int_full || int_over) && num_fft == 0)) {
prev_head = head;
for (int i = 0; i < p->nfft; i++) {
float val = p->input[(p->input_size + head - p->nfft + i) % p->input_size];
// TODO: allow the user to chose the window function
// Hamming window.
// val *= 0.53836f - 0.46164f * coss[i];
// Hann window.
val *= 0.5f * (1.0f - p->coss[i]);
p->fft->input[i] = val;
}
spek_fft_execute(p->fft);
num_fft++;
for (int i = 0; i < p->bands; i++) {
p->output[i] += p->fft->output[i];
}
}
// Do we have the FFTs for one interval?
if (int_full || int_over) {
if (int_over) {
acc_error -= p->properties->error_base;
} else {
acc_error += p->properties->error_per_interval;
}
for (int i = 0; i < p->bands; i++) {
p->output[i] /= num_fft;
}
if (sample == p->samples) break;
p->cb(sample++, p->output);
memset(p->output, 0, sizeof(float) * p->bands);
frames = 0;
num_fft = 0;
}
}
}
}
static float average_input(const struct spek_pipeline *p, void *buffer)
{
int channels = p->properties->channels;
float res = 0.0f;
if (p->properties->fp) {
if (p->properties->width == 32) {
float *b = buffer;
for (int i = 0; i < channels; i++) {
res += b[i];
}
} else {
assert(p->properties->width == 64);
double *b = buffer;
for (int i = 0; i < channels; i++) {
res += (float) b[i];
}
}
} else {
if (p->properties->width == 16) {
int16_t *b = buffer;
for (int i = 0; i < channels; i++) {
res += b[i] / (float) INT16_MAX;
}
} else {
assert (p->properties->width == 32);
int32_t *b = buffer;
for (int i = 0; i < channels; i++) {
res += b[i] / (float) INT32_MAX;
}
}
}
return res / channels;
}

44
src/spek-pipeline.h Normal file
View File

@ -0,0 +1,44 @@
/* spek-pipeline.h
*
* Copyright (C) 2010-2012 Alexander Kojevnikov <alexander@kojevnikov.com>
*
* Spek is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Spek is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Spek. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef SPEK_PIPELINE_H_
#define SPEK_PIPELINE_H_
#ifdef __cplusplus
extern "C" {
#endif
struct spek_pipeline;
struct spek_audio_properties;
typedef void (*spek_pipeline_cb)(int sample, float *values);
struct spek_pipeline * spek_pipeline_open(
const char *path, int bands, int samples, int threshold, spek_pipeline_cb cb);
void spek_pipeline_start(struct spek_pipeline *pipeline);
const struct spek_audio_properties * spek_pipeline_properties(struct spek_pipeline *pipeline);
void spek_pipeline_close(struct spek_pipeline *pipeline);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -1,273 +0,0 @@
/* spek-pipeline.vala
*
* Copyright (C) 2010 Alexander Kojevnikov <alexander@kojevnikov.com>
*
* Spek is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Spek is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Spek. If not, see <http://www.gnu.org/licenses/>.
*
* Conversion of decoded samples into an FFT-happy format is heavily
* influenced by GstSpectrum which is part of gst-plugins-good.
* The original code:
* (c) 1999 Erik Walthinsen <omega@cse.ogi.edu>
* (c) 2006 Stefan Kost <ensonic@users.sf.net>
* (c) 2007-2009 Sebastian Dröge <sebastian.droege@collabora.co.uk>
*/
namespace Spek {
public class Pipeline {
public delegate void Callback (int sample, float[] values);
private Audio.Context cx;
private int bands;
private int samples;
private int threshold;
private Callback cb;
private Fft.Plan fft;
private int nfft; // Size of the FFT transform.
private float[] coss; // Pre-computed cos table.
private const int NFFT = 64; // Number of FFTs to pre-fetch.
private int input_size;
private int input_pos;
private float[] input;
private float[] output;
private unowned Thread<void*> reader_thread = null;
private unowned Thread<void*> worker_thread;
private Mutex reader_mutex;
private Cond reader_cond;
private Mutex worker_mutex;
private Cond worker_cond;
private bool worker_done = false;
private bool quit = false;
public Pipeline (string file_name, int bands, int samples, int threshold, Callback cb) {
this.cx = new Audio.Context (file_name);
this.bands = bands;
this.samples = samples;
this.threshold = threshold;
this.cb = cb;
if (!cx.error) {
this.nfft = 2 * bands - 2;
this.coss = new float[nfft];
float cf = 2f * (float) Math.PI / this.nfft;
for (int i = 0; i < this.nfft; i++) {
this.coss[i] = Math.cosf (cf * i);
}
this.fft = new Fft.Plan (nfft, threshold);
this.input_size = nfft * (NFFT * 2 + 1);
this.input = new float[input_size];
this.output = new float[bands];
this.cx.start (samples);
}
}
~Pipeline () {
stop ();
}
public void start () {
stop ();
if (!cx.error) return;
input_pos = 0;
reader_mutex = new Mutex ();
reader_cond = new Cond ();
worker_mutex = new Mutex ();
worker_cond = new Cond ();
try {
reader_thread = Thread.create<void*> (reader_func, true);
} catch (ThreadError e) {
stop ();
}
}
public void stop () {
if (reader_thread != null) {
lock (quit) {
quit = true;
}
reader_thread.join ();
quit = false;
reader_thread = null;
}
}
private void * reader_func () {
var timeval = TimeVal ();
timeval.get_current_time ();
int pos = 0, prev_pos = 0;
int block_size = cx.width * cx.channels / 8;
int size;
try {
worker_thread = Thread.create<void*> (worker_func, true);
} catch (ThreadError e) {
return null;
}
while ((size = cx.read ()) > 0) {
lock (quit) if (quit) break;
uint8 *buffer = (uint8 *) cx.buffer;
while (size >= block_size) {
input[pos] = average_input (buffer);
buffer += block_size;
size -= block_size;
pos = (pos + 1) % input_size;
// Wake up the worker if we have enough data.
if ((pos > prev_pos ? pos : pos + input_size) - prev_pos == nfft * NFFT) {
reader_sync (prev_pos = pos);
}
}
assert (size == 0);
}
if (pos != prev_pos) {
// Process the remaining data.
reader_sync (pos);
}
// Force the worker to quit.
reader_sync (-1);
worker_thread.join ();
return null;
}
private void reader_sync (int pos) {
reader_mutex.lock ();
while (!worker_done) reader_cond.wait (reader_mutex);
worker_done = false;
reader_mutex.unlock ();
worker_mutex.lock ();
input_pos = pos;
worker_cond.signal ();
worker_mutex.unlock ();
}
private void * worker_func () {
int sample = 0;
int64 frames = 0;
int64 num_fft = 0;
int64 acc_error = 0;
int head = 0, tail = 0;
int prev_head = 0;
Memory.set (output, 0, sizeof (float) * bands);
while (true) {
reader_mutex.lock ();
worker_done = true;
reader_cond.signal ();
reader_mutex.unlock ();
worker_mutex.lock ();
while (tail == input_pos) worker_cond.wait (worker_mutex);
tail = input_pos;
worker_mutex.unlock ();
if (tail == -1) {
return null;
}
while (true) {
head = (head + 1) % input_size;
if (head == tail) {
head = prev_head;
break;
}
frames++;
// If we have enough frames for an FFT or we have
// all frames required for the interval run and FFT.
bool int_full = acc_error < cx.error_base && frames == cx.frames_per_interval;
bool int_over = acc_error >= cx.error_base && frames == 1 + cx.frames_per_interval;
if (frames % nfft == 0 || ((int_full || int_over) && num_fft == 0)) {
prev_head = head;
for (int i = 0; i < nfft; i++) {
float val = input[(input_size + head - nfft + i) % input_size];
// TODO: allow the user to chose the window function
// Hamming window.
// val *= 0.53836f - 0.46164f * coss[i];
// Hann window.
val *= 0.5f * (1f - coss[i]);
fft.input[i] = val;
}
fft.execute ();
num_fft++;
for (int i = 0; i < bands; i++) {
output[i] += fft.output[i];
}
}
// Do we have the FFTs for one interval?
if (int_full || int_over) {
if (int_over) {
acc_error -= cx.error_base;
} else {
acc_error += cx.error_per_interval;
}
for (int i = 0; i < bands; i++) {
output[i] /= num_fft;
}
if (sample == samples) break;
cb (sample++, output);
Memory.set (output, 0, sizeof (float) * bands);
frames = 0;
num_fft = 0;
}
}
}
}
private float average_input (uint8 *buffer) {
int channels = cx.channels;
float res = 0f;
if (cx.fp) {
if (cx.width == 32) {
float *p = (float *) buffer;
for (int i = 0; i < channels; i++) {
res += p[i];
}
} else {
assert (cx.width == 64);
double *p = (double *) buffer;
for (int i = 0; i < channels; i++) {
res += (float) p[i];
}
}
} else {
if (cx.width == 16) {
int16 *p = (int16 *) buffer;
for (int i = 0; i < channels; i++) {
res += p[i] / (float) int16.MAX;
}
} else {
assert (cx.width == 32);
int32 *p = (int32 *) buffer;
for (int i = 0; i < channels; i++) {
res += p[i] / (float) int32.MAX;
}
}
}
return res / channels;
}
}
}