#include #include #include #include const char *SAMPLE_FILE = SAMPLES_DIR "/perf.wav"; const int SAMPLE_RATE = 44100; const int SAMPLE_DURATION = 8 * 60; // 8 minutes const int SAMPLES = SAMPLE_RATE * SAMPLE_DURATION; // per channel // Some of the tests will use a sample .wav file which is auto-generated if it doesn't exists. static void create_samples() { if (std::ifstream(SAMPLE_FILE).good()) { return; } std::ofstream file(SAMPLE_FILE, std::ofstream::binary); const int data_size = SAMPLES * 2 * 2; // samples * channels * bytes per sample uint16_t u16; uint32_t u32; file.write("RIFF", 4); file.write(reinterpret_cast(&(u32 = 36 + data_size)), 4); // size file.write("WAVE", 4); file.write("fmt ", 4); file.write(reinterpret_cast(&(u32 = 16)), 4); // subchunk size file.write(reinterpret_cast(&(u16 = 1)), 2); // 1 = PCM file.write(reinterpret_cast(&(u16 = 2)), 2); // 2 = stereo file.write(reinterpret_cast(&(u32 = SAMPLE_RATE)), 4); file.write(reinterpret_cast(&(u32 = SAMPLE_RATE * 2 * 2)), 4); // byte rate file.write(reinterpret_cast(&(u16 = 2 * 2)), 2); // block align file.write(reinterpret_cast(&(u16 = 16)), 2); // bits per sample file.write("data", 4); file.write(reinterpret_cast(&(u32 = data_size)), 4); // Fill in both channels with pseudo-random values. srand(93); for (int i = 0; i < SAMPLES * 2; ++i) { file.write(reinterpret_cast(&(u16 = rand())), 2); } } // Reading and decoding an audio file. static void perf_decoder() { } // Running FFTs and processing the results. static void perf_worker() { } // Managing worker and decoder threads (in isolation from the actual decoder and worker). static void perf_pipeline() { } // Testing it all together. static void perf_all() { } // Performance regression tests. int main() { create_samples(); perf_decoder(); perf_worker(); perf_pipeline(); perf_all(); return 0; }