using Cairo; using Gdk; using Gtk; namespace Spek { class Spectrogram : DrawingArea { private Source source; private string file_name; private const int THRESHOLD = -92; private const int BANDS = 1024; private ImageSurface image; private ImageSurface palette; private const int PADDING = 60; private const int GAP = 10; private const int RULER = 10; public Spectrogram () { // Pre-draw the palette. palette = new ImageSurface (Format.RGB24, RULER, BANDS); for (int y = 0; y < BANDS; y++) { var color = get_color (y / (float) BANDS); for (int x = 0; x < RULER; x++) { put_pixel (palette, x, y, color); } } show_all (); } public void open (string file_name) { this.file_name = file_name; start (); } private void start () { // The number of samples is the number of pixels available for the image. // The number of bands is fixed, FFT results are very different for // different values but we need some consistency. this.image = new ImageSurface (Format.RGB24, allocation.width - 2 * PADDING, BANDS); if (this.source != null) { this.source.stop (); } this.source = new Source ( file_name, image.get_height (), image.get_width (), THRESHOLD, source_callback); queue_draw (); } private override void size_allocate (Gdk.Rectangle allocation) { base.size_allocate (allocation); if (file_name != null) { start (); } } private void source_callback (int sample, float[] values) { for (int y = 0; y < values.length; y++) { var level = float.min ( 1f, Math.log10f (1f - THRESHOLD + values[y]) / Math.log10f (-THRESHOLD)); put_pixel (image, sample, y, get_color (level)); } queue_draw_area (PADDING + sample, PADDING, 1, allocation.height - 2 * PADDING); } private override bool expose_event (EventExpose event) { double w = allocation.width; double h = allocation.height; var cr = cairo_create (this.window); // Clip to the exposed area. cr.rectangle (event.area.x, event.area.y, event.area.width, event.area.height); cr.clip (); // Clean the background. cr.set_source_rgb (0, 0, 0); cr.paint (); // Draw the spectrogram. if (image != null) { cr.translate (PADDING, h - PADDING); cr.scale (1, -(h - 2 * PADDING) / image.get_height ()); cr.set_source_surface (image, 0, 0); cr.paint (); cr.identity_matrix (); } // Border around the spectrogram. cr.set_source_rgb (1, 1, 1); cr.set_line_width (1); cr.set_antialias (Antialias.NONE); cr.rectangle (PADDING, PADDING, w - 2 * PADDING, h - 2 * PADDING); cr.stroke (); // The palette. cr.translate (w - PADDING + GAP, h - PADDING); cr.scale (1, -(h - 2 * PADDING) / palette.get_height ()); cr.set_source_surface (palette, 0, 0); cr.paint (); cr.identity_matrix (); return true; } private void put_pixel (ImageSurface surface, int x, int y, uint32 color) { var i = y * surface.get_stride () + x * 4; unowned uchar[] data = surface.get_data (); // Translate uchar* to uint32* to avoid dealing with endianness. uint32 *p = &data[i]; *p = color; } // Modified version of Dan Bruton's algorithm: // http://www.physics.sfasu.edu/astro/color/spectra.html private uint32 get_color (float level) { level *= 0.6625f; float r = 0.0f, g = 0.0f, b = 0.0f; if (level >= 0f && level < 0.15f) { r = (0.15f - level) / (0.15f + 0.075f); g = 0.0f; b = 1.0f; } else if (level >= 0.15f && level < 0.275f) { r = 0.0f; g = (level - 0.15f) / (0.275f - 0.15f); b = 1.0f; } else if (level >= 0.275f && level < 0.325f) { r = 0.0f; g = 1.0f; b = (0.325f - level) / (0.325f - 0.275f); } else if (level >= 0.325f && level < 0.5f) { r = (level - 0.325f) / (0.5f - 0.325f); g = 1.0f; b = 0.0f; } else if (level >= 0.5f && level < 0.6625f) { r = 1.0f; g = (0.6625f - level) / (0.6625f - 0.5f); b = 0.0f; } // Intensity correction. float cf = 1.0f; if (level >= 0 && level < 0.1f) { cf = level / 0.1f; } cf *= 255f; // Pack RGB values into Cairo-happy format. uint32 rr = (uint32) (r * cf + 0.5f); uint32 gg = (uint32) (g * cf + 0.5f); uint32 bb = (uint32) (b * cf + 0.5f); return (rr << 16) + (gg << 8) + bb; } } }