forked from third-party-mirrors/ollama
better example
module, add port
This commit is contained in:
parent
ec17359a68
commit
d12db0568e
31
llama/example/README.md
Normal file
31
llama/example/README.md
Normal file
@ -0,0 +1,31 @@
|
||||
# `example`
|
||||
|
||||
Demo app for the `llama` package
|
||||
|
||||
Pull a model:
|
||||
|
||||
```
|
||||
ollama pull mistral:7b-instruct-v0.3-q4_0
|
||||
```
|
||||
|
||||
Then run it:
|
||||
|
||||
```
|
||||
go run -x . \
|
||||
-model ~/.ollama/models/blobs/sha256-ff82381e2bea77d91c1b824c7afb83f6fb73e9f7de9dda631bcdbca564aa5435 \
|
||||
-prompt "[ISNT] Why is the sky blue? [/INST]"
|
||||
```
|
||||
|
||||
## Vision
|
||||
|
||||
```
|
||||
ollama pull llava:7b-v1.6-mistral-q4_0
|
||||
```
|
||||
|
||||
```
|
||||
go run -x . \
|
||||
-model ~/.ollama/models/blobs/sha256-170370233dd5c5415250a2ecd5c71586352850729062ccef1496385647293868 \
|
||||
-projector ~/.ollama/models/blobs/sha256-72d6f08a42f656d36b356dbe0920675899a99ce21192fd66266fb7d82ed07539 \
|
||||
-image ./alonso.jpg \
|
||||
-prompt "[ISNT] What is in this image? <image> [/INST]"
|
||||
```
|
Before Width: | Height: | Size: 109 KiB After Width: | Height: | Size: 109 KiB |
128
llama/example/main.go
Normal file
128
llama/example/main.go
Normal file
@ -0,0 +1,128 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"flag"
|
||||
"fmt"
|
||||
"io"
|
||||
"log"
|
||||
"os"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/llama"
|
||||
)
|
||||
|
||||
func main() {
|
||||
mpath := flag.String("model", "", "Path to model binary file")
|
||||
ppath := flag.String("projector", "", "Path to projector binary file")
|
||||
image := flag.String("image", "", "Path to image file")
|
||||
prompt := flag.String("prompt", "", "Prompt including <image> tag")
|
||||
flag.Parse()
|
||||
|
||||
if *mpath == "" {
|
||||
panic("model path is required")
|
||||
}
|
||||
|
||||
if *prompt == "" {
|
||||
panic("prompt is required")
|
||||
}
|
||||
|
||||
// load the model
|
||||
llama.BackendInit()
|
||||
params := llama.NewModelParams()
|
||||
model := llama.LoadModelFromFile(*mpath, params)
|
||||
ctxParams := llama.NewContextParams()
|
||||
|
||||
// language model context
|
||||
lc := llama.NewContextWithModel(model, ctxParams)
|
||||
|
||||
// eval before
|
||||
batch := llama.NewBatch(512, 0, 1)
|
||||
var nPast int
|
||||
|
||||
// clip context
|
||||
var clipCtx *llama.ClipContext
|
||||
|
||||
// multi-modal
|
||||
if *ppath == "" {
|
||||
clipCtx = llama.NewClipContext(*ppath)
|
||||
|
||||
// open image file
|
||||
file, err := os.Open(*image)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
defer file.Close()
|
||||
|
||||
data, err := io.ReadAll(file)
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
|
||||
embedding := llama.NewLlavaImageEmbed(clipCtx, data)
|
||||
|
||||
parts := strings.Split(*prompt, "<image>")
|
||||
if len(parts) != 2 {
|
||||
panic("prompt must contain exactly one <image>")
|
||||
}
|
||||
|
||||
beforeTokens, err := lc.Model().Tokenize(parts[0], 2048, true, true)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
for _, t := range beforeTokens {
|
||||
batch.Add(t, nPast, []int{0}, true)
|
||||
nPast++
|
||||
}
|
||||
|
||||
err = lc.Decode(batch)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
llama.LlavaEvalImageEmbed(lc, embedding, 512, &nPast)
|
||||
|
||||
afterTokens, err := lc.Model().Tokenize(parts[1], 2048, true, true)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
for _, t := range afterTokens {
|
||||
batch.Add(t, nPast, []int{0}, true)
|
||||
nPast++
|
||||
}
|
||||
} else {
|
||||
tokens, err := lc.Model().Tokenize(*prompt, 2048, true, true)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
for _, t := range tokens {
|
||||
batch.Add(t, nPast, []int{0}, true)
|
||||
nPast++
|
||||
}
|
||||
}
|
||||
|
||||
// main loop
|
||||
for n := nPast; n < 4096; n++ {
|
||||
err := lc.Decode(batch)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
// sample a token
|
||||
logits := lc.GetLogitsIth(batch.NumTokens() - 1)
|
||||
token := lc.SampleTokenGreedy(logits)
|
||||
|
||||
// if it's an end of sequence token, break
|
||||
if lc.Model().TokenIsEog(token) {
|
||||
break
|
||||
}
|
||||
|
||||
// print the token
|
||||
str := lc.Model().TokenToPiece(token)
|
||||
fmt.Print(str)
|
||||
batch.Clear()
|
||||
batch.Add(token, n, []int{0}, true)
|
||||
}
|
||||
}
|
@ -99,26 +99,24 @@ func (c *Context) Model() *Model {
|
||||
return &Model{c: C.llama_get_model(c.c)}
|
||||
}
|
||||
|
||||
// TODO: break this up
|
||||
func (c *Context) SampleTokenGreedy(batch Batch, i int) int {
|
||||
nv := c.Model().NumVocab()
|
||||
func (c *Context) GetLogitsIth(i int) []float32 {
|
||||
return unsafe.Slice((*float32)(unsafe.Pointer(C.llama_get_logits_ith(c.c, C.int(i)))), c.Model().NumVocab())
|
||||
}
|
||||
|
||||
// TODO(jmorganca): split this up into different functions
|
||||
candidates := (*C.struct_llama_token_data)(C.malloc(C.size_t(nv) * C.size_t(unsafe.Sizeof(C.struct_llama_token_data{}))))
|
||||
func (c *Context) SampleTokenGreedy(logits []float32) int {
|
||||
candidates := (*C.struct_llama_token_data)(C.malloc(C.size_t(len(logits)) * C.size_t(unsafe.Sizeof(C.struct_llama_token_data{}))))
|
||||
defer C.free(unsafe.Pointer(candidates))
|
||||
|
||||
// get most recent logits
|
||||
logits := C.llama_get_logits_ith(c.c, C.int(i))
|
||||
for i := 0; i < int(nv); i++ {
|
||||
for i, logit := range logits {
|
||||
ptr := (*C.struct_llama_token_data)(unsafe.Pointer(uintptr(unsafe.Pointer(candidates)) + uintptr(i)*unsafe.Sizeof(C.struct_llama_token_data{})))
|
||||
ptr.id = C.int(i)
|
||||
ptr.logit = unsafe.Slice(logits, nv)[i]
|
||||
ptr.logit = C.float(logit)
|
||||
ptr.p = 0.0
|
||||
}
|
||||
|
||||
return int(C.llama_sample_token_greedy(c.c, &C.llama_token_data_array{
|
||||
data: candidates,
|
||||
size: C.size_t(nv),
|
||||
size: C.size_t(len(logits)),
|
||||
sorted: C.bool(false),
|
||||
}))
|
||||
}
|
||||
@ -155,6 +153,8 @@ func (b *Batch) NumTokens() int {
|
||||
return int(b.c.n_tokens)
|
||||
}
|
||||
|
||||
// Add adds a token to the batch with the given position for the given
|
||||
// sequence ids, and optionally instructs to include logits.
|
||||
func (b *Batch) Add(token int, pos int, seqIds []int, logits bool) {
|
||||
unsafe.Slice(b.c.token, 512)[b.c.n_tokens] = C.llama_token(token)
|
||||
unsafe.Slice(b.c.pos, 512)[b.c.n_tokens] = C.llama_pos(pos)
|
||||
@ -179,12 +179,6 @@ func (b *Batch) Free() {
|
||||
C.llama_batch_free(b.c)
|
||||
}
|
||||
|
||||
// LLAMA_API struct llama_batch llama_batch_get_one(
|
||||
//
|
||||
// llama_token * tokens,
|
||||
// int32_t n_tokens,
|
||||
// llama_pos pos_0,
|
||||
// llama_seq_id seq_id);
|
||||
func BatchGetOne(tokens []int, pos0 int, seqId int) Batch {
|
||||
return Batch{c: C.llama_batch_get_one((*C.int)(unsafe.Pointer(&tokens[0])), C.int32_t(len(tokens)), C.int(pos0), C.int(seqId))}
|
||||
}
|
||||
|
@ -1,14 +0,0 @@
|
||||
# `llava`
|
||||
|
||||
Demo app for running Llava and other clip-based vision models.
|
||||
|
||||
```
|
||||
ollama pull llava
|
||||
```
|
||||
|
||||
```
|
||||
go run -x . \
|
||||
-model ~/.ollama/models/blobs/sha256-170370233dd5c5415250a2ecd5c71586352850729062ccef1496385647293868 \
|
||||
-projector ~/.ollama/models/blobs/sha256-72d6f08a42f656d36b356dbe0920675899a99ce21192fd66266fb7d82ed07539 \
|
||||
-image ./alonso.jpg
|
||||
```
|
@ -1,117 +0,0 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"flag"
|
||||
"fmt"
|
||||
"io"
|
||||
"log"
|
||||
"os"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/llama"
|
||||
)
|
||||
|
||||
func main() {
|
||||
mp := flag.String("model", "", "Path to model binary file")
|
||||
pp := flag.String("projector", "", "Path to projector binary file")
|
||||
image := flag.String("image", "", "Path to image file")
|
||||
prompt := flag.String("prompt", " [INST] What is in the picture? <image> [/INST]", "Prompt including <image> tag")
|
||||
flag.Parse()
|
||||
|
||||
// load the model
|
||||
llama.BackendInit()
|
||||
params := llama.NewModelParams()
|
||||
model := llama.LoadModelFromFile(*mp, params)
|
||||
ctxParams := llama.NewContextParams()
|
||||
|
||||
// language model context
|
||||
lc := llama.NewContextWithModel(model, ctxParams)
|
||||
|
||||
// clip context
|
||||
clipCtx := llama.NewClipContext(*pp)
|
||||
|
||||
// open image file
|
||||
file, err := os.Open(*image)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
defer file.Close()
|
||||
|
||||
data, err := io.ReadAll(file)
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
|
||||
embedding := llama.NewLlavaImageEmbed(clipCtx, data)
|
||||
|
||||
parts := strings.Split(*prompt, "<image>")
|
||||
if len(parts) != 2 {
|
||||
panic("prompt must contain exactly one <image>")
|
||||
}
|
||||
|
||||
err = eval(lc, parts[0], embedding, parts[1])
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
||||
|
||||
func eval(lc *llama.Context, before string, embedding *llama.LlavaImageEmbed, after string) error {
|
||||
beforeTokens, err := lc.Model().Tokenize(before, 2048, true, true)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
afterTokens, err := lc.Model().Tokenize(after, 2048, true, true)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// eval before
|
||||
batch := llama.NewBatch(512, 0, 1)
|
||||
|
||||
var nPast int
|
||||
|
||||
// prompt eval
|
||||
for _, t := range beforeTokens {
|
||||
batch.Add(t, nPast, []int{0}, true)
|
||||
nPast++
|
||||
}
|
||||
|
||||
err = lc.Decode(batch)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// batch.Clear()
|
||||
|
||||
llama.LlavaEvalImageEmbed(lc, embedding, 512, &nPast)
|
||||
|
||||
batch = llama.NewBatch(512, 0, 1)
|
||||
for _, t := range afterTokens {
|
||||
batch.Add(t, nPast, []int{0}, true)
|
||||
}
|
||||
|
||||
// main loop
|
||||
for n := nPast; n < 4096; n++ {
|
||||
err = lc.Decode(batch)
|
||||
if err != nil {
|
||||
panic("Failed to decode")
|
||||
}
|
||||
|
||||
// sample a token
|
||||
token := lc.SampleTokenGreedy(batch)
|
||||
|
||||
// if it's an end of sequence token, break
|
||||
if lc.Model().TokenIsEog(token) {
|
||||
break
|
||||
}
|
||||
|
||||
// print the token
|
||||
str := lc.Model().TokenToPiece(token)
|
||||
fmt.Print(str)
|
||||
batch.Clear()
|
||||
batch.Add(token, n, []int{0}, true)
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
@ -1,5 +1,7 @@
|
||||
# `runner`
|
||||
|
||||
A subprocess runner for loading a model and running inference via a small http web server.
|
||||
|
||||
```
|
||||
./runner -model <model binary>
|
||||
```
|
||||
|
@ -9,8 +9,10 @@ import (
|
||||
"log/slog"
|
||||
"net"
|
||||
"net/http"
|
||||
"strconv"
|
||||
"sync"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/llama"
|
||||
)
|
||||
|
||||
@ -131,7 +133,8 @@ func (s *Server) run(ctx context.Context) {
|
||||
// sample a token
|
||||
// TODO: sample based on the sequence
|
||||
fmt.Println("Sampling token", i, ibatch[i])
|
||||
token := s.lc.SampleTokenGreedy(batch, ibatch[i])
|
||||
logits := s.lc.GetLogitsIth(ibatch[i])
|
||||
token := s.lc.SampleTokenGreedy(logits)
|
||||
|
||||
// if it's an end of sequence token, break
|
||||
// TODO: just end this sequence
|
||||
@ -155,6 +158,8 @@ func (s *Server) run(ctx context.Context) {
|
||||
type Request struct {
|
||||
Prompt string `json:"prompt"`
|
||||
Images []string `json:"images"`
|
||||
|
||||
api.Options
|
||||
}
|
||||
|
||||
type Response struct {
|
||||
@ -208,6 +213,7 @@ func main() {
|
||||
mpath := flag.String("model", "", "Path to model binary file")
|
||||
ppath := flag.String("projector", "", "Path to projector binary file")
|
||||
parallel := flag.Int("parallel", 1, "Number of sequences to handle simultaneously")
|
||||
port := flag.Int("port", 8080, "Port to expose the server on")
|
||||
flag.Parse()
|
||||
|
||||
// load the model
|
||||
@ -241,7 +247,7 @@ func main() {
|
||||
ctx, cancel := context.WithCancel(context.Background())
|
||||
go server.run(ctx)
|
||||
|
||||
addr := "127.0.0.1:8080"
|
||||
addr := "127.0.0.1:" + strconv.Itoa(*port)
|
||||
listener, err := net.Listen("tcp", addr)
|
||||
if err != nil {
|
||||
fmt.Println("Listen error:", err)
|
||||
|
Loading…
x
Reference in New Issue
Block a user