ollama/docs/development.md
Blake Mizerany 7893ccb68c introduce build.go for controlling distribution builds
This commit aims to provide the Ollama maintainers with maximum control
of the distribution build process by creating a cross-platform shim.

Currently, we have no flexibility, or control of the process (pre and
post) or even the quality of the build.

By introducing a shim, and propagating it out to Homebrew, et al., we
can soon after ensure that the build process is consistent, and
reliable.

This also happens to remove the requirement for go generate and the
build tag hacks, but it does still support go generate in the flow, at
least until we can remove it after the major distribution use the new
build process.

About the script:

Beyond giving the Ollama maintainers drastically more control over the
build process, the script also provides a few other benefits:

- It is cross-platform, and can be run on any platform that supports Go
  (a hard requirement for building Ollama anyway).

- It can can check for correct versions of cmake, and other dependencies
  before starting the build process, and provide helpful error messages
  to the user if they are not met.

- It can be used to build the distribution for any platform,
  architecture, or build type (debug, release, etc.) with a single
  command. Currently, it is two commands.

- It can skip parts of the build process if they are already done, such
  as build the C dependencies. Of course there is a -f flag to force
  rebuild.

- So much more!
2024-06-30 22:18:45 -07:00

143 lines
4.7 KiB
Markdown

# Development
Install required tools:
- cmake version 3.24 or higher
- go version 1.22 or higher
- gcc version 11.4.0 or higher
### MacOS
```bash
brew install go cmake gcc
```
Optionally enable debugging and more verbose logging:
```bash
# At build time
export CGO_CFLAGS="-g"
# At runtime
export OLLAMA_DEBUG=1
```
Get the required libraries and build the native LLM code:
```bash
go run build.go
```
Now you can run `ollama`:
```bash
./ollama
```
### Rebuilding the native code
If at any point you need to rebuild the native code, you can run the
build.go script again using the `-f` flag to force a rebuild, and,
optionally, the `-d` flag to skip building the Go binary:
```bash
go run build.go -d -s
```
### Linux
#### Linux CUDA (NVIDIA)
_Your operating system distribution may already have packages for NVIDIA CUDA. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!_
Install `cmake` and `golang` as well as [NVIDIA CUDA](https://developer.nvidia.com/cuda-downloads)
development and runtime packages.
Typically the build scripts will auto-detect CUDA, however, if your Linux distro
or installation approach uses unusual paths, you can specify the location by
specifying an environment variable `CUDA_LIB_DIR` to the location of the shared
libraries, and `CUDACXX` to the location of the nvcc compiler. You can customize
a set of target CUDA architectures by setting `CMAKE_CUDA_ARCHITECTURES` (e.g. "50;60;70")
Then build the binary:
```
go run build.go
```
#### Linux ROCm (AMD)
_Your operating system distribution may already have packages for AMD ROCm and CLBlast. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!_
Install [CLBlast](https://github.com/CNugteren/CLBlast/blob/master/doc/installation.md) and [ROCm](https://rocm.docs.amd.com/en/latest/) development packages first, as well as `cmake` and `golang`.
Typically the build scripts will auto-detect ROCm, however, if your Linux distro
or installation approach uses unusual paths, you can specify the location by
specifying an environment variable `ROCM_PATH` to the location of the ROCm
install (typically `/opt/rocm`), and `CLBlast_DIR` to the location of the
CLBlast install (typically `/usr/lib/cmake/CLBlast`). You can also customize
the AMD GPU targets by setting AMDGPU_TARGETS (e.g. `AMDGPU_TARGETS="gfx1101;gfx1102"`)
Then build the binary:
```
go run build.go
```
ROCm requires elevated privileges to access the GPU at runtime. On most distros you can add your user account to the `render` group, or run as root.
#### Advanced CPU Settings
By default, running `go run build.go` will compile a few different variations
of the LLM library based on common CPU families and vector math capabilities,
including a lowest-common-denominator which should run on almost any 64 bit CPU
somewhat slowly. At runtime, Ollama will auto-detect the optimal variation to
load. If you would like to build a CPU-based build customized for your
processor, you can set `OLLAMA_CUSTOM_CPU_DEFS` to the llama.cpp flags you would
like to use. For example, to compile an optimized binary for an Intel i9-9880H,
you might use:
```
OLLAMA_CUSTOM_CPU_DEFS="-DLLAMA_AVX=on -DLLAMA_AVX2=on -DLLAMA_F16C=on -DLLAMA_FMA=on" go run build.go
```
#### Containerized Linux Build
If you have Docker available, you can build linux binaries with `./scripts/build_linux.sh` which has the CUDA and ROCm dependencies included. The resulting binary is placed in `./dist`
### Windows
Note: The Windows build for Ollama is still under development.
First, install required tools:
- MSVC toolchain - C/C++ and cmake as minimal requirements
- Go version 1.22 or higher
- MinGW (pick one variant) with GCC.
- [MinGW-w64](https://www.mingw-w64.org/)
- [MSYS2](https://www.msys2.org/)
- The `ThreadJob` Powershell module: `Install-Module -Name ThreadJob -Scope CurrentUser`
Then, build the `ollama` binary:
```powershell
$env:CGO_ENABLED="1"
go run build.go
```
#### Windows CUDA (NVIDIA)
In addition to the common Windows development tools described above, install CUDA after installing MSVC.
- [NVIDIA CUDA](https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html)
#### Windows ROCm (AMD Radeon)
In addition to the common Windows development tools described above, install AMDs HIP package after installing MSVC.
- [AMD HIP](https://www.amd.com/en/developer/resources/rocm-hub/hip-sdk.html)
- [Strawberry Perl](https://strawberryperl.com/)
Lastly, add `ninja.exe` included with MSVC to the system path (e.g. `C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\Common7\IDE\CommonExtensions\Microsoft\CMake\Ninja`).