spek/src/spek-spectrogram.vala
Alexander Kojevnikov fa2d18ea6e Draw the palette
2010-05-08 16:10:22 +10:00

158 lines
4.2 KiB
Vala

using Cairo;
using Gdk;
using Gtk;
namespace Spek {
class Spectrogram : DrawingArea {
private Source source;
private string file_name;
private const int THRESHOLD = -92;
private const int BANDS = 1024;
private ImageSurface image;
private ImageSurface palette;
private const int PADDING = 60;
private const int GAP = 10;
private const int RULER = 10;
public Spectrogram () {
// Pre-draw the palette.
palette = new ImageSurface (Format.RGB24, RULER, BANDS);
for (int y = 0; y < BANDS; y++) {
var color = get_color (y / (float) BANDS);
for (int x = 0; x < RULER; x++) {
put_pixel (palette, x, y, color);
}
}
show_all ();
}
public void open (string file_name) {
this.file_name = file_name;
start ();
}
private void start () {
// The number of samples is the number of pixels available for the image.
// The number of bands is fixed, FFT results are very different for
// different values but we need some consistency.
this.image = new ImageSurface (Format.RGB24, allocation.width - 2 * PADDING, BANDS);
if (this.source != null) {
this.source.stop ();
}
this.source = new Source (
file_name, image.get_height (), image.get_width (),
THRESHOLD, source_callback);
queue_draw ();
}
private override void size_allocate (Gdk.Rectangle allocation) {
base.size_allocate (allocation);
if (file_name != null) {
start ();
}
}
private void source_callback (int sample, float[] values) {
for (int y = 0; y < values.length; y++) {
var level = float.min (
1f, Math.log10f (1f - THRESHOLD + values[y]) / Math.log10f (-THRESHOLD));
put_pixel (image, sample, y, get_color (level));
}
queue_draw_area (PADDING + sample, PADDING, 1, allocation.height - 2 * PADDING);
}
private override bool expose_event (EventExpose event) {
double w = allocation.width;
double h = allocation.height;
var cr = cairo_create (this.window);
// Clip to the exposed area.
cr.rectangle (event.area.x, event.area.y, event.area.width, event.area.height);
cr.clip ();
// Clean the background.
cr.set_source_rgb (0, 0, 0);
cr.paint ();
// Draw the spectrogram.
if (image != null) {
cr.translate (PADDING, h - PADDING);
cr.scale (1, -(h - 2 * PADDING) / image.get_height ());
cr.set_source_surface (image, 0, 0);
cr.paint ();
cr.identity_matrix ();
}
// Border around the spectrogram.
cr.set_source_rgb (1, 1, 1);
cr.set_line_width (1);
cr.set_antialias (Antialias.NONE);
cr.rectangle (PADDING, PADDING, w - 2 * PADDING, h - 2 * PADDING);
cr.stroke ();
// The palette.
cr.translate (w - PADDING + GAP, h - PADDING);
cr.scale (1, -(h - 2 * PADDING) / palette.get_height ());
cr.set_source_surface (palette, 0, 0);
cr.paint ();
cr.identity_matrix ();
return true;
}
private void put_pixel (ImageSurface surface, int x, int y, uint32 color) {
var i = y * surface.get_stride () + x * 4;
unowned uchar[] data = surface.get_data ();
// Translate uchar* to uint32* to avoid dealing with endianness.
uint32 *p = &data[i];
*p = color;
}
// Modified version of Dan Bruton's algorithm:
// http://www.physics.sfasu.edu/astro/color/spectra.html
private uint32 get_color (float level) {
level *= 0.6625f;
float r = 0.0f, g = 0.0f, b = 0.0f;
if (level >= 0f && level < 0.15f) {
r = (0.15f - level) / (0.15f + 0.075f);
g = 0.0f;
b = 1.0f;
} else if (level >= 0.15f && level < 0.275f) {
r = 0.0f;
g = (level - 0.15f) / (0.275f - 0.15f);
b = 1.0f;
} else if (level >= 0.275f && level < 0.325f) {
r = 0.0f;
g = 1.0f;
b = (0.325f - level) / (0.325f - 0.275f);
} else if (level >= 0.325f && level < 0.5f) {
r = (level - 0.325f) / (0.5f - 0.325f);
g = 1.0f;
b = 0.0f;
} else if (level >= 0.5f && level < 0.6625f) {
r = 1.0f;
g = (0.6625f - level) / (0.6625f - 0.5f);
b = 0.0f;
}
// Intensity correction.
float cf = 1.0f;
if (level >= 0 && level < 0.1f) {
cf = level / 0.1f;
}
cf *= 255f;
// Pack RGB values into Cairo-happy format.
uint32 rr = (uint32) (r * cf + 0.5f);
uint32 gg = (uint32) (g * cf + 0.5f);
uint32 bb = (uint32) (b * cf + 0.5f);
return (rr << 16) + (gg << 8) + bb;
}
}
}